51
|
Celikovic S, Poms J, Khinast J, Horn M, Rehrl J. Control oriented modeling of twin-screw granulation in the ConsiGma TM-25 production plant. Int J Pharm 2023; 641:123038. [PMID: 37182794 DOI: 10.1016/j.ijpharm.2023.123038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
ConsiGmaTM-25 is a continuous production plant integrating a twin-screw granulation, fluid bed drying, granule conditioning, and a tableting unit. The particle size distribution (PSD), active pharmaceutical ingredient (API) content, and liquid content of wet granules after twin-screw granulation affect the quality of intermediate and final products. This paper proposes methods for real-time monitoring of these quantities and control-oriented modeling of the granulator. The PSD of wet granules is monitored via an in-line process analytical technology (PAT) probe based on the spatial velocimetry principle. The algorithm for signal processing and evaluation of PSD characteristics is developed and applied to the acquired PSD data. A dynamic process model predicting PSD characteristics from granulation parameters is trained via the local linear model tree (LoLiMoT) approach. The experimental data required for the model training are collected via systematically designed excitation runs. Finally, the performance of the identified model is examined and verified by means of a new set of validation runs. Furthermore, an in-line PAT probe based on Raman spectroscopy is developed and integrated after the granulator. The API- and liquid content of produced wet granules are evaluated from the spectral data by means of chemometric modeling, and chemometric models are validated on a separate set of experimental data. The solutions proposed in this research can be used as a reliable (and necessary) basis for the development of advanced quality-by-design control concepts (e.g., PSD process control). Such concepts would ultimately improve the ConsiGmaTM-25 process performance in terms of robustness against disturbances and quality of intermediate and final products.
Collapse
Affiliation(s)
- Selma Celikovic
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria; Institute of Automation and Control, Graz University of Technology, Inffeldgasse 21b, 8010 Graz, Austria
| | - Johannes Poms
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria
| | - Johannes Khinast
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria; Institute for Particle and Process Engineering, Graz University of Technology, Inffeldgasse 13/III, 8010 Graz, Austria
| | - Martin Horn
- Institute of Automation and Control, Graz University of Technology, Inffeldgasse 21b, 8010 Graz, Austria
| | - Jakob Rehrl
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria.
| |
Collapse
|
52
|
Peeters M, Alejandra Barrera Jimenez A, Matsunami K, Stauffer F, Nopens I, De Beer T. Evaluation of the influence of material properties and process parameters on granule porosity in twin-screw wet granulation. Int J Pharm 2023; 641:123010. [PMID: 37169104 DOI: 10.1016/j.ijpharm.2023.123010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
In recent years, continuous twin-screw wet granulation (TSWG) is gaining increasing interest from the pharmaceutical industry. Despite the many publications on TSWG, only a limited number of studies focused on granule porosity, which was found to be an important granule property affecting the final tablet quality attributes, e.g. dissolution. In current study, the granule porosity along the length of the twin-screw granulator (TSG) barrel was evaluated. An experimental set-up was used allowing the collection of granules at the different TSG compartments. The effect of active pharmaceutical ingredient (API) properties on granule porosity was evaluated by using six formulations with a fixed composition but containing APIs with different physical-chemical properties. Furthermore, the importance of TSWG process parameters liquid-to-solid (L/S) ratio, mass feed rate and screw speed for the granule porosity was evaluated. Several water-related properties as well as particle size, density and flow properties of the API were found to have an important effect on granule porosity. While the L/S ratio was confirmed to be the dictating TSWG process parameter, granulator screw speed was also found to be an important process variable affecting granule porosity. This study obtained crucial information on the effect of material properties and process parameters on granule porosity (and granule formation) which can be used to accelerate TSWG process and formulation development.
Collapse
Affiliation(s)
- Michiel Peeters
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Oost-Vlaanderen, Belgium
| | - Ana Alejandra Barrera Jimenez
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Oost-Vlaanderen, Belgium; BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, Ghent 9000, Oost-Vlaanderen, Belgium
| | - Kensaku Matsunami
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Oost-Vlaanderen, Belgium; BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, Ghent 9000, Oost-Vlaanderen, Belgium
| | - Fanny Stauffer
- Product Design & Performance, UCB, Ottergemsesteenweg 460, Braine l'Alleud 1420, Belgium
| | - Ingmar Nopens
- BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, Ghent 9000, Oost-Vlaanderen, Belgium
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Oost-Vlaanderen, Belgium.
| |
Collapse
|
53
|
Van de Steene S, Van Renterghem J, Vanhoorne V, Vervaet C, Kumar A, De Beer T. Elucidation of Granulation Mechanisms along the Length of the Barrel in Continuous Twin-Screw Melt Granulation. Int J Pharm 2023; 639:122986. [PMID: 37116599 DOI: 10.1016/j.ijpharm.2023.122986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
In the pharmaceutical industry, innovative continuous manufacturing technologies such as twin-screw melt granulation (TSMG) are gaining more and more interest to process challenging formulations. To enable the implementation of TSMG, more elucidation of the process is required and this study provides a better understanding of the granule formation along the length of the barrel. By sampling at four different zones, the influence of screw configuration, process parameters and formulation is investigated for the granule properties next to the residence time distribution. It showed that conveying elements initiate the granulation by providing a limited heat transfer into the powder bed. In the kneading zones, the consolidation stage takes place, shear elongation combined with breakage and layering is occurring for the reversed configurations and densification with breakage and layering for the forward and neutral configurations. Due to the material build-up in the reversed configurations, these granules are larger, stronger, more elongated and less porous due to the higher degree of shear and densification. This configuration also shows a significantly longer residence time compared to the forward configuration. Hence, the higher level of shear and the longer period of time enables more melting of the binder resulting in successful granulation.
Collapse
Affiliation(s)
- S Van de Steene
- Laboratory of Pharmaceutical Process Analytical Technology, Faculty of Pharmaceutical Sciences Ghent University, Ghent, Belgium.
| | - J Van Renterghem
- Laboratory of Pharmaceutical Process Analytical Technology, Faculty of Pharmaceutical Sciences Ghent University, Ghent, Belgium
| | - V Vanhoorne
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences Ghent University, Ghent, Belgium
| | - C Vervaet
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences Ghent University, Ghent, Belgium
| | - A Kumar
- Pharmaceutical Engineering Research Group, Faculty of Pharmaceutical Sciences, Ghent University, Belgium
| | - T De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Faculty of Pharmaceutical Sciences Ghent University, Ghent, Belgium
| |
Collapse
|
54
|
Comito M, Monguzzi R, Tagliapietra S, Maspero A, Palmisano G, Cravotto G. From Batch to the Semi-Continuous Flow Hydrogenation of pNB, pNZ-Protected Meropenem. Pharmaceutics 2023; 15:pharmaceutics15051322. [PMID: 37242564 DOI: 10.3390/pharmaceutics15051322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Meropenem is currently the most common carbapenem in clinical applications. Industrially, the final synthetic step is characterized by a heterogeneous catalytic hydrogenation in batch mode with hydrogen and Pd/C. The required high-quality standard is very difficult to meet and specific conditions are required to remove both protecting groups [i.e., p-nitrobenzyl (pNB) and p-nitrobenzyloxycarbonyl (pNZ)] simultaneously. The three-phase gas-liquid-solid system makes this step difficult and unsafe. The introduction of new technologies for small-molecule synthesis in recent years has opened up new landscapes in process chemistry. In this context, we have investigated meropenem hydrogenolysis using microwave (MW)-assisted flow chemistry for use as a new technology with industrial prospects. The reaction parameters (catalyst amount, T, P, residence time, flow rate) in the move from the batch process to semi-continuous flow were investigated under mild conditions to determine their influence on the reaction rate. The optimization of the residence time (840 s) and the number of cycles (4) allowed us to develop a novel protocol that halves the reaction time compared to batch production (14 min vs. 30 min) while maintaining the same product quality. The increase in productivity using this semi-continuous flow technique compensates for the slightly lower yield (70% vs. 74%) obtained in batch mode.
Collapse
Affiliation(s)
- Marziale Comito
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
- Research and Development, ACS Dobfar SpA, Via Paullo 9, 20067 Tribiano, Italy
| | - Riccardo Monguzzi
- Research and Development, ACS Dobfar SpA, Via Paullo 9, 20067 Tribiano, Italy
| | - Silvia Tagliapietra
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Angelo Maspero
- Dipartimento di Scienza e Alta Tecnologia, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Giovanni Palmisano
- Dipartimento di Scienza e Alta Tecnologia, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| |
Collapse
|
55
|
Koyanagi K, Shoji K, Ueno A, Sasaki T, Otsuka M. Comparing Integrated Continuous Process "LaVortex®" and Conventional Batch Processes for the Pharmaceutical Manufacturing of Acetaminophen Oral Dosage Formulations: Challenges and Pharmaceutical Properties of the Granular and Tableted Products. Int J Pharm 2023; 638:122935. [PMID: 37030636 DOI: 10.1016/j.ijpharm.2023.122935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/13/2023] [Accepted: 04/02/2023] [Indexed: 04/10/2023]
Abstract
LaVortex® was developed as a novel free-flow continuous granulation/drying (CGD) system. In this study, we compared the advantages and disadvantages of granules prepared by continuous and batchwise manufacturing systems. Granules containing 30 % acetaminophen were manufactured under various operating conditions using CGD system, with comparison granules manufactured using conventional batch systems that involve a combination of fluid bed granulation (FG), agitation granulation (AG), continuous drying, fluid bed drying, and/or shelf drying, after which the pharmaceutical properties of each type of manufactured granule were evaluated. Cumulative particle-size distributions were determined by sieving, powder flowabilities were determined by angle of repose measurements, and scanning electron microscopy was employed to examine granule morphologies. The CGD system produced fine-to-large spherical or ellipsoidal granules that exhibited excellent powder fluidities and tabletabilities that are almost identical to those of AG granules. Moreover, the CGD granules exhibited better powder flowability than the FG granules. The addition of water promoted CGD-granule growth and improved significantly powder flowability, and did a little in tabletability. Small spherical granules with good fluidity suitable for fine-particle-coating core materials, or large granules with excellent fluidity and tabletability, were prepared by adjusting the values of the elemental parameters of the CGD process.
