51
|
Hasan K, Milton RD, Grattieri M, Wang T, Stephanz M, Minteer SD. Photobioelectrocatalysis of Intact Chloroplasts for Solar Energy Conversion. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00039] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kamrul Hasan
- Departments of Chemistry and Materials Science & Engineering, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, Utah 84112, United States
| | - Ross D. Milton
- Departments of Chemistry and Materials Science & Engineering, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Departments of Chemistry and Materials Science & Engineering, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, Utah 84112, United States
| | - Tao Wang
- Departments of Chemistry and Materials Science & Engineering, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, Utah 84112, United States
| | - Megan Stephanz
- Departments of Chemistry and Materials Science & Engineering, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Departments of Chemistry and Materials Science & Engineering, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
52
|
Köhler H, Contreras RA, Pizarro M, Cortés-Antíquera R, Zúñiga GE. Antioxidant Responses Induced by UVB Radiation in Deschampsia antarctica Desv. FRONTIERS IN PLANT SCIENCE 2017; 8:921. [PMID: 28620407 PMCID: PMC5449467 DOI: 10.3389/fpls.2017.00921] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/16/2017] [Indexed: 05/08/2023]
Abstract
Deschampsia antarctica Desv. is one of two vascular plants that live in the Maritime Antarctic Territory and is exposed to high levels of ultraviolet-B (UVB) radiation. In this work, antioxidant physiology of D. antarctica was studied in response to UVB induced oxidative changes. Samples were collected from Antarctica and maintained in vitro culture during 2 years. Plants were sub-cultured in a hydroponic system and exposed to 21.4 kJ m-2 day-1, emulating summer Antarctic conditions. Results showed rapid and significant increases in reactive oxygen species (ROS) at 3 h, which rapidly decreased. No dramatic changes were observed in photosynthetic efficiency, chlorophyll content, and level of thiobarbituric acid reactive species (MDA). The enzymatic (superoxide dismutase, SOD and total peroxidases, POD) and non-enzymatic antioxidant activity (total phenolic) increased significantly in response to UVB treatment. These findings suggest that tolerance of D. antarctica to UVB radiation could be attributed to its ability to activate both enzymatic and non-enzymatic antioxidant systems.
Collapse
|
53
|
Nagao R, Tomo T, Narikawa R, Enami I, Ikeuchi M. Conversion of photosystem II dimer to monomers during photoinhibition is tightly coupled with decrease in oxygen-evolving activity in the diatom Chaetoceros gracilis. PHOTOSYNTHESIS RESEARCH 2016; 130:83-91. [PMID: 26846772 DOI: 10.1007/s11120-016-0226-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
The rapid turnover of photosystem II (PSII) in diatoms is thought to be at an exceptionally high rate compared with other oxyphototrophs; however, its molecular mechanisms are largely unknown. In this study, we examined the photodamage and repair processes of PSII in the marine centric diatom Chaetoceros gracilis incubated at 30 or 300 μmol photons m-2 s-1 in the presence of a de novo protein-synthesis inhibitor. When de novo protein synthesis was blocked by chloramphenicol (Cm), oxygen-evolving activity gradually decreased even at 30 μmol photons m-2 s-1 and could not be detected at 12 h. PSII inactivation was enhanced by higher illumination. Using Cm-treated cells, the conversion of PSII dimer to monomers was observed by blue native PAGE. The rate of PSII monomerization was very similar to that of the decrease in oxygen-evolving activity under both light conditions. Immunological detection of D1 protein in the Cm-treated cells showed that the rate of D1 degradation was slower than that of the former two events, although it was more rapid than that observed in other oxyphototrophs. Thus, the three accelerated events, especially PSII monomerization, appear to cause the unusually high rate of PSII turnover in diatoms.
Collapse
Affiliation(s)
- Ryo Nagao
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| | - Tatsuya Tomo
- Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo, 162-8601, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Rei Narikawa
- Department of Biological Science, Faculty of Science, Shizuoka University, Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Isao Enami
- Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
54
|
Stamatakis K, Papageorgiou GC. Effects of exogenous β-carotene, a chemical scavenger of singlet oxygen, on the millisecond rise of chlorophyll a fluorescence of cyanobacterium Synechococcus sp. PCC 7942. PHOTOSYNTHESIS RESEARCH 2016; 130:317-324. [PMID: 27034066 DOI: 10.1007/s11120-016-0255-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/23/2016] [Indexed: 06/05/2023]
Abstract
Singlet-excited oxygen (1O 2* ) has been recognized as the most destructive member of the reactive oxygen species (ROS) which are formed during oxygenic photosynthesis by plants, algae, and cyanobacteria. ROS and 1O 2* are known to damage protein and phospholipid structures and to impair photosynthetic electron transport and de novo protein synthesis. Partial protection is afforded to photosynthetic organism by the β-carotene (β-Car) molecules which accompany chlorophyll (Chl) a in the pigment-protein complexes of Photosystem II (PS II). In this paper, we studied the effects of exogenously added β-Car on the initial kinetic rise of Chl a fluorescence (10-1000 μs, the OJ segment) from the unicellular cyanobacterium Synechococcus sp. PCC7942. We show that the added β-Car enhances Chl a fluorescence when it is excited at an intensity of 3000 μmol photons m-2 s-1 but not when excited at 1000 μmol photons m-2 s-1. Since β-Car is an efficient scavenger of 1O 2* , as well as a quencher of 3Chl a * (precursor of 1O 2* ), both of which are more abundant at higher excitations, we assume that the higher Chl a fluorescence in its presence signifies a protective effect against photo-oxidative damages of Chl proteins. The protective effect of added β-Car is not observed in O2-depleted cell suspensions. Lastly, in contrast to β-Car, a water-insoluble molecule, a water-soluble scavenger of 1O 2* , histidine, provides no protection to Chl proteins during the same time period (10-1000 μs).
Collapse
Affiliation(s)
- Kostas Stamatakis
- Institute of Biosciences and Applications, National Center of Scientific Research "Demokritos", 15310, Athens, Greece
| | - George C Papageorgiou
- Institute of Biosciences and Applications, National Center of Scientific Research "Demokritos", 15310, Athens, Greece.
| |
Collapse
|
55
|
Yanykin DV, Khorobrykh AA, Mamedov MD, Klimov VV. Trehalose protects Mn-depleted photosystem 2 preparations against the donor-side photoinhibition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:236-243. [PMID: 27693844 DOI: 10.1016/j.jphotobiol.2016.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 11/30/2022]
Abstract
Recently, it has been shown that the addition of 1M trehalose leads to the increase of the rate of oxygen photoconsumption associated with activation of electron transport in the reaction center of photosystem 2 (PS2) in Mn-depleted PS2 membranes (apo-WOC-PS2) [37]. In the present work the effect of trehalose on photoinhibition of apo-WOC-PS2 preparations (which are characterized by a high sensitivity to the donor side photoinhibition of PS2) was investigated. The degree of photoinhibition was estimated by the loss of the capability of exogenous electron donor (sodium ascorbate) to reactivate the electron transport (measured by light-induced changes of chlorophyll fluorescence yield (∆F)) in apo-WOC-PS2. It was found that 1M trehalose enhanced the Mn2+-dependent suppression of photoinhibition of apo-WOC-PS2: in the presence of trehalose the addition of 0.2μM Mn2+ (corresponding to 2 Mn2+ per one reaction center) was sufficient for an almost complete suppression of the donor side photoinhibition of the complex. In the absence of trehalose it was necessary to add 100μM Mn2+ to achieve a similar result. The effect of trehalose was observed during photoinhibition of apo-WOC-PS2 at low (15μmolphotons-1m-2) and high (200μmolphotons-1m-2) light intensity. When Mn2+ was replaced by other PS2 electron donors (ferrocyanide, DPC) as well as by Ca2+ the protective effect of trehalose was not observed. It was also found that 1M trehalose decreased photoinhibition of apo-WOC-PS2 if the samples contained endogenous manganese (1-2 Mn ions per one RC was enough for the maximum protection effect). It is concluded that structural changes in PS2 caused by the addition of trehalose enhance the capability of photochemical reaction centers of apo-WOC-PS2 to accept electrons from manganese (both exogenous and endogenous), which in turn leads to a considerable suppression of the donor side photoinhibition of PS2.
Collapse
Affiliation(s)
- D V Yanykin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia.
| | - A A Khorobrykh
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| | - M D Mamedov
- Lomonosov Moscow State University, Belozersky Institute of Physical-Chemical Biology, Moscow 119991, Russia
| | - V V Klimov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| |
Collapse
|
56
|
Brinkert K, Le Formal F, Li X, Durrant J, Rutherford AW, Fantuzzi A. Photocurrents from photosystem II in a metal oxide hybrid system: Electron transfer pathways. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:1497-1505. [PMID: 26946088 PMCID: PMC4990130 DOI: 10.1016/j.bbabio.2016.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/19/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
We have investigated the nature of the photocurrent generated by Photosystem II (PSII), the water oxidizing enzyme, isolated from Thermosynechococcus elongatus, when immobilized on nanostructured titanium dioxide on an indium tin oxide electrode (TiO2/ITO). We investigated the properties of the photocurrent from PSII when immobilized as a monolayer versus multilayers, in the presence and absence of an inhibitor that binds to the site of the exchangeable quinone (QB) and in the presence and absence of exogenous mobile electron carriers (mediators). The findings indicate that electron transfer occurs from the first quinone (QA) directly to the electrode surface but that the electron transfer through the nanostructured metal oxide is the rate-limiting step. Redox mediators enhance the photocurrent by taking electrons from the nanostructured semiconductor surface to the ITO electrode surface not from PSII. This is demonstrated by photocurrent enhancement using a mediator incapable of accepting electrons from PSII. This model for electron transfer also explains anomalies reported in the literature using similar and related systems. The slow rate of the electron transfer step in the TiO2 is due to the energy level of electron injection into the semiconducting material being below the conduction band. This limits the usefulness of the present hybrid electrode. Strategies to overcome this kinetic limitation are discussed.
Collapse
Affiliation(s)
- Katharina Brinkert
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Florian Le Formal
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Xiaoe Li
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - James Durrant
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | | | - Andrea Fantuzzi
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
57
|
Russo D, Rea G, Lambreva MD, Haertlein M, Moulin M, De Francesco A, Campi G. Water Collective Dynamics in Whole Photosynthetic Green Algae as Affected by Protein Single Mutation. J Phys Chem Lett 2016; 7:2429-2433. [PMID: 27300078 DOI: 10.1021/acs.jpclett.6b00949] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the context of the importance of water molecules for protein function/dynamics relationship, the role of water collective dynamics in Chlamydomonas green algae carrying both native and mutated photosynthetic proteins has been investigated by neutron Brillouin scattering spectroscopy. Results show that single point genetic mutation may notably affect collective density fluctuations in hydrating water providing important insight on the transmission of information possibly correlated to biological functionality. In particular, we highlight that the damping factor of the excitations is larger in the native compared to the mutant algae as a signature of a different plasticity and structure of the hydrogen bond network.
