51
|
Chen Y, Zhou X, Chang S, Chu Z, Wang H, Han S, Wang Y. Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice. Biochem Biophys Res Commun 2017; 493:1450-1456. [DOI: 10.1016/j.bbrc.2017.09.166] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
|
52
|
Xu W, Huang W. Calcium-Dependent Protein Kinases in Phytohormone Signaling Pathways. Int J Mol Sci 2017; 18:ijms18112436. [PMID: 29156607 PMCID: PMC5713403 DOI: 10.3390/ijms18112436] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/07/2017] [Accepted: 11/12/2017] [Indexed: 02/06/2023] Open
Abstract
Calcium-dependent protein kinases (CPKs/CDPKs) are Ca2+-sensors that decode Ca2+ signals into specific physiological responses. Research has reported that CDPKs constitute a large multigene family in various plant species, and play diverse roles in plant growth, development, and stress responses. Although numerous CDPKs have been exhaustively studied, and many of them have been found to be involved in plant hormone biosynthesis and response mechanisms, a comprehensive overview of the manner in which CDPKs participate in phytohormone signaling pathways, regulating nearly all aspects of plant growth, has not yet been undertaken. In this article, we reviewed the structure of CDPKs and the mechanism of their subcellular localization. Some CDPKs were elucidated to influence the intracellular localization of their substrates. Since little work has been done on the interaction between CDPKs and cytokinin signaling pathways, or on newly defined phytohormones such as brassinosteroids, strigolactones and salicylic acid, this paper mainly focused on discussing the integral associations between CDPKs and five plant hormones: auxins, gibberellins, ethylene, jasmonates, and abscisic acid. A perspective on future work is provided at the end.
Collapse
Affiliation(s)
- Wuwu Xu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration & Innovation Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration & Innovation Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
53
|
Jha SK, Malik S, Sharma M, Pandey A, Pandey GK. Recent Advances in Substrate Identification of Protein Kinases in Plants and Their Role in Stress Management. Curr Genomics 2017; 18:523-541. [PMID: 29204081 PMCID: PMC5684648 DOI: 10.2174/1389202918666170228142703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/13/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022] Open
Abstract
Protein phosphorylation-dephosphorylation is a well-known regulatory mechanism in biological systems and has become one of the significant means of protein function regulation, modulating most of the biological processes. Protein kinases play vital role in numerous cellular processes. Kinases transduce external signal into responses such as growth, immunity and stress tolerance through phosphorylation of their target proteins. In order to understand these cellular processes at the molecular level, one needs to be aware of the different substrates targeted by protein kinases. Advancement in tools and techniques has bestowed practice of multiple approaches that enable target identification of kinases. However, so far none of the methodologies has been proved to be as good as a panacea for the substrate identification. In this review, the recent advances that have been made in the identifications of putative substrates and the implications of these kinases and their substrates in stress management are discussed.
Collapse
Affiliation(s)
- Saroj K Jha
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Shikha Malik
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Manisha Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Amita Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| |
Collapse
|
54
|
Manimaran P, Venkata Reddy S, Moin M, Raghurami Reddy M, Yugandhar P, Mohanraj SS, Balachandran SM, Kirti PB. Activation-tagging in indica rice identifies a novel transcription factor subunit, NF-YC13 associated with salt tolerance. Sci Rep 2017; 7:9341. [PMID: 28839256 PMCID: PMC5570948 DOI: 10.1038/s41598-017-10022-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/02/2017] [Indexed: 12/19/2022] Open
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor with three distinct NF-YA, NF-YB and NF-YC subunits. It plays important roles in plant growth, development and stress responses. We have reported earlier on development of gain-of-function mutants in an indica rice cultivar, BPT-5204. Now, we screened 927 seeds from 70 Ac/Ds plants for salinity tolerance and identified one activation-tagged salt tolerant DS plant (DS-16, T3 generation) that showed enhanced expression of a novel 'histone-like transcription factor' belonging to rice NF-Y subfamily C and was named as OsNF-YC13. Localization studies using GFP-fusion showed that the protein is localized to nucleus and cytoplasm. Real time expression analysis confirmed upregulation of transcript levels of OsNF-YC13 during salt treatment in a tissue specific manner. Biochemical and physiological characterization of the DS-16 revealed enhanced K+/Na+ ratio, proline content, chlorophyll content, enzymes with antioxidant activity etc. DS-16 also showed transcriptional up-regulation of genes that are involved in salinity tolerance. In-silico analysis of OsNF-YC13 promoter region evidenced the presence of various key stress-responsive cis-regulatory elements. OsNF-YC13 subunit alone does not appear to have the capacity for direct transcription activation, but appears to interact with the B- subunits in the process of transactivation.
Collapse
Affiliation(s)
- P Manimaran
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India.
| | - S Venkata Reddy
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India
| | - Mazahar Moin
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India
| | - M Raghurami Reddy
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - Poli Yugandhar
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - S S Mohanraj
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India
| | - S M Balachandran
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India.
| |
Collapse
|
55
|
Wang J, Cheng G, Wang C, He Z, Lan X, Zhang S, Lan H. The bHLH transcription factor CgbHLH001 is a potential interaction partner of CDPK in halophyte Chenopodium glaucum. Sci Rep 2017; 7:8441. [PMID: 28814803 PMCID: PMC5559460 DOI: 10.1038/s41598-017-06706-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 06/16/2017] [Indexed: 11/19/2022] Open
Abstract
Plants have evolved different abilities to adapt to the ever-fluctuating environments for sessility. Calcium-dependent protein kinase (CDPK) is believed to play a pivotal role in abiotic stress signaling. So far, study on the specific substrates that CDPK recognized in response to adversity is limited. In the present study, we revealed a potential interaction between CDPK and a bHLH transcription factor under salt stress in Chenopodium glaucum. First, we identified a CgCDPK, which was up-regulated under salt and drought stress; then by Y2H screening, CgCDPK was detected to be involved in interaction with a bHLH TF (named as CgbHLH001), which also positively respond to salt and drought stress. Further computational prediction and experiments including GST-pulldown and BiFC assays revealed that potential interaction existed between CgCDPK and CgbHLH001, and they might interact on the plasma membrane. In addition, CgCDPK-overexpressed transgenic tobacco line could significantly accumulate transcripts of NtbHLH (a homolog of CgbHLH001 in N. tabacum), which provided another evidence of correlation between CgCDPK and CgbHLH001. Our results suggest that CgbHLH001 can interact with CgCDPK in signal transduction pathway in response to abiotic stress, which should provide new evidence for further understanding of the substrate specificity of plant CDPK signaling pathway.
Collapse
Affiliation(s)
- Juan Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Gang Cheng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Cui Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Zhuanzhuan He
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Xinxin Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Shiyue Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
56
|
Almadanim MC, Alexandre BM, Rosa MTG, Sapeta H, Leitão AE, Ramalho JC, Lam TT, Negrão S, Abreu IA, Oliveira MM. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose-phosphate synthase and is required for a proper cold stress response. PLANT, CELL & ENVIRONMENT 2017; 40:1197-1213. [PMID: 28102545 DOI: 10.1111/pce.12916] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/10/2017] [Accepted: 01/15/2017] [Indexed: 05/20/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are involved in plant tolerance mechanisms to abiotic stresses. Although CDPKs are recognized as key messengers in signal transduction, the specific role of most members of this family remains unknown. Here, we test the hypothesis that OsCPK17 plays a role in rice cold stress response by analysing OsCPK17 knockout, silencing and overexpressing rice lines under low temperature. Altered OsCPK17 gene expression compromises cold tolerance performance, without affecting the expression of key cold stress-inducible genes. A comparative phosphoproteomic approach led to the identification of six potential in vivo OsCPK17 targets, which are associated with sugar and nitrogen metabolism, and with osmotic regulation. To test direct interaction, in vitro kinase assays were performed, showing that the sucrose-phosphate synthase OsSPS4 and the aquaporin OsPIP2;1/OsPIP2;6 are phosphorylated by OsCPK17 in a calcium-dependent manner. Altogether, our data indicates that OsCPK17 is required for a proper cold stress response in rice, likely affecting the activity of membrane channels and sugar metabolism.
