51
|
Abstract
Oncotic cell death or oncosis represents a major mechanism of cell death in ischaemic stroke, occurring in many central nervous system (CNS) cell types including neurons, glia and vascular endothelial cells. In stroke, energy depletion causes ionic pump failure and disrupts ionic homeostasis. Imbalance between the influx of Na+ and Cl- ions and the efflux of K+ ions through various channel proteins and transporters creates a transmembrane osmotic gradient, with ensuing movement of water into the cells, resulting in cell swelling and oncosis. Oncosis is a key mediator of cerebral oedema in ischaemic stroke, contributing directly through cytotoxic oedema, and indirectly through vasogenic oedema by causing vascular endothelial cell death and disruption of the blood-brain barrier (BBB). Hence, inhibition of uncontrolled ionic flux represents a novel and powerful strategy in achieving neuroprotection in stroke. In this review, we provide an overview of oncotic cell death in the pathology of stroke. Importantly, we summarised the therapeutically significant pathways of water, Na+, Cl- and K+ movement across cell membranes in the CNS and their respective roles in the pathobiology of stroke.
Collapse
|
52
|
Hernandez-Encarnacion L, Sharma P, Simon R, Zhou A. Condition-specific transcriptional regulation of neuronal ion channel genes in brain ischemia. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2017; 9:192-201. [PMID: 29348796 PMCID: PMC5770516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
In the context of seeking novel therapeutic targets for treating ischemic stroke, the preconditioning ischemia-induced brain ischemic tolerance has been used as a model of endogenously operative, broad-based neuroprotective mechanisms. Targeting such mechanisms is considered potentially less prone to adverse side effects, as those seen in many failed clinical trials that focus on single targets using exogenous compounds. Results from previous studies have revealed an overall decrease in potassium channel activity in tolerance development. The objective of this study is to identify ion channel genes that are differentially regulated under different brain ischemic conditions, as a mean to identify those ion channels that are associated with ischemic brain injury and ischemic tolerance. In mice in vivo, transient focal cerebral ischemia was induced by middle cerebral artery occlusion. In cultured neuronal cells in vitro, simulated ischemia was modeled by oxygen-glucose deprivation. For both in vivo and in vitro studies, three principal ischemic conditions were included: ischemic-preconditioned, injured and tolerant, respectively, plus appropriate controls. In these model systems, transcript levels of a panel of 84 neuronal ion channels genes were analyzed with a quantitative real-time PCR mini-array. The results showed that, both in vivo and in vitro, there was a predominant down regulation in neuronal ion channel genes under ischemic-tolerant conditions, and an up regulation in ischemic injury. Similar changes were observed among potassium, sodium and calcium channel genes. A number of regulated genes exhibited opposing changes under ischemic-injured and ischemic-tolerant conditions. This subset of ion channel genes exemplifies potentially novel leads for developing multi-factorial therapeutic targets for treating ischemic stroke.
Collapse
Affiliation(s)
| | - Pankaj Sharma
- Department of Neurobiology, Neuroscience Institute, Morehouse School of MedicineAtlanta, Georgia, USA
| | - Roger Simon
- Department of Neurobiology, Neuroscience Institute, Morehouse School of MedicineAtlanta, Georgia, USA
- Department of Medicine, Morehouse School of MedicineAtlanta, Georgia, USA
| | - An Zhou
- Department of Neurobiology, Neuroscience Institute, Morehouse School of MedicineAtlanta, Georgia, USA
| |
Collapse
|
53
|
Jiang S, Fang DF, Chen Y. Involvement of N-Methyl-D-Aspartic Acid Receptor and DL-α-Amino-3-Hydroxy-5- Methyl-4-Isoxazole Propionic Acid Receptor in Ginsenosides Rb1 and Rb3 against Oxygen-Glucose Deprivation-Induced Injury in Hippocampal Slices from Rat. Pharmacology 2017; 101:133-139. [PMID: 29207398 DOI: 10.1159/000481710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/22/2017] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Ginsenosides, Rb1 and Rb3, are the major protopanaxadiol components of ginseng saponin. In the present study, the influences of ginsenosides Rb1 and Rb3 on N-methyl-D-aspartic acid (NMDA) receptor or DL-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor-mediated synaptic transmission after oxygen-glucose deprivation (OGD) were investigated. METHODS NMDA receptor population spike (NMDA-PS) or AMPA receptor-mediated population spike (AMPA-PS) was recorded in the CA1 pyramidal cell layer of rat hippocampal slices by electrophysiological techniques. RESULTS Under normal conditions, ginsenosides Rb3 and Rb1 depressed glutamate receptors-mediated synaptic transmission. Fourteen min of OGD resulted in a poor recovery amplitude of NMDA-PS or AMPA-PS after reoxygenation. Ginsenoside Rb3 significantly delayed the appearance of transient recovery of PS during OGD, and improved the recovery amplitudes of NMDA-PS and AMPA-PS after reoxygenation. However, the similar protective effects of ginsenoside Rb1 were observed only on NMDA-PS but not AMPA-PS. CONCLUSION These results suggest that ginsenosides Rb1 and Rb3 have the different inhibitions on NMDA and AMPA receptors-mediated response, which may partially explain the different protective effects of these agents on ischemic neuronal death.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Anatomy and Physiology, Lianyungang Branch of Traditional Chinese Medicine, Jiangsu Union Technical Institute, Lianyungang, China
| | - De-Fang Fang
- Department of Anatomy and Physiology, Lianyungang Branch of Traditional Chinese Medicine, Jiangsu Union Technical Institute, Lianyungang, China
| | - Ying Chen
- Department of Anesthesiology, The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
54
|
Lee W, Lee DG. Reactive oxygen species modulate itraconazole-induced apoptosis via mitochondrial disruption in Candida albicans. Free Radic Res 2017; 52:39-50. [PMID: 29157011 DOI: 10.1080/10715762.2017.1407412] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Itraconazole (ITC), a well-known fungistatic agent, has potent fungicidal activity against Candida albicans. However, its mechanism of fungicidal activity has not been elucidated yet, and we aimed to identify the mechanism of ITC against C. albicans. ITC caused cell shrinkage via potassium leakage through the ion channel. Since shrunken cells could indicate apoptosis, we investigated apoptotic features. Annexin V-FITC and TUNEL assays indicated that fungicidal activity of ITC was involved in apoptosis. Subsequently, we confirmed an intracellular factor that could cause apoptosis. ITC treatment caused reactive oxygen species (ROS) accumulation. To confirm whether ROS is related with ITC-triggered cell death, cell viability was examined using the ROS scavenger N-acetylcysteine (NAC). NAC pretreatment recovered ITC-induced cell death, indicating that antifungal activity of ITC is associated with ROS, which is also confirmed by impaired glutathione-related antioxidant system and oxidized intracellular lipids. Moreover, ITC-induced mitochondrial dysfunction, in turn, triggered cytochrome c release and metacaspase activation, leading to apoptosis. Unlike the only ITC-treatment group, cells with NAC pretreatment did not show significant damage to mitochondria, and attenuated apoptotic features. Therefore, our results suggest that ITC induces apoptosis as fungicidal mechanism, and intracellular ROS is major factor to trigger the apoptosis by ITC in C. albicans.