Collapse
Affiliation(s)
- Daniela Russo
- CNR Istituto Officina dei Materiali c/o Institut Laue Langevin , 38042 Grenoble, France
- Institut Lumière Matière, Université de Lyon 1 , 69100 Lyon, France
| | - Giuseppina Rea
- CNR Istituto di Crystallografia 00015 Monterotondo Scalo, 70126 Roma, Italy
| | - Maya D Lambreva
- CNR Istituto di Crystallografia 00015 Monterotondo Scalo, 70126 Roma, Italy
| | - Michael Haertlein
- ILL Deuteration Laboratory, Partnership for Structural Biology, 38042 Grenoble, France
- Life Sciences Group, Institut Laue-Langevin , 38000 Grenoble, France
| | - Martine Moulin
- ILL Deuteration Laboratory, Partnership for Structural Biology, 38042 Grenoble, France
- Life Sciences Group, Institut Laue-Langevin , 38000 Grenoble, France
| | - Alessio De Francesco
- CNR Istituto Officina dei Materiali c/o Institut Laue Langevin , 38042 Grenoble, France
| | - Gaetano Campi
- CNR Istituto di Crystallografia 00015 Monterotondo Scalo, 70126 Roma, Italy
| |
Collapse
|
58
|
Grieco M, Jain A, Ebersberger I, Teige M. An evolutionary view on thylakoid protein phosphorylation uncovers novel phosphorylation hotspots with potential functional implications. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3883-96. [PMID: 27117338 DOI: 10.1093/jxb/erw164] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The regulation of photosynthetic light reactions by reversible protein phosphorylation is well established today, but functional studies have so far mostly been restricted to processes affecting light-harvesting complex II and the core proteins of photosystem II. Virtually no functional data are available on regulatory effects at the other photosynthetic complexes despite the identification of multiple phosphorylation sites. Therefore we summarize the available data from 50 published phospho-proteomics studies covering the main complexes involved in photosynthetic light reactions in the 'green lineage' (i.e. green algae and land plants) as well as its cyanobacterial counterparts. In addition, we performed an extensive orthologue search for the major photosynthetic thylakoid proteins in 41 sequenced genomes and generated sequence alignments to survey the phylogenetic distribution of phosphorylation sites and their evolutionary conservation from green algae to higher plants. We observed a number of uncharacterized phosphorylation hotspots at photosystem I and the ATP synthase with potential functional relevance as well as an unexpected divergence of phosphosites. Although technical limitations might account for a number of those differences, we think that many of these phosphosites have important functions. This is particularly important for mono- and dicot plants, where these sites might be involved in regulatory processes such as stress acclimation.
Collapse
Affiliation(s)
- Michele Grieco
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| | - Arpit Jain
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University, Max-von-Laue Str. 13, D-60438 Frankfurt, Germany
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University, Max-von-Laue Str. 13, D-60438 Frankfurt, Germany Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Anlage 25, D-60325 Frankfurt, Germany
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| |
Collapse
|
59
|
Cheregi O, Wagner R, Funk C. Insights into the Cyanobacterial Deg/HtrA Proteases. FRONTIERS IN PLANT SCIENCE 2016; 7:694. [PMID: 27252714 PMCID: PMC4877387 DOI: 10.3389/fpls.2016.00694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
Proteins are the main machinery for all living processes in a cell; they provide structural elements, regulate biochemical reactions as enzymes, and are the interface to the outside as receptors and transporters. Like any other machinery proteins have to be assembled correctly and need maintenance after damage, e.g., caused by changes in environmental conditions, genetic mutations, and limitations in the availability of cofactors. Proteases and chaperones help in repair, assembly, and folding of damaged and misfolded protein complexes cost-effective, with low energy investment compared with neo-synthesis. Despite their importance for viability, the specific biological role of most proteases in vivo is largely unknown. Deg/HtrA proteases, a family of serine-type ATP-independent proteases, have been shown in higher plants to be involved in the degradation of the Photosystem II reaction center protein D1. The objective of this review is to highlight the structure and function of their cyanobacterial orthologs. Homology modeling was used to find specific features of the SynDeg/HtrA proteases of Synechocystis sp. PCC 6803. Based on the available data concerning their location and their physiological substrates we conclude that these Deg proteases not only have important housekeeping and chaperone functions within the cell, but also are needed for remodeling the cell exterior.
Collapse
|
60
|
Jahan MS, Nozulaidi M, Khairi M, Mat N. Light-harvesting complexes in photosystem II regulate glutathione-induced sensitivity of Arabidopsis guard cells to abscisic acid. JOURNAL OF PLANT PHYSIOLOGY 2016; 195:1-8. [PMID: 26970687 DOI: 10.1016/j.jplph.2016.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
Light-harvesting complexes (LHCs) in photosystem II (PSII) regulate glutathione (GSH) functions in plants. To investigate whether LHCs control GSH biosynthesis that modifies guard cell abscisic acid (ABA) sensitivity, we evaluated GSH content, stomatal aperture, reactive oxygen species (ROS), weight loss and plant growth using a ch1-1 mutant that was defective of LHCs and compared this with wild-type (WT) Arabidopsis thaliana plants. Glutathione monoethyl ester (GSHmee) increased but 1-chloro-2,4 dinitrobenzene (CDNB) decreased the GSH content in the guard cells. The guard cells of the ch1-1 mutants accumulated significantly less GSH than the WT plants. The guard cells of the ch1-1 mutants also showed higher sensitivity to ABA than the WT plants. The CDNB treatment increased but the GSHmee treatment decreased the ABA sensitivity of the guard cells without affecting ABA-induced ROS production. Dark and light treatments altered the GSH content and stomatal aperture of the guard cells of ch1-1 and WT plants, irrespective of CDNB and GSHmee. The ch1-1 mutant contained fewer guard cells and displayed poor growth, late flowering and stumpy weight loss compared with the WT plants. This study suggests that defective LHCs reduced the GSH content in the guard cells and increased sensitivity to ABA, resulting in stomatal closure.
Collapse
Affiliation(s)
- Md Sarwar Jahan
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia.
| | - Mohd Nozulaidi
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia
| | - Mohd Khairi
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia
| | - Nashriyah Mat
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia
| |
Collapse
|
61
|
Bao H, Burnap RL. Photoactivation: The Light-Driven Assembly of the Water Oxidation Complex of Photosystem II. FRONTIERS IN PLANT SCIENCE 2016; 7:578. [PMID: 27200051 PMCID: PMC4853684 DOI: 10.3389/fpls.2016.00578] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/14/2016] [Indexed: 05/10/2023]
Abstract
Photosynthetic water oxidation is catalyzed by the Mn4CaO5 cluster of photosystem II. The assembly of the Mn4O5Ca requires light and involves a sequential process called photoactivation. This process harnesses the charge-separation of the photochemical reaction center and the coordination environment provided by the amino acid side chains of the protein to oxidize and organize the incoming manganese ions to form the oxo-bridged metal cluster capable of H2O-oxidation. Although most aspects of this assembly process remain poorly understood, recent advances in the elucidation of the crystal structure of the fully assembled cyanobacterial PSII complex help in the interpretation of the rich history of experiments designed to understand this process. Moreover, recent insights on the structure and stability of the constituent ions of the Mn4CaO5 cluster may guide future experiments. Here we consider the literature and suggest possible models of assembly including one involving single Mn(2+) oxidation site for all Mn but requiring ion relocation.
Collapse
Affiliation(s)
| | - Robert L. Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State UniversityStillwater, OK, USA
| |
Collapse
|
62
|
Järvi S, Isojärvi J, Kangasjärvi S, Salojärvi J, Mamedov F, Suorsa M, Aro EM. Photosystem II Repair and Plant Immunity: Lessons Learned from Arabidopsis Mutant Lacking the THYLAKOID LUMEN PROTEIN 18.3. FRONTIERS IN PLANT SCIENCE 2016; 7:405. [PMID: 27064270 PMCID: PMC4814454 DOI: 10.3389/fpls.2016.00405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/16/2016] [Indexed: 05/29/2023]
Abstract
Chloroplasts play an important role in the cellular sensing of abiotic and biotic stress. Signals originating from photosynthetic light reactions, in the form of redox and pH changes, accumulation of reactive oxygen and electrophile species or stromal metabolites are of key importance in chloroplast retrograde signaling. These signals initiate plant acclimation responses to both abiotic and biotic stresses. To reveal the molecular responses activated by rapid fluctuations in growth light intensity, gene expression analysis was performed with Arabidopsis thaliana wild type and the tlp18.3 mutant plants, the latter showing a stunted growth phenotype under fluctuating light conditions (Biochem. J, 406, 415-425). Expression pattern of genes encoding components of the photosynthetic electron transfer chain did not differ between fluctuating and constant light conditions, neither in wild type nor in tlp18.3 plants, and the composition of the thylakoid membrane protein complexes likewise remained unchanged. Nevertheless, the fluctuating light conditions repressed in wild-type plants a broad spectrum of genes involved in immune responses, which likely resulted from shade-avoidance responses and their intermixing with hormonal signaling. On the contrary, in the tlp18.3 mutant plants there was an imperfect repression of defense-related transcripts upon growth under fluctuating light, possibly by signals originating from minor malfunction of the photosystem II (PSII) repair cycle, which directly or indirectly modulated the transcript abundances of genes related to light perception via phytochromes. Consequently, a strong allocation of resources to defense reactions in the tlp18.3 mutant plants presumably results in the stunted growth phenotype under fluctuating light.
Collapse
Affiliation(s)
- Sari Järvi
- Molecular Plant Biology, Department of Biochemistry, University of TurkuTurku, Finland
| | - Janne Isojärvi
- Molecular Plant Biology, Department of Biochemistry, University of TurkuTurku, Finland
| | | | - Jarkko Salojärvi
- Plant Biology, Department of Biosciences, University of HelsinkiHelsinki, Finland
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry—Ångström Laboratory, Uppsala UniversityUppsala, Sweden
| | - Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of TurkuTurku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of TurkuTurku, Finland
| |
Collapse
|
63
|
Fan DY, Ye ZP, Wang SC, Chow WS. Multiple roles of oxygen in the photoinactivation and dynamic repair of Photosystem II in spinach leaves. PHOTOSYNTHESIS RESEARCH 2016; 127:307-319. [PMID: 26297354 DOI: 10.1007/s11120-015-0185-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/13/2015] [Indexed: 06/04/2023]
Abstract
Oxygen effects have long been ambiguous: exacerbating, being indifferent to, or ameliorating the net photoinactivation of Photosystem II (PS II). We scrutinized the time course of PS II photoinactivation (characterized by rate coefficient k i) in the absence of repair, or when recovery (characterized by k r) occurred simultaneously in CO2 ± O2. Oxygen exacerbated photoinactivation per se, but alleviated it by mediating the utilization of electrons. With repair permitted, the gradual net loss of functional PS II during illumination of leaves was better described phenomenologically by introducing τ, the time for an initial k r to decrease by half. At 1500 μmol photons m(-2) s(-1), oxygen decreased the initial k r but increased τ. Similarly, at even higher irradiance in air, there was a further decrease in the initial k r and increase in τ. These observations are consistent with an empirical model that (1) oxygen increased k i via oxidative stress but decreased it by mediating the utilization of electrons; and (2) reactive oxygen species stimulated the degradation of photodamaged D1 protein in PS II (characterized by k d), but inhibited the de novo synthesis of D1 (characterized by k s), and that the balance between these effects determines the net effect of O2 on PS II functionality.