Collapse
Affiliation(s)
- M Cecília Almadanim
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Bruno M Alexandre
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| | - Margarida T G Rosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Helena Sapeta
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - António E Leitão
- Plant Stress and Biodiversity, Linking Landscape, Environment, Agriculture and Food (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia, Universidade de Lisboa, 2784-505, Oeiras, Portugal
| | - José C Ramalho
- Plant Stress and Biodiversity, Linking Landscape, Environment, Agriculture and Food (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia, Universidade de Lisboa, 2784-505, Oeiras, Portugal
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520-8024, USA
- MS and Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, CT, 06520-8024, USA
| | - Sónia Negrão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Isabel A Abreu
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| |
Collapse
|
57
|
Zeng H, Zhang Y, Zhang X, Pi E, Zhu Y. Analysis of EF-Hand Proteins in Soybean Genome Suggests Their Potential Roles in Environmental and Nutritional Stress Signaling. FRONTIERS IN PLANT SCIENCE 2017; 8:877. [PMID: 28596783 PMCID: PMC5443154 DOI: 10.3389/fpls.2017.00877] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/10/2017] [Indexed: 05/23/2023]
Abstract
Calcium ion (Ca2+) is a universal second messenger that plays a critical role in plant responses to diverse physiological and environmental stimuli. The stimulus-specific signals are perceived and decoded by a series of Ca2+ binding proteins serving as Ca2+ sensors. The majority of Ca2+ sensors possess the EF-hand motif, a helix-loop-helix structure which forms a turn-loop structure. Although EF-hand proteins in model plant such as Arabidopsis have been well described, the identification, classification, and the physiological functions of EF-hand-containing proteins from soybean are not systemically reported. In this study, a total of at least 262 genes possibly encoding proteins containing one to six EF-hand motifs were identified in soybean genome. These genes include 6 calmodulins (CaMs), 144 calmodulin-like proteins (CMLs), 15 calcineurin B-like proteins, 50 calcium-dependent protein kinases (CDPKs), 13 CDPK-related protein kinases, 2 Ca2+- and CaM-dependent protein kinases, 17 respiratory burst oxidase homologs, and 15 unclassified EF-hand proteins. Most of these genes (87.8%) contain at least one kind of hormonal signaling- and/or stress response-related cis-elements in their -1500 bp promoter regions. Expression analyses by exploring the published microarray and Illumina transcriptome sequencing data revealed that the expression of these EF-hand genes were widely detected in different organs of soybean, and nearly half of the total EF-hand genes were responsive to various environmental or nutritional stresses. Quantitative RT-PCR was used to confirm their responsiveness to several stress treatments. To confirm the Ca2+-binding ability of these EF-hand proteins, four CMLs (CML1, CML13, CML39, and CML95) were randomly selected for SDS-PAGE mobility-shift assay in the presence and absence of Ca2+. Results showed that all of them have the ability to bind Ca2+. This study provided the first comprehensive analyses of genes encoding for EF-hand proteins in soybean. Information on the classification, phylogenetic relationships and expression profiles of soybean EF-hand genes in different tissues and under various environmental and nutritional stresses will be helpful for identifying candidates with potential roles in Ca2+ signal-mediated physiological processes including growth and development, plant-microbe interactions and responses to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Yaxian Zhang
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Xiajun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Yiyong Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
58
|
Bundó M, Coca M. Calcium-dependent protein kinase OsCPK10 mediates both drought tolerance and blast disease resistance in rice plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2963-2975. [PMID: 28472292 PMCID: PMC5853374 DOI: 10.1093/jxb/erx145] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/05/2017] [Indexed: 05/21/2023]
Abstract
Plant growth and productivity is negatively affected by different stresses. Most stresses trigger calcium signals that initiate acclimation responses in plants. The multigene family of plant calcium-dependent protein kinases (CPKs) functions in multiple stress responses by transducing calcium signals into phosphorylation events. This work reports that the OsCPK10 isoform positively mediates tolerance to different stresses in rice plants by enhancing their antioxidant capacity and protecting them from reactive oxygen species (ROS) damage, with the uncontrolled generation of ROS being a common feature of these stresses. Here, we show that the constitutive accumulation of an HA-tagged OsCPK10 full-length protein enhances the hydrogen peroxide detoxifying capacity of rice plants during desiccation. This is achived by modulating the accumulation of catalase proteins, which reduces the extent of lipid peroxidation and protects the integrity of cell membranes, resulting in drought tolerance. OsCPK10HA accumulation also confers blast disease resistance by interfering with fungal necrotrophic growth via a reduction in the accumulation of hydrogen peroxide. Furthermore, we show by bimolecular complementation assays that OsCPK10 is a plasma membrane protein that physically interacts in vivo with catalase A. OsCPK10 therefore appears to be a good molecular target to improve tolerance to abiotic stresses as well as to blast disease, which limit rice crop productivity.
Collapse
Affiliation(s)
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus de la UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
59
|
Zhang H, Wei C, Yang X, Chen H, Yang Y, Mo Y, Li H, Zhang Y, Ma J, Yang J, Zhang X. Genome-wide identification and expression analysis of calcium‑dependent protein kinase and its related kinase gene families in melon (Cucumis melo L.). PLoS One 2017; 12:e0176352. [PMID: 28437432 PMCID: PMC5402965 DOI: 10.1371/journal.pone.0176352] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/10/2017] [Indexed: 11/18/2022] Open
Abstract
The calcium-dependent protein kinase (CDPK) is a ser/thr protein kinase that plays vital roles in plant growth, development, and responses to multiple stresses. Despite an important member of the stress responsive gene family, little is known about the evolutionary history and expression patterns of CDPK genes in melon. Herein, a total of 18 CDPK genes and 7 CDPK-related protein kinases (CRK) genes were identified in the melon genome via bioinformatic analysis, which were unevenly distributed across eleven chromosomes with an apparent exception for chromosome 3. Comparative syntenic analysis between Cucumis melo L. and Arabidopsis thaliana revealed that 13 CmCDPKs and 19 AtCPKs existed in 20 corresponding syntenic blocks. In addition, based on gene structure and phylogenetic analyses, all CmCDPKs were divided into four groups (CDPK I-IV) and CmCRKs clustered into one group (CRK I). Interestingly, group CDPK IV was clearly distinct from the other three CDPK groups, but clustered with CRK I on the phylogenetic tree, implying their origination from a common ancestor. Furthermore, CmCDPKand CmCRK genes were differentially expressed in response to various stimuli, such as biotic stress (Podosphaera xanthii), abiotic stress (salt and cold), and hormone (abscisic acid) treatment. To our knowledge, this is the first report on CDPK and CRK gene families in melon, which provides a basic foundation for functional characterizations of CmCDPK and CmCRK genes in the future.
Collapse
Affiliation(s)
- Haifei Zhang
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Chunhua Wei
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Xiaozhen Yang
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Hejie Chen
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Yongchao Yang
- Department of Horticulture, Northwest A&F University, Yangling, China
- Wenshan Academy of Agricultural Sciences, Wenshan, China
| | - Yanling Mo
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Hao Li
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Yong Zhang
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Jianxiang Ma
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Jianqiang Yang
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Xian Zhang
- Department of Horticulture, Northwest A&F University, Yangling, China
- * E-mail:
| |
Collapse
|
60
|
McCoy JM, Stewart RJ, Uboldi AD, Li D, Schröder J, Scott NE, Papenfuss AT, Lehane AM, Foster LJ, Tonkin CJ. A forward genetic screen identifies a negative regulator of rapid Ca 2+-dependent cell egress (MS1) in the intracellular parasite Toxoplasma gondii. J Biol Chem 2017; 292:7662-7674. [PMID: 28258212 DOI: 10.1074/jbc.m117.775114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/27/2017] [Indexed: 12/20/2022] Open
Abstract
Toxoplasma gondii, like all apicomplexan parasites, uses Ca2+ signaling pathways to activate gliding motility to power tissue dissemination and host cell invasion and egress. A group of "plant-like" Ca2+-dependent protein kinases (CDPKs) transduces cytosolic Ca2+ flux into enzymatic activity, but how they function is poorly understood. To investigate how Ca2+ signaling activates egress through CDPKs, we performed a forward genetic screen to isolate gain-of-function mutants from an egress-deficient cdpk3 knockout strain. We recovered mutants that regained the ability to egress from host cells that harbored mutations in the gene Suppressor of Ca2+-dependent Egress 1 (SCE1). Global phosphoproteomic analysis showed that SCE1 deletion restored many Δcdpk3-dependent phosphorylation events to near wild-type levels. We also show that CDPK3-dependent SCE1 phosphorylation is required to relieve its suppressive activity to potentiate egress. In summary, our work has uncovered a novel component and suppressor of Ca2+-dependent cell egress during Toxoplasma lytic growth.