Collapse
Affiliation(s)
- Wonjong Lee
- a School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences , Kyungpook National University , Daegu , Republic of Korea
| | - Dong Gun Lee
- a School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences , Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|
55
|
Puerarin Suppresses Na+-K+-ATPase-Mediated Systemic Inflammation and CD36 Expression, and Alleviates Cardiac Lipotoxicity In Vitro and In Vivo. J Cardiovasc Pharmacol 2017; 68:465-472. [PMID: 27606935 DOI: 10.1097/fjc.0000000000000431] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Puerarin, a type of isoflavone, was shown to have multiple protective effects on myocardial injury. The objective of this study was to investigate the role of puerarin in the progression of lipotoxic cardiomyopathy. Primary cardiomyocytes were isolated from FATP1 transgenic (Tg) mice with lipotoxic cardiomyopathy, and various concentrations of puerarin were used to incubate with the cardiomyocytes. Our results showed low-dose puerarin (≤20 μM) treatment increased the cell viability and decreased the accumulation of free fatty acid (FFA). The data on enzyme-linked immunosorbent assay indicated that 15 μM puerarin treatment greatly increased Na-K-ATPase activity and decreased C-reactive protein secretion, thus suppressing the expression of CD36, a key contributor to the FFA accumulation. Additionally, low-dose puerarin (≤100 mg/kg body weight) administration improved Na-K-ATPase activity. Our data on serum analysis and histological detection in vivo indicated that systemic inflammation, CD36-induced lipid infiltration, and cardiomyocyte apoptosis were markedly alleviated in Tg mice injected with 90 mg/kg dose of puerarin. Finally, the uptake rates of H-palmitate and C-glucose were monitored on ex vivo working hearts that were obtained from wild-type (WT), Tg-control, and Tg-puerarin mice. Compared with WT hearts, Tg hearts displayed a significant decrease in Na/K-ATPase activity and glucose consumption rate and an increase in palmitate uptake rate and FFA accumulation. In Tg-puerarin hearts, Na/K-ATPase activity and glucose consumption rate were significantly rescued, and palmitate uptake and FFA accumulation were sharply suppressed. In conclusion, low-dose puerarin suppressed Na-K-ATPase-mediated CD36 expression and systemic inflammation and alleviated cardiac lipotoxicity in vitro and in vivo.
Collapse
|
56
|
Hu HJ, Song M. Disrupted Ionic Homeostasis in Ischemic Stroke and New Therapeutic Targets. J Stroke Cerebrovasc Dis 2017; 26:2706-2719. [PMID: 29054733 DOI: 10.1016/j.jstrokecerebrovasdis.2017.09.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Stroke is a leading cause of long-term disability. All neuroprotectants targeting excitotoxicity have failed to become stroke medications. In order to explore and identify new therapeutic targets for stroke, we here reviewed present studies of ionic transporters and channels that are involved in ischemic brain damage. METHOD We surveyed recent literature from animal experiments and clinical reports in the databases of PubMed and Elsevier ScienceDirect to analyze ionic mechanisms underlying ischemic cell damage and suggest promising ideas for stroke therapy. RESULTS Dysfunction of ionic transporters and disrupted ionic homeostasis are most early changes that underlie ischemic brain injury, thus receiving sustained attention in translational stroke research. The Na+/K+-ATPase, Na+/Ca2+ Exchanger, ionotropic glutamate receptor, acid-sensing ion channels (ASICs), sulfonylurea receptor isoform 1 (SUR1)-regulated NCCa-ATP channels, and transient receptor potential (TRP) channels are critically involved in ischemia-induced cellular degenerating processes such as cytotoxic edema, excitotoxicity, necrosis, apoptosis, and autophagic cell death. Some ionic transporters/channels also act as signalosomes to regulate cell death signaling. For acute stroke treatment, glutamate-mediated excitotoxicity must be interfered within 2 hours after stroke. The SUR1-regulated NCCa-ATP channels, Na+/K+-ATPase, ASICs, and TRP channels have a much longer therapeutic window, providing new therapeutic targets for developing feasible pharmacological treatments toward acute ischemic stroke. CONCLUSION The next generation of stroke therapy can apply a polypharmacology strategy for which drugs are designed to target multiple ion transporters/channels or their interaction with neurotoxic signaling pathways. But a successful translation of neuroprotectants relies on in-depth analyses of cell death mechanisms and suitable animal models resembling human stroke.
Collapse
Affiliation(s)
- Hui-Jie Hu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingke Song
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
57
|
Wei L, Wei ZZ, Jiang MQ, Mohamad O, Yu SP. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Prog Neurobiol 2017; 157:49-78. [PMID: 28322920 PMCID: PMC5603356 DOI: 10.1016/j.pneurobio.2017.03.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/30/2017] [Accepted: 03/05/2017] [Indexed: 02/06/2023]
Abstract
One of the exciting advances in modern medicine and life science is cell-based neurovascular regeneration of damaged brain tissues and repair of neuronal structures. The progress in stem cell biology and creation of adult induced pluripotent stem (iPS) cells has significantly improved basic and pre-clinical research in disease mechanisms and generated enthusiasm for potential applications in the treatment of central nervous system (CNS) diseases including stroke. Endogenous neural stem cells and cultured stem cells are capable of self-renewal and give rise to virtually all types of cells essential for the makeup of neuronal structures. Meanwhile, stem cells and neural progenitor cells are well-known for their potential for trophic support after transplantation into the ischemic brain. Thus, stem cell-based therapies provide an attractive future for protecting and repairing damaged brain tissues after injury and in various disease states. Moreover, basic research on naïve and differentiated stem cells including iPS cells has markedly improved our understanding of cellular and molecular mechanisms of neurological disorders, and provides a platform for the discovery of novel drug targets. The latest advances indicate that combinatorial approaches using cell based therapy with additional treatments such as protective reagents, preconditioning strategies and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the characteristics of cell therapy in different ischemic models and the application of stem cells and progenitor cells as regenerative medicine for the treatment of stroke.
Collapse
Affiliation(s)
- Ling Wei
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zheng Z Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Qize Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Osama Mohamad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
58
|
The effect of substrate stiffness on cancer cell volume homeostasis. J Cell Physiol 2017; 233:1414-1423. [DOI: 10.1002/jcp.26026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/22/2017] [Indexed: 12/30/2022]
|
59
|
Rosenthal LM, Tong G, Walker C, Wowro SJ, Krech J, Pfitzer C, Justus G, Berger F, Schmitt KRL. Neuroprotection via RNA-binding protein RBM3 expression is regulated by hypothermia but not by hypoxia in human SK-N-SH neurons. HYPOXIA 2017; 5:33-43. [PMID: 28580361 PMCID: PMC5448696 DOI: 10.2147/hp.s132462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Therapeutic hypothermia is an established treatment for perinatal asphyxia. Yet, many term infants continue to die or suffer from neurodevelopmental disability. Several experimental studies have demonstrated a beneficial effect of mild-to-moderate hypothermia after hypoxic injury, but the understanding of hypothermia-induced neuroprotection remains incomplete. In general, global protein synthesis is attenuated by hypothermia, but a small group of RNA-binding proteins including the RNA-binding motif 3 (RBM3) is upregulated in response to cooling. The aim of this study was to establish an in vitro model to investigate the effects of hypoxia and hypothermia on neuronal cell survival, as well as to examine the kinetics of concurrent cold-shock protein RBM3 gene expression. METHODS Experiments were performed by using human SK-N-SH neurons exposed to different oxygen concentrations (21%, 8%, or 0.2% O2) for 24 hours followed by moderate hypothermia (33.5°C) or normothermia for 24, 48, or 72 hours. Cell death was determined by quantification of lactate dehydrogenase and neuron-specific enolase releases into the cell cultured medium, and cell morphology was assessed by using immunofluorescence staining. The regulation of RBM3 gene expression was assessed by reverse transcriptase-quantitative polymerase chain reaction and Western blot analysis. RESULTS Exposure to hypoxia (0.2% O2) for 24 hours resulted in significantly increased cell death in SK-N-SH neurons, whereas exposure to 8% O2 had no significant impact on cell viability. Post-hypoxia treatment with moderate hypothermia for 48 or 72 hours rescued the neurons from hypoxia-induced cell death. Moreover, exposure to severe hypoxia led to observable cell swelling, which was also attenuated by moderate hypothermia. Finally, moderate hypothermia but not hypoxia led to the induction of RBM3 expression on both transcriptional and translational levels. CONCLUSION Moderate hypothermia protects neurons from hypoxia-induced cell death. The expression of the cold-shock protein RBM3 is induced by moderate hypothermia and could be one possible mediator of hypothermia-induced neuroprotection.