Collapse
Affiliation(s)
- Da-Yong Fan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia
| | - Zi-Piao Ye
- School of Life Sciences, Jinggangshan University, Ji'an, 343009, China
- College of Mathematics and Physics, Jinggangshan University, Ji'an, 343009, China
| | - Shi-Chang Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia.
| |
Collapse
|
64
|
Tu W, Li Y, Liu W, Wu L, Xie X, Zhang Y, Wilhelm C, Yang C. Spring Ephemerals Adapt to Extremely High Light Conditions via an Unusual Stabilization of Photosystem II. FRONTIERS IN PLANT SCIENCE 2016; 6:1189. [PMID: 26779223 PMCID: PMC4702278 DOI: 10.3389/fpls.2015.01189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/30/2015] [Indexed: 05/29/2023]
Abstract
Ephemerals, widely distributed in the Gobi desert, have developed significant characteristics to sustain high photosynthetic efficiency under high light (HL) conditions. Since the light reaction is the basis for photosynthetic conversion of solar energy to chemical energy, the photosynthetic performances in thylakoid membrane of the spring ephemerals in response to HL were studied. Three plant species, namely two C3 spring ephemeral species of Cruciferae: Arabidopsis pumila (A. pumila) and Sisymbrium altissimum (S. altissimum), and the model plant Arabidopsis thaliana (A. thaliana) were chosen for the study. The ephemeral A. pumila, which is genetically close to A. thaliana and ecologically in the same habitat as S. altissimum, was used to avoid complications arising from the superficial differences resulted from comparing plants from two extremely contrasting ecological groups. The findings manifested that the ephemerals showed significantly enhanced activities of photosystem (PS) II under HL conditions, while the activities of PSII in A. thaliana were markedly decreased under the same conditions. Detailed analyses of the electron transport processes revealed that the increased plastoquinone pool oxidization, together with the enhanced PSI activities, ensured a lowered excitation pressure to PSII of both ephemerals, and thus facilitated the photosynthetic control to avoid photodamage to PSII. The analysis of the reaction centers of the PSs, both in terms of D1 protein turnover kinetics and the long-term adaptation, revealed that the unusually stable PSs structure provided the basis for the ephemerals to carry out high photosynthetic performances. It is proposed that the characteristic photosynthetic performances of ephemerals were resulted from effects of the long-term adaptation to the harsh environments.
Collapse
Affiliation(s)
- Wenfeng Tu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yang Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Wu Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Lishuan Wu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Xiaoyan Xie
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yuanming Zhang
- Key Laboratory of Biogeography and Bioresource, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqi, China
| | - Christian Wilhelm
- Institute of Biology, Department of Plant Physiology, University of LeipzigLeipzig, Germany
| | - Chunhong Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
65
|
Pospíšil P. Production of Reactive Oxygen Species by Photosystem II as a Response to Light and Temperature Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1950. [PMID: 28082998 PMCID: PMC5183610 DOI: 10.3389/fpls.2016.01950] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/07/2016] [Indexed: 05/19/2023]
Abstract
The effect of various abiotic stresses on photosynthetic apparatus is inevitably associated with formation of harmful reactive oxygen species (ROS). In this review, recent progress on ROS production by photosystem II (PSII) as a response to high light and high temperature is overviewed. Under high light, ROS production is unavoidably associated with energy transfer and electron transport in PSII. Singlet oxygen is produced by the energy transfer form triplet chlorophyll to molecular oxygen formed by the intersystem crossing from singlet chlorophyll in the PSII antennae complex or the recombination of the charge separated radical pair in the PSII reaction center. Apart to triplet chlorophyll, triplet carbonyl formed by lipid peroxidation transfers energy to molecular oxygen forming singlet oxygen. On the PSII electron acceptor side, electron leakage to molecular oxygen forms superoxide anion radical which dismutes to hydrogen peroxide which is reduced by the non-heme iron to hydroxyl radical. On the PSII electron donor side, incomplete water oxidation forms hydrogen peroxide which is reduced by manganese to hydroxyl radical. Under high temperature, dark production of singlet oxygen results from lipid peroxidation initiated by lipoxygenase, whereas incomplete water oxidation forms hydrogen peroxide which is reduced by manganese to hydroxyl radical. The understanding of molecular basis for ROS production by PSII provides new insight into how plants survive under adverse environmental conditions.
Collapse
|
66
|
Pospíšil P. Production of Reactive Oxygen Species by Photosystem II as a Response to Light and Temperature Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1950. [PMID: 28082998 DOI: 10.3389/fpls.2016.01950/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/07/2016] [Indexed: 05/20/2023]
Abstract
The effect of various abiotic stresses on photosynthetic apparatus is inevitably associated with formation of harmful reactive oxygen species (ROS). In this review, recent progress on ROS production by photosystem II (PSII) as a response to high light and high temperature is overviewed. Under high light, ROS production is unavoidably associated with energy transfer and electron transport in PSII. Singlet oxygen is produced by the energy transfer form triplet chlorophyll to molecular oxygen formed by the intersystem crossing from singlet chlorophyll in the PSII antennae complex or the recombination of the charge separated radical pair in the PSII reaction center. Apart to triplet chlorophyll, triplet carbonyl formed by lipid peroxidation transfers energy to molecular oxygen forming singlet oxygen. On the PSII electron acceptor side, electron leakage to molecular oxygen forms superoxide anion radical which dismutes to hydrogen peroxide which is reduced by the non-heme iron to hydroxyl radical. On the PSII electron donor side, incomplete water oxidation forms hydrogen peroxide which is reduced by manganese to hydroxyl radical. Under high temperature, dark production of singlet oxygen results from lipid peroxidation initiated by lipoxygenase, whereas incomplete water oxidation forms hydrogen peroxide which is reduced by manganese to hydroxyl radical. The understanding of molecular basis for ROS production by PSII provides new insight into how plants survive under adverse environmental conditions.
Collapse
Affiliation(s)
- Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Czechia
| |
Collapse
|
67
|
Kato Y, Ozawa SI, Takahashi Y, Sakamoto W. D1 fragmentation in photosystem II repair caused by photo-damage of a two-step model. PHOTOSYNTHESIS RESEARCH 2015; 126:409-16. [PMID: 25893898 DOI: 10.1007/s11120-015-0144-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/09/2015] [Indexed: 05/26/2023]
Abstract
Light energy drives photosynthesis, but it simultaneously inactivates photosynthetic mechanisms. A major target site of photo-damage is photosystem II (PSII). It further targets one reaction center protein, D1, which is maintained efficiently by the PSII repair cycle. Two proteases, FtsH and Deg, are known to contribute to this process, respectively, by efficient degradation of photo-damaged D1 protein processively and endoproteolytically. This study tested whether the D1 cleavage accomplished by these proteases is affected by different monochromic lights such as blue and red light-emitting-diode light sources, remaining mindful that the use of these lights distinguishes the current models for photoinhibition: the excess-energy model and the two-step model. It is noteworthy that in the two-step model, primary damage results from the absorption of light energy in the Mn-cluster, which can be enhanced by a blue rather than a red light source. Results showed that blue and red lights affect D1 degradation differently. One prominent finding was that D1 fragmentation that is specifically generated by luminal Deg proteases was enhanced by blue light but not by red light in the mutant lacking FtsH2. Although circumstantial, this evidence supports a two-step model of PSII photo-damage. We infer that enhanced D1 fragmentation by luminal Deg proteases is a response to primary damage at the Mn-cluster.
Collapse
Affiliation(s)
- Yusuke Kato
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Shin-Ichiro Ozawa
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama City, Okayama, 700-8530, Japan
| | - Yuichiro Takahashi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama City, Okayama, 700-8530, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan.
| |
Collapse
|
68
|
Segovia M, Mata T, Palma A, García-Gómez C, Lorenzo R, Rivera A, Figueroa FL. Dunaliella tertiolecta(Chlorophyta) Avoids Cell Death Under Ultraviolet Radiation By Triggering Alternative Photoprotective Mechanisms. Photochem Photobiol 2015. [DOI: 10.1111/php.12502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- María Segovia
- Department of Ecology; Faculty of Sciences; University of Málaga; Málaga Spain
| | - Teresa Mata
- Department of Ecology; Faculty of Sciences; University of Málaga; Málaga Spain
| | - Armando Palma
- Department of Ecology; Faculty of Sciences; University of Málaga; Málaga Spain
| | | | - Rosario Lorenzo
- Department of Ecology; Faculty of Sciences; University of Málaga; Málaga Spain
| | - Alicia Rivera
- Department of Cell Biology; Faculty of Sciences; University of Málaga; Málaga Spain
| | - Félix L. Figueroa
- Department of Ecology; Faculty of Sciences; University of Málaga; Málaga Spain
| |
Collapse
|
69
|
Vandenhecke JMR, Bastedo J, Cockshutt AM, Campbell DA, Huot Y. Changes in the Rubisco to photosystem ratio dominates photoacclimation across phytoplankton taxa. PHOTOSYNTHESIS RESEARCH 2015; 124:275-291. [PMID: 25862645 DOI: 10.1007/s11120-015-0137-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 03/31/2015] [Indexed: 06/04/2023]
Abstract
When growth irradiance changes, phytoplankton acclimates by changing allocations to cellular components to re-balance their capacity to absorb photons versus their capacity to use the electrons from the oxidation of water at photosystem II. Published changes in the cellular allocations resulting from photoacclimation across algal groups highlight that algae adopt different strategies. We examined the photoacclimation of the photosynthetic apparatus of six marine phytoplankters under near-natural diel irradiance patterns. For most of the phytoplankters, Chl a per structural photosystem II unit decreased with increasing growth irradiance, but a parallel decline in optical packaging effect allowed cells to maintain their functional absorption cross section serving active photosystem II units (σ PSII). Furthermore, no significant changes were observed in the ratio of Chl a per photosystem I. The diatom Skeletonema marinoi proved an exception to this pattern as Chl a per photosystem II is stable and Chl a per photosystem I slightly decreased with light intensity. A clear decrease in the photosystem content per cell was observed for all species except for Thalassiosira oceanica and S. marinoi. Rubisco content per cell showed little variation with irradiance for most algae, except for a 3-fold increase in S. marinoi. A ~700 % increase in the Rubisco:photosystem ratio across species with increasing growth irradiance indicates this is a key cellular stoichiometric adjustment to balance photon absorption capacity and the carbon reduction capacity. Increasing the Rubisco:photosystem ratio occurs through a decrease in the photosystems per cell for most of the phytoplankters in this study, except in the case of S. marinoi where Rubisco per cell increased.