Collapse
Affiliation(s)
- Keita Koyanagi
- EarthTechnica Corporation Limited, 1780 Kamikouya, Yachiyo, Chiba 276-0022, Japan
| | - Kippei Shoji
- Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan
| | - Akinori Ueno
- EarthTechnica Corporation Limited, 1780 Kamikouya, Yachiyo, Chiba 276-0022, Japan
| | - Tetsuo Sasaki
- Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan; Graduate School of Medical Photonics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan; Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8011, Japan
| | - Makoto Otsuka
- EarthTechnica Corporation Limited, 1780 Kamikouya, Yachiyo, Chiba 276-0022, Japan; Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8011, Japan.
| |
Collapse
|
56
|
Conway SL, Rosas JG, Overton P, Tugby N, Cryan P, Witulski F, Hurley S, Wareham L, Tantuccio A, Ramasamy M, Lalloo A, Gibbs M, Meyer RF. Implementation of a Fully Integrated Continuous Manufacturing Line for Direct Compression and Coating at a Commercial Pharmaceutical Facility - Part 1: Operational Considerations and Control Strategy. Int J Pharm 2023:122820. [PMID: 37028572 DOI: 10.1016/j.ijpharm.2023.122820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 04/09/2023]
Abstract
We implement a fully integrated continuous manufacturing (CM) line for direct compression and coating of a pharmaceutical oral solid dosage form in a commercial production facility. In this first paper of a two-part series, we describe process design and operational choices made to introduce CM using infrastructure originally intended for batch operations. Consistent with lean manufacturing principles, we select equipment, facilities, and novel process analytical technologies that meet production agility goals alongside an existing batch process. Choices address process risks, are aligned with existing quality systems, yet allow exploration of CM agility benefits in commercial operations. We outline how operating procedures, control schemes, and release criteria from the historical batch process are adapted for CM with modified lot and yield definitions based on patient demand. We devise a hierarchy of complementary controls including real-time process interrogation, predictive residence time distribution models of tablet concentration, real-time product release testing using automated tablet NIR spectroscopy, active rejection and diversion, and throughput-based sampling. Results from lots produced under normal operational conditions confirm our CM process provides assurance of product quality. Qualification strategies to achieve lot size flexibility aims are also described. Finally, we consider CM extensions to formulations with differing risk profiles. Further analysis of results for lots produced under normal operational conditions is provided in part 2 (Rosas 2022).
Collapse
Affiliation(s)
- Stephen L Conway
- Pharmaceutical Technical Operations, MSD, Cramlington UK; Cramlington Operations, Cramlington MSD, UK.
| | - Juan G Rosas
- Pharmaceutical Technical Operations, MSD, Cramlington UK; Organon, Ltd., Cramlington, UK
| | - Paul Overton
- Pharmaceutical Technical Operations, MSD, Cramlington UK; Organon, Ltd., Cramlington, UK
| | - Neil Tugby
- Pharmaceutical Technical Operations, MSD, Cramlington UK; Organon, Ltd., Cramlington, UK
| | - Phillip Cryan
- Quality Operations, MSD, Cramlington, UK; Organon, Ltd., Cramlington, UK
| | - Frank Witulski
- Global Pharmaceutical Commercialization, MMD, Merck & Co., Inc., Rahway, NJ, USA
| | - Samantha Hurley
- Global Pharmaceutical Commercialization, MMD, Merck & Co., Inc., Rahway, NJ, USA
| | - Laura Wareham
- Global Pharmaceutical Commercialization, MMD, Merck & Co., Inc., Rahway, NJ, USA
| | - Anthony Tantuccio
- Global Pharmaceutical Commercialization, MMD, Merck & Co., Inc., Rahway, NJ, USA; Lonza, NJ, USA
| | - Manoharan Ramasamy
- Analytical Chemistry in Development and Supply, MMD, Merck & Co. Inc, Rahway, NJ, USA
| | - Anita Lalloo
- Regulatory-CMC, MRL, Merck & Co., Inc., Rahway NJ, USA
| | - Mason Gibbs
- Global Engineering Solutions, MMD, Merck & Co., Inc Rahway, NJ, USA; University of Delaware, DE, USA
| | - Robert F Meyer
- Global Pharmaceutical Commercialization, MMD, Merck & Co., Inc., Rahway, NJ, USA
| |
Collapse
|
57
|
Otsuka M, Hayashi Y, Miyazaki K, Mizu M, Okuno M, Sasaki T. Quality evaluation of white sugar crystals using the friability test and their non-destructive prediction using near-infrared spectroscopy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
58
|
Kim SS, Castillo C, Cheikhali M, Darweesh H, Kossor C, Davé RN. Enhanced blend uniformity and flowability of low drug loaded fine API blends via dry coating: The effect of mixing time and excipient size. Int J Pharm 2023; 635:122722. [PMID: 36796658 DOI: 10.1016/j.ijpharm.2023.122722] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Although previous research demonstrated improved flowability, packing, fluidization, etc. of individual powders via nanoparticle dry coating, none considered its impact on very low drug loaded blends. Here, fine ibuprofen at 1, 3, and 5 wt% drug loadings (DL) was used in multi-component blends to examine the impact of the excipients size, dry coating with hydrophilic or hydrophobic silica, and mixing times on the blend uniformity, flowability and drug release rates. For uncoated active pharmaceutical ingredients (API), the blend uniformity (BU) was poor for all blends regardless of the excipient size and mixing time. In contrast, for dry coated API having low agglomerate ratio (AR), BU was dramatically improved, more so for the fine excipient blends, at lesser mixing times. For dry coated API, the fine excipient blends mixed for 30 min had enhanced flowability and lower AR; better for the lowest DL having lesser silica, likely due to mixing induced synergy of silica redistribution. For the fine excipient tablets, dry coating led to fast API release rates even with hydrophobic silica coating. Remarkably, the low AR of the dry coated API even at very low DL and amounts of silica in the blend led to the enhanced blend uniformity, flow, and API release rate.
Collapse
Affiliation(s)
- Sangah S Kim
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Chelsea Castillo
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Mirna Cheikhali
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Hadeel Darweesh
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Christopher Kossor
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
59
|
Compact capillary high performance liquid chromatography system for pharmaceutical on-line reaction monitoring. Anal Chim Acta 2023; 1247:340903. [PMID: 36781255 DOI: 10.1016/j.aca.2023.340903] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
Due to their size, conventional high performance liquid chromatographs (HPLCs) are difficult to place close to a reaction vessel within a pharmaceutical manufacturing or development site. Typically, long transfer lines are required to move sample from the reactor to the HPLC for analysis and high solvent usage is required. However, herein a compact and modular separation system has been developed to enable co-location of an HPLC with a small-scale reactor for reaction monitoring in the synthesis of active pharmaceutical ingredients. Using a framework based on capillary HPLC, a compact gradient separation system with a fully modular architecture is described. A custom miniature diode-array detector with a linear dynamic range (up to 1500 mAU at 210 nm) was integrated and evaluated for on-line reaction monitoring. In evaluating system suitability, average peak area %RSD of <3%, and an average retention time %RSD of <0.7%, were achieved. To demonstrate practical utility, the compact system was coupled directly to an on-line lab-scale flow through reactor for continuous reaction monitoring in the laboratory fume hood, where a study of the 3rd Bourne reaction was used to compare the performance of the compact system with a commercially available process HPLC instrument (Waters PATROL UPLC). Further, 33 off-line samples from a continuous crystallization reactor were analysed and it was found that the developed compact HPLC system showed equivalent quantitative performance to an Agilent 1290 Infinity II HPLC system.
Collapse
|
60
|
Nașcu I, Diangelakis NA, Muñoz SG, Pistikopoulos EN. Advanced Model Predictive Control Strategies for Evaporation Processes in the Pharmaceutical Industries. Comput Chem Eng 2023. [DOI: 10.1016/j.compchemeng.2023.108212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
61
|
Kreiser MJ, Wabel C, Wagner KG. Direct Tableting on a Continuous Manufacturing Line-Impact of Mixing Parameters, Material Densities, and Drug Load on Subsequent Process Parameters and Tablet Quality. AAPS PharmSciTech 2023; 24:70. [PMID: 36805870 DOI: 10.1208/s12249-023-02525-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023] Open
Abstract
The continuous manufacturing (CM) of solid oral dosage forms has received increased attention in recent years and has become a leading technology in the pharmaceutical industry. A model has been developed based on process data from two design of experiments (DoEs), where the impact of the mixer process parameters, throughput (THR), hold up mass (HUM), impeller speed (IMP), and the input raw material bulk density (BDi), on the continuous process and the resulting drug product has been investigated. These statistical models revealed equations, describing process parameter interactions for optimization purposes. For the exit valve opening width (EV) at the bottom of the continuous mixer (CMT), the combination of high throughput (30 kg/h) and low impeller speed (300 rpm) resulted in optimal process conditions. Apparent bulk density of the blend (BD) within the process, fill depth (FD), and tensile strength (TS) were mainly impacted by input bulk density (BDi) of the tableting mixture, emphasizing the role of material attributes on the continuous manufacturing process. The apparent bulk density itself was, other than from the input bulk density, equally dependent from THR and IMP in opposite deflections. However, process parameters (THR and IMP) revealed a minor impact on the apparent BD compared to the input bulk density. FD was impacted mainly by THR ahead of IMP and the TS by IMP and THR to a similar extend, in opposite deflections. A simplified linear model to estimate the input bulk density revealed satisfactory prediction quality when included in the derived statistical model equations.
Collapse
Affiliation(s)
- Marius J Kreiser
- Product and Process Development, Pfizer Manufacturing Deutschland GmbH, 79108, Freiburg, Germany.,Department of Pharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany
| | - Christoph Wabel
- Product and Process Development, Pfizer Manufacturing Deutschland GmbH, 79108, Freiburg, Germany
| | - Karl G Wagner
- Department of Pharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany.
| |
Collapse
|
62
|
Smith D, Španěl P, Demarais N, Langford VS, McEwan MJ. Recent developments and applications of selected ion flow tube mass spectrometry (SIFT-MS). MASS SPECTROMETRY REVIEWS 2023:e21835. [PMID: 36776107 DOI: 10.1002/mas.21835] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/09/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Selected ion flow tube mass spectrometry (SIFT-MS) is now recognized as the most versatile analytical technique for the identification and quantification of trace gases down to the parts-per-trillion by volume, pptv, range. This statement is supported by the wide reach of its applications, from real-time analysis, obviating sample collection of very humid exhaled breath, to its adoption in industrial scenarios for air quality monitoring. This review touches on the recent extensions to the underpinning ion chemistry kinetics library and the alternative challenge of using nitrogen carrier gas instead of helium. The addition of reagent anions in the Voice200 series of SIFT-MS instruments has enhanced the analytical capability, thus allowing analyses of volatile trace compounds in humid air that cannot be analyzed using reagent cations alone, as clarified by outlining the anion chemistry involved. Case studies are reviewed of breath analysis and bacterial culture volatile organic compound (VOC), emissions, environmental applications such as air, water, and soil analysis, workplace safety such as transport container fumigants, airborne contamination in semiconductor fabrication, food flavor and spoilage, drugs contamination and VOC emissions from packaging to demonstrate the stated qualities and uniqueness of the new generation SIFT-MS instrumentation. Finally, some advancements that can be made to improve the analytical capability and reach of SIFT-MS are mentioned.