Collapse
Affiliation(s)
- James M McCoy
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.,the Departments of Medical Biology.,Computing and Information Systems,University of Melbourne, Victoria 3010, Australia
| | - Rebecca J Stewart
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.,the Departments of Medical Biology.,Computing and Information Systems,University of Melbourne, Victoria 3010, Australia
| | - Alessandro D Uboldi
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.,the Departments of Medical Biology.,Computing and Information Systems,University of Melbourne, Victoria 3010, Australia
| | - Dongdi Li
- the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Jan Schröder
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.,the Departments of Medical Biology.,the Peter MacCallum Cancer Institute, Victoria 3000, Australia, and
| | - Nicollas E Scott
- the University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Anthony T Papenfuss
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.,the Departments of Medical Biology.,the Peter MacCallum Cancer Institute, Victoria 3000, Australia, and
| | - Adele M Lehane
- the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Leonard J Foster
- the University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Christopher J Tonkin
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia, .,the Departments of Medical Biology
| |
Collapse
|
61
|
Ribaudo CM, Curá JA, Cantore ML. Activation of a calcium-dependent protein kinase involved in the Azospirillum growth promotion in rice. World J Microbiol Biotechnol 2017; 33:22. [DOI: 10.1007/s11274-016-2186-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/01/2016] [Indexed: 01/16/2023]
|
62
|
Xiao XH, Yang M, Sui JL, Qi JY, Fang YJ, Hu SN, Tang CR. The calcium-dependent protein kinase (CDPK) and CDPK-related kinase gene families in Hevea brasiliensis-comparison with five other plant species in structure, evolution, and expression. FEBS Open Bio 2016; 7:4-24. [PMID: 28097084 PMCID: PMC5221434 DOI: 10.1002/2211-5463.12163] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/06/2016] [Accepted: 11/10/2016] [Indexed: 11/16/2022] Open
Abstract
Calcium‐dependent protein kinases (CDPKs or CPKs) play important roles in various physiological processes of plants, including growth and development, stress responses and hormone signaling. Although the CDPK gene family has been characterized in several model plants, little is known about this gene family in Hevea brasiliensis (the Para rubber tree). Here, we characterize the entire H. brasiliensis CDPK and CDPK‐related kinase (CRK) gene families comprising 30 CDPK genes (HbCPK1 to 30) and nine CRK genes (HbCRK1 to 9). Structure and phylogeny analyses of these CDPK and CRK genes demonstrate evolutionary conservation in these gene families across H. brasiliensis and other plant species. The expression of HbCPK and HbCRK genes was investigated via Solexa sequencing in a range of experimental conditions (different tissues, phases of leaf development, ethylene treatment, and various abiotic stresses). The results suggest that HbCPK and HbCRK genes are important components in growth, development, and stress responses of H. brasiliensis. Parallel studies on the CDPK and CRK gene families were also extended to five other plant species (Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Manihot esculenta, and Ricinus communis). The CDPK and CRK genes from different plant species that exhibit similar expression patterns tend to cluster together, suggesting a coevolution of gene structure and expression behavior in higher plants. The results serve as a foundation to further functional studies of these gene families in H. brasiliensis as well as in the whole plant kingdom.
Collapse
Affiliation(s)
- Xiao-Hu Xiao
- Key Lab of Rubber Biology, Ministry of Agriculture & Rubber Research Institute Chinese Academy of Tropical Agricultural Sciences Danzhou Hainan China
| | - Meng Yang
- Beijing Institute of Genomics Chinese Academy of Sciences Beijing China
| | - Jin-Lei Sui
- Key Lab of Rubber Biology, Ministry of Agriculture & Rubber Research Institute Chinese Academy of Tropical Agricultural Sciences Danzhou Hainan China; College of Agriculture Hainan University Haikou Hainan China
| | - Ji-Yan Qi
- Key Lab of Rubber Biology, Ministry of Agriculture & Rubber Research Institute Chinese Academy of Tropical Agricultural Sciences Danzhou Hainan China
| | - Yong-Jun Fang
- Key Lab of Rubber Biology, Ministry of Agriculture & Rubber Research Institute Chinese Academy of Tropical Agricultural Sciences Danzhou Hainan China
| | - Song-Nian Hu
- Beijing Institute of Genomics Chinese Academy of Sciences Beijing China
| | - Chao-Rong Tang
- Key Lab of Rubber Biology, Ministry of Agriculture & Rubber Research Institute Chinese Academy of Tropical Agricultural Sciences Danzhou Hainan China
| |
Collapse
|
63
|
Wang L, Yu C, Xu S, Zhu Y, Huang W. OsDi19-4 acts downstream of OsCDPK14 to positively regulate ABA response in rice. PLANT, CELL & ENVIRONMENT 2016; 39:2740-2753. [PMID: 27627618 DOI: 10.1111/pce.12829] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 08/24/2016] [Accepted: 09/03/2016] [Indexed: 05/08/2023]
Abstract
The drought-induced 19 protein family consists of several atypical Cys2/His2-type zinc finger proteins in plants and plays an important role in abiotic stress. In this study, we found that overexpressing OsDi19-4 in rice altered the expression of a series of abscisic acid (ABA)-responsive genes, resulting in strong ABA-hypersensitive phenotypes including ABA-induced seed germination inhibition, early seedling growth inhibition and stomatal closure. On the contrary, OsDi19-4 knockdown lines were less sensitive to ABA. Additionally, OsCDPK14 was identified to interact with OsDi19-4 and be responsible for the phosphorylation of OsDi19-4, and the phosphorylation of OsDi19-4 was further enhanced after the treatment of ABA. Apart from these, OsDi19-4 was shown to directly bind to the promoters of OsASPG1 and OsNAC18 genes, two ABA-responsive genes, and regulate their expression. Transient expression assays confirmed the direct regulation role of OsDi19-4, and the regulation was further enhanced by the increased phosphorylation of OsDi19-4 after the treatment of ABA. Taken together, these data demonstrate that OsDi19-4 acts downstream of OsCDPK14 to positively regulate ABA response by modulating the expression of ABA-responsive genes in rice.
Collapse
Affiliation(s)
- Lili Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Changchun Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shanglin Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration & Innovation Center, Wuhan University, Wuhan, 430072, China
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration & Innovation Center, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
64
|
Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K. New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding. FRONTIERS IN PLANT SCIENCE 2016; 7:1787. [PMID: 27965692 PMCID: PMC5126725 DOI: 10.3389/fpls.2016.01787] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 11/14/2016] [Indexed: 05/18/2023]
Abstract
Soil salinization is a major threat to agriculture in arid and semi-arid regions, where water scarcity and inadequate drainage of irrigated lands severely reduce crop yield. Salt accumulation inhibits plant growth and reduces the ability to uptake water and nutrients, leading to osmotic or water-deficit stress. Salt is also causing injury of the young photosynthetic leaves and acceleration of their senescence, as the Na+ cation is toxic when accumulating in cell cytosol resulting in ionic imbalance and toxicity of transpiring leaves. To cope with salt stress, plants have evolved mainly two types of tolerance mechanisms based on either limiting the entry of salt by the roots, or controlling its concentration and distribution. Understanding the overall control of Na+ accumulation and functional studies of genes involved in transport processes, will provide a new opportunity to improve the salinity tolerance of plants relevant to food security in arid regions. A better understanding of these tolerance mechanisms can be used to breed crops with improved yield performance under salinity stress. Moreover, associations of cultures with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi could serve as an alternative and sustainable strategy to increase crop yields in salt-affected fields.
Collapse
Affiliation(s)
- Moez Hanin
- Laboratoire de Biotechnologie et Amélioration des Plantes, Centre de Biotechnologie de SfaxSfax, Tunisia
- Institut Supérieur de Biotechnologie, Université de SfaxSfax, Tunisia
| | - Chantal Ebel
- Laboratoire de Biotechnologie et Amélioration des Plantes, Centre de Biotechnologie de SfaxSfax, Tunisia
- Institut Supérieur de Biotechnologie, Université de SfaxSfax, Tunisia
| | - Mariama Ngom
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress EnvironnementauxDakar, Senegal
- Laboratoire Commun de Microbiologie, Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta DiopDakar, Senegal
| | - Laurent Laplaze
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress EnvironnementauxDakar, Senegal
- Laboratoire Commun de Microbiologie, Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta DiopDakar, Senegal
- Institut de Recherche pour le Développement, Unités Mixtes de Recherche, Diversité, Adaptation, Développement des Plantes (DIADE), MontpellierFrance
| | - Khaled Masmoudi
- Department of Aridland, College of Food and Agriculture, United Arab Emirates UniversityAl Ain, UAE
| |
Collapse
|
65
|
Cieśla A, Mituła F, Misztal L, Fedorowicz-Strońska O, Janicka S, Tajdel-Zielińska M, Marczak M, Janicki M, Ludwików A, Sadowski J. A Role for Barley Calcium-Dependent Protein Kinase CPK2a in the Response to Drought. FRONTIERS IN PLANT SCIENCE 2016; 7:1550. [PMID: 27826303 PMCID: PMC5078816 DOI: 10.3389/fpls.2016.01550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/03/2016] [Indexed: 05/30/2023]
Abstract
Increasing the drought tolerance of crops is one of the most challenging goals in plant breeding. To improve crop productivity during periods of water deficit, it is essential to understand the complex regulatory pathways that adapt plant metabolism to environmental conditions. Among various plant hormones and second messengers, calcium ions are known to be involved in drought stress perception and signaling. Plants have developed specific calcium-dependent protein kinases that convert calcium signals into phosphorylation events. In this study we attempted to elucidate the role of a calcium-dependent protein kinase in the drought stress response of barley (Hordeum vulgare L.), one of the most economically important crops worldwide. The ongoing barley genome project has provided useful information about genes potentially involved in the drought stress response, but information on the role of calcium-dependent kinases is still limited. We found that the gene encoding the calcium-dependent protein kinase HvCPK2a was significantly upregulated in response to drought. To better understand the role of HvCPK2a in drought stress signaling, we generated transgenic Arabidopsis plants that overexpressed the corresponding coding sequence. Overexpressing lines displayed drought sensitivity, reduced nitrogen balance index (NBI), an increase in total chlorophyll content and decreased relative water content. In addition, in vitro kinase assay experiments combined with mass spectrometry allowed HvCPK2a autophosphorylation sites to be identified. Our results suggest that HvCPK2a is a dual-specificity calcium-dependent protein kinase that functions as a negative regulator of the drought stress response in barley.