Collapse
Affiliation(s)
- Jennifer Marie-Rose Vandenhecke
- Canada Research Chair in Earth Observation and Phytoplankton Ecophysiology, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada,
| | | | | | | | | |
Collapse
|
70
|
Sacharz J, Bryan SJ, Yu J, Burroughs NJ, Spence EM, Nixon PJ, Mullineaux CW. Sub-cellular location of FtsH proteases in the cyanobacterium Synechocystis sp. PCC 6803 suggests localised PSII repair zones in the thylakoid membranes. Mol Microbiol 2015; 96:448-62. [PMID: 25601560 PMCID: PMC4949578 DOI: 10.1111/mmi.12940] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 12/21/2022]
Abstract
In cyanobacteria and chloroplasts, exposure to HL damages the photosynthetic apparatus, especially the D1 subunit of Photosystem II. To avoid chronic photoinhibition, a PSII repair cycle operates to replace damaged PSII subunits with newly synthesised versions. To determine the sub-cellular location of this process, we examined the localisation of FtsH metalloproteases, some of which are directly involved in degrading damaged D1. We generated transformants of the cyanobacterium Synechocystis sp. PCC6803 expressing GFP-tagged versions of its four FtsH proteases. The ftsH2-gfp strain was functional for PSII repair under our conditions. Confocal microscopy shows that FtsH1 is mainly in the cytoplasmic membrane, while the remaining FtsH proteins are in patches either in the thylakoid or at the interface between the thylakoid and cytoplasmic membranes. HL exposure which increases the activity of the Photosystem II repair cycle led to no detectable changes in FtsH distribution, with the FtsH2 protease involved in D1 degradation retaining its patchy distribution in the thylakoid membrane. We discuss the possibility that the FtsH2-GFP patches represent Photosystem II 'repair zones' within the thylakoid membranes, and the possible advantages of such functionally specialised membrane zones. Anti-GFP affinity pull-downs provide the first indication of the composition of the putative repair zones.
Collapse
Affiliation(s)
- Joanna Sacharz
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | | | | | | | | | | | | |
Collapse
|
71
|
Li G, Brown CM, Jeans JA, Donaher NA, McCarthy A, Campbell DA. The nitrogen costs of photosynthesis in a diatom under current and future pCO2. THE NEW PHYTOLOGIST 2015; 205:533-43. [PMID: 25256155 DOI: 10.1111/nph.13037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/10/2014] [Indexed: 05/23/2023]
Abstract
With each cellular generation, oxygenic photoautotrophs must accumulate abundant protein complexes that mediate light capture, photosynthetic electron transport and carbon fixation. In addition to this net synthesis, oxygenic photoautotrophs must counter the light-dependent photoinactivation of Photosystem II (PSII), using metabolically expensive proteolysis, disassembly, resynthesis and re-assembly of protein subunits. We used growth rates, elemental analyses and protein quantitations to estimate the nitrogen (N) metabolism costs to both accumulate the photosynthetic system and to maintain PSII function in the diatom Thalassiosira pseudonana, growing at two pCO2 levels across a range of light levels. The photosynthetic system contains c. 15-25% of total cellular N. Under low growth light, N (re)cycling through PSII repair is only c. 1% of the cellular N assimilation rate. As growth light increases to inhibitory levels, N metabolite cycling through PSII repair increases to c. 14% of the cellular N assimilation rate. Cells growing under the assumed future 750 ppmv pCO2 show higher growth rates under optimal light, coinciding with a lowered N metabolic cost to maintain photosynthesis, but then suffer greater photoinhibition of growth under excess light, coincident with rising costs to maintain photosynthesis. We predict this quantitative trait response to light will vary across taxa.
Collapse
Affiliation(s)
- Gang Li
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, E4L 1G7, Canada; Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, CAS, Guangzhou, 510301, China
| | | | | | | | | | | |
Collapse
|
72
|
Haniewicz P, Floris D, Farci D, Kirkpatrick J, Loi MC, Büchel C, Bochtler M, Piano D. Isolation of Plant Photosystem II Complexes by Fractional Solubilization. FRONTIERS IN PLANT SCIENCE 2015. [PMID: 26697050 DOI: 10.3389/fols.2015.01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Photosystem II (PSII) occurs in different forms and supercomplexes in thylakoid membranes. Using a transplastomic strain of Nicotiana tabacum histidine tagged on the subunit PsbE, we have previously shown that a mild extraction protocol with β-dodecylmaltoside enriches PSII characteristic of lamellae and grana margins. Here, we characterize residual granal PSII that is not extracted by this first solubilization step. Using affinity purification, we demonstrate that this PSII fraction consists of PSII-LHCII mega- and supercomplexes, PSII dimers, and PSII monomers, which were separated by gel filtration and functionally characterized. Our findings represent an alternative demonstration of different PSII populations in thylakoid membranes, and they make it possible to prepare PSII-LHCII supercomplexes in high yield.
Collapse
Affiliation(s)
- Patrycja Haniewicz
- Laboratory of Structural Biology, Department of Molecular Biology, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Davide Floris
- Laboratory of Photosynthesis and Photobiology, Department of Life and Environmental Sciences, University of Cagliari Cagliari, Italy
| | - Domenica Farci
- Laboratory of Photosynthesis and Photobiology, Department of Life and Environmental Sciences, University of Cagliari Cagliari, Italy
| | - Joanna Kirkpatrick
- Proteomics Core Facility, European Molecular Biology Laboratory Heidelberg, Germany
| | - Maria C Loi
- Laboratory of Photosynthesis and Photobiology, Department of Life and Environmental Sciences, University of Cagliari Cagliari, Italy
| | - Claudia Büchel
- Laboratory of Plant Cell Physiology, Institute of Molecular Biosciences, Goethe-University Frankfurt Frankfurt am Main, Germany
| | - Matthias Bochtler
- Laboratory of Structural Biology, Department of Molecular Biology, International Institute of Molecular and Cell Biology Warsaw, Poland ; Department of Bioinformatics, Institute of Biochemistry and Biophysics Warsaw, Poland
| | - Dario Piano
- Laboratory of Structural Biology, Department of Molecular Biology, International Institute of Molecular and Cell Biology Warsaw, Poland ; Laboratory of Photosynthesis and Photobiology, Department of Life and Environmental Sciences, University of Cagliari Cagliari, Italy
| |
Collapse
|
73
|
Haniewicz P, Floris D, Farci D, Kirkpatrick J, Loi MC, Büchel C, Bochtler M, Piano D. Isolation of Plant Photosystem II Complexes by Fractional Solubilization. FRONTIERS IN PLANT SCIENCE 2015; 6:1100. [PMID: 26697050 PMCID: PMC4674563 DOI: 10.3389/fpls.2015.01100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/22/2015] [Indexed: 05/19/2023]
Abstract
Photosystem II (PSII) occurs in different forms and supercomplexes in thylakoid membranes. Using a transplastomic strain of Nicotiana tabacum histidine tagged on the subunit PsbE, we have previously shown that a mild extraction protocol with β-dodecylmaltoside enriches PSII characteristic of lamellae and grana margins. Here, we characterize residual granal PSII that is not extracted by this first solubilization step. Using affinity purification, we demonstrate that this PSII fraction consists of PSII-LHCII mega- and supercomplexes, PSII dimers, and PSII monomers, which were separated by gel filtration and functionally characterized. Our findings represent an alternative demonstration of different PSII populations in thylakoid membranes, and they make it possible to prepare PSII-LHCII supercomplexes in high yield.
Collapse
Affiliation(s)
- Patrycja Haniewicz
- Laboratory of Structural Biology, Department of Molecular Biology, International Institute of Molecular and Cell BiologyWarsaw, Poland
| | - Davide Floris
- Laboratory of Photosynthesis and Photobiology, Department of Life and Environmental Sciences, University of CagliariCagliari, Italy
| | - Domenica Farci
- Laboratory of Photosynthesis and Photobiology, Department of Life and Environmental Sciences, University of CagliariCagliari, Italy
| | - Joanna Kirkpatrick
- Proteomics Core Facility, European Molecular Biology LaboratoryHeidelberg, Germany
| | - Maria C. Loi
- Laboratory of Photosynthesis and Photobiology, Department of Life and Environmental Sciences, University of CagliariCagliari, Italy
| | - Claudia Büchel
- Laboratory of Plant Cell Physiology, Institute of Molecular Biosciences, Goethe-University FrankfurtFrankfurt am Main, Germany
| | - Matthias Bochtler
- Laboratory of Structural Biology, Department of Molecular Biology, International Institute of Molecular and Cell BiologyWarsaw, Poland
- Department of Bioinformatics, Institute of Biochemistry and BiophysicsWarsaw, Poland
| | - Dario Piano
- Laboratory of Structural Biology, Department of Molecular Biology, International Institute of Molecular and Cell BiologyWarsaw, Poland
- Laboratory of Photosynthesis and Photobiology, Department of Life and Environmental Sciences, University of CagliariCagliari, Italy
- *Correspondence: Dario Piano,
| |
Collapse
|
74
|
Lin YP, Lee TY, Tanaka A, Charng YY. Analysis of an Arabidopsis heat-sensitive mutant reveals that chlorophyll synthase is involved in reutilization of chlorophyllide during chlorophyll turnover. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:14-26. [PMID: 25041167 DOI: 10.1111/tpj.12611] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/27/2014] [Accepted: 07/02/2014] [Indexed: 05/08/2023]
Abstract
Chlorophylls, the most abundant pigments in the photosynthetic apparatus, are constantly turned over as a result of the degradation and replacement of the damage-prone reaction center D1 protein of photosystem II. Results from isotope labeling experiments suggest that chlorophylls are recycled by reutilization of chlorophyllide and phytol, but the underlying mechanism is unclear. In this study, by characterization of a heat-sensitive Arabidopsis mutant we provide evidence of a salvage pathway for chlorophyllide a. A missense mutation in CHLOROPHYLL SYNTHASE (CHLG) was identified and confirmed to be responsible for a light-dependent, heat-induced cotyledon bleaching phenotype. Following heat treatment, mutant (chlg-1) but not wild-type seedlings accumulated a substantial level of chlorophyllide a, which resulted in a surge of phototoxic singlet oxygen. Immunoblot analysis suggested that the mutation destabilized the chlorophyll synthase proteins and caused a conditional blockage of esterification of chlorophyllide a after heat stress. Accumulation of chlorophyllide a after heat treatment occurred during recovery in the dark in the light-grown but not the etiolated seedlings, suggesting that the accumulated chlorophyllides were not derived from de novo biosynthesis but from de-esterification of the existing chlorophylls. Further analysis of the triple mutant harboring the CHLG mutant allele and null mutations of CHLOROPHYLLASE1 (CLH1) and CLH2 indicated that the known chlorophyllases are not responsible for the accumulation of chlorophyllide a in chlg-1. Taken together, our results show that chlorophyll synthase acts in a salvage pathway for chlorophyll biosynthesis by re-esterifying the chlorophyllide a produced during chlorophyll turnover.