Collapse
Affiliation(s)
- David Smith
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | | | | | - Murray J McEwan
- Syft Technologies Limited, Christchurch, New Zealand
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
63
|
Devos C, Brozzi E, Van Gerven T, Kuhn S. Characterization of a Modular Microfluidic Section for Seeded Nucleation in Multiphase Flow. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Cedric Devos
- Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Elena Brozzi
- Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Tom Van Gerven
- Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Simon Kuhn
- Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
64
|
Comito M, Monguzzi R, Tagliapietra S, Palmisano G, Cravotto G. Towards Antibiotic Synthesis in Continuous-Flow Processes. Molecules 2023; 28:molecules28031421. [PMID: 36771086 PMCID: PMC9919330 DOI: 10.3390/molecules28031421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Continuous-flow chemistry has become a mainstream process and a notable trend among emerging technologies for drug synthesis. It is routinely used in academic and industrial laboratories to generate a wide variety of molecules and building blocks. The advantages it provides, in terms of safety, speed, cost efficiency and small-equipment footprint compared to analog batch processes, have been known for some time. What has become even more important in recent years is its compliance with the quality objectives that are required by drug-development protocols that integrate inline analysis and purification tools. There can be no doubt that worldwide government agencies have strongly encouraged the study and implementation of this innovative, sustainable and environmentally friendly technology. In this brief review, we list and evaluate the development and applications of continuous-flow processes for antibiotic synthesis. This work spans the period of 2012-2022 and highlights the main cases in which either active ingredients or their intermediates were produced under continuous flow. We hope that this manuscript will provide an overview of the field and a starting point for a deeper understanding of the impact of flow chemistry on the broad panorama of antibiotic synthesis.
Collapse
Affiliation(s)
- Marziale Comito
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
- Research and Development, ACS Dobfar SpA, Via Paullo 9, 20067 Tribiano, Italy
| | - Riccardo Monguzzi
- Research and Development, ACS Dobfar SpA, Via Paullo 9, 20067 Tribiano, Italy
| | - Silvia Tagliapietra
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Giovanni Palmisano
- Dipartimento di Scienza e Alta Tecnologia, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
- Correspondence: ; Tel.: +39-011-670-7183
| |
Collapse
|
65
|
Alexander R, Dinh S, Schultz G, Ribeiro MP, Lima FV. State and Covariance Estimation of a Semi-Batch Reactor for Bioprocess Applications. Comput Chem Eng 2023. [DOI: 10.1016/j.compchemeng.2023.108180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
66
|
Ferdoush S, Gonzalez M. Semi-mechanistic reduced order model of pharmaceutical tablet dissolution for enabling Industry 4.0 manufacturing systems. Int J Pharm 2023; 631:122502. [PMID: 36529354 PMCID: PMC10759183 DOI: 10.1016/j.ijpharm.2022.122502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
We propose a generalization of the Weibull dissolution model, referred to as generalized Weibull dissolution model, that seamlessly captures all three fractional dissolution rates experimentally observed in pharmaceutical solid tablets, namely decreasing, increasing, and non-monotonic rates. This is in contrast to traditional reduced order models, which capture at most two fractional dissolution rates and, thus, are not suitable for a wide range of product formulations hindering, for example, the adoption of knowledge management in the context of Industry 4.0. We extend the generalized Weibull dissolution model further to capture the relationship between critical process parameters (CPPs), critical materials attributes (CMAs), and dissolution profile to, in turn, facilitate real-time release testing (RTRT) and quality-by-control (QbC) strategies. Specifically, we endow the model with multivariate rational polynomials that interpolate the mechanistic limiting behavior of tablet dissolution as CPPs and CMAs approach certain values of physical significance (such as the upper and lower bounds of tablet porosity or lubrication conditions), thus the semi-mechanistic nature of the reduced order model. Restricting attention to direct compaction and using various case studies from the literature, we demonstrate the versatility and the capability of the semi-mechanistic ROM to estimate changes in dissolution due to process disturbances in tablet weight, porosity, lubrication conditions (i.e., the total amount of shear strain imparted during blending), and moisture content in the powder blend. In all of the cases considered in this work, the estimations of the model are in remarkable agreement with experimental data.
Collapse
Affiliation(s)
- Shumaiya Ferdoush
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Marcial Gonzalez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA; Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
67
|
Elucidation of the powder flow pattern in a twin-screw LIW-feeder for various refill regimes. Int J Pharm 2023; 631:122534. [PMID: 36563797 DOI: 10.1016/j.ijpharm.2022.122534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The importance of residence time distribution modeling is acknowledged as a tool for enabling material tracking and control within a continuous manufacturing line in order to safeguard both product quality and production efficiency. One of the first unit-operations into a continuous direct compression line (i.e. CDC-line) worthwhile doing extensive RTD-analysis upon are the LIW-feeders since they dose the ingredients in a controlled way following the label claim and hence can directly influence critical quality attributes like content uniformity. An NIR measurement method was developed determining the RTD of selected powders at specific feeder settings. Step-change experiments using sodium saccharin as a tracer were conducted. In order to gain and in depth understanding of the material flow, spatial samples throughout the hopper were taken at predefined timepoints during the step change experiments. This revealed the presence of a bypass trajectory along the edges of the agitator, while in the center of the agitator an inner mixing volume in which the tracer concentration lags behind seemed to be present. Finally, a model based on a plug flow and continuous stirred tank reactor was evaluated. The fitted model was not able to capture this complex flow behavior and shows the need for an extended compartmental model distinguishing between a bypass trajectory formed by the agitator and an inner mixing volume.
Collapse
|
68
|
Inclusion Body Production in Fed-Batch and Continuous Cultivation. Methods Mol Biol 2023; 2617:87-102. [PMID: 36656518 DOI: 10.1007/978-1-0716-2930-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Various fermentation strategies in industrial biotechnology are applied to produce recombinant target proteins using Escherichia coli. These proteins are often expressed as inclusion bodies (IBs), resulting in a high purity, high stability, and high product titers. In state-of-the-art fed-batch processes, product formation takes place in a short period of time. Sterilization, cleaning, and biomass growth are time consuming steps and reduce the space-time yield. Thus, the interest in establishing continuous cultivations, facilitating higher space-time yields, has been increased in recent years. In this protocol, we provide information and a guide to set-up the production of recombinant proteins in fed-batch, as well as in chemostat continuous cultivations using E. coli.
Collapse
|
69
|
Lagare RB, Huang YS, Bush COJ, Young KL, Rosario ACA, Gonzalez M, Mort P, Nagy ZK, Reklaitis GV. Developing a Virtual Flowability Sensor for Monitoring a Pharmaceutical Dry Granulation Line. J Pharm Sci 2023; 112:1427-1439. [PMID: 36649791 DOI: 10.1016/j.xphs.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Current technologies to measure granule flowability involve at-line methods that can take hours to perform. This is problematic for a continuous dry granulation tableting line, where the quality assurance and control of the final tablet products depend on real-time monitoring and control of powder flowability. Hence, a real-time alternative is needed for measuring the flowability of the granular products coming out of the roller compactor, which is the unit operation immediately preceding the tablet press. Since particle analyzers have the potential to take inline measurements of the size and shape of granules, they can potentially serve as real-time flowability sensors, given that the size and shape measurements can be used to reliably predict flowability measurements. This paper reports on the use of Partial Least Squares (PLS) regression to utilize distributions of size and shape measurements in predicting the output of three different types of flowability measurements: rotary drum flow, orifice flow, and tapped density analysis. The prediction performance of PLS had a coefficient of determination ranging from 0.80 to 0.97, which is the best reported performance in the literature. This is attributed to the ability of PLS to handle high collinearity in the datasets and the inclusion of multiple shape characteristics-eccentricity, form factor, and elliptical form factor-into the model. The latter calls for a change in industry perspective, which normally dismisses the importance of shape in favor of size; and the former suggests the use of PLS as a better way to reduce the dimensionality of distribution datasets, instead of the widely used practice of pre-selecting distribution percentiles.
Collapse
Affiliation(s)
- Rexonni B Lagare
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Yan-Shu Huang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Craig Oh-Joong Bush
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Katherine Leigh Young
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | - Marcial Gonzalez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Paul Mort
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Zoltan K Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Gintaras V Reklaitis
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
70
|
Matsunami K, Miura T, Yaginuma K, Tanabe S, Badr S, Sugiyama H. Surrogate modeling of dissolution behavior toward efficient design of tablet manufacturing processes. Comput Chem Eng 2023. [DOI: 10.1016/j.compchemeng.2023.108141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
71
|
Saxena A, Malviya R. 3D Printable Drug Delivery Systems: Next-generation Healthcare Technology and Regulatory Aspects. Curr Pharm Des 2023; 29:2814-2826. [PMID: 38018197 DOI: 10.2174/0113816128275872231105183036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
A revolutionary shift in healthcare has been sparked by the development of 3D printing, propelling us into an era replete with boundless opportunities for personalized DDS (Drug Delivery Systems). Precise control of the kinetics of drug release can be achieved through 3D printing, improving treatment efficacy and patient compliance. Additionally, 3D printing facilitates the co-administration of multiple drugs, simplifying treatment regimens. The technology offers rapid prototyping and manufacturing capabilities, reducing development timelines and costs. The seamless integration of advanced algorithms and artificial neural networks (ANN) augments the precision and efficacy of 3D printing, propelling us toward the forefront of personalized medicine. This comprehensive review delves into the regulatory frontiers governing 3D printable drug delivery systems, with an emphasis on adhering to rigorous safety protocols to ensure the well-being of patients by leveraging the latest advancements in 3D printing technologies powered by artificial intelligence. The paradigm promises superior therapeutic outcomes and optimized medication experiences and sets the stage for an immersive future within the Metaverse, wherein healthcare seamlessly converges with virtual environments to unlock unparalleled possibilities for personalized treatments.