Collapse
Affiliation(s)
- Agata Cieśla
- Biotechnology Department, Faculty of Biology, Adam Mickiewicz UniversityPoznań, Poland
| | - Filip Mituła
- Biotechnology Department, Faculty of Biology, Adam Mickiewicz UniversityPoznań, Poland
| | - Lucyna Misztal
- Biotechnology Department, Faculty of Biology, Adam Mickiewicz UniversityPoznań, Poland
| | | | - Sabina Janicka
- Biotechnology Department, Faculty of Biology, Adam Mickiewicz UniversityPoznań, Poland
| | | | - Małgorzata Marczak
- Biotechnology Department, Faculty of Biology, Adam Mickiewicz UniversityPoznań, Poland
| | - Maciej Janicki
- Biotechnology Department, Faculty of Biology, Adam Mickiewicz UniversityPoznań, Poland
| | - Agnieszka Ludwików
- Biotechnology Department, Faculty of Biology, Adam Mickiewicz UniversityPoznań, Poland
| | - Jan Sadowski
- Biotechnology Department, Faculty of Biology, Adam Mickiewicz UniversityPoznań, Poland
| |
Collapse
|
66
|
Abe K, Ichikawa H. Gene Overexpression Resources in Cereals for Functional Genomics and Discovery of Useful Genes. FRONTIERS IN PLANT SCIENCE 2016; 7:1359. [PMID: 27708649 PMCID: PMC5030214 DOI: 10.3389/fpls.2016.01359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/26/2016] [Indexed: 05/12/2023]
Abstract
Identification and elucidation of functions of plant genes is valuable for both basic and applied research. In addition to natural variation in model plants, numerous loss-of-function resources have been produced by mutagenesis with chemicals, irradiation, or insertions of transposable elements or T-DNA. However, we may be unable to observe loss-of-function phenotypes for genes with functionally redundant homologs and for those essential for growth and development. To offset such disadvantages, gain-of-function transgenic resources have been exploited. Activation-tagged lines have been generated using obligatory overexpression of endogenous genes by random insertion of an enhancer. Recent progress in DNA sequencing technology and bioinformatics has enabled the preparation of genomewide collections of full-length cDNAs (fl-cDNAs) in some model species. Using the fl-cDNA clones, a novel gain-of-function strategy, Fl-cDNA OvereXpressor gene (FOX)-hunting system, has been developed. A mutant phenotype in a FOX line can be directly attributed to the overexpressed fl-cDNA. Investigating a large population of FOX lines could reveal important genes conferring favorable phenotypes for crop breeding. Alternatively, a unique loss-of-function approach Chimeric REpressor gene Silencing Technology (CRES-T) has been developed. In CRES-T, overexpression of a chimeric repressor, composed of the coding sequence of a transcription factor (TF) and short peptide designated as the repression domain, could interfere with the action of endogenous TF in plants. Although plant TFs usually consist of gene families, CRES-T is effective, in principle, even for the TFs with functional redundancy. In this review, we focus on the current status of the gene-overexpression strategies and resources for identifying and elucidating novel functions of cereal genes. We discuss the potential of these research tools for identifying useful genes and phenotypes for application in crop breeding.
Collapse
Affiliation(s)
| | - Hiroaki Ichikawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research OrganizationTsukuba, Japan
| |
Collapse
|
67
|
Na2CO3-responsive mechanisms in halophyte Puccinellia tenuiflora roots revealed by physiological and proteomic analyses. Sci Rep 2016; 6:32717. [PMID: 27596441 PMCID: PMC5011731 DOI: 10.1038/srep32717] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/15/2016] [Indexed: 11/16/2022] Open
Abstract
Soil alkalization severely affects crop growth and agricultural productivity. Alkali salts impose ionic, osmotic, and high pH stresses on plants. The alkali tolerance molecular mechanism in roots from halophyte Puccinellia tenuiflora is still unclear. Here, the changes associated with Na2CO3 tolerance in P. tenuiflora roots were assessed using physiological and iTRAQ-based quantitative proteomic analyses. We set up the first protein dataset in P. tenuiflora roots containing 2,671 non-redundant proteins. Our results showed that Na2CO3 slightly inhibited root growth, caused ROS accumulation, cell membrane damage, and ion imbalance, as well as reduction of transport and protein synthesis/turnover. The Na2CO3-responsive patterns of 72 proteins highlighted specific signaling and metabolic pathways in roots. Ca2+ signaling was activated to transmit alkali stress signals as inferred by the accumulation of calcium-binding proteins. Additionally, the activities of peroxidase and glutathione peroxidase, and the peroxiredoxin abundance were increased for ROS scavenging. Furthermore, ion toxicity was relieved through Na+ influx restriction and compartmentalization, and osmotic homeostasis reestablishment due to glycine betaine accumulation. Importantly, two transcription factors were increased for regulating specific alkali-responsive gene expression. Carbohydrate metabolism-related enzymes were increased for providing energy and carbon skeletons for cellular metabolism. All these provide new insights into alkali-tolerant mechanisms in roots.
Collapse
|
68
|
Hu W, Hou X, Xia Z, Yan Y, Wei Y, Wang L, Zou M, Lu C, Wang W, Peng M. Genome-wide survey and expression analysis of the calcium-dependent protein kinase gene family in cassava. Mol Genet Genomics 2015; 291:241-53. [DOI: 10.1007/s00438-015-1103-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/05/2015] [Indexed: 12/25/2022]
|
69
|
Zhao R, Sun H, Zhao N, Jing X, Shen X, Chen S. The Arabidopsis Ca²⁺-dependent protein kinase CPK27 is required for plant response to salt-stress. Gene 2015; 563:203-14. [PMID: 25791495 DOI: 10.1016/j.gene.2015.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/08/2015] [Accepted: 03/13/2015] [Indexed: 02/04/2023]
Abstract
Ca(2+)-dependent protein kinases (CDPKs) play vital roles in plant adaptations to environmental challenges. The precise regulatory mechanism of CDPKs in mediating salt stress still remains unclear, although several CDPK members have been identified to be involved in salt stress accumulation in various plants, such as Arabidopsis thaliana and Oryza sativa. Here, we investigated the function of an Arabidopsis CDPK, CPK27, in salt stress-signaling. CPK27 is a membrane-localized protein kinase; its expression was induced by NaCl. cpk27-1, a T-DNA insertion mutant of CPK27, was much more sensitive to salt stress than wild-type plants in terms of seed germination and post-germination seedling growth. In ion-flux assay, cpk27-1 mutants exhibited a lower capacity than wild-type plants to extrude Na(+) and import H(+) after a long-term salt treatment (110mM NaCl for 10days). Moreover, the content of Na(+) was higher and K(+) was lower in cpk27-1 mutants than in wild-type plants under salt stress. In addition, the level of salt-elicited H2O2 production was higher in cpk27-1 mutants than in wild-type plants Col after a short-term NaCl shock and long-term salt treatment. Collectively, our results suggest that CPK27 is required for plant adaptation to salt stress.
Collapse
Affiliation(s)
- Rui Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Huimin Sun
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Nan Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Xiaoshu Jing
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Xin Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Shaoliang Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
70
|
Weckwerth P, Ehlert B, Romeis T. ZmCPK1, a calcium-independent kinase member of the Zea mays CDPK gene family, functions as a negative regulator in cold stress signalling. PLANT, CELL & ENVIRONMENT 2015; 38:544-58. [PMID: 25052912 DOI: 10.1111/pce.12414] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/06/2014] [Accepted: 07/10/2014] [Indexed: 05/20/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) have been shown to play important roles in plant environmental stress signal transduction. We report on the identification of ZmCPK1 as a member of the maize (Zea mays) CDPK gene family involved in the regulation of the maize cold stress response. Based upon in silico analysis of the Z. mays cv. B73 genome, we identified that the maize CDPK gene family consists of 39 members. Two CDPK members were selected whose gene expression was either increased (Zmcpk1) or decreased (Zmcpk25) in response to cold exposure. Biochemical analysis demonstrated that ZmCPK1 displays calcium-independent protein kinase activity. The C-terminal calcium-binding domain of ZmCPK1 was sufficient to mediate calcium independency of a previously calcium-dependent enzyme in chimeric ZmCPK25-CPK1 proteins. Furthermore, co-transfection of maize mesophyll protoplasts with active full-length ZmCPK1 suppressed the expression of a cold-induced marker gene, Zmerf3 (ZmCOI6.21). In accordance, heterologous overexpression of ZmCPK1 in Arabidopsis thaliana yielded plants with altered acclimation-induced frost tolerance. Our results identify ZmCPK1 as a negative regulator of cold stress signalling in maize.