Collapse
Affiliation(s)
- Yao-Pin Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan; Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 402, Taiwan
| | | | | | | |
Collapse
|
75
|
Kato Y, Sakamoto W. Phosphorylation of photosystem II core proteins prevents undesirable cleavage of D1 and contributes to the fine-tuned repair of photosystem II. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:312-21. [PMID: 24862025 DOI: 10.1111/tpj.12562] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 04/16/2014] [Accepted: 05/13/2014] [Indexed: 05/23/2023]
Abstract
Photosystem II (PSII) is a primary target for light-induced damage in photosynthetic protein complexes. To avoid photoinhibition, chloroplasts have evolved a repair cycle with efficient degradation of the PSII reaction center protein, D1, by the proteases FtsH and Deg. Earlier reports have described that phosphorylated D1 is a poor substrate for proteolysis, suggesting a mechanistic role for protein phosphorylation in PSII quality control, but its precise role remains elusive. STN8, a protein kinase, plays a central role in this phosphorylation process. To elucidate the relationship between phosphorylation of D1 and the protease function we assessed in this study the involvement of STN8, using Arabidopsis thaliana mutants lacking FtsH2 [yellow variegated2 (var2)] and Deg5/Deg8 (deg5 deg8). In support of our presumption we found that phosphorylation of D1 increased more in var2. Furthermore, the coexistence of var2 and stn8 was shown to recover the delay in degradation of D1, resulting in mitigation of the high vulnerability to photoinhibition of var2. Partial D1 cleavage fragments that depended on Deg proteases tended to increase, with concomitant accumulation of reactive oxygen species in the mutants lacking STN8. We inferred that the accelerated degradation of D1 in var2 stn8 presents a tradeoff in that it improved the repair of PSII but simultaneously enhanced oxidative stress. Together, these results suggest that PSII core phosphorylation prevents undesirable cleavage of D1 by Deg proteases, which causes cytotoxicity, thereby balancing efficient linear electron flow and photo-oxidative damage. We propose that PSII core phosphorylation contributes to fine-tuned degradation of D1.
Collapse
Affiliation(s)
- Yusuke Kato
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | | |
Collapse
|
76
|
Wittenberg G, Levitan A, Klein T, Dangoor I, Keren N, Danon A. Knockdown of the Arabidopsis thaliana chloroplast protein disulfide isomerase 6 results in reduced levels of photoinhibition and increased D1 synthesis in high light. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:1003-13. [PMID: 24684167 DOI: 10.1111/tpj.12525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/18/2014] [Accepted: 03/27/2014] [Indexed: 05/09/2023]
Abstract
A chloroplast protein disulfide isomerase (PDI) was previously proposed to regulate translation of the unicellular green alga Chlamydomonas reinhardtii chloroplast psbA mRNA, encoding the D1 protein, in response to light. Here we show that AtPDI6, one of 13 Arabidopsis thaliana PDI genes, also plays a role in the chloroplast. We found that AtPDI6 is targeted and localized to the chloroplast. Interestingly, AtPDI6 knockdown plants displayed higher resistance to photoinhibition than wild-type plants when exposed to a tenfold increase in light intensity. The AtPDI6 knockdown plants also displayed a higher rate of D1 synthesis under a similar light intensity. The increased resistance to photoinhibition may not be rationalized by changes in antenna or non-photochemical quenching. Thus, the increased D1 synthesis rate, which may result in a larger proportion of active D1 under light stress, may led to the decrease in photoinhibition. These results suggest that, although the D1 synthesis rates observed in wild-type plants under high light intensities are elevated, repair can potentially occur faster. The findings implicate AtPDI6 as an attenuator of D1 synthesis, modulating photoinhibition in a light-regulated manner.
Collapse
Affiliation(s)
- Gal Wittenberg
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | | | | | |
Collapse
|
77
|
Li Y, Xu J, Gao K. Light-modulated responses of growth and photosynthetic performance to ocean acidification in the model diatom Phaeodactylum tricornutum. PLoS One 2014; 9:e96173. [PMID: 24828454 PMCID: PMC4020747 DOI: 10.1371/journal.pone.0096173] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/03/2014] [Indexed: 11/19/2022] Open
Abstract
Ocean acidification (OA) due to atmospheric CO2 rise is expected to influence marine primary productivity. In order to investigate the interactive effects of OA and light changes on diatoms, we grew Phaeodactylum tricornutum, under ambient (390 ppmv; LC) and elevated CO2 (1000 ppmv; HC) conditions for 80 generations, and measured its physiological performance under different light levels (60 µmol m(-2) s(-1), LL; 200 µmol m(-2) s(-1), ML; 460 µmol m(-2) s(-1), HL) for another 25 generations. The specific growth rate of the HC-grown cells was higher (about 12-18%) than that of the LC-grown ones, with the highest under the ML level. With increasing light levels, the effective photochemical yield of PSII (Fv'/Fm') decreased, but was enhanced by the elevated CO2, especially under the HL level. The cells acclimated to the HC condition showed a higher recovery rate of their photochemical yield of PSII compared to the LC-grown cells. For the HC-grown cells, dissolved inorganic carbon or CO2 levels for half saturation of photosynthesis (K1/2 DIC or K1/2 CO2) increased by 11, 55 and 32%, under the LL, ML and HL levels, reflecting a light dependent down-regulation of carbon concentrating mechanisms (CCMs). The linkage between higher level of the CCMs down-regulation and higher growth rate at ML under OA supports the theory that the saved energy from CCMs down-regulation adds on to enhance the growth of the diatom.
Collapse
Affiliation(s)
- Yahe Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen Fujian, China
| | - Juntian Xu
- School of Marine Science and Technology, Huaihai Institute of Technology, Lianyungang Jiangsu, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen Fujian, China
| |
Collapse
|
78
|
Hüner NPA, Dahal K, Kurepin LV, Savitch L, Singh J, Ivanov AG, Kane K, Sarhan F. Potential for increased photosynthetic performance and crop productivity in response to climate change: role of CBFs and gibberellic acid. Front Chem 2014; 2:18. [PMID: 24860799 PMCID: PMC4029004 DOI: 10.3389/fchem.2014.00018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/25/2014] [Indexed: 01/07/2023] Open
Abstract
We propose that targeting the enhanced photosynthetic performance associated with the cold acclimation of winter cultivars of rye (Secale cereale L.), wheat (Triticum aestivum L.), and Brassica napus L. may provide a novel approach to improve crop productivity under abiotic as well as biotic stress conditions. In support of this hypothesis, we provide the physiological, biochemical, and molecular evidence that the dwarf phenotype induced by cold acclimation is coupled to significant enhancement in photosynthetic performance, resistance to photoinhibition, and a decreased dependence on photoprotection through non-photochemical quenching which result in enhanced biomass production and ultimately increased seed yield. These system-wide changes at the levels of phenotype, physiology, and biochemistry appear to be governed by the family of C-repeat/dehydration-responsive family of transcription factors (CBF/DREB1). We relate this phenomenon to the semi-dwarf, gibberellic acid insensitive (GAI), cereal varieties developed during the "green revolution" of the early 1960s and 1970s. We suggest that genetic manipulation of the family of C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB1) may provide a novel approach for the maintenance and perhaps even the enhancement of plant productivity under conditions of sub-optimal growth conditions predicted for our future climate.
Collapse
Affiliation(s)
- Norman P. A. Hüner
- Biology Department and the Biotron Centre for Experimental Climate Change Research, University of Western OntarioLondon, ON, Canada
| | - Keshav Dahal
- Department of Biological Sciences, University of Toronto at ScarboroughScarborough, ON, Canada
| | - Leonid V. Kurepin
- Biology Department and the Biotron Centre for Experimental Climate Change Research, University of Western OntarioLondon, ON, Canada
| | - Leonid Savitch
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food CanadaOttawa, ON, Canada
| | - Jas Singh
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food CanadaOttawa, ON, Canada
| | - Alexander G. Ivanov
- Biology Department and the Biotron Centre for Experimental Climate Change Research, University of Western OntarioLondon, ON, Canada
| | - Khalil Kane
- Départment des Sciences biologiques, Université du Québec à MontréalMontréal, QC, Canada
| | - Fathey Sarhan
- Départment des Sciences biologiques, Université du Québec à MontréalMontréal, QC, Canada
| |
Collapse
|
79
|
Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS. Plant nanobionics approach to augment photosynthesis and biochemical sensing. NATURE MATERIALS 2014; 13:400-8. [PMID: 24633343 DOI: 10.1038/nmat3890] [Citation(s) in RCA: 428] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 01/15/2014] [Indexed: 05/21/2023]
Abstract
The interface between plant organelles and non-biological nanostructures has the potential to impart organelles with new and enhanced functions. Here, we show that single-walled carbon nanotubes (SWNTs) passively transport and irreversibly localize within the lipid envelope of extracted plant chloroplasts, promote over three times higher photosynthetic activity than that of controls, and enhance maximum electron transport rates. The SWNT-chloroplast assemblies also enable higher rates of leaf electron transport in vivo through a mechanism consistent with augmented photoabsorption. Concentrations of reactive oxygen species inside extracted chloroplasts are significantly suppressed by delivering poly(acrylic acid)-nanoceria or SWNT-nanoceria complexes. Moreover, we show that SWNTs enable near-infrared fluorescence monitoring of nitric oxide both ex vivo and in vivo, thus demonstrating that a plant can be augmented to function as a photonic chemical sensor. Nanobionics engineering of plant function may contribute to the development of biomimetic materials for light-harvesting and biochemical detection with regenerative properties and enhanced efficiency.
Collapse
Affiliation(s)
- Juan Pablo Giraldo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Markita P Landry
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sean M Faltermeier
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Thomas P McNicholas
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Nicole M Iverson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ardemis A Boghossian
- 1] Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Department of Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Nigel F Reuel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrew J Hilmer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Fatih Sen
- 1] Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Department of Biochemistry, Dumlupinar University, Kutahya 43020, Turkey
| | - Jacqueline A Brew
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
80
|
Gao K, Campbell DA. Photophysiological responses of marine diatoms to elevated CO 2 and decreased pH: a review. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:449-459. [PMID: 32481004 DOI: 10.1071/fp13247] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/24/2013] [Indexed: 05/19/2023]
Abstract
Diatoms dominate nearly half of current oceanic productivity, so their responses to ocean acidification are of general concern regarding future oceanic carbon sequestration. Community, mesocosm and laboratory studies show a range of diatom growth and photophysiological responses to increasing pCO2. Nearly 20 studies on effects of elevated pCO2 on diatoms have shown stimulations, no effects or inhibitions of growth rates. These differential responses could result from differences in experimental setups, cell densities, levels of light and temperature, but also from taxon-specific physiology. Generally, ocean acidification treatments of lowered pH with elevated CO2 stimulate diatom growth under low to moderate levels of light, but lead to growth inhibition when combined with excess light. Additionally, diatom cell sizes and their co-varying metabolic rates can influence responses to increasing pCO2 and decreasing pH, although cell size effects are confounded with taxonomic specificities in cell structures and metabolism. Here we summarise known diatom growth and photophysiological responses to increasing pCO2 and decreasing pH, and discuss some reasons for the diverse responses observed across studies.