Collapse
Affiliation(s)
- Anmol Saxena
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
72
|
Sheybanifard M, Guerzoni LPB, Omidinia-Anarkoli A, De Laporte L, Buyel J, Besseling R, Damen M, Gerich A, Lammers T, Metselaar JM. Liposome manufacturing under continuous flow conditions: towards a fully integrated set-up with in-line control of critical quality attributes. LAB ON A CHIP 2022; 23:182-194. [PMID: 36448477 DOI: 10.1039/d2lc00463a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Continuous flow manufacturing (CFM) has shown remarkable advantages in the industrial-scale production of drug-loaded nanomedicines, including mRNA-based COVID-19 vaccines. Thus far, CFM research in nanomedicine has mainly focused on the initial particle formation step, while post-formation production steps are hardly ever integrated. The opportunity to implement in-line quality control of critical quality attributes merits closer investigation. Here, we designed and tested a CFM setup for the manufacturing of liposomal nanomedicines that can potentially encompass all manufacturing steps in an end-to-end system. Our main aim was to elucidate the key composition and process parameters that affect the physicochemical characteristics of the liposomes. Total flow rate, lipid concentration and residence time of the liposomes in a high ethanol environment (i.e., above 20% v/v) emerged as critical parameters to tailor liposome size between 80 and 150 nm. After liposome formation, the pressure and the surface area of the filter in the ultrafiltration unit were critical parameters in the process of clearing the dispersion from residual ethanol. As a final step, we integrated in-line measurement of liposome size and residual ethanol content. Such in-line measurements allow for real-time monitoring and in-process adjustment of key composition and process parameters.
Collapse
Affiliation(s)
- Maryam Sheybanifard
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Luis P B Guerzoni
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Abdolrahman Omidinia-Anarkoli
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
- Institute of Applied Medical Engineering, RWTH University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Laura De Laporte
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
- Institute of Applied Medical Engineering, RWTH University, Pauwelsstraße 20, 52074 Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen, Worringerweg 1-2, 52074 Aachen, Germany
| | - Johannes Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, A-1190 Vienna, Austria
| | - Rut Besseling
- InProcess-LSP, Kloosterstraat 9, 5349 AB Oss, The Netherlands
| | - Michiel Damen
- InProcess-LSP, Kloosterstraat 9, 5349 AB Oss, The Netherlands
| | - Ad Gerich
- InProcess-LSP, Kloosterstraat 9, 5349 AB Oss, The Netherlands
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Josbert M Metselaar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
73
|
Schwaiger KN, Nidetzky B. Continuous process technology for bottom-up synthesis of soluble cello-oligosaccharides by immobilized cells co-expressing three saccharide phosphorylases. Microb Cell Fact 2022; 21:265. [PMID: 36536394 PMCID: PMC9764710 DOI: 10.1186/s12934-022-01984-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Continuous processing with enzyme reuse is a well-known engineering strategy to enhance the efficiency of biocatalytic transformations for chemical synthesis. In one-pot multistep reactions, continuous processing offers the additional benefit of ensuring constant product quality via control of the product composition. Bottom-up production of cello-oligosaccharides (COS) involves multistep iterative β-1,4-glycosylation of glucose from sucrose catalyzed by sucrose phosphorylase from Bifidobacterium adeloscentis (BaScP), cellobiose phosphorylase from Cellulomonas uda (CuCbP) and cellodextrin phosphorylase from Clostridium cellulosi (CcCdP). Degree of polymerization (DP) control in the COS product is essential for soluble production and is implemented through balance of the oligosaccharide priming and elongation rates. A whole-cell E. coli catalyst co-expressing the phosphorylases in high yield and in the desired activity ratio, with CdP as the rate-limiting enzyme, was reported previously. RESULTS Freeze-thaw permeabilized E. coli cells were immobilized in polyacrylamide (PAM) at 37-111 mg dry cells/g material. PAM particles (0.25-2.00 mm size) were characterized for COS production (~ 70 g/L) in mixed vessel with catalyst recycle and packed-bed reactor set-ups. The catalyst exhibited a dry mass-based overall activity (270 U/g; 37 mg cells/g material) lowered by ~ 40% compared to the corresponding free cells due to individual enzyme activity loss, CbP in particular, caused by the immobilization. Temperature studies revealed an operational optimum at 30 °C for stable continuous reaction (~ 1 month) in the packed bed (volume: 40 mL; height: 7.5 cm). The optimum reflects the limits of PAM catalyst structural and biological stability in combination with the requirement to control COS product solubility in order to prevent clogging of the packed bed. Using an axial flow rate of 0.75 cm- 1, the COS were produced at ~ 5.7 g/day and ≥ 95% substrate conversion (sucrose 300 mM). The product stream showed a stable composition of individual oligosaccharides up to cellohexaose, with cellobiose (48 mol%) and cellotriose (31 mol%) as the major components. CONCLUSIONS Continuous process technology for bottom-up biocatalytic production of soluble COS is demonstrated based on PAM immobilized E. coli cells that co-express BaScP, CuCbP and CcCdP in suitable absolute and relative activities.
Collapse
Affiliation(s)
- Katharina N. Schwaiger
- grid.432147.70000 0004 0591 4434acib - Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Bernd Nidetzky
- grid.432147.70000 0004 0591 4434acib - Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria ,grid.410413.30000 0001 2294 748XInstitute of Biotechnology and Biochemical Engineering, NAWI Graz, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| |
Collapse
|
74
|
Ottoboni S, Brown CJ, Mehta B, Jimeno G, Mitchell NA, Sefcik J, Price CJ. Digital Design of Filtration and Washing of Active Pharmaceutical Ingredients via Mechanistic Modeling. Org Process Res Dev 2022; 26:3236-3253. [PMID: 36569418 PMCID: PMC9764418 DOI: 10.1021/acs.oprd.2c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 12/12/2022]
Abstract
To facilitate integrated end-to-end pharmaceutical manufacturing using digital design, a model capable of transferring material property information between operations to predict product attributes in integrated purification processes has been developed. The focus of the work reported here combines filtration and washing operations used in active pharmaceutical ingredient (API) purification and isolation to predict isolation performance without the need of extensive experimental work. A fixed Carman-Kozeny filtration model is integrated with several washing mechanisms (displacement, dilution, and axial dispersion). Two limiting cases are considered: case 1 where there is no change in the solid phase during isolation (no particle dissolution and/or growth), and case 2 where the liquid and solid phases are equilibrated over the course of isolation. In reality, all actual manufacturing conditions would be bracketed by these two limiting cases, so consideration of these two scenarios provides rigorous theoretical bounds for assessing isolation performance. This modeling approach aims to facilitate the selection of most appropriate models suitable for different isolation scenarios, without the requirement to use overly complex models for straightforward isolation processes. Mefenamic acid and paracetamol were selected as representative model compounds to assess a range of isolation scenarios. In each case, the objective of the models was to identify the purity of the product reached with a fixed wash ratio and minimize the changes to the crystalline particle attributes that occur during the isolation process. This was undertaken with the aim of identifying suitable criteria for the selection of appropriate filtration and washing models corresponding to relevant processing conditions, and ultimately developing guidelines for the digital design of filtration and washing processes.
Collapse
Affiliation(s)
- Sara Ottoboni
- EPSRC
Future Manufacturing Hub in Continuous Manufacturing and Advanced
Crystallisation, University of Strathclyde, GlasgowG1 1RD, U.K.
- Department
of Chemical and Process Engineering, University
of Strathclyde, GlasgowG1 1XJ, U.K.
| | - Cameron J. Brown
- EPSRC
Future Manufacturing Hub in Continuous Manufacturing and Advanced
Crystallisation, University of Strathclyde, GlasgowG1 1RD, U.K.
- Strathclyde
Institute of Pharmacy & Biomedical Science (SIPBS), University of Strathclyde, GlasgowG4 0RE, U.K.
| | - Bhavik Mehta
- Siemens
Process Systems Engineering Ltd., LondonW6 7HA, U.K.
| | | | | | - Jan Sefcik
- EPSRC
Future Manufacturing Hub in Continuous Manufacturing and Advanced
Crystallisation, University of Strathclyde, GlasgowG1 1RD, U.K.
- Department
of Chemical and Process Engineering, University
of Strathclyde, GlasgowG1 1XJ, U.K.
| | - Chris J. Price
- EPSRC
Future Manufacturing Hub in Continuous Manufacturing and Advanced
Crystallisation, University of Strathclyde, GlasgowG1 1RD, U.K.
- Department
of Chemical and Process Engineering, University
of Strathclyde, GlasgowG1 1XJ, U.K.
| |
Collapse
|
75
|
Jaspers M, Kulkarni SS, Tegel F, Roelofs TP, de Wit MT, Janssen PH, Meir B, Weinekötter R, Dickhoff BH. Batch versus continuous blending of binary and ternary pharmaceutical powder mixtures. Int J Pharm X 2022; 4:100111. [PMID: 35028558 PMCID: PMC8739470 DOI: 10.1016/j.ijpx.2021.100111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/15/2021] [Accepted: 12/30/2021] [Indexed: 12/03/2022] Open
Abstract
The material properties of excipients and active pharmaceutical ingredients (API's) are important parameters that affect blend uniformity of pharmaceutical powder formulations. With the current shift from batch to continuous manufacturing in the pharmaceutical industry, blending of excipients and API is converted to a continuous process. The relation between material properties and blend homogeneity, however, is generally based on batch-wise blending trials. Limited information is available on how material properties affect blending performance in a continuous process. Here, blending of API and excipients is studied in both a batch and a continuous process. Homogeneity of the resulting mixtures is analyzed, which reveals that the impact of material properties is very different in a continuous process. Where parameters such as particle size, density and flowability have significant impact on blending performance in a traditional batch process, continuous blending is more robust resulting in uniform blends for a large variety of blend compositions. Continuous mixing improves blend uniformity of pharmaceutical powder mixtures. Blend uniformity is highly dependent on excipient properties in a batch process. Continuous mixing is more robust, with little impact of material properties. Powder bulk density strongly affects blend homogeneity in a batch process. Blending of low API dosages is more challenging in a continuous process.