Collapse
Affiliation(s)
- Lisa-Maria Rosenthal
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin
| | - Giang Tong
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin
| | - Christoph Walker
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin
| | - Sylvia J Wowro
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin
| | - Jana Krech
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin
| | - Constanze Pfitzer
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin.,Berlin Institute of Health (BIH)
| | - Georgia Justus
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin
| | - Felix Berger
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin.,Department of Pediatric Cardiology, Charité - University Medical Center, Berlin, Germany
| | | |
Collapse
|
60
|
Wang H, Li P, Xu N, Zhu L, Cai M, Yu W, Gao Y. Paradigms and mechanisms of inhalational anesthetics mediated neuroprotection against cerebral ischemic stroke. Med Gas Res 2016; 6:194-205. [PMID: 28217291 PMCID: PMC5223310 DOI: 10.4103/2045-9912.196901] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cerebral ischemic stroke is a leading cause of serious long-term disability and cognitive dysfunction. The high mortality and disability of cerebral ischemic stroke is urging the health providers, including anesthesiologists and other perioperative professioners, to seek effective protective strategies, which are extremely limited, especially for those perioperative patients. Intriguingly, several commonly used inhalational anesthetics are recently suggested to possess neuroprotective effects against cerebral ischemia. This review introduces multiple paradigms of inhalational anesthetic treatments that have been investigated in the setting of cerebral ischemia, such as preconditioning, proconditioning and postconditioning with a variety of inhalational anesthetics. The pleiotropic mechanisms underlying these inhalational anesthetics-afforded neuroprotection against stroke are also discussed in detail, including the common pathways shared by most of the inhalational anesthetic paradigms, such as anti-excitotoxicity, anti-apoptosis and anti-inflammation. There are also distinct mechanisms involved in specific paradigms, such as preserving blood brain barrier integrity, regulating cerebral blood flow and catecholamine release. The ready availability of these inhalational anesthetics bedside and renders them a potentially translatable stroke therapy attracting great efforts for understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Hailian Wang
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peiying Li
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Na Xu
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Ling Zhu
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mengfei Cai
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanqin Gao
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
61
|
Chen X, Lu M, He X, Ma L, Birnbaumer L, Liao Y. TRPC3/6/7 Knockdown Protects the Brain from Cerebral Ischemia Injury via Astrocyte Apoptosis Inhibition and Effects on NF-кB Translocation. Mol Neurobiol 2016; 54:7555-7566. [PMID: 27826749 DOI: 10.1007/s12035-016-0227-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/10/2016] [Indexed: 12/23/2022]
Abstract
Ischemia contributes significantly to morbidity and mortality associated with many common neurological diseases. Calcium overload is an important mechanism of cerebral ischemia and reperfusion (I/R) injury. Despite decades of intense research, an effective beneficial treatment of stroke remains limited; few therapeutic strategies exist to combat the consequences of cerebral ischemia. Traditionally, a "neurocentric" view has dominated research in this field. Evidence is now accumulating that glial cells, especially astrocytes, play an important role in the pathophysiology of cerebral ischemia. Here, we show that transient receptor potential (TRP)C3/6/7 knockout (KO) mice subjected to an I/R procedure demonstrate ameliorated brain injury (infract size), compared to wild-type (WT) control animals. This is accompanied by reduction of NF-кB phosphorylation and an increase in protein kinase B (AKT) phosphorylation in I/R-injured brain tissues in TRPC3/6/7 KO mice. Also, the expression of pro-apoptotic protein Bcl-2 associated X (Bax) is down-regulated and that of anti-apoptotic protein Bcl-2 is upregulated in TRPC3/6/7-/- mice. Astrocytes isolated from TRPC3/6/7 KO mice and subjected to oxygen/glucose deprivation and subsequent reoxygenation (OGD-R, mimicking in vivo I/R injury) also exhibit enhanced Bcl-2 expression, reduced Bax expression, enhanced AKT phosphorylation, and reduced NF-кB phosphorylation. Furthermore, apoptotic rates of TRPC3/6/7 KO astrocytes cultured in OGD-R conditions were reduced significantly compared to WT control. These findings suggest TRPC3/6/7 channels play a detrimental role in brain I/R injury. Deletion of these channels can interfere with the activation of NF-кB (pro-apoptotic), promote activation of AKT (anti-apoptotic), and ultimately, ameliorate brain damage via inhibition of astrocyte apoptosis after cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Brain Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Lu
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Brain Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiju He
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Brain Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Le Ma
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Brain Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
- Institute of Biomedical Research (BIOMED), Catholic University of Argentina, C1107AFF, Buenos Aires, Argentina
| | - Yanhong Liao
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Brain Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
62
|
Pathak MM, Tran T, Hong L, Joós B, Morris CE, Tombola F. The Hv1 proton channel responds to mechanical stimuli. J Gen Physiol 2016; 148:405-418. [PMID: 27799320 PMCID: PMC5089936 DOI: 10.1085/jgp.201611672] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/22/2016] [Indexed: 12/21/2022] Open
Abstract
The voltage-gated proton channel, Hv1, is expressed in tissues throughout the body and plays important roles in pH homeostasis and regulation of NADPH oxidase. Hv1 operates in membrane compartments that experience strong mechanical forces under physiological or pathological conditions. In microglia, for example, Hv1 activity is potentiated by cell swelling and causes an increase in brain damage after stroke. The channel complex consists of two proton-permeable voltage-sensing domains (VSDs) linked by a cytoplasmic coiled-coil domain. Here, we report that these VSDs directly respond to mechanical stimuli. We find that membrane stretch facilitates Hv1 channel opening by increasing the rate of activation and shifting the steady-state activation curve to less depolarized potentials. In the presence of a transmembrane pH gradient, membrane stretch alone opens the channel without the need for strong depolarizations. The effect of membrane stretch persists for several minutes after the mechanical stimulus is turned off, suggesting that the channel switches to a "facilitated" mode in which opening occurs more readily and then slowly reverts to the normal mode observed in the absence of membrane stretch. Conductance simulations with a six-state model recapitulate all the features of the channel's response to mechanical stimulation. Hv1 mechanosensitivity thus provides a mechanistic link between channel activation in microglia and brain damage after stroke.
Collapse
Affiliation(s)
- Medha M Pathak
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Truc Tran
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Liang Hong
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Béla Joós
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | | - Francesco Tombola
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| |
Collapse
|
63
|
Kim JJ, Kang YJ, Shin SA, Bak DH, Lee JW, Lee KB, Yoo YC, Kim DK, Lee BH, Kim DW, Lee J, Jo EK, Yuk JM. Phlorofucofuroeckol Improves Glutamate-Induced Neurotoxicity through Modulation of Oxidative Stress-Mediated Mitochondrial Dysfunction in PC12 Cells. PLoS One 2016; 11:e0163433. [PMID: 27669570 PMCID: PMC5036853 DOI: 10.1371/journal.pone.0163433] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/15/2016] [Indexed: 01/08/2023] Open
Abstract
Stroke is a complex neurodegenerative disorder with a clinically high prevalence and mortality. Despite many efforts to protect against ischemic stroke, its incidence and related permanent disabilities continue to increase. In this study, we found that pretreatment with phlorofucofuroeckol (PFF), isolated from brown algae species, significantly increased cell viability in glutamate-stimulated PC12 cells. Additionally, glutamate-stimulated cells showed irregular morphology, but PFF pretreatment resulted in improved cell morphology, which resembled that in cells cultured under normal conditions. We further showed that PFF pretreatment effectively inhibited glutamate-induced apoptotic cell death in a caspase-dependent manner. Reactive oxygen species (ROS) induced by oxidative stress are closely associated with ischemia-induced neurological diseases. Exposure of PC12 cells to glutamate induced abundant production of intracellular ROS and mitochondrial dysfunction, which was attenuated by PFF in a dose-dependent manner. In vivo studies revealed that PFF-mediated prevention was achieved predominantly through inhibition of apoptosis and mitochondrial ROS generation. Taken together, these results suggest the possibility of PFF as a neuroprotective agent in ischemic stroke.