Collapse
Affiliation(s)
- Philipp Weckwerth
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | | | | |
Collapse
|
71
|
Cai H, Cheng J, Yan Y, Xiao Z, Li J, Mou S, Qiu A, Lai Y, Guan D, He S. Genome-wide identification and expression analysis of calcium-dependent protein kinase and its closely related kinase genes in Capsicum annuum. FRONTIERS IN PLANT SCIENCE 2015; 6:737. [PMID: 26442050 PMCID: PMC4584942 DOI: 10.3389/fpls.2015.00737] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/29/2015] [Indexed: 05/09/2023]
Abstract
As Ca2+ sensors and effectors, calcium-dependent protein kinases (CDPKs) play important roles in plant growth, development, and response to environmental cues. However, no CDPKs have been characterized in Capsicum annuum thus far. Herein, a genome wide comprehensive analysis of genes encoding CDPKs and CDPK-related protein kinases (CRKs) was performed in pepper, a total of 31 CDPK genes and five closely related kinase genes were identified, which were phylogenetically divided into four distinct subfamilies and unevenly distributed across nine chromosomes. Conserved sequence and exon-intron structures were found to be shared by pepper CDPKs within the same subfamily, and the expansion of the CDPK family in pepper was found to be due to segmental duplication events. Five CDPKs in the C. annuum variety CM334 were found to be mutated in the Chiltepin variety, and one CDPK present in CM334 was lost in Chiltepin. The majority of CDPK and CRK genes were expressed in different pepper tissues and developmental stages, and 10, 12, and 8 CDPK genes were transcriptionally modified by salt, heat, and Ralstonia solanacearum stresses, respectively. Furthermore, these genes were found to respond specifically to one stress as well as respond synergistically to two stresses or three stresses, suggesting that these CDPK genes might be involved in the specific or synergistic response of pepper to salt, heat, and R. solanacearum. Our results lay the foundation for future functional characterization of pepper CDPK and its closely related gene families.
Collapse
Affiliation(s)
- Hanyang Cai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Junbin Cheng
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yan Yan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zhuoli Xiao
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jiazhi Li
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Shaoliang Mou
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Ailian Qiu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yan Lai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Deyi Guan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Shuilin He
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- *Correspondence: Shuilin He, National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
72
|
de Oliveira LFV, Christoff AP, de Lima JC, de Ross BCF, Sachetto-Martins G, Margis-Pinheiro M, Margis R. The Wall-associated Kinase gene family in rice genomes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:181-192. [PMID: 25443845 DOI: 10.1016/j.plantsci.2014.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 05/26/2023]
Abstract
The environment is a dynamic system in which life forms adapt. Wall-Associated Kinases (WAK) are a subfamily of receptor-like kinases associated with the cell wall. These genes have been suggested as sensors of the extracellular environment and triggers of intracellular signals. They belong to the ePK superfamily with or without a conserved arginine before the catalytic subdomain VIB, which characterizes RD and non-RD WAKs. WAK is a large subfamily in rice. We performed an extensive comparison of WAK genes from A. thaliana (AtWAK), O. sativa japonica and indica subspecies (OsWAK). Phylogenetic studies and WAK domain characterization allowed for the identification of two distinct groups of WAK genes in Arabidopsis and rice. One group corresponds to a cluster containing only OsWAKs that most likely expanded after the monocot-dicot separation, which evolved into a non-RD kinase class. The other group comprises classical RD-kinases with both AtWAK and OsWAK representatives. Clusterization analysis using extracellular and kinase domains demonstrated putative functional redundancy for some genes, but also highlighted genes that could recognize similar extracellular stimuli and activate different cascades. The gene expression pattern of WAKs in response to cold suggests differences in the regulation of the OsWAK genes in the indica and japonica subspecies. Our results also confirm the hypothesis of functional diversification between A. thaliana and O. sativa WAK genes. Furthermore, we propose that plant WAKs constitute two evolutionarily related but independent subfamilies: WAK-RD and WAK-nonRD. Recognition of this structural division will further provide insights to understanding WAK functions and regulations.
Collapse
Affiliation(s)
- Luiz Felipe Valter de Oliveira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Brazil; Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Brazil
| | - Ana Paula Christoff
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Brazil; Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Brazil
| | - Júlio Cesar de Lima
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Brazil; Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Brazil
| | - Bruno Comparsi Feijó de Ross
- Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Brazil
| | | | - Marcia Margis-Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Brazil
| | - Rogerio Margis
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Brazil; Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Brazil.
| |
Collapse
|
73
|
Campo S, Baldrich P, Messeguer J, Lalanne E, Coca M, San Segundo B. Overexpression of a Calcium-Dependent Protein Kinase Confers Salt and Drought Tolerance in Rice by Preventing Membrane Lipid Peroxidation. PLANT PHYSIOLOGY 2014; 165:688-704. [PMID: 24784760 PMCID: PMC4044838 DOI: 10.1104/pp.113.230268] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 05/01/2014] [Indexed: 05/18/2023]
Abstract
The OsCPK4 gene is a member of the complex gene family of calcium-dependent protein kinases in rice (Oryza sativa). Here, we report that OsCPK4 expression is induced by high salinity, drought, and the phytohormone abscisic acid. Moreover, a plasma membrane localization of OsCPK4 was observed by transient expression assays of green fluorescent protein-tagged OsCPK4 in onion (Allium cepa) epidermal cells. Overexpression of OsCPK4 in rice plants significantly enhances tolerance to salt and drought stress. Knockdown rice plants, however, are severely impaired in growth and development. Compared with control plants, OsCPK4 overexpressor plants exhibit stronger water-holding capability and reduced levels of membrane lipid peroxidation and electrolyte leakage under drought or salt stress conditions. Also, salt-treated OsCPK4 seedlings accumulate less Na+ in their roots. We carried out microarray analysis of transgenic rice overexpressing OsCPK4 and found that overexpression of OsCPK4 has a low impact on the rice transcriptome. Moreover, no genes were found to be commonly regulated by OsCPK4 in roots and leaves of rice plants. A significant number of genes involved in lipid metabolism and protection against oxidative stress appear to be up-regulated by OsCPK4 in roots of overexpressor plants. Meanwhile, OsCPK4 overexpression has no effect on the expression of well-characterized abiotic stress-associated transcriptional regulatory networks (i.e. ORYZA SATIVA DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN1 and ORYZA SATIVA No Apical Meristem, Arabidopsis Transcription Activation Factor1-2, Cup-Shaped Cotyledon6 genes) and LATE EMBRYOGENESIS ABUNDANT genes in their roots. Taken together, our data show that OsCPK4 functions as a positive regulator of the salt and drought stress responses in rice via the protection of cellular membranes from stress-induced oxidative damage.
Collapse
Affiliation(s)
- Sonia Campo
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona-Universitat de Barcelona, Campus UAB, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain (S.C., P.B., J.M., M.C., B.S.S.); andOryzon Genomics, Cornella de Llobregat, 08940 Barcelona, Spain (E.L.)
| | - Patricia Baldrich
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona-Universitat de Barcelona, Campus UAB, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain (S.C., P.B., J.M., M.C., B.S.S.); andOryzon Genomics, Cornella de Llobregat, 08940 Barcelona, Spain (E.L.)
| | - Joaquima Messeguer
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona-Universitat de Barcelona, Campus UAB, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain (S.C., P.B., J.M., M.C., B.S.S.); andOryzon Genomics, Cornella de Llobregat, 08940 Barcelona, Spain (E.L.)
| | - Eric Lalanne
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona-Universitat de Barcelona, Campus UAB, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain (S.C., P.B., J.M., M.C., B.S.S.); andOryzon Genomics, Cornella de Llobregat, 08940 Barcelona, Spain (E.L.)
| | - María Coca
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona-Universitat de Barcelona, Campus UAB, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain (S.C., P.B., J.M., M.C., B.S.S.); andOryzon Genomics, Cornella de Llobregat, 08940 Barcelona, Spain (E.L.)
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona-Universitat de Barcelona, Campus UAB, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain (S.C., P.B., J.M., M.C., B.S.S.); andOryzon Genomics, Cornella de Llobregat, 08940 Barcelona, Spain (E.L.)
| |
Collapse
|
74
|
Wei S, Hu W, Deng X, Zhang Y, Liu X, Zhao X, Luo Q, Jin Z, Li Y, Zhou S, Sun T, Wang L, Yang G, He G. A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC PLANT BIOLOGY 2014; 14:133. [PMID: 24884869 PMCID: PMC4036088 DOI: 10.1186/1471-2229-14-133] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 05/12/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND In plants, calcium-dependent protein kinases (CDPKs) are involved in tolerance to abiotic stresses and in plant seed development. However, the functions of only a few rice CDPKs have been clarified. At present, it is unclear whether CDPKs also play a role in regulating spikelet fertility. RESULTS We cloned and characterized the rice CDPK gene, OsCPK9. OsCPK9 transcription was induced by abscisic acid (ABA), PEG6000, and NaCl treatments. The results of OsCPK9 overexpression (OsCPK9-OX) and OsCPK9 RNA interference (OsCPK9-RNAi) analyses revealed that OsCPK9 plays a positive role in drought stress tolerance and spikelet fertility. Physiological analyses revealed that OsCPK9 improves drought stress tolerance by enhancing stomatal closure and by improving the osmotic adjustment ability of the plant. It also improves pollen viability, thereby increasing spikelet fertility. In OsCPK9-OX plants, shoot and root elongation showed enhanced sensitivity to ABA, compared with that of wild-type. Overexpression and RNA interference of OsCPK9 affected the transcript levels of ABA- and stress-responsive genes. CONCLUSIONS Our results demonstrated that OsCPK9 is a positive regulator of abiotic stress tolerance, spikelet fertility, and ABA sensitivity.