Collapse
Affiliation(s)
- Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, 361005 Xiamen, China
| | - Douglas A Campbell
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
| |
Collapse
|
81
|
Cortleven A, Nitschke S, Klaumünzer M, AbdElgawad H, Asard H, Grimm B, Riefler M, Schmülling T. A novel protective function for cytokinin in the light stress response is mediated by the Arabidopsis histidine kinase2 and Arabidopsis histidine kinase3 receptors. PLANT PHYSIOLOGY 2014; 164:1470-83. [PMID: 24424319 PMCID: PMC3938634 DOI: 10.1104/pp.113.224667] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 01/10/2014] [Indexed: 05/17/2023]
Abstract
Cytokinins are plant hormones that regulate diverse processes in plant development and responses to biotic and abiotic stresses. In this study, we show that Arabidopsis (Arabidopsis thaliana) plants with a reduced cytokinin status (i.e. cytokinin receptor mutants and transgenic cytokinin-deficient plants) are more susceptible to light stress compared with wild-type plants. This was reflected by a stronger photoinhibition after 24 h of high light (approximately 1,000 µmol m(-2) s(-1)), as shown by the decline in maximum quantum efficiency of photosystem II photochemistry. Photosystem II, especially the D1 protein, is highly sensitive to the detrimental impact of light. Therefore, photoinhibition is always observed when the rate of photodamage exceeds the rate of D1 repair. We demonstrate that in plants with a reduced cytokinin status, the D1 protein level was strongly decreased upon light stress. Inhibition of the D1 repair cycle by lincomycin treatment indicated that these plants experience stronger photodamage. The efficiency of photoprotective mechanisms, such as nonenzymatic and enzymatic scavenging systems, was decreased in plants with a reduced cytokinin status, which could be a cause for the increased photodamage and subsequent D1 degradation. Additionally, slow and incomplete recovery in these plants after light stress indicated insufficient D1 repair. Mutant analysis revealed that the protective function of cytokinin during light stress depends on the Arabidopsis histidine KINASE2 (AHK2) and AHK3 receptors and the type B Arabidopsis response regulator1 (ARR1) and ARR12. We conclude that proper cytokinin signaling and regulation of specific target genes are necessary to protect leaves efficiently from light stress.
Collapse
|
82
|
The chloroplast protein LTO1/AtVKOR is involved in the xanthophyll cycle and the acceleration of D1 protein degradation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 130:68-75. [DOI: 10.1016/j.jphotobiol.2013.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 10/11/2013] [Accepted: 11/05/2013] [Indexed: 11/19/2022]
|
83
|
Roach T, Krieger-Liszkay A. Regulation of photosynthetic electron transport and photoinhibition. Curr Protein Pept Sci 2014; 15:351-62. [PMID: 24678670 PMCID: PMC4030316 DOI: 10.2174/1389203715666140327105143] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 01/30/2023]
Abstract
Photosynthetic organisms and isolated photosystems are of interest for technical applications. In nature, photosynthetic electron transport has to work efficiently in contrasting environments such as shade and full sunlight at noon. Photosynthetic electron transport is regulated on many levels, starting with the energy transfer processes in antenna and ending with how reducing power is ultimately partitioned. This review starts by explaining how light energy can be dissipated or distributed by the various mechanisms of non-photochemical quenching, including thermal dissipation and state transitions, and how these processes influence photoinhibition of photosystem II (PSII). Furthermore, we will highlight the importance of the various alternative electron transport pathways, including the use of oxygen as the terminal electron acceptor and cyclic flow around photosystem I (PSI), the latter which seem particularly relevant to preventing photoinhibition of photosystem I. The control of excitation pressure in combination with the partitioning of reducing power influences the light-dependent formation of reactive oxygen species in PSII and in PSI, which may be a very important consideration to any artificial photosynthetic system or technical device using photosynthetic organisms.
Collapse
|
84
|
Malnoë A, Wang F, Girard-Bascou J, Wollman FA, de Vitry C. Thylakoid FtsH protease contributes to photosystem II and cytochrome b6f remodeling in Chlamydomonas reinhardtii under stress conditions. THE PLANT CELL 2014; 26:373-90. [PMID: 24449688 PMCID: PMC3963582 DOI: 10.1105/tpc.113.120113] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/28/2013] [Accepted: 12/18/2013] [Indexed: 05/18/2023]
Abstract
FtsH is the major thylakoid membrane protease found in organisms performing oxygenic photosynthesis. Here, we show that FtsH from Chlamydomonas reinhardtii forms heterooligomers comprising two subunits, FtsH1 and FtsH2. We characterized this protease using FtsH mutants that we identified through a genetic suppressor approach that restored phototrophic growth of mutants originally defective for cytochrome b6f accumulation. We thus extended the spectrum of FtsH substrates in the thylakoid membranes beyond photosystem II, showing the susceptibility of cytochrome b6f complexes (and proteins involved in the ci heme binding pathway to cytochrome b6) to FtsH. We then show how FtsH is involved in the response of C. reinhardtii to macronutrient stress. Upon phosphorus starvation, photosynthesis inactivation results from an FtsH-sensitive photoinhibition process. In contrast, we identified an FtsH-dependent loss of photosystem II and cytochrome b6f complexes in darkness upon sulfur deprivation. The D1 fragmentation pattern observed in the latter condition was similar to that observed in photoinhibitory conditions, which points to a similar degradation pathway in these two widely different environmental conditions. Our experiments thus provide extensive evidence that FtsH plays a major role in the quality control of thylakoid membrane proteins and in the response of C. reinhardtii to light and macronutrient stress.
Collapse
|
85
|
Jeans J, Campbell DA, Hoogenboom MO. Increased reliance upon photosystem II repair following acclimation to high-light by coral-dinoflagellate symbioses. PHOTOSYNTHESIS RESEARCH 2013; 118:219-29. [PMID: 24062202 DOI: 10.1007/s11120-013-9918-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/26/2013] [Indexed: 05/22/2023]
Abstract
Changing light environments force photoautotroph cells, including coral symbionts, to acclimate to maintain photosynthesis. Photosystem II (PSII) is subjected to photoinactivation at a rate proportional to the incident light, and cells must adjust their rates of protein repair to counter this photoinactivation. We examined PSII function in the coral symbiont Symbiodinium to determine the effect of photoacclimation on their capacity for PSII repair. Colonies of the coral Stylophora pistillata were collected from moderate light environments on the Lizard Island reef (Queensland, Australia) and transported to a local field station, where they were assigned to lower or higher light regimes and allowed to acclimate for 2 weeks. Following this photoacclimation period, the low-light acclimated corals showed greater symbiont density, higher chlorophyll per symbiont cell, and higher photosystem II protein than high-light acclimated corals did. Subsequently, we treated the corals with lincomycin, an inhibitor of chloroplastic protein synthesis, and exposed them to a high-light treatment to separate the effect of de novo protein synthesis in PSII repair from intrinsic susceptibility to photoinactivation. Low-light acclimated corals showed a sharp initial drop in PSII function but inhibition of PSII repair provoked only a modest additional drop in PSII function, compared to uninhibited corals. In high-light acclimated corals inhibition of PSII repair provoked a larger drop in PSII function, compared to uninhibited high-light corals. The greater lincomycin effects in the corals pre-acclimated to high-light show that high-light leads to an increased reliance on the PSII repair cycle.
Collapse
Affiliation(s)
- Jennifer Jeans
- Biology and Biochemistry, Mount Allison University, Sackville, NB, E4L 3G7, Canada
| | | | | |
Collapse
|
86
|
Towards a critical understanding of the photosystem II repair mechanism and its regulation during stress conditions. FEBS Lett 2013; 587:3372-81. [DOI: 10.1016/j.febslet.2013.09.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 02/08/2023]
|
87
|
C-terminal processing of reaction center protein D1 is essential for the function and assembly of photosystem II in Arabidopsis. Proc Natl Acad Sci U S A 2013; 110:16247-52. [PMID: 24043802 DOI: 10.1073/pnas.1313894110] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosystem II (PSII) reaction center protein D1 is synthesized as a precursor (pD1) with a short C-terminal extension. The pD1 is processed to mature D1 by carboxyl-terminal peptidase A to remove the C-terminal extension and form active protein. Here we report functional characterization of the Arabidopsis gene encoding D1 C-terminal processing enzyme (AtCtpA) in the chloroplast thylakoid lumen. Recombinant AtCtpA converted pD1 to mature D1 and a mutant lacking AtCtpA retained all D1 in precursor form, confirming that AtCtpA is solely responsible for processing. As with cyanobacterial ctpa, a knockout Arabidopsis atctpa mutant was lethal under normal growth conditions but was viable with sucrose under low-light conditions. Viable plants, however, showed deficiencies in PSII and thylakoid stacking. Surprisingly, unlike its cyanobacterial counterpart, the Arabidopsis mutant retained both monomer and dimer forms of the PSII complexes that, although nonfunctional, contained both the core and extrinsic subunits. This mutant was also essentially devoid of PSII supercomplexes, providing an unexpected link between D1 maturation and supercomplex assembly. A knock-down mutant expressing about 2% wild-type level of AtCtpA showed normal growth under low light but was stunted and accumulated pD1 under high light, indicative of delayed C-terminal processing. Although demonstrating the functional significance of C-terminal D1 processing in PSII biogenesis, our study reveals an unsuspected link between D1 maturation and PSII supercomplex assembly in land plants, opening an avenue for exploring the mechanism for the association of light-harvesting complexes with the PSII core complexes.