Collapse
Affiliation(s)
- Jwa-Jin Kim
- Department of Biomedical Science, Jungwon University, Geosan, Chungbuk, South Korea
- Anatomy, College of Medicine, Chungnam National University, Daejeon, South Korea
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon, South Korea
- LES Corporation Inc., Daejeon, South Korea
- * E-mail: (JMY); (JJK)
| | - Yoon-Joong Kang
- Department of Biomedical Science, Jungwon University, Geosan, Chungbuk, South Korea
| | - Sun-Ae Shin
- Anatomy, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Dong-Ho Bak
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, South Korea
| | - Jae Won Lee
- Material Science and Engineering, Jungwon University, Geosan, Chungbuk, South Korea
| | - Kyung Bok Lee
- Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Yung Choon Yoo
- Microbiology, College of Medicine, Konyang University, Daejeon, South Korea
| | - Do-Kyung Kim
- Pharmacology, College of Medicine, Konyang University, Daejeon, South Korea
| | - Bong Ho Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon, South Korea
| | - Dong Woon Kim
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
- Anatomy, College of Medicine, Chungnam National University, Daejeon, South Korea
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jina Lee
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
- Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
- Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jae-Min Yuk
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
- Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea
- * E-mail: (JMY); (JJK)
| |
Collapse
|
64
|
An C, Jiang X, Pu H, Hong D, Zhang W, Hu X, Gao Y. Severity-Dependent Long-Term Spatial Learning-Memory Impairment in a Mouse Model of Traumatic Brain Injury. Transl Stroke Res 2016; 7:512-520. [DOI: 10.1007/s12975-016-0483-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 01/04/2023]
|
65
|
|
66
|
Pasantes-Morales H. Channels and Volume Changes in the Life and Death of the Cell. Mol Pharmacol 2016; 90:358-70. [PMID: 27358231 DOI: 10.1124/mol.116.104158] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/22/2016] [Indexed: 12/11/2022] Open
Abstract
Volume changes deviating from original cell volume represent a major challenge for cellular homeostasis. Cell volume may be altered either by variations in the external osmolarity or by disturbances in the transmembrane ion gradients that generate an osmotic imbalance. Cells respond to anisotonicity-induced volume changes by active regulatory mechanisms that modify the intracellular/extracellular concentrations of K(+), Cl(-), Na(+), and organic osmolytes in the direction necessary to reestablish the osmotic equilibrium. Corrective osmolyte fluxes permeate across channels that have a relevant role in cell volume regulation. Channels also participate as causal actors in necrotic swelling and apoptotic volume decrease. This is an overview of the types of channels involved in either corrective or pathologic changes in cell volume. The review also underlines the contribution of transient receptor potential (TRP) channels, notably TRPV4, in volume regulation after swelling and describes the role of other TRPs in volume changes linked to apoptosis and necrosis. Lastly we discuss findings showing that multimers derived from LRRC8A (leucine-rich repeat containing 8A) gene are structural components of the volume-regulated Cl(-) channel (VRAC), and we underline the intriguing possibility that different heteromer combinations comprise channels with different intrinsic properties that allow permeation of the heterogenous group of molecules acting as organic osmolytes.
Collapse
Affiliation(s)
- Herminia Pasantes-Morales
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
67
|
Curcio M, Salazar IL, Mele M, Canzoniero LMT, Duarte CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol 2016; 143:1-35. [PMID: 27283248 DOI: 10.1016/j.pneurobio.2016.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.
Collapse
Affiliation(s)
- Michele Curcio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ivan L Salazar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Miranda Mele
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
68
|
Abstract
Stroke is the second foremost cause of mortality worldwide and a major cause of long-term disability. Due to changes in lifestyle and an aging population, the incidence of stroke continues to increase and stroke mortality predicted to exceed 12 % by the year 2030. However, the development of pharmacological treatments for stroke has failed to progress much in over 20 years since the introduction of the thrombolytic drug, recombinant tissue plasminogen activator. These alarming circumstances caused many research groups to search for alternative treatments in the form of neuroprotectants. Here, we consider the potential use of phytochemicals in the treatment of stroke. Their historical use in traditional medicine and their excellent safety profile make phytochemicals attractive for the development of therapeutics in human diseases. Emerging findings suggest that some phytochemicals have the ability to target multiple pathophysiological processes involved in stroke including oxidative stress, inflammation and apoptotic cell death. Furthermore, epidemiological studies suggest that the consumption of plant sources rich in phytochemicals may reduce stroke risk, and so reinforce the possibility of developing preventative or neuroprotectant therapies for stroke. In this review, we describe results of preclinical studies that demonstrate beneficial effects of phytochemicals in experimental models relevant to stroke pathogenesis, and we consider their possible mechanisms of action.
Collapse
|
69
|
Liu Y, Wang W, Li Y, Xiao Y, Cheng J, Jia J. The 5-Lipoxygenase Inhibitor Zileuton Confers Neuroprotection against Glutamate Oxidative Damage by Inhibiting Ferroptosis. Biol Pharm Bull 2016; 38:1234-9. [PMID: 26235588 DOI: 10.1248/bpb.b15-00048] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
5-Lipoxygenase (5-LOX) inhibitors have been shown to be protective in several neurodegenerative disease models; however, the underlying mechanisms remain unclear. We investigated whether 5-LOX inhibitor zileuton conferred direct neuroprotection against glutamate oxidative toxicity by inhibiting ferroptosis, a newly identified iron-dependent programmed cell death. Treatment of HT22 mouse neuronal cell line with glutamate resulted in significant cell death, which was inhibited by zileuton in a dose-dependent manner. Consistently, zileuton decreased glutamate-induced production of reactive oxygen species but did not restore glutamate-induced depletion of glutathione. Moreover, the pan-caspase inhibitor Z-Val-Ala-Asp(OMe)-fluoromethyl ketone (ZVAD-fmk) neither prevented HT22 cell death induced by glutamate nor affected zileuton protection against glutamate oxidative toxicity, suggesting that zileuton did not confer neuroprotection by inhibiting caspase-dependent apoptosis. Interestingly, glutamate-induced HT22 cell death was significantly inhibited by the ferroptosis inhibitor ferrostatin-1. Moreover, zileuton protected HT22 neuronal cells from erastin-induced ferroptosis. However, we did not observe synergic protective effects of zileuton and ferrostatin-1 on glutamate-induced cell death. These results suggested that both the 5-LOX inhibitor zileuton and the ferropotosis inhibitor ferrostatin-1 acted through the same cascade to protect against glutamate oxidative toxicity. In conclusion, our results suggested that zileuton protected neurons from glutamate-induced oxidative stress at least in part by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Yang Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University
| | | | | | | | | | | |
Collapse
|
70
|
Hedegaard ER, Johnsen J, Povlsen JA, Jespersen NR, Shanmuganathan JA, Laursen MR, Kristiansen SB, Simonsen U, Botker HE. Inhibition of KV7 Channels Protects the Rat Heart against Myocardial Ischemia and Reperfusion Injury. ACTA ACUST UNITED AC 2016; 357:94-102. [DOI: 10.1124/jpet.115.230409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/05/2016] [Indexed: 02/06/2023]
|
71
|
Changes in Brain Swelling and Infarction Volume over Four Days After Hypoxia Ischemia in Neonatal Rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:111-4. [PMID: 26463932 DOI: 10.1007/978-3-319-18497-5_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The leading cause of morbidity and mortality in infants is hypoxia-ischemia (HI). The current therapies for HI have limited success, in part due to a lack of understanding of HI pathophysiology and underlying mechanisms. Herein, a neonatal rat model of HI was used to examine the changes in brain swelling and infarct volume over 4 days after HI. Forty-four P10 rat pups were sacrificed at 2, 3, or 4 days post-HI. After sacrifice, the brains were removed, sliced, and stained with TTC (2,3,5-triphenyl-2H-tetrazolium chloride). Images of TTC-stained brains were used for measurement of the ipsilateral hemisphere brain volumes and infarct volumes, calculated using standard equations. The hemispheric brain volumes of HI animals in all groups was lower than that of sham animals and decreased as the post-HI sacrifice time increased. The infarct volume of HI animals was larger than that of sham animals. Infarct volumes tended to decrease over the days post-HI. The change in infarct volume is likely the result of a combination of brain growth and repair mechanisms. However, changes in the hemispheric brain volume may include tissue growth and repair mechanism, so also may be a limitation of the current algorithm used for calculating ipsilateral hemisphere brain volume.
Collapse
|
72
|
Lekic T, Hardy M, Fujii M, McBride DW, Zhang JH. Brain Volume Determination in Subarachnoid Hemorrhage Using Rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:99-102. [PMID: 26463930 DOI: 10.1007/978-3-319-18497-5_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Brain edema is routinely measured using the wet-dry method. Volume, however, is the sum total of all cerebral tissues, including water. Therefore, volumetric change following injury may not be adequately quantified using percentage of edema. We thus tested the hypothesis that dried brains can be reconstituted with water and then re-measured to determine the actual volume. Subarachnoid hemorrhage (SAH) was induced by endovascular perforation in adult male Sprague-Dawley rats (n = 30). Animals were euthanized at 24 and 72 h after evaluation of neurobehavior for determination of brain water content. Dried brains were thereafter reconstituted with equal parts of water (lost from brain edema) and centrifuged to remove air bubbles. The total volume was quantified using hydrostatic (underwater) physics principles that 1 ml water (mass) = 1 cm(3) (volume). The amount of additional water needed to reach a preset level marked on 2-ml test tubes was added to that lost from brain edema, and from the brain itself, to determine the final volume. SAH significantly increased both brain water and volume while worsening neurological function in affected rats. Volumetric measurements demonstrated significant brain swelling after SAH, in addition to the brain edema approach. This modification of the "wet-dry" method permits brain volume determination using valuable post hoc dried brain tissue.