Collapse
|
76
|
Thakore SD, Reddy KV, Dantuluri AK, Patel D, Kumawat A, Sihorkar V, Ghoroi C, Bansal AK. Application of Twin-Screw Melt Granulation to Overcome the Poor Tabletability of a High Dose Drug. Pharm Res 2022; 39:3241-3257. [PMID: 36002616 DOI: 10.1007/s11095-022-03369-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 08/14/2022] [Indexed: 12/27/2022]
Abstract
Pharmaceutical tablet manufacturing has seen a paradigm shift toward continuous manufacturing and twin-screw granulation-based technologies have catalyzed this shift. Twin-screw granulator can simultaneously perform unit operations like mixing, granulation, and drying of the granules. The present study investigates the impact of polymer concentration and processing parameters of twin-screw melt granulation, on flow properties and compaction characteristics of a model drug having high dose and poor tabletability. Acetaminophen (AAP) and polyvinylpyrrolidone vinyl acetate (PVPVA) were used as a model drug (90-95% w/w) and polymeric binder (5-10%w/w), respectively, for the current study. Feed rate (~650-1150 g/h), extruder screw speed (150-300 rpm), and temperature (60-150°C) were used as processing variables. Results showed the reduction in particle size of drug in the extrudates (D90 of 15-25 μm from ~80 μm), irrespective of processing condition, while flow properties were a function of polymer concentration. Overall, good flowability of the products and their tablets with optimum tensile strength can be obtained through using high polymer concentration (i.e., 10% w/w), lower feed rate (~650 g/h), lower extruder screw speed (150 rpm), and higher processing temperatures (up to 120°C). The findings from the current study can be useful for continuous manufacturing of tablets of high dose drugs with minimal excipient loading in the final dosage form.
Collapse
Affiliation(s)
- Samarth D Thakore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Katangur Vishruth Reddy
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Ajay K Dantuluri
- Ashland (India) Pvt. Ltd., MN Park Synergy Square 3, Building No.2700, II Floor, Lalgadi Malakpet Village, Turkapally, Shamirpet, Hyderabad, Telangana, 500078, India
| | - Deepika Patel
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Akshant Kumawat
- DryProTech lab, Chemical Engineering, Indian Institute of Technology-Gandhinagar, Palaj, Gujarat, 382355, India
| | - Vaibhav Sihorkar
- Ashland (India) Pvt. Ltd., MN Park Synergy Square 3, Building No.2700, II Floor, Lalgadi Malakpet Village, Turkapally, Shamirpet, Hyderabad, Telangana, 500078, India.,Sai Life Sciences Ltd, L4-01 & 02, SLN Terminus Survey No. 133, Gachibowli- Miyapur Rd, Gachibowli, Telangana, 500032, India
| | - Chinmay Ghoroi
- DryProTech lab, Chemical Engineering, Indian Institute of Technology-Gandhinagar, Palaj, Gujarat, 382355, India
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|
77
|
Bekaert B, Van Snick B, Pandelaere K, Dhondt J, Di Pretoro G, De Beer T, Vervaet C, Vanhoorne V. Continuous direct compression: Development of an empirical predictive model and challenges regarding PAT implementation. Int J Pharm X 2022; 4:100110. [PMID: 35024605 PMCID: PMC8732775 DOI: 10.1016/j.ijpx.2021.100110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, an empirical predictive model was developed based on the quantitative relationships between blend properties, critical quality attributes (CQA) and critical process parameters (CPP) related to blending and tableting. The blend uniformity and API concentration in the tablets were used to elucidate challenges related to the processability as well as the implementation of PAT tools. Thirty divergent ternary blends were evaluated on a continuous direct compression line (ConsiGma™ CDC-50). The trials showed a significant impact of the impeller configuration and impeller speed on the blending performance, whereas a limited impact of blend properties was observed. In contrast, blend properties played a significant role during compression, where changes in blend composition significantly altered the tablet quality. The observed correlations allowed to develop an empirical predictive model for the selection of process configurations based on the blend properties, reducing the number of trial runs needed to optimize a process and thus reducing development time and costs of new drug products. Furthermore, the trials elucidated several challenges related to blend properties that had a significant impact on PAT implementation and performance of the CDC-platform, highlighting the importance of further process development and optimization in order to solve the remaining challenges.
Collapse
Key Words
- #BP, Number of blade passes
- #RMB1, Number of radial mixing blades of the main blender
- API, Active pharmaceutical ingredient
- API_sd, Spray dried API
- BRT, Bulk residence time
- BU, Blend uniformity
- CDC, Continuous direct compression
- CDC-50
- CU, Content uniformity
- C_P, Caffeine anhydrous powder
- Continuous direct compression
- Continuous manufacturing
- DCP, Dicalcium phosphate / Emcompress AN
- FD, Fill depth
- HM1/HM2, Hold-up mass main blender/Hold-up mass lubricant blender
- Imp1, Impeller speed main blender
- LC, Percentage label claim
- MCF, Main compression force
- MCH, Main compression height
- MPT_μ, Metoprolol micronized
- MgSt, Magnesium stearate/Ligamed MF-2-V
- Multivariate data-analysis
- NIR, Near infrared
- PAT
- PAT, Process Analytical Technology
- PC, Principle component
- PCA, Principle component analysis
- PCD, Pre-compression displacement
- PCF, Pre-compression force
- PCH, Pre-compression height
- PH101, Microcrystalline cellulose / Avicel PH-101
- PH200, Microcrystalline cellulose / Avicel PH-200
- PLS, Partial least squares
- P_DP, Paracetamol dense powder
- P_P, Paracetamol powder
- P_μ, Paracetamol micronized
- Predictive modeling
- Q2, Goodness of prediction
- R2Y, Goodness of fit
- RMSEcv, Root mean squared error of cross validation
- RSDTW, Relative standard deviation of tablet weight
- SD100, Mannitol / Pearlitol 100 SD
- T80, Lactose / Tablettose 80
- T_P, Theophylline anhydrous powder
- rpm, Revolutions per minute
- σForce, Main compression force variability
- σPCD, Variability in pre-compression displacement
Collapse
Affiliation(s)
- B. Bekaert
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - B. Van Snick
- Oral Solid Dosage, Drug Product Development, Discovery Product Development and Supplies, Pharmaceutical Research and Development, Division of Janssen Pharmaceutica, Johnson & Johnson, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - K. Pandelaere
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - J. Dhondt
- Oral Solid Dosage, Drug Product Development, Discovery Product Development and Supplies, Pharmaceutical Research and Development, Division of Janssen Pharmaceutica, Johnson & Johnson, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - G. Di Pretoro
- Oral Solid Dosage, Drug Product Development, Discovery Product Development and Supplies, Pharmaceutical Research and Development, Division of Janssen Pharmaceutica, Johnson & Johnson, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - T. De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - C. Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - V. Vanhoorne
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|
78
|
Mou M, Patel A, Mallick S, Thapaliya BP, Paranthaman MP, Mugumya JH, Rasche ML, Gupta RB, Saleh S, Kothe S, Baral E, Pandey GP, Lopez H, Jiang M. Scalable Advanced Li(Ni 0.8Co 0.1Mn 0.1)O 2 Cathode Materials from a Slug Flow Continuous Process. ACS OMEGA 2022; 7:42408-42417. [PMID: 36440126 PMCID: PMC9685780 DOI: 10.1021/acsomega.2c05521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Li[Ni0.8Co0.1Mn0.1]O2 (LNCMO811) is the most studied cathode material for next-generation lithium-ion batteries with high energy density. However, available synthesis methods are time-consuming and complex, restricting their mass production. A scalable manufacturing process for producing NCM811 hydroxide precursors is vital for commercialization of the material. In this work, a three-phase slug flow reactor, which has been demonstrated for its ease of scale-up, better synthetic control, and excellent uniform mixing, was developed to control the initial stage of the coprecipitation of NCM811 hydroxide. Furthermore, an equilibrium model was established to predict the yield and composition of the final product. The homogeneous slurry from the slug flow system was obtained and then transferred into a ripening vessel for the necessary ripening process. Finally, the lithium-nickel-cobalt-manganese oxide was obtained through the calcination of the slug flow-derived precursor with lithium hydroxide, having a tap density of 1.3 g cm-3 with a well-layered structure. As-synthesized LNCMO811 shows a high specific capacity of 169.5 mAh g-1 at a current rate of 0.1C and a long cycling stability of 1000 cycling with good capacity retention. This demonstration provides a pathway toward scaling up the cathode synthesis process for large-scale battery applications.
Collapse
Affiliation(s)
- Mingyao Mou
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23219, United States
| | - Arjun Patel
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23219, United States
| | - Sourav Mallick
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23219, United States
| | - Bishnu P. Thapaliya
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | | | - Jethrine H. Mugumya
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23219, United States
| | - Michael L. Rasche
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23219, United States
| | - Ram B. Gupta
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23219, United States
| | - Selma Saleh
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23219, United States
| | - Sophie Kothe
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23219, United States
| | - Ena Baral
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23219, United States
| | - Gaind P. Pandey
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23219, United States
| | - Herman Lopez
- Zenlabs
Energy Inc., Fremont, California94538, United States
| | - Mo Jiang
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23219, United States
| |
Collapse
|
79
|
Kshirsagar S, Lakshmi Ramana Susarla N, Ramakrishnan S, Nagy ZK. Process intensification of atorvastatin calcium crystallization for target polymorph development via continuous combined cooling and antisolvent crystallization using an oscillatory baffled crystallizer. Int J Pharm 2022; 627:122172. [PMID: 36084877 PMCID: PMC10759184 DOI: 10.1016/j.ijpharm.2022.122172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022]
Abstract
In this paper, continuous crystallization of Atorvastatin calcium (ASC) using a continuous oscillatory baffled crystallizer (COBC) has been investigated. Like most API manufacturing, ASC is manufactured batchwise and the pure API is recovered via batch combined cooling and antisolvent crystallization (CCAC) process, which has the challenges of low productivity, wide crystal size distribution (CSD) and sometimes polymorphic form contamination. To overcome the limitations of the batch crystallization, continuous crystallization of ASC was studied in a NiTech (United Kingdom) DN15 COBC, manufactured by Alconbury Weston Ltd. (AWL, United Kingdom), with the aim to improve productivity and CSD of the desired polymorph. The COBC has the advantage of high heat transfer rates and improved mixing that significantly reduces the crystallization time. It also has the advantage of spatial temperature distribution and multiple addition ports to control supersaturation and hence the crystallization process. This work uses an array of process analytical technology (PAT) tools to assess key process parameters that affect the polymorphic outcome and CSD. Two parameters were found to have significant impact on the polymorph, they are ratio of solvent to antisolvent at the point of mixing of the two streams and presence of seeds. The splitting of antisolvent into two addition ports in the COBC was found to give the desired form. The CCAC of ASC in COBC was found to be -30-fold more productive than the batch CCAC process. The cycle time for generating 100 g of desired polymorphic form of ASC also significantly reduced from 22 h in batch process to 12 min in the COBC. The crystals obtained using a CCAC process in a COBC had a narrower CSD compared to that from a batch crystallization process.