Collapse
|
88
|
Michelet L, Roach T, Fischer BB, Bedhomme M, Lemaire SD, Krieger-Liszkay A. Down-regulation of catalase activity allows transient accumulation of a hydrogen peroxide signal in Chlamydomonas reinhardtii. PLANT, CELL & ENVIRONMENT 2013; 36:1204-13. [PMID: 23237476 DOI: 10.1111/pce.12053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 05/18/2023]
Abstract
In photosynthetic organisms, excess light is a stress that induces production of reactive oxygen species inside the chloroplasts. As a response, the capacity of antioxidative defence mechanisms increases. However, when cells of Chlamydomonas reinhardtii were shifted from dark to high light, a reversible partial inactivation of catalase activity was observed, which correlated with a transient increase in the level of H2 O2 in the 10 μm range. This concentration range seems to be necessary to activate H2 O2 -dependent signalling pathways stimulating the expression of H2 O2 responsive genes, such as the heat shock protein HSP22C. Catalase knock-down mutants had lost the transient accumulation of H2 O2 , suggesting that a decrease in catalase activity was the key element for establishing a transient H2 O2 burst. Catalase was inactivated by a one-electron event consistent with the reduction of a single cysteine. We propose that under high light intensity, the redox state of the photosynthetic electron transport chain is sensed and transmitted to the cytosol to regulate the catalase activity. This allows a transient accumulation of H2 O2 , inducing a signalling event that is transmitted to the nucleus to modulate the expression of chloroplast-directed protection enzymes.
Collapse
Affiliation(s)
- Laure Michelet
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Saclay, Institut de Biologie et Technologie de Saclay, Centre National de la Recherche Scientifique, UMR 8221, 91191, Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
89
|
Giardi MT, Rea G, Lambreva MD, Antonacci A, Pastorelli S, Bertalan I, Johanningmeier U, Mattoo AK. Mutations of photosystem II D1 protein that empower efficient phenotypes of Chlamydomonas reinhardtii under extreme environment in space. PLoS One 2013; 8:e64352. [PMID: 23691201 PMCID: PMC3653854 DOI: 10.1371/journal.pone.0064352] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/11/2013] [Indexed: 11/25/2022] Open
Abstract
Space missions have enabled testing how microorganisms, animals and plants respond to extra-terrestrial, complex and hazardous environment in space. Photosynthetic organisms are thought to be relatively more prone to microgravity, weak magnetic field and cosmic radiation because oxygenic photosynthesis is intimately associated with capture and conversion of light energy into chemical energy, a process that has adapted to relatively less complex and contained environment on Earth. To study the direct effect of the space environment on the fundamental process of photosynthesis, we sent into low Earth orbit space engineered and mutated strains of the unicellular green alga, Chlamydomonas reinhardtii, which has been widely used as a model of photosynthetic organisms. The algal mutants contained specific amino acid substitutions in the functionally important regions of the pivotal Photosystem II (PSII) reaction centre D1 protein near the QB binding pocket and in the environment surrounding Tyr-161 (YZ) electron acceptor of the oxygen-evolving complex. Using real-time measurements of PSII photochemistry, here we show that during the space flight while the control strain and two D1 mutants (A250L and V160A) were inefficient in carrying out PSII activity, two other D1 mutants, I163N and A251C, performed efficient photosynthesis, and actively re-grew upon return to Earth. Mimicking the neutron irradiation component of cosmic rays on Earth yielded similar results. Experiments with I163N and A251C D1 mutants performed on ground showed that they are better able to modulate PSII excitation pressure and have higher capacity to reoxidize the QA− state of the primary electron acceptor. These results highlight the contribution of D1 conformation in relation to photosynthesis and oxygen production in space.
Collapse
Affiliation(s)
- Maria Teresa Giardi
- Institute of Crystallography, National Research Council of Italy, CNR, Rome, Italy
| | - Giuseppina Rea
- Institute of Crystallography, National Research Council of Italy, CNR, Rome, Italy
| | - Maya D. Lambreva
- Institute of Crystallography, National Research Council of Italy, CNR, Rome, Italy
| | - Amina Antonacci
- Institute of Crystallography, National Research Council of Italy, CNR, Rome, Italy
| | - Sandro Pastorelli
- Institute of Crystallography, National Research Council of Italy, CNR, Rome, Italy
| | - Ivo Bertalan
- Institute of Plant Physiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Udo Johanningmeier
- Institute of Plant Physiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Autar K. Mattoo
- The Henry A. Wallace Beltsville Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Sustainable Agricultural Systems Laboratory, Beltsville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
90
|
Campbell DA, Hossain Z, Cockshutt AM, Zhaxybayeva O, Wu H, Li G. Photosystem II protein clearance and FtsH function in the diatom Thalassiosira pseudonana. PHOTOSYNTHESIS RESEARCH 2013; 115:43-54. [PMID: 23504483 DOI: 10.1007/s11120-013-9809-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 05/13/2023]
Abstract
All oxygenic photoautotrophs suffer photoinactivation of their Photosystem II complexes, at a rate driven by the instantaneous light level. To maintain photosynthesis, PsbA subunits are proteolytically removed from photoinactivated Photosystem II complexes, primarily by a membrane-bound FtsH protease. Diatoms thrive in environments with fluctuating light, such as coastal regions, in part because they enjoy a low susceptibility to photoinactivation of Photosystem II. In a coastal strain of the diatom Thalassiosira pseudonana growing across a range of light levels, active Photosystem II represents only about 42 % of the total Photosystem II protein, with the remainder attributable to photoinactivated Photosystem II awaiting recycling. The rate constant for removal of PsbA protein increases with growth light, in parallel with an increasing content of the FtsH protease relative to the substrate PsbA. An offshore strain of Thalassiosira pseudonana, originating from a more stable light environment, had a lower content of FtsH and slower rate constants for removal of PsbA. We used this data to generate the first estimates for in vivo proteolytic degradation of photoinactivated PsbA per FtsH6 protease, at ~3.9 × 10(-2) s(-1), which proved consistent across growth lights and across the onshore and offshore strains.
Collapse
Affiliation(s)
- Douglas A Campbell
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G7, Canada.
| | | | | | | | | | | |
Collapse
|
91
|
Molins H, Michelet L, Lanquar V, Agorio A, Giraudat J, Roach T, Krieger-Liszkay A, Thomine S. Mutants impaired in vacuolar metal mobilization identify chloroplasts as a target for cadmium hypersensitivity in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2013; 36:804-17. [PMID: 22998565 DOI: 10.1111/pce.12016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cadmium (Cd) is highly toxic to plants causing growth reduction and chlorosis. It binds thiols and competes with essential transition metals. It affects major biochemical processes such as photosynthesis and the redox balance, but the connection between cadmium effects at the biochemical level and its deleterious effect on growth has seldom been established. In this study, two Cd hypersensitive mutants, cad1-3 impaired in phytochelatin synthase (PCS1), and nramp3nramp4 impaired in release of vacuolar metal stores, have been compared. The analysis combines genetics with measurements of photosynthetic and antioxidant functions. Loss of AtNRAMP3 and AtNRAMP4 function or of PCS1 function leads to comparable Cd sensitivity. Root Cd hypersensitivities conferred by cad1-3 and nramp3nramp4 are cumulative. The two mutants contrast in their tolerance to oxidative stress. In nramp3nramp4, the photosynthetic apparatus is severely affected by Cd, whereas it is much less affected in cad1-3. In agreement with chloroplast being a prime target for Cd toxicity in nramp3nramp4, the Cd hypersensitivity of this mutant is alleviated in the dark. The Cd hypersensitivity of nramp3nramp4 mutant highlights the critical role of vacuolar metal stores to supply essential metals to plastids and maintain photosynthetic function under Cd and oxidative stresses.
Collapse
Affiliation(s)
- Hélène Molins
- Institut des Sciences du Végétal, CNRS, Gif-sur-Yvette 91198, France
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Kato Y, Sakamoto W. Possible compensatory role among chloroplast proteases under excess-light stress condition. PLANT SIGNALING & BEHAVIOR 2013; 8:e23198. [PMID: 23299325 PMCID: PMC3676490 DOI: 10.4161/psb.23198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The reaction center protein D1 of photosystem II (PSII), known as a primary target of photodamage, is repaired efficiently by the PSII repair cycle, to cope with constant photooxidative damage. Recent studies of Arabidopsis show that the endo-type Deg protease and the exo-type FtsH proteases cooperatively degrade D1 in the PSII repair in vivo. It is particularly interesting that we observed upregulation of Clp and SppA proteases when FtsH was limited in the mutant lacking FtsH2. To examine how the complementary functions of chloroplastic proteases are commonly regulated, we undertook a high-light stress on wild-type Arabidopsis leaves. The result that wild type leaves also showed increased levels of these proteases upon exposure to excessively strong illumination not only revealed the importance of FtsH and Deg in the PSII repair, but also implied cooperation among chloroplastic proteases under chronic stress conditions.
Collapse
|
93
|
Hansen G, Hilgenfeld R. Architecture and regulation of HtrA-family proteins involved in protein quality control and stress response. Cell Mol Life Sci 2013; 70:761-75. [PMID: 22806565 PMCID: PMC11113883 DOI: 10.1007/s00018-012-1076-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/24/2012] [Accepted: 06/26/2012] [Indexed: 12/22/2022]
Abstract
Protein quality control is vital for all living cells and sophisticated molecular mechanisms have evolved to prevent the excessive accumulation of unfolded proteins. High-temperature requirement A (HtrA) proteases have been identified as important ATP-independent quality-control factors in most species. HtrA proteins harbor a serine-protease domain and at least one peptide-binding PDZ domain to ensure efficient removal of misfolded or damaged proteins. One distinctive property of HtrAs is their ability to assemble into complex oligomers. Whereas all examined HtrAs are capable of forming pyramidal 3-mers, higher-order complexes consisting of up to 24 molecules have been reported. Tight control of chaperone and protease function is of pivotal importance in preventing deleterious HtrA-protease activity. In recent years, structural biology provided detailed insights into the molecular basis of the regulatory mechanisms, which include unique intramolecular allosteric signaling cascades and the dynamic switching of oligomeric states of HtrA proteins. Based on these results, functional models for many family members have been developed. The HtrA protein family represents a remarkable example of how structural and functional diversity is attained from the assembly of simple molecular building blocks.
Collapse
Affiliation(s)
- Guido Hansen
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, 23538, Lübeck, Germany.
| | | |
Collapse
|
94
|
Blanco NE, Ceccoli RD, Vía MVD, Voss I, Segretin ME, Bravo-Almonacid FF, Melzer M, Hajirezaei MR, Scheibe R, Hanke GT. Expression of the minor isoform pea ferredoxin in tobacco alters photosynthetic electron partitioning and enhances cyclic electron flow. PLANT PHYSIOLOGY 2013; 161:866-79. [PMID: 23370717 PMCID: PMC3561025 DOI: 10.1104/pp.112.211078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/04/2012] [Indexed: 05/07/2023]
Abstract
Ferredoxins (Fds) are ferrosulfoproteins that function as low-potential electron carriers in plants. The Fd family is composed of several isoforms that share high sequence homology but differ in functional characteristics. In leaves, at least two isoforms conduct linear and cyclic photosynthetic electron transport around photosystem I, and mounting evidence suggests the existence of at least partial division of duties between these isoforms. To evaluate the contribution of different kinds of Fds to the control of electron fluxes along the photosynthetic electron transport chain, we overexpressed a minor pea (Pisum sativum) Fd isoform (PsFd1) in tobacco (Nicotiana tabacum) plants. The transplastomic OeFd1 plants exhibited variegated leaves and retarded growth and developmental rates. Photosynthetic studies of these plants indicated a reduction in carbon dioxide assimilation rates, photosystem II photochemistry, and linear electron flow. However, the plants showed an increase in nonphotochemical quenching, better control of excitation pressure at photosystem II, and no evidence of photoinhibition, implying a better dynamic regulation to remove excess energy from the photosynthetic electron transport chain. Finally, analysis of P700 redox status during illumination confirmed that the minor pea Fd isoform promotes enhanced cyclic flow around photosystem I. The two novel features of this work are: (1) that Fd levels achieved in transplastomic plants promote an alternative electron partitioning even under greenhouse light growth conditions, a situation that is exacerbated at higher light intensity measurements; and (2) that an alternative, minor Fd isoform has been overexpressed in plants, giving new evidence of labor division among Fd isoforms.