Collapse
Affiliation(s)
- Shuya Wei
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Wei Hu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
- Present address: Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiaomin Deng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
- Present address: Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yingying Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Xiaodong Liu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Xudong Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Qingchen Luo
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Zhengyi Jin
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Shiyi Zhou
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Tao Sun
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Lianzhe Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| |
Collapse
|
75
|
Tohge T, de Souza LP, Fernie AR. Genome-enabled plant metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 966:7-20. [PMID: 24811977 DOI: 10.1016/j.jchromb.2014.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 12/12/2022]
Abstract
The grand challenge currently facing metabolomics is that of comprehensitivity whilst next generation sequencing and advanced proteomics methods now allow almost complete and at least 50% coverage of their respective target molecules, metabolomics platforms at best offer coverage of just 10% of the small molecule complement of the cell. Here we discuss the use of genome sequence information as an enabling tool for peak identity and for translational metabolomics. Whilst we argue that genome information is not sufficient to compute the size of a species metabolome it is highly useful in predicting the occurrence of a wide range of common metabolites. Furthermore, we describe how via gene functional analysis in model species the identity of unknown metabolite peaks can be resolved. Taken together these examples suggest that genome sequence information is current (and likely will remain), a highly effective tool in peak elucidation in mass spectral metabolomics strategies.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Leonardo Perez de Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany.
| |
Collapse
|
76
|
Valmonte GR, Arthur K, Higgins CM, MacDiarmid RM. Calcium-dependent protein kinases in plants: evolution, expression and function. PLANT & CELL PHYSIOLOGY 2014; 55:551-69. [PMID: 24363288 DOI: 10.1093/pcp/pct200] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in metabolism, osmosis, hormone response and stress signaling pathways. CPKs are a large multigene family of proteins that are present in all plants studied to date, as well as in protists, oomycetes and green algae, but are not found in animals and fungi. Despite the increasing evidence of the importance of CPKs in developmental and stress responses from various plants, a comprehensive genome-wide analysis of CPKs from algae to higher plants has not been undertaken. This paper describes the evolution of CPKs from green algae to plants using a broadly sampled phylogenetic analysis and demonstrates the functional diversification of CPKs based on expression and functional studies in different plant species. Our findings reveal that CPK sequence diversification into four major groups occurred in parallel with the terrestrial transition of plants. Despite significant expansion of the CPK gene family during evolution from green algae to higher plants, there is a high level of sequence conservation among CPKs in all plant species. This sequence conservation results in very little correlation between CPK evolutionary groupings and functional diversity, making the search for CPK functional orthologs a challenge.
Collapse
Affiliation(s)
- Gardette R Valmonte
- Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology, New Zealand
| | | | | | | |
Collapse
|
77
|
Kumar K, Kumar M, Kim SR, Ryu H, Cho YG. Insights into genomics of salt stress response in rice. RICE (NEW YORK, N.Y.) 2013; 6:27. [PMID: 24280112 PMCID: PMC4883734 DOI: 10.1186/1939-8433-6-27] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/29/2013] [Indexed: 05/18/2023]
Abstract
Plants, as sessile organisms experience various abiotic stresses, which pose serious threat to crop production. Plants adapt to environmental stress by modulating their growth and development along with the various physiological and biochemical changes. This phenotypic plasticity is driven by the activation of specific genes encoding signal transduction, transcriptional regulation, ion transporters and metabolic pathways. Rice is an important staple food crop of nearly half of the world population and is well known to be a salt sensitive crop. The completion and enhanced annotations of rice genome sequence has provided the opportunity to study functional genomics of rice. Functional genomics aids in understanding the molecular and physiological basis to improve the salinity tolerance for sustainable rice production. Salt tolerant transgenic rice plants have been produced by incorporating various genes into rice. In this review we present the findings and investigations in the field of rice functional genomics that includes supporting genes and networks (ABA dependent and independent), osmoprotectants (proline, glycine betaine, trehalose, myo-inositol, and fructans), signaling molecules (Ca2+, abscisic acid, jasmonic acid, brassinosteroids) and transporters, regulating salt stress response in rice.
Collapse
Affiliation(s)
- Kundan Kumar
- />Department of Biological Sciences, Birla Institute of Technology & Science, K. K. Birla Goa Campus, Goa 403726 India
| | - Manu Kumar
- />Department of Life Science, Sogang University, Seoul, 121-742 Korea
| | - Seong-Ryong Kim
- />Department of Life Science, Sogang University, Seoul, 121-742 Korea
| | - Hojin Ryu
- />Department of Life Science, Pohang University of Science & Technology, Pohang, Korea
| | - Yong-Gu Cho
- />Department of Crop Science, Chungbuk National University, Cheongju, 361-763 Korea
| |
Collapse
|
78
|
Deng X, Hu W, Wei S, Zhou S, Zhang F, Han J, Chen L, Li Y, Feng J, Fang B, Luo Q, Li S, Liu Y, Yang G, He G. TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS One 2013; 8:e69881. [PMID: 23922838 PMCID: PMC3726728 DOI: 10.1371/journal.pone.0069881] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/14/2013] [Indexed: 12/29/2022] Open
Abstract
Calcineurin B-like protein-interacting protein kinases (CIPKs) have been found to be responsive to abiotic stress. However, their precise functions and the related molecular mechanisms in abiotic stress tolerance are not completely understood, especially in wheat. In the present study, TaCIPK29 was identified as a new member of CIPK gene family in wheat. TaCIPK29 transcript increased after NaCl, cold, methyl viologen (MV), abscisic acid (ABA) and ethylene treatments. Over-expression of TaCIPK29 in tobacco resulted in increased salt tolerance, which was demonstrated by higher germination rates, longer root lengths and better growth status of transgenic tobacco plants compared to controls when both were treated with salt stress. Physiological measurements indicated that transgenic tobacco seedlings retained high K(+)/Na(+) ratios and Ca(2+) content by up-regulating some transporter genes expression and also possessed lower H2O2 levels and reduced membrane injury by increasing the expression and activities of catalase (CAT) and peroxidase (POD) under salt stress. Moreover, transgenic lines conferred tolerance to oxidative stress by increasing the activity and expression of CAT. Finally, TaCIPK29 was located throughout cells and it preferentially interacted with TaCBL2, TaCBL3, NtCBL2, NtCBL3 and NtCAT1. Taken together, our results showed that TaCIPK29 functions as a positive factor under salt stress and is involved in regulating cations and reactive oxygen species (ROS) homeostasis.
Collapse
Affiliation(s)
- Xiaomin Deng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics MoE, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Wei Hu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics MoE, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Shuya Wei
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics MoE, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Shiyi Zhou
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics MoE, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Fan Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics MoE, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Jiapeng Han
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics MoE, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Lihong Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics MoE, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics MoE, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Jialu Feng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics MoE, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Bin Fang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics MoE, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Qingchen Luo
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics MoE, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Shasha Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics MoE, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Yunyi Liu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics MoE, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics MoE, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics MoE, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| |
Collapse
|
79
|
Kong X, Lv W, Jiang S, Zhang D, Cai G, Pan J, Li D. Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize. BMC Genomics 2013; 14:433. [PMID: 23815483 PMCID: PMC3704972 DOI: 10.1186/1471-2164-14-433] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 06/28/2013] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Calcium-dependent protein kinases (CDPKs) have been shown to play important roles in various physiological processes, including plant growth and development, abiotic and biotic stress responses and plant hormone signaling in plants. RESULTS In this study, we performed a bioinformatics analysis of the entire maize genome and identified 40 CDPK genes. Phylogenetic analysis indicated that 40 ZmCPKs can be divided into four groups. Most maize CDPK genes exhibited different expression levels in different tissues and developmental stages. Twelve CDPK genes were selected to respond to various stimuli, including salt, drought and cold, as well as ABA and H2O2. Expression analyses suggested that maize CDPK genes are important components of maize development and multiple transduction pathways. CONCLUSION Here, we present a genome-wide analysis of the CDPK gene family in maize for the first time, and this genomic analysis of maize CDPK genes provides the first step towards a functional study of this gene family in maize.
Collapse
Affiliation(s)
- Xiangpei Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | | | | | | | | | | | | |
Collapse
|
80
|
Narsai R, Wang C, Chen J, Wu J, Shou H, Whelan J. Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress. BMC Genomics 2013; 14:93. [PMID: 23398910 PMCID: PMC3616870 DOI: 10.1186/1471-2164-14-93] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/01/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Every year, substantial crop loss occurs globally, as a result of bacterial, fungal, parasite and viral infections in rice. Here, we present an in-depth investigation of the transcriptomic response to infection with the destructive bacterial pathogen Xanthomonas oryzae pv. oryzae(Xoo) in both resistant and susceptible varieties of Oryza sativa. A comparative analysis to fungal, parasite and viral infection in rice is also presented. RESULTS Within 24 h of Xoo inoculation, significant reduction of cell wall components and induction of several signalling components, membrane bound receptor kinases and specific WRKY and NAC transcription factors was prominent, providing a framework for how the presence of this pathogen was signalled and response mounted. Extensive comparative analyses of various other pathogen responses, including in response to infection with another bacterium (Xoc), resistant and susceptible parasite infection, fungal, and viral infections, led to a proposed model for the rice biotic stress response. In this way, a conserved induction of calcium signalling functions, and specific WRKY and NAC transcription factors, was identified in response to all biotic stresses. Comparison of these responses to abiotic stress (cold, drought, salt, heat), enabled the identification of unique genes responsive only to bacterial infection, 240 genes responsive to both abiotic and biotic stress, and 135 genes responsive to biotic, but not abiotic stresses. Functional significance of a number of these genes, using genetic inactivation or over-expression, has revealed significant stress-associated phenotypes. While only a few antagonistic responses were observed between biotic and abiotic stresses, e.g. for a number of endochitinases and kinase encoding genes, some of these may be crucial in explaining greater pathogen infection and damage under abiotic stresses. CONCLUSIONS The analyses presented here provides a global view of the responses to multiple stresses, further validates known resistance-associated genes, and highlights new potential target genes, some lineage specific to rice, that play important roles in response to stress, providing a roadmap to develop varieties of rice that are more resistant to multiple biotic and abiotic stresses, as encountered in nature.