Collapse
Affiliation(s)
- Shivani Kshirsagar
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA; Dr. Reddy's Laboratories Ltd., IPDO, Bachupally, Hyderabad 500090, India
| | | | | | - Zoltan K Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
80
|
Suri K, D'Souza A, Huang D, Bhavsar A, Amiji M. Bacterial extracellular vesicle applications in cancer immunotherapy. Bioact Mater 2022; 22:551-566. [PMID: 36382022 PMCID: PMC9637733 DOI: 10.1016/j.bioactmat.2022.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/10/2022] [Accepted: 10/22/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer therapy is undergoing a paradigm shift toward immunotherapy focusing on various approaches to activate the host immune system. As research to identify appropriate immune cells and activate anti-tumor immunity continues to expand, scientists are looking at microbial sources given their inherent ability to elicit an immune response. Bacterial extracellular vesicles (BEVs) are actively studied to control systemic humoral and cellular immune responses instead of using whole microorganisms or other types of extracellular vesicles (EVs). BEVs also provide the opportunity as versatile drug delivery carriers. Unlike mammalian EVs, BEVs have already made it to the clinic with the meningococcal vaccine (Bexsero®). However, there are still many unanswered questions in the use of BEVs, especially for chronic systemically administered immunotherapies. In this review, we address the opportunities and challenges in the use of BEVs for cancer immunotherapy and provide an outlook towards development of BEV products that can ultimately translate to the clinic.
Collapse
Affiliation(s)
- Kanika Suri
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA,Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 20115, USA
| | - Di Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA,Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 20115, USA
| | - Aashray Bhavsar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA,Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA,Corresponding author. Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
81
|
Nano-Dry-Melting: A Novel Technology for Manufacturing of Pharmaceutical Amorphous Solid Dispersions. Pharmaceutics 2022; 14:pharmaceutics14102145. [PMID: 36297580 PMCID: PMC9608596 DOI: 10.3390/pharmaceutics14102145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Amorphous solid dispersions (ASD) are one of the most prominent formulation approaches to overcome bioavailability issues that are often presented by new poorly soluble drug candidates. State-of-the art manufacturing techniques include hot melt extrusion and solvent-based methods like spray drying. The high thermal and mechanical shear stress during hot melt extrusion, or the use of an organic solvent during solvent-based methods, are examples of clear drawbacks for those methods, limiting their applicability for certain systems. In this work a novel process technology is introduced, called Nano-Dry-Melting (NDM), which can provide an alternative option for ASD manufacturing. NDM consists of a comminution step in which the drug is ground to nanosize and a drying step provides a complete amorphization of the system at temperatures below the melting point. Two drug–polymer systems were prepared using NDM with a wet media mill and a spray dryer and analyzed regarding their degree of crystallinity using XRD analysis. Feasibility studies were performed with indomethacin and PVP. Furthermore, a “proof-of-concept” study was conducted with niclosamide. The experiments successfully led to amorphous samples at temperatures of about 50 K below the melting point within seconds of heat exposition. With this novel, solvent-free and therefore “green” production technology it is feasible to manufacture ASDs even with those drug candidates that cannot be processed by conventional process technologies.
Collapse
|
82
|
Murakami Y, Inoue K, Akiyama R, Orita Y, Shimoyama Y. LipTube: Liposome Formation in the Tube Process Using Supercritical CO 2. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuya Murakami
- Department of Industrial Chemistry, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo125-8585, Japan
| | - Keita Inoue
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1 S1-33, Meguro-ku, Tokyo152-8550, Japan
| | - Ryunosuke Akiyama
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1 S1-33, Meguro-ku, Tokyo152-8550, Japan
| | - Yasuhiko Orita
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1 S1-33, Meguro-ku, Tokyo152-8550, Japan
| | - Yusuke Shimoyama
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1 S1-33, Meguro-ku, Tokyo152-8550, Japan
| |
Collapse
|
83
|
Ge Wang L, Omar C, Litster J, Slade D, Li J, Salman A, Bellinghausen S, Barrasso D, Mitchell N. Model Driven Design for Integrated Twin Screw Granulator and Fluid Bed Dryer via Flowsheet Modelling. Int J Pharm 2022; 628:122186. [PMID: 36130681 DOI: 10.1016/j.ijpharm.2022.122186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/27/2022]
Abstract
This paper presents a flowsheet modelling of an integrated twin screw granulation (TSG) and fluid bed dryer (FBD) process using a Model Driven Design (MDD) approach. The MDD approach is featured by appropriate process models and efficient model calibration workflow to ensure the product quality. The design space exploration is driven by the physics of the process instead of extensive experimental trials. By means of MDD, the mechanistic-based process kernels are first defined for the TSG and FBD processes. With the awareness of the underlying physics, the complementary experiments are carried out with relevance to the kinetic parameters in the defined models. As a result, the experiments are specifically purposeful for model calibration and validation. The L/S ratio (liquid to solid ratio) and inlet air temperature are selected as the Critical Process Parameters (CPPs) in TSG and FBD for model validation, respectively. Global System Analysis (GSA) is further performed to assess the uncertainty of CPPs imposed on the Critical Quality Attributes (CQAs), which provides significant insights to the exploration of the design space considering both TSG and FBD process parameters.
Collapse
Affiliation(s)
- Li Ge Wang
- Siemens Process Systems Engineering, Hammersmith, London, UK; Department of Chemical and Biological Engineering, University of Sheffield, UK
| | - Chalak Omar
- Department of Chemical and Biological Engineering, University of Sheffield, UK
| | - James Litster
- Department of Chemical and Biological Engineering, University of Sheffield, UK.
| | - David Slade
- Siemens Process Systems Engineering, Hammersmith, London, UK
| | - Jianfeng Li
- Siemens Process Systems Engineering, Parsippany, New Jersey, USA
| | - Agba Salman
- Department of Chemical and Biological Engineering, University of Sheffield, UK
| | | | - Dana Barrasso
- Siemens Process Systems Engineering, Hammersmith, London, UK
| | - Niall Mitchell
- Siemens Process Systems Engineering, Hammersmith, London, UK
| |
Collapse
|
84
|
Osouli-Bostanabad K, Puliga S, Serrano DR, Bucchi A, Halbert G, Lalatsa A. Microfluidic Manufacture of Lipid-Based Nanomedicines. Pharmaceutics 2022; 14:pharmaceutics14091940. [PMID: 36145688 PMCID: PMC9506151 DOI: 10.3390/pharmaceutics14091940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Nanoparticulate technologies have revolutionized drug delivery allowing for passive and active targeting, altered biodistribution, controlled drug release (temporospatial or triggered), enhanced stability, improved solubilization capacity, and a reduction in dose and adverse effects. However, their manufacture remains immature, and challenges exist on an industrial scale due to high batch-to-batch variability hindering their clinical translation. Lipid-based nanomedicines remain the most widely approved nanomedicines, and their current manufacturing methods remain discontinuous and face several problems such as high batch-to-batch variability affecting the critical quality attributes (CQAs) of the product, laborious multistep processes, need for an expert workforce, and not being easily amenable to industrial scale-up involving typically a complex process control. Several techniques have emerged in recent years for nanomedicine manufacture, but a paradigm shift occurred when microfluidic strategies able to mix fluids in channels with dimensions of tens of micrometers and small volumes of liquid reagents in a highly controlled manner to form nanoparticles with tunable and reproducible structure were employed. In this review, we summarize the recent advancements in the manufacturing of lipid-based nanomedicines using microfluidics with particular emphasis on the parameters that govern the control of CQAs of final nanomedicines. The impact of microfluidic environments on formation dynamics of nanomaterials, and the application of microdevices as platforms for nanomaterial screening are also discussed.
Collapse
Affiliation(s)
- Karim Osouli-Bostanabad
- Biomaterials, Bio-Engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
- School of Pharmacy and Biomedical Sciences, Robertson Wing, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
| | - Sara Puliga
- Biomaterials, Bio-Engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
| | - Dolores R. Serrano
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Facultad de Farmacia, Instituto Universitario de Farmacia Industrial, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (D.R.S.); (A.L.); Tel.: +44-141-548-2675 (A.L.)
| | - Andrea Bucchi
- School of Mechanical and Design Engineering, Faculty of Technology, University of Portsmouth, Portsmouth PO1 3DJ, UK
| | - Gavin Halbert
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, Robertson Wing, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
| | - Aikaterini Lalatsa
- Biomaterials, Bio-Engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
- School of Pharmacy and Biomedical Sciences, Robertson Wing, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, Robertson Wing, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
- Correspondence: (D.R.S.); (A.L.); Tel.: +44-141-548-2675 (A.L.)
| |
Collapse
|
85
|
Enantioselective nanofiltration using predictive process modeling: Bridging the gap between materials development and process requirements. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
86
|
Jolliffe HG, Ojo E, Mendez C, Houson I, Elkes R, Reynolds G, Kong A, Meehan E, Amado Becker F, Piccione PM, Verma S, Singaraju A, Halbert G, Robertson J. Linked experimental and modelling approaches for tablet property predictions. Int J Pharm 2022; 626:122116. [PMID: 35987318 DOI: 10.1016/j.ijpharm.2022.122116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
Abstract
Recent years have seen the advent of Quality-by-Design (QbD) as a philosophy to ensure the quality, safety, and efficiency of pharmaceutical production. The key pharmaceutical processing methodology of Direct Compression to produce tablets is also the focus of some research. The traditional Design-of-Experiments and purely experimental approach to achieve such quality and process development goals can have significant time and resource requirements. The present work evaluates potential for using combined modelling and experimental approach, which may reduce this burden by predicting the properties of multicomponent tablets from pure component compression and compaction model parameters. Additionally, it evaluates the use of extrapolation from binary tablet data to determine theoretical pure component model parameters for materials that cannot be compacted in the pure form. It was found that extrapolation using binary tablet data - where one known component can be compacted in pure form and the other is a challenging material which cannot be - is possible. Various mixing rules have been evaluated to assess which are suitable for multicomponent tablet property prediction, and in the present work linear averaging using pre-compression volume fractions has been found to be the most suitable for compression model parameters, while for compaction it has been found that averaging using a power law equation form produced the best agreement with experimental data. Different approaches for estimating component volume fractions have also been evaluated, and using estimations based on theoretical relative rates of compression of the pure components has been found to perform slightly better than using constant volume fractions (that assume a fully compressed mixture). The approach presented in this work (extrapolation of, where necessary, binary tablet data combined with mixing rules using volume fractions) provides a framework and path for predictions for multicomponent tablets without the need for any additional fitting based on the multicomponent formulation composition. It allows the knowledge space of the tablet to be rapidly evaluated, and key regions of interest to be identified for follow-up, targeted experiments that that could lead to an establishment of a design and control space and forgo a laborious initial Design-of-Experiments.