Collapse
Affiliation(s)
- Tim Lekic
- Division of Physiology and Pharmacology, School of Medicine, Loma Linda, CA, USA
| | - Maurice Hardy
- Division of Physiology and Pharmacology, School of Medicine, Loma Linda, CA, USA
| | - Mutsumi Fujii
- Division of Physiology and Pharmacology, School of Medicine, Loma Linda, CA, USA
| | - Devin W McBride
- Division of Physiology and Pharmacology, School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Department of Neurosurgery, School of Medicine, Loma Linda, CA, USA. .,Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall Rm 219, Loma Linda, CA, 92354, USA.
| |
Collapse
|
73
|
McBride DW, Tang J, Zhang JH. Development of an Infarct Volume Algorithm to Correct for Brain Swelling After Ischemic Stroke in Rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:103-9. [PMID: 26463931 DOI: 10.1007/978-3-319-18497-5_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The primary measure for experimental stroke studies, infarct volume, can be affected by brain swelling. The algorithm by Lin et al. was developed to correct for brain swelling, however, the correction is not adequate. This chapter presents a new infarct volume algorithm that more appropriately corrects for brain hemisphere volume changes (swelling and stunted growth). Fifty-one adult rats were sacrificed 24 h after middle cerebral artery occlusion (MCAO). Forty-four P10 rat pups were sacrificed 48 h after hypoxia-ischemia (HI). Infarct volumes for 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) stained brains were calculated using our algorithm and that of Lin and colleagues. For MCAO animals, the algorithm of Lin et al. computed smaller infarct volumes than those of our algorithm. For HI animals, Lin et al.'s algorithm's infarct volumes were greater than those of our algorithm. For sham animals, Lin et al.'s algorithm's computed infarct volumes were significantly different from those of our algorithm. Our algorithm produces a more robust estimation of infarct volume than Lin et al.'s algorithm because the effects of ipsilesional hemisphere volume changes are minimized. Herein, our algorithm yields an infarct volume that better corrects for brain swelling and stunted brain growth compared with the algorithm of Lin et al.
Collapse
Affiliation(s)
- Devin W McBride
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA. .,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
74
|
Pan R, Liu KJ. ZNT-1 Expression Reduction Enhances Free Zinc Accumulation in Astrocytes After Ischemic Stroke. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:257-61. [PMID: 26463958 DOI: 10.1007/978-3-319-18497-5_45] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Excess intracellular zinc has been implicated in ischemic brain cell death. We previously reported that extracellular zinc increases intracellular free zinc level only in hypoxic astrocytes but not in normoxia astrocytes. However, the underlying mechanisms remain to be elucidated. Zinc transporters ZnTs and ZIPs mediate intracellular zinc efflux and extracellular zinc influx. In the present study, we determined the effect of hypoxia/reoxygenation on ZnT-1 and ZIP-1. Hypoxia/reoxygenation did not change the ZIP-1 level in astrocytes. Remarkably, hypoxia/reoxygenation dramatically decreased ZnT-1 expression, which can be difficult to reverse by the addition of extracellular zinc, although extracellular zinc treatment significantly increased ZnT-1 level at normoxia. These results suggest that hypoxia/reoxygenation blocked zinc efflux, whereas zinc influx may be at a similar level to that in normoxia, providing a novel mechanism for intracellular free zinc accumulation after ischemic stroke.
Collapse
Affiliation(s)
- Rong Pan
- Department of Pharmaceutical Sciences, College of Pharmacy, Albuquerque, NM, 87131, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, Albuquerque, NM, 87131, USA. .,Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
75
|
Stork CJ, Li YV. Elevated Cytoplasmic Free Zinc and Increased Reactive Oxygen Species Generation in the Context of Brain Injury. ACTA NEUROCHIRURGICA SUPPLEMENT 2016; 121:347-53. [DOI: 10.1007/978-3-319-18497-5_60] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
76
|
McBride DW, Legrand J, Krafft PR, Flores J, Klebe D, Tang J, Zhang JH. Acute Hyperglycemia Is Associated with Immediate Brain Swelling and Hemorrhagic Transformation After Middle Cerebral Artery Occlusion in Rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:237-41. [PMID: 26463955 DOI: 10.1007/978-3-319-18497-5_42] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Hemorrhagic transformation occurs in as many as 48 % of stroke patients and is a major contributor to post-insult morbidity and mortality. Experimental models of hemorrhagic transformation are utilized for understanding the mechanisms behind its development, as well as for investigating potential therapeutics for prevention and reduction of bleeding. Thoroughly studying animal models of hemorrhagic transformation is critically important for testing novel treatments. Thus far, no study has examined the progression of brain swelling and hemorrhagic transformation after transient middle cerebral artery occlusion (MCAO). Herein, we investigate the development of infarction, brain swelling, and hemorrhagic transformation following MCAO in hyperglycemic rats. Twenty-five Sprague-Dawley rats were subjected to either 1.5 h of MCAO or sham surgery 15 min after induction of hyperglycemia. Animals were sacrificed at 0.25, 1, 3, or 24 h after reperfusion for measurement of infarct volume, brain swelling, and hemoglobin volume. Within 15 min of reperfusion, the infarct volume was significantly larger than in sham animals and did not increase in size over the 24 h. However, both brain swelling and hemorrhagic transformation, which began immediately after reperfusion, increase over 24 h after reperfusion.
Collapse
Affiliation(s)
- Devin W McBride
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Julia Legrand
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Paul R Krafft
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Jerry Flores
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Damon Klebe
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA. .,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
77
|
Acute Hyperglycemia Does Not Affect Brain Swelling or Infarction Volume After Middle Cerebral Artery Occlusion in Rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:251-5. [PMID: 26463957 DOI: 10.1007/978-3-319-18497-5_44] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Stroke disproportionally affects diabetic and hyperglycemic patients with increased incidence and is associated with higher morbidity and mortality due to brain swelling. In this study, the intraluminal suture middle cerebral artery occlusion (MCAO) model was used to examine the effects of blood glucose on brain swelling and infarct volume in acutely hyperglycemic rats and normo-glycemic controls. Fifty-four rats were distributed into normo-glycemic sham surgery, hyperglycemic sham surgery, normo-glycemic MCAO, and hyperglycemic MCAO. To induce hyperglycemia, 15 min before MCAO surgery, animals were injected with 50 % dextrose. Animals were subjected to 90 min of MCAO and sacrificed 24 h after reperfusion for hemispheric brain swelling and infarct volume calculations using standard equations. While normo-glycemic and hyperglycemic animals after MCAO presented with significantly higher brain swelling and larger infarcts than their respective controls, no statistical difference was observed for either brain swelling or infarct volume between normo-glycemic shams and hyperglycemic shams or normo-glycemic MCAO animals and hyperglycemic MCAO animals. The findings of this study suggest that blood glucose does not have any significant effect on hemispheric brain swelling or infarct volume after MCAO in rats.