Collapse
Affiliation(s)
- Reena Narsai
- Centre for Computational Systems Biology, Bayliss Building M316 University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316 University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, Centre for Computational Systems Biology, MCS Building M316 University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| | - Chuang Wang
- Joint Research Laboratory in Genomics and Nutriomics, Zhejiang University, Hangzhou 310058, China
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Chen
- China National Rice Research Institute, Hangzhou 310006, China
| | - Jianli Wu
- China National Rice Research Institute, Hangzhou 310006, China
| | - Huixia Shou
- Joint Research Laboratory in Genomics and Nutriomics, Zhejiang University, Hangzhou 310058, China
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316 University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
- Joint Research Laboratory in Genomics and Nutriomics, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
81
|
Ding Y, Cao J, Ni L, Zhu Y, Zhang A, Tan M, Jiang M. ZmCPK11 is involved in abscisic acid-induced antioxidant defence and functions upstream of ZmMPK5 in abscisic acid signalling in maize. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:871-84. [PMID: 23268839 PMCID: PMC3580805 DOI: 10.1093/jxb/ers366] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) have been shown to be involved in abscisic acid (ABA)-mediated physiological processes, including seed germination, post-germination growth, stomatal movement, and plant stress tolerance. However, it is not clear whether CDPKs are involved in ABA-induced antioxidant defence. In the present study, the role of the maize CDPK ZmCPK11 in ABA-induced antioxidant defence and the relationship between ZmCPK11 and ZmMPK5, a maize ABA-activated mitogen-activated protein kinase (MAPK), in ABA signalling were investigated. Treatments with ABA and H(2)O(2) induced the expression of ZmCPK11 and increased the activity of ZmCPK11, while H(2)O(2) was required for the ABA-induced increases in the expression and the activity of ZmCPK11. The transient gene expression analysis and the transient RNA interference (RNAi) test in protoplasts showed that ZmCPK11 is involved in ABA-induced up-regulation of the expression and the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX), and in the production of H(2)O(2). Further, ZmCPK11 was shown to be required for the up-regulation of the expression and the activity of ZmMPK5 in ABA signalling, but ZmMPK5 had very little effect on the ABA-induced up-regulation of the expression and the activity of ZmCPK11. Moreover, the transient gene expression analysis in combination with the transient RNAi test in protoplasts showed that ZmCPK11 acts upstream of ZmMPK5 to regulate the activities of antioxidant enzymes. These results indicate that ZmCPK11 is involved in ABA-induced antioxidant defence and functions upstream of ZmMPK5 in ABA signalling in maize.
Collapse
Affiliation(s)
- Yanfen Ding
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianmei Cao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Lan Ni
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingpu Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
82
|
Boudsocq M, Sheen J. CDPKs in immune and stress signaling. TRENDS IN PLANT SCIENCE 2013; 18:30-40. [PMID: 22974587 PMCID: PMC3534830 DOI: 10.1016/j.tplants.2012.08.008] [Citation(s) in RCA: 338] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/10/2012] [Accepted: 08/14/2012] [Indexed: 05/11/2023]
Abstract
Ca(2+) has long been recognized as a conserved second messenger and principal mediator in plant immune and stress responses. How Ca(2+) signals are sensed and relayed into diverse primary and global signaling events is still largely unknown. Comprehensive analyses of the plant-specific multigene family of Ca(2+)-dependent protein kinases (CDPKs) are unraveling the molecular, cellular and genetic mechanisms of Ca(2+) signaling. CDPKs, which exhibit overlapping and distinct expression patterns, sub-cellular localizations, substrate specificities and Ca(2+) sensitivities, play versatile roles in the activation and repression of enzymes, channels and transcription factors. Here, we review the recent advances on the multifaceted functions of CDPKs in the complex immune and stress signaling networks, including oxidative burst, stomatal movements, hormonal signaling and gene regulation.
Collapse
Affiliation(s)
- Marie Boudsocq
- Unité de Recherche en Génomique Végétale, INRA-UEVE UMR1165, CNRS ERL8196, Evry, France.
| | | |
Collapse
|
83
|
Zuo R, Hu R, Chai G, Xu M, Qi G, Kong Y, Zhou G. Genome-wide identification, classification, and expression analysis of CDPK and its closely related gene families in poplar (Populus trichocarpa). Mol Biol Rep 2012; 40:2645-62. [PMID: 23242656 DOI: 10.1007/s11033-012-2351-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/09/2012] [Indexed: 11/26/2022]
Abstract
Calcium-dependent protein kinases (CDPKs) are Ca(2+)-binding proteins known to play crucial roles in Ca(2+) signal transduction pathways which have been identified throughout plant kingdom and in certain types of protists. Genome-wide analysis of CDPKs have been carried out in Arabidopsis, rice and wheat, and quite a few of CDPKs were proved to play crucial roles in plant stress responsive signature pathways. In this study, a comprehensive analysis of Populus CDPK and its closely related gene families was performed, including phylogeny, chromosome locations, gene structures, and expression profiles. Thirty Populus CDPK genes and twenty closely related kinase genes were identified, which were phylogenetically clustered into eight distinct subfamilies and predominately distributed across fifteen linkage groups (LG). Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus CDPK gene family. Furthermore, microarray analysis showed that a number of Populus CDPK and its closely related genes differentially expressed across disparate tissues and under various stresses. The expression profiles of paralogous pairs were also investigated to reveal their evolution fates. In addition, quantitative real-time RT-PCR was performed on nine selected CDPK genes to confirm their responses to drought stress treatment. These observations may lay the foundation for future functional analysis of Populus CDPK and its closely related gene families to unravel their biological roles.
Collapse
Affiliation(s)
- Ran Zuo
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and BioProcess Technology, Chinese Academy of Sciences, Qingdao, Shandong, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
84
|
Grandellis C, Giammaria V, Bialer M, Santin F, Lin T, Hannapel DJ, Ulloa RM. The novel Solanum tuberosum calcium dependent protein kinase, StCDPK3, is expressed in actively growing organs. PLANTA 2012; 236:1831-48. [PMID: 22922879 DOI: 10.1007/s00425-012-1732-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/30/2012] [Indexed: 05/11/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are key components of calcium regulated signaling cascades in plants. In this work, isoform StCDPK3 from Solanum tuberosum was studied and fully described. StCDPK3 encodes a 63 kDa protein with an N-terminal variable domain (NTV), rich in prolines and glutamines, which presents myristoylation and palmitoylation consensus sites and a PEST sequence indicative of rapid protein degradation. StCDPK3 gene (circa 11 kb) is localized in chromosome 3, shares the eight exons and seven introns structure with other isoforms from subgroup IIa and contains an additional intron in the 5'UTR region. StCDPK3 expression is ubiquitous being transcripts more abundant in early elongating stolons (ES), leaves and roots, however isoform specific antibodies only detected the protein in leaf particulate extracts. The recombinant 6xHis-StCDPK3 is an active kinase that differs in its kinetic parameters and calcium requirements from StCDPK1 and 2 isoforms. In vitro, StCDPK3 undergoes autophosphorylation regardless of the addition of calcium. The StCDPK3 promoter region (circa 1,800 bp) was subcloned by genome walking and fused to GUS. Light and ABRE responsive elements were identified in the promoter region as well as elements associated to expression in roots. StCDPK3 expression was enhanced by ABA while GA decreased it. Potato transgenic lines harboring StCDPK3 promoter∷GUS construct were generated by Agrobacterium tumefaciens mediated plant transformation. Promoter activity was detected in leaves, root tips and branching points, early ES, tuber eyes and developing sprouts indicating that StCDPK3 is expressed in actively growing organs.