Collapse
Affiliation(s)
- Hikaru G Jolliffe
- EPSRC CMAC Future Manufacturing Research Hub, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, G4 0RE, UK
| | - Ebenezer Ojo
- EPSRC CMAC Future Manufacturing Research Hub, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, G4 0RE, UK
| | - Carlota Mendez
- EPSRC CMAC Future Manufacturing Research Hub, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, G4 0RE, UK
| | - Ian Houson
- EPSRC CMAC Future Manufacturing Research Hub, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, G4 0RE, UK
| | - Richard Elkes
- GlaxoSmithKline R&D, Park Road, Ware, Herts SG12 0DP, UK
| | - Gavin Reynolds
- Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, SK10 2NA, UK
| | - Angela Kong
- Pfizer Worldwide Research and Development, Groton, CT 0634, U.S.A
| | - Elizabeth Meehan
- Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, SK10 2NA, UK
| | - Felipe Amado Becker
- Pharmaceutical R&D, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Patrick M Piccione
- Pharmaceutical R&D, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sudhir Verma
- Drug Product Development, Takeda Pharmaceuticals International Co., 35 Landsdowne St., Cambridge, Massachusetts, 02139, USA
| | - Aditya Singaraju
- Synthetic Molecule Design and Development, Eli Lilly and Company, Lilly Research Laboratories, Indianapolis, Indiana 46285, USA
| | - Gavin Halbert
- EPSRC CMAC Future Manufacturing Research Hub, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, G4 0RE, UK
| | - John Robertson
- EPSRC CMAC Future Manufacturing Research Hub, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, G4 0RE, UK.
| |
Collapse
|
87
|
Tan YW, Leong SS, Lim J, Yeoh WM, Toh PY. Low‐gradient magnetic separation of magnetic nanoparticles under continuous flow: Experimental study, transport mechanism and mathematical modelling. Electrophoresis 2022; 43:2234-2249. [DOI: 10.1002/elps.202200078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 07/15/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yee Win Tan
- Department of Petrochemical Engineering, Faculty of Engineering and Green Technology Universiti Tunku Abdul Rahman Kampar Perak Malaysia
| | - Sim Siong Leong
- Department of Petrochemical Engineering, Faculty of Engineering and Green Technology Universiti Tunku Abdul Rahman Kampar Perak Malaysia
- Department of Industrial Engineering, Faculty of Engineering and Green Technology Universiti Tunku Abdul Rahman Kampar Perak Malaysia
| | - JitKang Lim
- School of Chemical Engineering Universiti Sains Malaysia Nibong Tebal Penang Malaysia
| | - Wei Ming Yeoh
- Department of Petrochemical Engineering, Faculty of Engineering and Green Technology Universiti Tunku Abdul Rahman Kampar Perak Malaysia
| | - Pey Yi Toh
- Department of Petrochemical Engineering, Faculty of Engineering and Green Technology Universiti Tunku Abdul Rahman Kampar Perak Malaysia
| |
Collapse
|
88
|
Ralbovsky NM, Smith JP. Process analytical technology and its recent applications for asymmetric synthesis. Talanta 2022; 252:123787. [DOI: 10.1016/j.talanta.2022.123787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
|
89
|
Sundarkumar V, Nagy ZK, Reklaitis GV. Small-Scale Continuous Drug Product Manufacturing using Dropwise Additive Manufacturing and Three Phase Settling for Integration with Upstream Drug Substance Production. J Pharm Sci 2022; 111:2330-2340. [PMID: 35341723 PMCID: PMC10761278 DOI: 10.1016/j.xphs.2022.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
The pharmaceutical industry has traditionally relied on mass manufacturing to make its products. This has created multiple problems in the drug supply network, including long production times, inflexible and sluggish manufacturing and lack of personalized dosing. The industry is gradually adapting to these challenges and is developing novel technologies to address them. Continuous manufacturing and 3D printing are two promising techniques that can revolutionize pharmaceutical manufacturing. However, most research studies into these methods tend to treat them separately. This study seeks to develop a new processing route to continuously integrate a 3D printing platform (Drop-on-Demand, DoD, printing) with crystallization that is generally the final step of the active ingredient manufacturing. Accomplishing this integration would enable harnessing the benefits of each method- personalized dosing of 3D printing and flexibility and speed of continuous manufacturing. A novel unit operation, three-phase settling (TPS), is developed to integrate DoD with the upstream crystallizer. To ensure on-spec production of each printed dosage, two process analytical technology tools are incorporated in the printer to monitor drug loading in manufactured drug products in real time. Experimental demonstration of this system is carried out via two case studies: the first study uses an active ingredient celecoxib to test the standalone operation of TPS; the second study demonstrates the operation of the integrated system (crystallizer - TPS - DoD) to continuously make drug products for the active ingredient- lomustine. A dissolution test is also performed on the manufactured and commercial lomustine drug products to compare their dissolution behavior.
Collapse
Affiliation(s)
- Varun Sundarkumar
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA.
| | - Zoltan K Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Gintaras V Reklaitis
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
90
|
Koyanagi K, Ueno A, Sasaki T, Otsuka M. Real-Time Monitoring of Critical Quality Attributes during High-Shear Wet Granulation Process by Near-Infrared Spectroscopy Effect of Water Addition and Stirring Speed on Pharmaceutical Properties of the Granules. Pharmaceuticals (Basel) 2022; 15:ph15070822. [PMID: 35890120 PMCID: PMC9315720 DOI: 10.3390/ph15070822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
To produce high-quality pharmaceuticals, a real-time monitoring method for the high-shear wet granulation process (HSWG) was developed based on near-infrared spectroscopy (NIRS). Samples consisting of lactose, potato starch, and hydroxypropyl cellulose were prepared using HSWG with varying amounts of purified water (80, 90, and 100 mL) and impeller speed (200, 400, and 600 rpm), which produces granules of different characteristics. Twelve batches of samples were used for the calibration and nine batches were used for validation. After drying, the median particle size (D50), tapped density (TD), and Hauser ratio (HR) were measured. The best calibration models to predict moisture content (MC), D50, TD, and HR were determined based on pretreated NIR spectra using partial least squares regression analysis (PLSR). The temporal changes in the pharmaceutical properties under different amounts of water added and stirring speed were monitored in real time using NIRS/PLSR. Because the most important critical quality attribute (CQA) in the process was MC, granule characteristics such as D50, TD, and HR were analyzed with respect to MC. They might be used as robust and simple monitoring methods based on MC to evaluate the pharmaceutical properties of HSWG granules.
Collapse
Affiliation(s)
- Keita Koyanagi
- Earthtechnica Corporation Limited, 1780 Kamikouya, Yachiyo 276-0022, Japan; (K.K.); (A.U.)
| | - Akinori Ueno
- Earthtechnica Corporation Limited, 1780 Kamikouya, Yachiyo 276-0022, Japan; (K.K.); (A.U.)
| | - Tetsuo Sasaki
- Graduate School of Medical Photonics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011, Japan;
| | - Makoto Otsuka
- Earthtechnica Corporation Limited, 1780 Kamikouya, Yachiyo 276-0022, Japan; (K.K.); (A.U.)
- Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011, Japan
- Correspondence: ; Tel.: +81-53-478-3265
| |
Collapse
|
91
|
Effect of batch-to-batch variation of spray dried lactose on the performance of feeders. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
92
|
Chavez PF, Stauffer F, Eeckman F, Bostijn N, Didion D, Schaefer C, Yang H, El Aalamat Y, Lories X, Warman M, Mathieu B, Mantanus J. Control strategy definition for a drug product continuous wet granulation process: Industrial case study. Int J Pharm 2022; 624:121970. [PMID: 35781027 DOI: 10.1016/j.ijpharm.2022.121970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
This paper describes the specific control strategy of the commercial manufacturing process of an immediate release tablet formulation based on continuous twin-screw wet granulation. This control strategy has been defined by a multidisciplinary team using an enhanced approach, in alignment with the quality by design principles. During process development, experiments have been performed according to multivariate designs first to identify critical material attributes and critical process parameters and then, to define process conditions generating a product having the required quality. Hence, controls have been applied on critical quality attributes and on related critical process parameters and critical material attributes. Due to the specificity of the process that combines batch and continuous unit operations, a specific control strategy has been designed to ensure intermediate and end product quality. Therefore, controls including soft sensor model and in process controls have been developed to continuously monitor granules residual moisture content, assay and dissolution as granules and tablets critical attributes. In addition, process analytical technology implementation enabled increased process understanding and provided support for the development of the control strategy. This study is therefore considered as a real industrial case study of control strategy definition and implementation for an intended commercial continuous manufacturing process.