Collapse
|
78
|
Huang H, Chen YM, Zhu F, Tang ST, Xiao JD, Li LL, Lin XJ. Down-regulated Na(+)/K(+)-ATPase activity in ischemic penumbra after focal cerebral ischemia/reperfusion in rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:12708-12717. [PMID: 26722460 PMCID: PMC4680405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
This study was aimed to examine whether the Na(+)/K(+) adenosine triphosphatase (Na(+)/K(+)-ATPase) activity in ischemic penumbra is associated with the pathogenesis of ischemia/reperfusion-induced brain injury. An experimental model of cerebral ischemia/reperfusion was made by transient middle cerebral artery occlusion (tMCAO) in rats and the changes of Na(+)/K(+)-ATPase activity in the ischemic penumbra was examined by Enzyme Assay Kit. Extensive infarction was observed in the frontal and parietal cortical and subcortical areas at 6 h, 24 h, 48 h, 3 d and 7 d after tMCAO. Enzyme Assay analyses revealed the activity of Na(+)/K(+)-ATPase was decreased in the ischemic penumbra of model rats after focal cerebral ischemia/reperfusion compared with sham-operated rats, and reduced to its minimum at 48 h, while the infarct volume was enlarged gradually. In addition, accompanied by increased brain water content, apoptosis-related bcl-2 and Bax proteins, apoptotic index and neurologic deficits Longa scores, but fluctuated the ratio of bcl-2/Bax. Correlation analysis showed that the infarct volume, apoptotic index, neurologic deficits Longa scores and brain water content were negatively related with Na(+)/K(+)-ATPase activity, while the ratio of bcl-2/Bax was positively related with Na(+)/K(+)-ATPase activity. Our results suggest that down-regulated Na(+)/K(+)-ATPase activity in ischemic penumbra might be involved in the pathogenesis of cerebral ischemia/reperfusion injury presumably through the imbalance ratio of bcl-2/Bax and neuronal apoptosis, and identify novel target for neuroprotective therapeutic intervention in cerebral ischemic disease.
Collapse
Affiliation(s)
- Hao Huang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Yang-Mei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Fei Zhu
- Department of Neurology, People’s Hospital of Pingxiang CityPingxiang, Jiangxi Province, China
| | - Shi-Ting Tang
- Department of Neurology, People’s Hospital of Guangxi Zhuang Autonomous RegionNanning, China
| | - Ji-Dong Xiao
- Department of Neurology, People’s Hospital of Guangxi Zhuang Autonomous RegionNanning, China
| | - Lv-Li Li
- Department of Neurology, People’s Hospital of Guangxi Zhuang Autonomous RegionNanning, China
| | - Xin-Jing Lin
- Department of Neurology, People’s Hospital of Guangxi Zhuang Autonomous RegionNanning, China
| |
Collapse
|
79
|
Begum G, Yuan H, Kahle KT, Li L, Wang S, Shi Y, Shmukler BE, Yang SS, Lin SH, Alper SL, Sun D. Inhibition of WNK3 Kinase Signaling Reduces Brain Damage and Accelerates Neurological Recovery After Stroke. Stroke 2015; 46:1956-1965. [PMID: 26069258 DOI: 10.1161/strokeaha.115.008939] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/14/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE WNK kinases, including WNK3, and the associated downstream Ste20/SPS1-related proline-alanine-rich protein kinase (SPAK) and oxidative stress responsive 1 (OSR1) kinases, comprise an important signaling cascade that regulates the cation-chloride cotransporters. Ischemia-induced stimulation of the bumetanide-sensitive Na(+)-K(+)-Cl(-) cotransporter (NKCC1) plays an important role in the pathophysiology of experimental stroke, but the mechanism of its regulation in this context is unknown. Here, we investigated the WNK3-SPAK/OSR1 pathway as a regulator of NKCC1 stimulation and their collective role in ischemic brain damage. METHOD Wild-type WNK3 and WNK3 knockout mice were subjected to ischemic stroke via transient middle cerebral artery occlusion. Infarct volume, brain edema, blood brain barrier damage, white matter demyelination, and neurological deficits were assessed. Total and phosphorylated forms of WNK3 and SPAK/OSR1 were assayed by immunoblotting and immunostaining. In vitro ischemia studies in cultured neurons and immature oligodendrocytes were conducted using the oxygen-glucose deprivation/reoxygenation method. RESULTS WNK3 knockout mice exhibited significantly decreased infarct volume and axonal demyelination, less cerebral edema, and accelerated neurobehavioral recovery compared with WNK3 wild-type mice subjected to middle cerebral artery occlusion. The neuroprotective phenotypes conferred by WNK3 knockout were associated with a decrease in stimulatory hyperphosphorylations of the SPAK/OSR1 catalytic T-loop and of NKCC1 stimulatory sites Thr(203)/Thr(207)/Thr(212), as well as with decreased cell surface expression of NKCC1. Genetic inhibition of WNK3 or small interfering RNA knockdown of SPAK/OSR1 increased the tolerance of cultured primary neurons and oligodendrocytes to in vitro ischemia. CONCLUSIONS These data identify a novel role for the WNK3-SPAK/OSR1-NKCC1 signaling pathway in ischemic neuroglial injury and suggest the WNK3-SPAK/OSR1 kinase pathway as a therapeutic target for neuroprotection after ischemic stroke.
Collapse
Affiliation(s)
- Gulnaz Begum
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, (G.B., H.Y., L.L., S.W., Y.S., D.S.); Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA (K.T.K.); Manton Center for Orphan Diseases, Harvard Medical School, MA (K.T.K.); Renal Division and Vascular Biology Center, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA (B.E.S., S.L.A); Division of Nephrology, Dept. of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (SS.Y., SH.L); Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA (D.S)
| | - Hui Yuan
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, (G.B., H.Y., L.L., S.W., Y.S., D.S.); Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA (K.T.K.); Manton Center for Orphan Diseases, Harvard Medical School, MA (K.T.K.); Renal Division and Vascular Biology Center, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA (B.E.S., S.L.A); Division of Nephrology, Dept. of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (SS.Y., SH.L); Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA (D.S)
| | - Kristopher T Kahle
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, (G.B., H.Y., L.L., S.W., Y.S., D.S.); Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA (K.T.K.); Manton Center for Orphan Diseases, Harvard Medical School, MA (K.T.K.); Renal Division and Vascular Biology Center, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA (B.E.S., S.L.A); Division of Nephrology, Dept. of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (SS.Y., SH.L); Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA (D.S)
| | - Liaoliao Li
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, (G.B., H.Y., L.L., S.W., Y.S., D.S.); Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA (K.T.K.); Manton Center for Orphan Diseases, Harvard Medical School, MA (K.T.K.); Renal Division and Vascular Biology Center, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA (B.E.S., S.L.A); Division of Nephrology, Dept. of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (SS.Y., SH.L); Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA (D.S)
| | - Shaoxia Wang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, (G.B., H.Y., L.L., S.W., Y.S., D.S.); Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA (K.T.K.); Manton Center for Orphan Diseases, Harvard Medical School, MA (K.T.K.); Renal Division and Vascular Biology Center, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA (B.E.S., S.L.A); Division of Nephrology, Dept. of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (SS.Y., SH.L); Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA (D.S)
| | - Yejie Shi
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, (G.B., H.Y., L.L., S.W., Y.S., D.S.); Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA (K.T.K.); Manton Center for Orphan Diseases, Harvard Medical School, MA (K.T.K.); Renal Division and Vascular Biology Center, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA (B.E.S., S.L.A); Division of Nephrology, Dept. of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (SS.Y., SH.L); Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA (D.S)
| | - Boris E Shmukler
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, (G.B., H.Y., L.L., S.W., Y.S., D.S.); Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA (K.T.K.); Manton Center for Orphan Diseases, Harvard Medical School, MA (K.T.K.); Renal Division and Vascular Biology Center, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA (B.E.S., S.L.A); Division of Nephrology, Dept. of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (SS.Y., SH.L); Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA (D.S)
| | - Sung-Sen Yang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, (G.B., H.Y., L.L., S.W., Y.S., D.S.); Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA (K.T.K.); Manton Center for Orphan Diseases, Harvard Medical School, MA (K.T.K.); Renal Division and Vascular Biology Center, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA (B.E.S., S.L.A); Division of Nephrology, Dept. of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (SS.Y., SH.L); Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA (D.S)
| | - Shih-Hua Lin
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, (G.B., H.Y., L.L., S.W., Y.S., D.S.); Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA (K.T.K.); Manton Center for Orphan Diseases, Harvard Medical School, MA (K.T.K.); Renal Division and Vascular Biology Center, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA (B.E.S., S.L.A); Division of Nephrology, Dept. of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (SS.Y., SH.L); Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA (D.S)
| | - Seth L Alper
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, (G.B., H.Y., L.L., S.W., Y.S., D.S.); Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA (K.T.K.); Manton Center for Orphan Diseases, Harvard Medical School, MA (K.T.K.); Renal Division and Vascular Biology Center, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA (B.E.S., S.L.A); Division of Nephrology, Dept. of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (SS.Y., SH.L); Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA (D.S)
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, (G.B., H.Y., L.L., S.W., Y.S., D.S.); Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA (K.T.K.); Manton Center for Orphan Diseases, Harvard Medical School, MA (K.T.K.); Renal Division and Vascular Biology Center, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA (B.E.S., S.L.A); Division of Nephrology, Dept. of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (SS.Y., SH.L); Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA (D.S)
| |
Collapse
|
80
|
Han Z, Liu X, Luo Y, Ji X. Therapeutic hypothermia for stroke: Where to go? Exp Neurol 2015; 272:67-77. [PMID: 26057949 DOI: 10.1016/j.expneurol.2015.06.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/16/2015] [Accepted: 06/04/2015] [Indexed: 01/08/2023]
Abstract
Ischemic stroke is a major cause of death and long-term disability worldwide. Thrombolysis with recombinant tissue plasminogen activator is the only proven and effective treatment for acute ischemic stroke; however, therapeutic hypothermia is increasingly recognized as having a tissue-protective function and positively influencing neurological outcome, especially in cases of ischemia caused by cardiac arrest or hypoxic-ischemic encephalopathy in newborns. Yet, many aspects of hypothermia as a treatment for ischemic stroke remain unknown. Large-scale studies examining the effects of hypothermia on stroke are currently underway. This review discusses the mechanisms underlying the effect of hypothermia, as well as trends in hypothermia induction methods, methods for achieving optimal protection, side effects, and therapeutic strategies combining hypothermia with other neuroprotective treatments. Finally, outstanding issues that must be addressed before hypothermia treatment is implemented at a clinical level are also presented.