Collapse
Affiliation(s)
- Carolina Grandellis
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Hector N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
85
|
Szczegielniak J, Borkiewicz L, Szurmak B, Lewandowska-Gnatowska E, Statkiewicz M, Klimecka M, Cieśla J, Muszyńska G. Maize calcium-dependent protein kinase (ZmCPK11): local and systemic response to wounding, regulation by touch and components of jasmonate signaling. PHYSIOLOGIA PLANTARUM 2012; 146:1-14. [PMID: 22289134 DOI: 10.1111/j.1399-3054.2012.01587.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Expression of ZmCPK11, a member of the maize (Zea mays) calcium-dependent protein kinases (CDPKs) family, is induced by mechanical wounding. A rapid increase of the activity of a 56-kDa CDPK has been observed in damaged leaves. In the present work, it is shown that the 56-kDa CDPK, identified as ZmCPK11, is also activated in non-wounded leaves as an element of systemic wound response. Moreover, an increase of the enzyme's activity and induction of ZmCPK11 expression was observed after touching the leaves. To study the role of ZmCPK11 in wound and touch signaling, transgenic Arabidopsis thaliana plants in which c-Myc-ZmCPK11 was expressed under control of the CaMV 35S promoter were generated. Analysis of the transgenic plants showed that c-Myc-ZmCPK11 was activated upon wounding and touching. Furthermore, pre-treatment with acetylsalicylic acid (acSA), an inhibitor of jasmonic acid (JA)-dependent wound signaling, abolished the wound-induced activation of ZmCPK11 in maize and the transgenic A. thaliana plants. Methyl jasmonate (MeJA) and linolenic acid (LA) stimulated the activity of ZmCPK11 as well as induced the expression of ZmCPK11 and other wound-responsive genes, lipoxygenase 1 (ZmLOX1) and proteinase inhibitor 1 (ZmWIP1). These results indicate that ZmCPK11, regulated at the enzymatic and transcriptional level by LA and MeJA, is a component of touch- and wound-induced pathway(s), participating in early stages of local and systemic responses.
Collapse
Affiliation(s)
- Jadwiga Szczegielniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Asano T, Hayashi N, Kikuchi S, Ohsugi R. CDPK-mediated abiotic stress signaling. PLANT SIGNALING & BEHAVIOR 2012; 7:817-21. [PMID: 22751324 PMCID: PMC3583972 DOI: 10.4161/psb.20351] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) constitute a large multigene family in various plant species. CDPKs have been shown to have important roles in various physiological processes, including plant growth and development and abiotic and biotic stress responses in plants. Functional analysis using gain-of-function and loss-of-function mutants has revealed the biological function of CDPKs in planta. Several CDPKs have been shown to be essential factors in abiotic stress tolerance, positively or negatively regulating stress tolerance by modulating ABA signaling and reducing the accumulation of reactive oxygen species (ROS). This review summarizes recent results describing the biological function of CDPKs that are involved in abiotic stress tolerance.
Collapse
Affiliation(s)
- Takayuki Asano
- National Institute of Agrobiological Sciences; Tsukuba, Japan
- Correspondence to: Takayuki Asano, and Shoshi Kikuchi,
| | - Nagao Hayashi
- National Institute of Agrobiological Sciences; Tsukuba, Japan
| | - Shoshi Kikuchi
- National Institute of Agrobiological Sciences; Tsukuba, Japan
- Correspondence to: Takayuki Asano, and Shoshi Kikuchi,
| | - Ryu Ohsugi
- Department of Agricultural and Environmental Biology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo, Japan
| |
Collapse
|
87
|
Nam MH, Huh SM, Kim KM, Park WJ, Seo JB, Cho K, Kim DY, Kim BG, Yoon IS. Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice. Proteome Sci 2012; 10:25. [PMID: 22462395 PMCID: PMC3364906 DOI: 10.1186/1477-5956-10-25] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 03/31/2012] [Indexed: 01/14/2023] Open
Abstract
Background The rice roots are highly salt-sensitive organ and primary root growth is rapidly suppressed by salt stress. Sucrose nonfermenting 1-related protein kinase2 (SnRK2) family is one of the key regulator of hyper-osmotic stress signalling in various plant cells. To understand early salt response of rice roots and identify SnRK2 signaling components, proteome changes of transgenic rice roots over-expressing OSRK1, a rice SnRK2 kinase were investigated. Results Proteomes were analyzed by two-dimensional electrophoresis and protein spots were identified by LC-MS/MS from wild type and OSRK1 transgenic rice roots exposed to 150 mM NaCl for either 3 h or 7 h. Fifty two early salt -responsive protein spots were identified from wild type rice roots. The major up-regulated proteins were enzymes related to energy regulation, amino acid metabolism, methylglyoxal detoxification, redox regulation and protein turnover. It is noted that enzymes known to be involved in GA-induced root growth such as fructose bisphosphate aldolase and methylmalonate semialdehyde dehydrogenase were clearly down-regulated. In contrast to wild type rice roots, only a few proteins were changed by salt stress in OSRK1 transgenic rice roots. A comparative quantitative analysis of the proteome level indicated that forty three early salt-responsive proteins were magnified in transgenic rice roots at unstressed condition. These proteins contain single or multiple potential SnRK2 recognition motives. In vitro kinase assay revealed that one of the identified proteome, calreticulin is a good substrate of OSRK1. Conclusions Our present data implicate that rice roots rapidly changed broad spectrum of energy metabolism upon challenging salt stress, and suppression of GA signaling by salt stress may be responsible for the rapid arrest of root growth and development. The broad spectrum of functional categories of proteins affected by over-expression of OSRK1 indicates that OSRK1 is an upstream regulator of stress signaling in rice roots. Enzymes involved in glycolysis, branched amino acid catabolism, dnaK-type molecular chaperone, calcium binding protein, Sal T and glyoxalase are potential targets of OSRK1 in rice roots under salt stress that need to be further investigated.
Collapse
Affiliation(s)
- Myung Hee Nam
- Bio-Crops Development Division, National Academy of Agricultural Sciences, Suwon 441-857, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Curran A, Chang IF, Chang CL, Garg S, Miguel RM, Barron YD, Li Y, Romanowsky S, Cushman JC, Gribskov M, Harmon AC, Harper JF. Calcium-dependent protein kinases from Arabidopsis show substrate specificity differences in an analysis of 103 substrates. FRONTIERS IN PLANT SCIENCE 2011; 2:36. [PMID: 22645532 PMCID: PMC3355778 DOI: 10.3389/fpls.2011.00036] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 07/18/2011] [Indexed: 05/18/2023]
Abstract
The identification of substrates represents a critical challenge for understanding any protein kinase-based signal transduction pathway. In Arabidopsis, there are more than 1000 different protein kinases, 34 of which belong to a family of Ca(2+)-dependent protein kinases (CPKs). While CPKs are implicated in regulating diverse aspects of plant biology, from ion transport to transcription, relatively little is known about isoform-specific differences in substrate specificity, or the number of phosphorylation targets. Here, in vitro kinase assays were used to compare phosphorylation targets of four CPKs from Arabidopsis (CPK1, 10, 16, and 34). Significant differences in substrate specificity for each kinase were revealed by assays using 103 different substrates. For example CPK16 phosphorylated Serine 109 in a peptide from the stress-regulated protein, Di19-2 with K(M) ∼70 μM, but this site was not phosphorylated significantly by CPKs 1, 10, or 34. In contrast, CPKs 1, 10, and 34 phosphorylated 93 other peptide substrates not recognized by CPK16. Examples of substrate specificity differences among all four CPKs were verified by kinetic analyses. To test the correlation between in vivo phosphorylation events and in vitro kinase activities, assays were performed with 274 synthetic peptides that contained phosphorylation sites previously mapped in proteins isolated from plants (in vivo-mapped sites). Of these, 74 (27%) were found to be phosphorylated by at least one of the four CPKs tested. This 27% success rate validates a robust strategy for linking the activities of specific kinases, such as CPKs, to the thousands of in planta phosphorylation sites that are being uncovered by emerging technologies.
Collapse
Affiliation(s)
- Amy Curran
- Department of Biochemistry and Molecular Biology, University of NevadaReno, NV, USA
| | - Ing-Feng Chang
- Department of Biochemistry and Molecular Biology, University of NevadaReno, NV, USA
- Institute of Plant Biology, National Taiwan UniversityTaipei, Taiwan
| | - Chia-Lun Chang
- Institute of Plant Biology, National Taiwan UniversityTaipei, Taiwan
| | - Shilpi Garg
- Department of Biochemistry and Molecular Biology, University of NevadaReno, NV, USA
| | - Rodriguez Milla Miguel
- Department of Biochemistry and Molecular Biology, University of NevadaReno, NV, USA
- Departamento de Biología de Plantas, Centro de Investigaciones BiológicasMadrid, Spain
| | - Yoshimi D. Barron
- Department of Biochemistry and Molecular Biology, University of NevadaReno, NV, USA
| | - Ying Li
- Department of Biochemistry and Molecular Biology, University of NevadaReno, NV, USA
| | - Shawn Romanowsky
- Department of Biochemistry and Molecular Biology, University of NevadaReno, NV, USA
| | - John C. Cushman
- Department of Biochemistry and Molecular Biology, University of NevadaReno, NV, USA
| | - Michael Gribskov
- Department of Biological Sciences, Purdue UniversityWest Lafayette, IN, USA
| | - Alice C. Harmon
- Department of Biology, University of FloridaGainesville, FL, USA
| | - Jeffrey F. Harper
- Department of Biochemistry and Molecular Biology, University of NevadaReno, NV, USA
- *Correspondence: Jeffrey F. Harper, Biochemistry Department, University of Nevada, Reno MS330, Howard Building, Reno, NV 89557, USA. e-mail:
| |
Collapse
|