Collapse
Affiliation(s)
| | - Fanny Stauffer
- Product Design & Performance, UCB, Braine l'Alleud, Belgium
| | | | - Nils Bostijn
- Product Design & Performance, UCB, Braine l'Alleud, Belgium
| | - David Didion
- Analytical Sciences for Pharmaceuticals, UCB, Braine l'Alleud, Belgium
| | - Cédric Schaefer
- Analytical Sciences for Pharmaceuticals, UCB, Braine l'Alleud, Belgium
| | - Hong Yang
- CoE Analytics, Knowledge Management & Documentation, UCB, Braine l'Alleud, Belgium
| | - Yousef El Aalamat
- CoE Analytics, Knowledge Management & Documentation, UCB, Braine l'Alleud, Belgium
| | - Xavier Lories
- CoE Analytics, Knowledge Management & Documentation, UCB, Braine l'Alleud, Belgium
| | - Martin Warman
- Martin Warman Consultancy Ltd, Chestfield, Kent CT5 3LY, UK
| | - Benoit Mathieu
- Analytical Sciences for Pharmaceuticals, UCB, Braine l'Alleud, Belgium
| | | |
Collapse
|
93
|
Dhondt J, Bertels J, Kumar A, Van Hauwermeiren D, Ryckaert A, Van Snick B, Klingeleers D, Vervaet C, De Beer T. A Multivariate Formulation and Process Development Platform for Direct Compression. Int J Pharm 2022; 623:121962. [PMID: 35764260 DOI: 10.1016/j.ijpharm.2022.121962] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
The efficient development of robust tableting processes is challenging due to the lack of mechanistic understanding on the impact of raw material properties and process parameters on tablet quality. The experimental determination of the effect of process and formulation parameters on tablet properties and subsequent optimization is labor-intensive, expensive and time-consuming. The combined use of an extensive raw material property database, process simulation tools and multivariate modeling allows more efficient and more optimized development of the direct compression (DC) process. In this study, key material attributes and in-process mechanical properties with a potential effect on tablet processability and tablet properties were identified. In a first step, an extensive characterization of 55 raw materials (over 100 material descriptors) (Van Snick et al., 2018) and 26 formulation blends (31 material descriptors) (Dhondt et al., 2022) was performed. These blends were subsequently compacted on a compaction simulator under multiple process conditions through a design of experiments (DoE) approach. A T-shaped partial least squares (T-PLS) model was established which correlates tablet quality attributes with process settings, raw material properties and blend ratios. During future development of the DC formulation and process for a new active pharmaceutical ingredient (API), this model can then be used to provide a preliminary formulation and compaction process settings as starting point to be further optimized during development trials based on well-defined raw material characteristics and compaction tests. This study hence contributes to a better understanding on the impact of raw material properties and process settings on a DC process and final properties of the produced tablets; and provides a platform allowing a more efficient and more optimized development of a robust tableting process.
Collapse
Affiliation(s)
- Jens Dhondt
- Oral Solids Development, Drug Product Development, Pharmaceutical Product Development & Supply, Pharmaceutical Research and Development, Division of Janssen Pharmaceutica, Johnson & Johnson, Turnhoutseweg 30, B-2340 Beerse, Belgium; Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Johny Bertels
- Oral Solids Development, Drug Product Development, Pharmaceutical Product Development & Supply, Pharmaceutical Research and Development, Division of Janssen Pharmaceutica, Johnson & Johnson, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Ashish Kumar
- Laboratory of Pharmaceutical Engineering, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Daan Van Hauwermeiren
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; BIOMATH, Department of Mathematical Modeling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Alexander Ryckaert
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Bernd Van Snick
- Oral Solids Development, Drug Product Development, Pharmaceutical Product Development & Supply, Pharmaceutical Research and Development, Division of Janssen Pharmaceutica, Johnson & Johnson, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Didier Klingeleers
- Pharmaceutical & Material Sciences, Pharmaceutical Product Development & Supply, Pharmaceutical Research and Development, Division of Janssen Pharmaceutica, Johnson & Johnson, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
94
|
Hansen J, Kleinebudde P. Increasing the Batch Size of a QESD Crystallization by Using a MSMPR Crystallizer. Pharmaceutics 2022; 14:pharmaceutics14061227. [PMID: 35745799 PMCID: PMC9227344 DOI: 10.3390/pharmaceutics14061227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022] Open
Abstract
Quasi-emulsion solvent diffusion (QESD) crystallizations can improve the micromeritic properties of drugs and excipients. A solution is dispersed in a miscible antisolvent as a transient emulsion. Using this technique, substances that normally crystallize in the form of e.g., needles, agglomerate into spherical, hollow particles. A disadvantage of QESD crystallizations is that the particle size of the agglomerates decreases with an increased solvent fraction of the mother liquor. Therefore, in batch production, many consecutive runs have to be performed, which is a time- and material-intensive process. The aim of this study was to convert a previously used lab-scale batch crystallizer into a mixed-suspension, mixed-product removal (MSMPR) crystallizer, since the batch size could be simply increased by increasing the run time of the system. The mean residence time (MRT) and solvent fraction in the system was predicted and verified using actual measurement curves. The experiments showed that >50 g QESD metformin hydrochloride could be crystallized in a single run, without observing a large shift in the particle size, while maintaining good flowability. Observations regarding the effect of the MRT on the particle size distribution could be verified for the production on a larger scale than previously described.
Collapse
|
95
|
Continuous synthesis of dolutegravir sodium crystals using liquid-gas heterogeneous microreactor. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
96
|
Bodák B, Breveglieri F, Mazzotti M. On the model-based design and comparison of crystallization-based deracemization techniques. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
97
|
Ghaemmaghamian Z, Zarghami R, Walker G, O'Reilly E, Ziaee A. Stabilizing vaccines via drying: Quality by design considerations. Adv Drug Deliv Rev 2022; 187:114313. [PMID: 35597307 DOI: 10.1016/j.addr.2022.114313] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/26/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Pandemics and epidemics are continually challenging human beings' health and imposing major stresses on the societies particularly over the last few decades, when their frequency has increased significantly. Protecting humans from multiple diseases is best achieved through vaccination. However, vaccines thermal instability has always been a hurdle in their widespread application, especially in less developed countries. Furthermore, insufficient vaccine processing capacity is also a major challenge for global vaccination programs. Continuous drying of vaccine formulations is one of the potential solutions to these challenges. This review highlights the challenges on implementing the continuous drying techniques for drying vaccines. The conventional drying methods, emerging technologies and their adaptation by biopharmaceutical industry are investigated considering the patented technologies for drying of vaccines. Moreover, the current progress in applying Quality by Design (QbD) in each of the drying techniques considering the critical quality attributes (CQAs), critical process parameters (CPPs) are comprehensively reviewed. An expert advice is presented on the required actions to be taken within the biopharmaceutical industry to move towards continuous stabilization of vaccines in the realm of QbD.
Collapse
Affiliation(s)
- Zahra Ghaemmaghamian
- Pharmaceutical Engineering Research Laboratory, Pharmaceutical Process Centers of Excellence, School of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Reza Zarghami
- Pharmaceutical Engineering Research Laboratory, Pharmaceutical Process Centers of Excellence, School of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Gavin Walker
- SSPC, The SFI Research Centre of Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Emmet O'Reilly
- SSPC, The SFI Research Centre of Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Ahmad Ziaee
- SSPC, The SFI Research Centre of Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
98
|
Pascual G, Donnellan P, Glennon B, Wood B, Jones RC. Design and Optimization of the Single-Stage Continuous Mixed Suspension-Mixed Product Removal Crystallization of 2-Chloro- N-(4-methylphenyl)propenamide. ACS OMEGA 2022; 7:13676-13686. [PMID: 35559147 PMCID: PMC9088942 DOI: 10.1021/acsomega.1c07228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
A continuously operated single-stage mixed suspension-mixed product removal (MSMPR) crystallizer was developed for the continuous cooling crystallization of 2-chloro-N-(4-methylphenyl)propanamide (CNMP) in toluene from 25 to 0 °C. The conversion of the previous batch to a continuous process was key to developing a methodology linking the synthesis and purification unit operations of CNMP and gave further insight in the development of continuous process trains for active pharmaceutical ingredient materials. By monitoring how parameters such as cooling and agitation rates influence particle size and the yield, two batch start-up strategies were compared. The second part of the study focused on developing and optimizing the continuous cooling crystallization of CNMP in the MSMPR crystallizer in relation to the yield by determining the effects of varying the residence time and the agitation rates. During the MSMPR operation, the plot of the focused beam reflectance measurement total counts versus time oscillates and reaches an unusual state of control. Despite the oscillations, the dissolved concentration was constant. The yield and production rate from the system were constant after two residence times, as supported by FTIR data. The overall productivity was higher at shorter residence times (τ), and a productivity of 69.51 g/h for τ = 20 min was achieved for the isolation of CNMP.
Collapse
Affiliation(s)
- Gladys
Kate Pascual
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), School of Chemical and
Bioprocess Engineering, University College
Dublin, Belfield, Dublin 4, Ireland
| | - Philip Donnellan
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), School of Chemical and
Bioprocess Engineering, University College
Dublin, Belfield, Dublin 4, Ireland
| | - Brian Glennon
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), School of Chemical and
Bioprocess Engineering, University College
Dublin, Belfield, Dublin 4, Ireland
- APC
Ltd, Cherrywood Business
Park, Loughlinstown, Dublin D18 DH50, Ireland
| | - Barbara Wood
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), School of Chemical and
Bioprocess Engineering, University College
Dublin, Belfield, Dublin 4, Ireland
- APC
Ltd, Cherrywood Business
Park, Loughlinstown, Dublin D18 DH50, Ireland
| | - Roderick C. Jones
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), School of Chemical and
Bioprocess Engineering, University College
Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
99
|
Roche P, Jones RC, Glennon B, Donnellan P. Binary Solvent Swap Processing in a Bubble Column in Batch and Continuous Modes. Org Process Res Dev 2022; 26:1191-1201. [PMID: 35464823 PMCID: PMC9016759 DOI: 10.1021/acs.oprd.1c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/28/2022]
Abstract
![]()
A lab-scale
bubble
column was investigated as an alternative means
to achieve a low-temperature binary solvent swap of solutions containing
pharmaceutical materials at atmospheric pressure, for batch and continuous
configurations. The rate of solvent evaporation was predicted by first-principles
vapor–liquid equilibrium (VLE) thermodynamic modeling and compared
to experimentally achieved results. For batch configurations, evaporation
rates of up to 5 g/min were achieved at gas flow rates up to 2.5 L/min
(0.21 m/s superficial velocity) and temperatures up to 50 °C.
This achieved 99 mol % purity of the desired solvent within three
“put and take” evaporations from a 50:50 starting mixture.
The evaporation rate profiles for the duration of the experiments
were calculated, and the changing concentration profile was predicted
within satisfactory error margins of <5%. Continuous process modeling
explored a multistage equilibrium configuration and could predict
the approach to attaining steady-state operation for various operating
conditions. All rates of evaporation and resulting changes in solution
concentration were measured, and direct comparison of model predictions
fell within instrumentation error margins, as previously. This underlined
the capability of the model to provide accurate representations of
predicted evaporation rates and binary solution concentration changes
during operation.
Collapse
Affiliation(s)
- Phillip Roche
- School of Chemical & Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| | - Roderick C Jones
- School of Chemical & Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| | - Brian Glennon
- School of Chemical & Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| | - Philip Donnellan
- School of Chemical & Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
100
|
Technical insight into potential functional-related characteristics (FRCs) of sodium starch glycolate, croscarmellose sodium and crospovidone. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|