Collapse
Affiliation(s)
- Ziping Han
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Xiangrong Liu
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
| | - Xunming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.
| |
Collapse
|
81
|
Reis C, Wang Y, Akyol O, Ho WM, Ii RA, Stier G, Martin R, Zhang JH. What's New in Traumatic Brain Injury: Update on Tracking, Monitoring and Treatment. Int J Mol Sci 2015; 16:11903-65. [PMID: 26016501 PMCID: PMC4490422 DOI: 10.3390/ijms160611903] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI), defined as an alteration in brain functions caused by an external force, is responsible for high morbidity and mortality around the world. It is important to identify and treat TBI victims as early as possible. Tracking and monitoring TBI with neuroimaging technologies, including functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), positron emission tomography (PET), and high definition fiber tracking (HDFT) show increasing sensitivity and specificity. Classical electrophysiological monitoring, together with newly established brain-on-chip, cerebral microdialysis techniques, both benefit TBI. First generation molecular biomarkers, based on genomic and proteomic changes following TBI, have proven effective and economical. It is conceivable that TBI-specific biomarkers will be developed with the combination of systems biology and bioinformation strategies. Advances in treatment of TBI include stem cell-based and nanotechnology-based therapy, physical and pharmaceutical interventions and also new use in TBI for approved drugs which all present favorable promise in preventing and reversing TBI.
Collapse
Affiliation(s)
- Cesar Reis
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Physiology, School of Medicine, University of Jinan, Guangzhou 250012, China.
| | - Onat Akyol
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
| | - Wing Mann Ho
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, University Hospital Innsbruck, Tyrol 6020, Austria.
| | - Richard Applegate Ii
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Gary Stier
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Robert Martin
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - John H Zhang
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
82
|
McBride DW, Klebe D, Tang J, Zhang JH. Correcting for Brain Swelling's Effects on Infarct Volume Calculation After Middle Cerebral Artery Occlusion in Rats. Transl Stroke Res 2015; 6:323-38. [PMID: 25933988 DOI: 10.1007/s12975-015-0400-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/12/2015] [Accepted: 04/15/2015] [Indexed: 12/13/2022]
Abstract
Evaluating infarct volume is the primary outcome for experimental ischemic stroke studies and is a major factor in determining translation of a drug into clinical trials. Numerous algorithms are available for evaluating this critical value, but a major limitation of current algorithms is that brain swelling is not appropriately considered. The model by Lin et al. is widely used, but overestimates swelling within the infarction, yielding infarct volumes which do not reflect the true infarct size. Herein, a new infarct volume algorithm is developed to minimize the effects of both peri-infarct and infarct core swelling on infarct volume measurement. 2,3,5-Triphenyl-2H-tetrazolium chloride-stained brain tissue of adult rats subjected to middle cerebral artery occlusion was used for infarct volume analysis. When both peri-infarct swelling and infarction core swelling are removed from infarct volume calculations, such as accomplished by our algorithm, larger infarct volumes are estimated than those of Lin et al.'s algorithm. Furthermore, the infarct volume difference between the two algorithms is the greatest for small infarcts (<10% of brain volume) when peri-infarct swelling is the greatest. Finally, using data from four published studies, our algorithm is compared to Lin et al.'s algorithm. Our algorithm offers a more reliable estimation of the infarct volume after ischemic brain injury, and thus may provide the foundation for comparing infarct volumes between experimental studies and standardizing infarct volume quantification to aid in the selection of the best candidates for clinical trials.
Collapse
Affiliation(s)
- Devin W McBride
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | | | | | | |
Collapse
|
83
|
Dong W, Qi Z, Liang J, Shi W, Zhao Y, Luo Y, Ji X, Liu KJ. Reduction of zinc accumulation in mitochondria contributes to decreased cerebral ischemic injury by normobaric hyperoxia treatment in an experimental stroke model. Exp Neurol 2015; 272:181-9. [PMID: 25891441 DOI: 10.1016/j.expneurol.2015.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/22/2015] [Accepted: 04/10/2015] [Indexed: 12/30/2022]
Abstract
Cerebral ischemia interrupts oxygen supply to the affected tissues. Our previous studies have reported that normobaric hyperoxia (NBO) can maintain interstitial partial pressure of oxygen (pO2) in the penumbra of ischemic stroke rats at the physiological level, thus affording significant neuroprotection. However, the mechanisms that are responsible for the penumbra rescue by NBO treatment are not fully understood. Recent studies have shown that zinc, an important mediator of intracellular and intercellular neuronal signaling, accumulates in neurons and leads to ischemic neuronal injury. In this study, we investigate whether NBO could regulate zinc accumulation in the penumbra and prevent mitochondrial damage in penumbral tissue using a transient cerebral ischemic rat model. Our results showed that NBO significantly reduced zinc-staining positive cells and zinc-staining intensity in penumbral tissues, but not in the ischemic core. Moreover, ischemia-induced zinc accumulation in mitochondria, isolated from penumbral tissues, was greatly attenuated by NBO or a zinc-specific chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). NBO or TPEN administration stabilized the mitochondrial membrane potential in the penumbra after cerebral ischemia. Finally, ischemia-induced cytochrome c release from mitochondria in penumbral tissues was significantly reduced by NBO or TPEN treatment. These findings demonstrate a novel mechanism for NBO's neuroprotection, especially to penumbral tissues, providing further evidence for the potential clinical benefit of NBO for acute ischemic stroke.
Collapse
Affiliation(s)
- Wen Dong
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
| | - Zhifeng Qi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China.
| | - Jia Liang
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
| | - Wenjuan Shi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
| | - Yongmei Zhao
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
| | - Xunming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
| | - Ke Jian Liu
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China; Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131-0001, USA.
| |
Collapse
|
84
|
Jie P, Tian Y, Hong Z, Li L, Zhou L, Chen L, Chen L. Blockage of transient receptor potential vanilloid 4 inhibits brain edema in middle cerebral artery occlusion mice. Front Cell Neurosci 2015; 9:141. [PMID: 25914628 PMCID: PMC4392311 DOI: 10.3389/fncel.2015.00141] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/24/2015] [Indexed: 01/26/2023] Open
Abstract
Brain edema is an important pathological process during stroke. Activation of transient receptor potential vanilloid 4 (TRPV4) causes an up-regulation of matrix metalloproteinases (MMPs) in lung tissue. MMP can digest the endothelial basal lamina to destroy blood brain barrier, leading to vasogenic brain edema. Herein, we tested whether TRPV4-blockage could inhibit brain edema through inhibiting MMPs in middle cerebral artery occlusion (MCAO) mice. We found that the brain water content and Evans blue extravasation at 48 h post-MCAO were reduced by a TRPV4 antagonist HC-067047. The increased MMP-2/9 protein expression in hippocampi of MCAO mice was attenuated by HC-067046, but only the increased MMP-9 activity was blocked by HC-067047. The loss of zonula occludens-1 (ZO-1) and occludin protein in MCAO mice was also attenuated by HC-067047. Moreover, MMP-2/9 protein expression increased in mice treated with a TRPV4 agonist GSK1016790A, but only MMP-9 activity was increased by GSK1016790A. Finally, ZO-1 and occludin protein expression was decreased by GSK1016790A, which was reversed by an MMP-9 inhibitor. We conclude that blockage of TRPV4 may inhibit brain edema in cerebral ischemia through inhibiting MMP-9 activation and the loss of tight junction protein.