Collapse
Affiliation(s)
- Nicolás E Blanco
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE 901 87 Umea, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Nickelsen J, Rengstl B. Photosystem II assembly: from cyanobacteria to plants. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:609-35. [PMID: 23451783 DOI: 10.1146/annurev-arplant-050312-120124] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Photosystem II (PSII) is an integral-membrane, multisubunit complex that initiates electron flow in oxygenic photosynthesis. The biogenesis of this complex machine involves the concerted assembly of at least 20 different polypeptides as well as the incorporation of a variety of inorganic and organic cofactors. Many factors have recently been identified that constitute an integrative network mediating the stepwise assembly of PSII components. One recurring theme is the subcellular organization of the assembly process in specialized membranes that form distinct biogenesis centers. Here, we review our current knowledge of the molecular components and events involved in PSII assembly and their high degree of evolutionary conservation.
Collapse
Affiliation(s)
- Jörg Nickelsen
- Molekulare Pflanzenwissenschaften, Biozentrum Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| | | |
Collapse
|
96
|
Davey MP, Susanti NI, Wargent JJ, Findlay JE, Paul Quick W, Paul ND, Jenkins GI. The UV-B photoreceptor UVR8 promotes photosynthetic efficiency in Arabidopsis thaliana exposed to elevated levels of UV-B. PHOTOSYNTHESIS RESEARCH 2012; 114:121-31. [PMID: 23161229 DOI: 10.1007/s11120-012-9785-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/31/2012] [Indexed: 05/05/2023]
Abstract
The UV-B photoreceptor UVR8 regulates expression of genes in response to UV-B, some encoding chloroplast proteins, but the importance of UVR8 in maintaining photosynthetic competence is unknown. The maximum quantum yield of PSII (F (v)/F(m)) and the operating efficiency of PSII (Φ(PSII)) were measured in wild-type and uvr8 mutant Arabidopsis thaliana. The importance of specific UVR8-regulated genes in maintaining photosynthetic competence was examined using mutants. Both F (v)/F(m) and Φ(PSII) decreased when plants were exposed to elevated UV-B, in general more so in uvr8 mutant plants than wild-type. UV-B increased the level of psbD-BLRP (blue light responsive promoter) transcripts, encoding the PSII D2 protein. This increase was mediated by the UVR8-regulated chloroplast RNA polymerase sigma factor SIG5, but SIG5 was not required to maintain photosynthetic efficiency at elevated UV-B. Levels of the D1 protein of PSII decreased markedly when plants were exposed to elevated UV-B, but there was no significant difference between wild-type and uvr8 under conditions where the mutant showed increased photoinhibition. The results show that UVR8 promotes photosynthetic efficiency at elevated levels of UV-B. Loss of the DI polypeptide is probably important in causing photoinhibition, but does not entirely explain the reduced photosynthetic efficiency of the uvr8 mutant compared to wild-type.
Collapse
Affiliation(s)
- Matthew P Davey
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | | | | | |
Collapse
|
97
|
Bañares-España E, Kromkamp JC, López-Rodas V, Costas E, Flores-Moya A. Photoacclimation of cultured strains of the cyanobacterium Microcystis aeruginosa to high-light and low-light conditions. FEMS Microbiol Ecol 2012; 83:700-10. [PMID: 23057858 DOI: 10.1111/1574-6941.12025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 09/24/2012] [Accepted: 10/03/2012] [Indexed: 11/28/2022] Open
Abstract
The cyanobacterium Microcystis aeruginosa forms blooms that can consist of colonies. We have investigated how M. aeruginosa acclimatizes to changing light conditions such as can occur during blooms. Three different strains were exposed to two irradiance levels: lower (LL) and higher (HL) than the irradiance-onset saturation parameter. We measured the photosynthetic pigment concentrations, PSII photochemical efficiency, electron transport rate (ETR), irradiance-saturated ETR and ETR efficiency. The relationship between ETR and photosynthetic oxygen production and the excess in PSII capacity were also studied for one strain. Higher values of chlorophyll a and phycocyanin and lower values of total carotenoids were found under LL conditions in the three strains. The strains showed clear differences in the irradiance-saturated ETR and in ETR efficiency under both LL and HL treatments. No differences were found in the linear relationship between ETR and photosynthetic oxygen production under both irradiance treatments. LL-acclimated cells showed higher PSII excess capacity than HL ones, possibly because their higher pigment content could result in a higher light stress than HL cells when forming surface blooms. The fact that the genetically different strains show different photosynthetic physiologies suggests that the very dynamic light climate observed in lakes may allow their coexistence.
Collapse
Affiliation(s)
- Elena Bañares-España
- Centre for Estuarine and Marine Ecology, Netherlands Institute of Ecology, Yerseke, The Netherlands.
| | | | | | | | | |
Collapse
|
98
|
|
99
|
Wu H, Roy S, Alami M, Green BR, Campbell DA. Photosystem II photoinactivation, repair, and protection in marine centric diatoms. PLANT PHYSIOLOGY 2012; 160:464-76. [PMID: 22829321 PMCID: PMC3440219 DOI: 10.1104/pp.112.203067] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/23/2012] [Indexed: 05/02/2023]
Abstract
Diatoms are important contributors to aquatic primary production, and can dominate phytoplankton communities under variable light regimes. We grew two marine diatoms, the small Thalassiosira pseudonana and the large Coscinodiscus radiatus, across a range of temperatures and treated them with a light challenge to understand their exploitation of variable light environments. In the smaller T. pseudonana, photosystem II (PSII) photoinactivation outran the clearance of PSII protein subunits, particularly in cells grown at sub- or supraoptimal temperatures. In turn the absorption cross section serving PSII photochemistry was down-regulated in T. pseudonana through induction of a sustained phase of nonphotochemical quenching that relaxed only slowly over 30 min of subsequent low-light incubation. In contrast, in the larger diatom C. radiatus, PSII subunit turnover was sufficient to counteract a lower intrinsic susceptibility to photoinactivation, and C. radiatus thus did not need to induce sustained nonphotochemical quenching under the high-light treatment. T. pseudonana thus incurs an opportunity cost of sustained photosynthetic down-regulation after the end of an upward light shift, whereas the larger C. radiatus can maintain a balanced PSII repair cycle under comparable conditions.
Collapse
Affiliation(s)
- Hongyan Wu
- Biology, Mount Allison University, Sackville, New Brunswick, Canada E4L 1G7 (H.W., D.A.C.); College of Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China (H.W.); Institut des sciences de la mer de Rimouski, Université du Québec, Rimouski, Quebec, Canada G5L 3A1 (S.R.); and Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (M.A., B.R.G.)
| | - Suzanne Roy
- Biology, Mount Allison University, Sackville, New Brunswick, Canada E4L 1G7 (H.W., D.A.C.); College of Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China (H.W.); Institut des sciences de la mer de Rimouski, Université du Québec, Rimouski, Quebec, Canada G5L 3A1 (S.R.); and Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (M.A., B.R.G.)
| | - Meriem Alami
- Biology, Mount Allison University, Sackville, New Brunswick, Canada E4L 1G7 (H.W., D.A.C.); College of Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China (H.W.); Institut des sciences de la mer de Rimouski, Université du Québec, Rimouski, Quebec, Canada G5L 3A1 (S.R.); and Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (M.A., B.R.G.)
| | - Beverley R. Green
- Biology, Mount Allison University, Sackville, New Brunswick, Canada E4L 1G7 (H.W., D.A.C.); College of Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China (H.W.); Institut des sciences de la mer de Rimouski, Université du Québec, Rimouski, Quebec, Canada G5L 3A1 (S.R.); and Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (M.A., B.R.G.)
| | - Douglas A. Campbell
- Biology, Mount Allison University, Sackville, New Brunswick, Canada E4L 1G7 (H.W., D.A.C.); College of Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China (H.W.); Institut des sciences de la mer de Rimouski, Université du Québec, Rimouski, Quebec, Canada G5L 3A1 (S.R.); and Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (M.A., B.R.G.)
| |
Collapse
|
100
|
Kato Y, Sun X, Zhang L, Sakamoto W. Cooperative D1 degradation in the photosystem II repair mediated by chloroplastic proteases in Arabidopsis. PLANT PHYSIOLOGY 2012; 159:1428-39. [PMID: 22698923 PMCID: PMC3425188 DOI: 10.1104/pp.112.199042] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Light energy constantly damages photosynthetic apparatuses, ultimately causing impaired growth. Particularly, the sessile nature of higher plants has allowed chloroplasts to develop unique mechanisms to alleviate the irreversible inactivation of photosynthesis. Photosystem II (PSII) is known as a primary target of photodamage. Photosynthetic organisms have evolved the so-called PSII repair cycle, in which a reaction center protein, D1, is degraded rapidly in a specific manner. Two proteases that perform processive or endopeptidic degradation, FtsH and Deg, respectively, participate in this cycle. To examine the cooperative D1 degradation by these proteases, we engaged Arabidopsis (Arabidopsis thaliana) mutants lacking FtsH2 (yellow variegated2 [var2]) and Deg5/Deg8 (deg5 deg8) in detecting D1 cleaved fragments. We detected several D1 fragments only under the var2 background, using amino-terminal or carboxyl-terminal specific antibodies of D1. The appearance of these D1 fragments was inhibited by a serine protease inhibitor and by deg5 deg8 mutations. Given the localization of Deg5/Deg8 on the luminal side of thylakoid membranes, we inferred that Deg5/Deg8 cleaves D1 at its luminal loop connecting the transmembrane helices C and D and that the cleaved products of D1 are the substrate for FtsH. These D1 fragments detected in var2 were associated with the PSII monomer, dimer, and partial disassembly complex but not with PSII supercomplexes. It is particularly interesting that another processive protease, Clp, was up-regulated and appeared to be recruited from stroma to the thylakoid membrane in var2, suggesting compensation for FtsH deficiency. Together, our data demonstrate in vivo cooperative degradation of D1, in which Deg cleavage assists FtsH processive degradation under photoinhibitory conditions.
Collapse
|