Collapse
Affiliation(s)
- Pinghui Jie
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Yujing Tian
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Zhiwen Hong
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Lin Li
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Libin Zhou
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Lei Chen
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Ling Chen
- Department of Physiology, Nanjing Medical University Nanjing, China
| |
Collapse
|
85
|
Lee JH, Zhang J, Wei L, Yu SP. Neurodevelopmental implications of the general anesthesia in neonate and infants. Exp Neurol 2015; 272:50-60. [PMID: 25862287 DOI: 10.1016/j.expneurol.2015.03.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 12/17/2022]
Abstract
Each year, about six million children, including 1.5 million infants, in the United States undergo surgery with general anesthesia, often requiring repeated exposures. However, a crucial question remains of whether neonatal anesthetics are safe for the developing central nervous system (CNS). General anesthesia encompasses the administration of agents that induce analgesic, sedative, and muscle relaxant effects. Although the mechanisms of action of general anesthetics are still not completely understood, recent data have suggested that anesthetics primarily modulate two major neurotransmitter receptor groups, either by inhibiting N-methyl-D-aspartate (NMDA) receptors, or conversely by activating γ-aminobutyric acid (GABA) receptors. Both of these mechanisms result in the same effect of inhibiting excitatory activity of neurons. In developing brains, which are more sensitive to disruptions in activity-dependent plasticity, this transient inhibition may have longterm neurodevelopmental consequences. Accumulating reports from preclinical studies show that anesthetics in neonates cause cellular toxicity including apoptosis and neurodegeneration in the developing brain. Importantly, animal and clinical studies indicate that exposure to general anesthetics may affect CNS development, resulting in long-lasting cognitive and behavioral deficiencies, such as learning and memory deficits, as well as abnormalities in social memory and social activity. While the casual relationship between cellular toxicity and neurological impairments is still not clear, recent reports in animal experiments showed that anesthetics in neonates can affect neurogenesis, which could be a possible mechanism underlying the chronic effect of anesthetics. Understanding the cellular and molecular mechanisms of anesthetic effects will help to define the scope of the problem in humans and may lead to preventive and therapeutic strategies. Therefore, in this review, we summarize the current evidence on neonatal anesthetic effects in the developmental CNS and discuss how factors influencing these processes can be translated into new therapeutic strategies.
Collapse
Affiliation(s)
- Jin Hwan Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James Zhang
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Visual and Neurocognitive Rehabilitation, VA Medical Center, Atlanta, GA 30033, USA.
| |
Collapse
|
86
|
Shi H, Hu X, Leak RK, Shi Y, An C, Suenaga J, Chen J, Gao Y. Demyelination as a rational therapeutic target for ischemic or traumatic brain injury. Exp Neurol 2015; 272:17-25. [PMID: 25819104 DOI: 10.1016/j.expneurol.2015.03.017] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/15/2015] [Accepted: 03/18/2015] [Indexed: 12/11/2022]
Abstract
Previous research on stroke and traumatic brain injury (TBI) heavily emphasized pathological alterations in neuronal cells within gray matter. However, recent studies have highlighted the equal importance of white matter integrity in long-term recovery from these conditions. Demyelination is a major component of white matter injury and is characterized by loss of the myelin sheath and oligodendrocyte cell death. Demyelination contributes significantly to long-term sensorimotor and cognitive deficits because the adult brain only has limited capacity for oligodendrocyte regeneration and axonal remyelination. In the current review, we will provide an overview of the major causes of demyelination and oligodendrocyte cell death following acute brain injuries, and discuss the crosstalk between myelin, axons, microglia, and astrocytes during the process of demyelination. Recent discoveries of molecules that regulate the processes of remyelination may provide novel therapeutic targets to restore white matter integrity and improve long-term neurological recovery in stroke or TBI patients.
Collapse
Affiliation(s)
- Hong Shi
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Anesthesiology of Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Xiaoming Hu
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Yejie Shi
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Chengrui An
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jun Suenaga
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jun Chen
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA.
| | - Yanqin Gao
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
87
|
Chang HB, Gao X, Nepomuceno R, Hu S, Sun D. Na(+)/H(+) exchanger in the regulation of platelet activation and paradoxical effects of cariporide. Exp Neurol 2015; 272:11-6. [PMID: 25595121 DOI: 10.1016/j.expneurol.2014.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/21/2014] [Accepted: 12/25/2014] [Indexed: 01/09/2023]
Abstract
Platelets are anucleated cell fragments derived from mature megakaryocytes and function in hemostasis when the endothelium is injured. Hemostasis involving platelets can be divided into four phases: adhesion, activation, secretion, and aggregation. Platelet activation requires a rise in intracellular Ca(2+) concentrations and results in both a morphological change and the secretion of platelet granule contents. Na(+)/H(+) exchanger isoform 1 (NHE1) regulates the intracellular pH (pHi) and the volume of platelets. In addition, NHE1 plays a large role in platelet activation. Thrombus generation involves NHE1 activation and an increase in [Ca(2+)]i, which results from NHE1-mediated Na(+) overload and the reversal of the Na(+)/Ca(2+) exchanger. Cariporide (HOE-642), a potent NHE1 inhibitor, has inhibitory effects on the degranulation of human platelets, the formation of platelet-leukocyte-aggregates, and the activation of the GPIIb/IIIa receptor (PAC-1). However, despite the demonstrated protection against myocardial infarction as mediated by cariporide in patients undergoing coronary artery bypass graft surgery, the EXPEDITION clinical trial revealed that cariporide treatment increased mortality due to thromboembolic stroke. These findings suggest that a better understanding of NHE1 and its effect on platelet function and procoagulant factor regulation is warranted in order to develop therapies using NHE inhibitors.
Collapse
Affiliation(s)
| | - Xin Gao
- Department of Neurology, University of Pittsburgh, USA; Dept. of Neurological Surgery, The Second Affiliated Hospital of the Harbin Medical University, Harbin 150086, China
| | | | - Shaoshan Hu
- Dept. of Neurological Surgery, The Second Affiliated Hospital of the Harbin Medical University, Harbin 150086, China
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, USA; Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA 15213, USA.
| |
Collapse
|
88
|
Zhang E, Liao P. Brain transient receptor potential channels and stroke. J Neurosci Res 2014; 93:1165-83. [PMID: 25502473 DOI: 10.1002/jnr.23529] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/10/2014] [Accepted: 11/04/2014] [Indexed: 02/06/2023]
Abstract
Transient receptor potential (TRP) channels have been increasingly implicated in the pathological mechanisms of CNS disorders. TRP expression has been detected in neurons, astrocytes, oligodendrocytes, microglia, and ependymal cells as well as in the cerebral vascular endothelium and smooth muscle. In stroke, TRPC3/4/6, TRPM2/4/7, and TRPV1/3/4 channels have been found to participate in ischemia-induced cell death, whereas other TRP channels, in particular those expressed in nonneuronal cells, have been less well studied. This review summarizes the current knowledge on the expression and functions of the TRP channels in various cell types in the brain and our current understanding of TRP channels in stroke pathophysiology. In an aging society, the occurrence of stroke is expected to increase steadily, and there is an urgent requirement to improve the current stroke management strategy. Therefore, elucidating the roles of TRP channels in stroke could shed light on the development of novel therapeutic strategies and ultimately improve stroke outcome.
Collapse
Affiliation(s)
- Eric Zhang
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore.,Duke-NUS Graduate Medical School Singapore, Singapore
| |
Collapse
|
89
|
Sun D, Kahle KT. Dysregulation of diverse ion transport pathways controlling cell volume homoestasis contribute to neuroglial cell injury following ischemic stroke. Transl Stroke Res 2014; 5:1-2. [PMID: 24464825 PMCID: PMC3913849 DOI: 10.1007/s12975-014-0324-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 01/05/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Dandan Sun
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15217, USA,
| | | |
Collapse
|