51
|
Roubenne L, Marthan R, Le Grand B, Guibert C. Hydrogen Sulfide Metabolism and Pulmonary Hypertension. Cells 2021; 10:cells10061477. [PMID: 34204699 PMCID: PMC8231487 DOI: 10.3390/cells10061477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a severe and multifactorial disease characterized by a progressive elevation of pulmonary arterial resistance and pressure due to remodeling, inflammation, oxidative stress, and vasoreactive alterations of pulmonary arteries (PAs). Currently, the etiology of these pathological features is not clearly understood and, therefore, no curative treatment is available. Since the 1990s, hydrogen sulfide (H2S) has been described as the third gasotransmitter with plethoric regulatory functions in cardiovascular tissues, especially in pulmonary circulation. Alteration in H2S biogenesis has been associated with the hallmarks of PH. H2S is also involved in pulmonary vascular cell homeostasis via the regulation of hypoxia response and mitochondrial bioenergetics, which are critical phenomena affected during the development of PH. In addition, H2S modulates ATP-sensitive K+ channel (KATP) activity, and is associated with PA relaxation. In vitro or in vivo H2S supplementation exerts antioxidative and anti-inflammatory properties, and reduces PA remodeling. Altogether, current findings suggest that H2S promotes protective effects against PH, and could be a relevant target for a new therapeutic strategy, using attractive H2S-releasing molecules. Thus, the present review discusses the involvement and dysregulation of H2S metabolism in pulmonary circulation pathophysiology.
Collapse
Affiliation(s)
- Lukas Roubenne
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut-Lévêque, F-33604 Pessac, France; (L.R.); (R.M.)
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ Bordeaux, U1045, 146 Rue Léo Saignat, F-33000 Bordeaux, France
- OP2 Drugs, Avenue du Haut Lévêque, F-33604 Pessac, France;
| | - Roger Marthan
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut-Lévêque, F-33604 Pessac, France; (L.R.); (R.M.)
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ Bordeaux, U1045, 146 Rue Léo Saignat, F-33000 Bordeaux, France
- CHU de Bordeaux, Avenue du Haut Lévêque, F-33604 Pessac, France
| | - Bruno Le Grand
- OP2 Drugs, Avenue du Haut Lévêque, F-33604 Pessac, France;
| | - Christelle Guibert
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut-Lévêque, F-33604 Pessac, France; (L.R.); (R.M.)
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ Bordeaux, U1045, 146 Rue Léo Saignat, F-33000 Bordeaux, France
- Correspondence:
| |
Collapse
|
52
|
Casillas RP, Tewari-Singh N, Gray JP. Special issue: emerging chemical terrorism threats. Toxicol Mech Methods 2021; 31:239-241. [PMID: 33730980 PMCID: PMC10728888 DOI: 10.1080/15376516.2021.1904472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Robert P Casillas
- Director: Discovery, Nonclinical, and Animal Health Consulting, Latham BioPharm Group, Cambridge, MA, USA
| | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Joshua P Gray
- Department of Science, U.S. Coast Guard Academy, New London, CT, USA
| |
Collapse
|
53
|
Sun HJ, Wu ZY, Nie XW, Bian JS. The Role of H 2S in the Metabolism of Glucose and Lipids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:51-66. [PMID: 34302688 DOI: 10.1007/978-981-16-0991-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glucose and lipids are essential elements for maintaining the body's homeostasis, and their dysfunction may participate in the pathologies of various diseases, particularly diabetes, obesity, metabolic syndrome, cardiovascular ailments, and cancers. Among numerous endogenous mediators, the gasotransmitter hydrogen sulfide (H2S) plays a central role in the maintenance of glucose and lipid homeostasis. Current evidence from both pharmacological studies and transgenic animal models suggest a complex relationship between H2S and metabolic dysregulation, especially in diabetes and obesity. This notion is achieved through tissue-specific expressions and actions of H2S on target metabolic and hormone organs including the pancreas, skeletal muscle, livers, and adipose. In this chapter, we will summarize the roles and mechanisms of H2S in several metabolic organs/tissues that are necessary for glucose and lipid metabolic homeostasis. In addition, future research directions and valuable therapeutic avenues around the pharmacological regulation of H2S in glycolipid metabolism disorder will be also discussed.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,National University of Singapore (Suzhou) Research Institute, Suzhou, China.
| |
Collapse
|
54
|
Hendry-Hofer TB, Ng PC, McGrath AM, Soules K, Mukai DS, Chan A, Maddry JK, White CW, Lee J, Mahon SB, Brenner M, Boss GR, Bebarta VS. Intramuscular cobinamide as an antidote to methyl mercaptan poisoning. Inhal Toxicol 2021; 33:25-32. [PMID: 33356664 PMCID: PMC8063453 DOI: 10.1080/08958378.2020.1866123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Methyl mercaptan occurs naturally in the environment and is found in a variety of occupational settings, including the oil, paper, plastics, and pesticides industries. It is a toxic gas and deaths from methyl mercaptan exposure have occurred. The Department of Homeland Security considers it a high threat chemical agent that could be used by terrorists. Unfortunately, no specific treatment exists for methyl mercaptan poisoning. METHODS We conducted a randomized trial in 12 swine comparing no treatment to intramuscular injection of the vitamin B12 analog cobinamide (2.0 mL, 12.5 mg/kg) following acute inhalation of methyl mercaptan gas. Physiological and laboratory parameters were similar in the control and cobinamide-treated groups at baseline and at the time of treatment. RESULTS All six cobinamide-treated animals survived, whereas only one of six control animals lived (17% survival) (p = 0.0043). The cobinamide-treated animals returned to a normal breathing pattern by 3.8 ± 1.1 min after treatment (mean ± SD), while all but one animal in the control group had intermittent gasping, never regaining a normal breathing pattern. Blood pressure and arterial oxygen saturation returned to baseline values within 15 minutes of cobinamide-treatment. Plasma lactate concentration increased progressively until death (10.93 ± 6.02 mmol [mean ± SD]) in control animals, and decreased toward baseline (3.79 ± 2.93 mmol [mean ± SD]) by the end of the experiment in cobinamide-treated animals. CONCLUSION We conclude that intramuscular administration of cobinamide improves survival and clinical outcomes in a large animal model of acute, high dose methyl mercaptan poisoning.
Collapse
Affiliation(s)
- Tara B. Hendry-Hofer
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Patrick C. Ng
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado,Brooke Army Medical Center, Ft Sam Houston, San Antonio, Texas
| | - Alison M. McGrath
- Department of Environmental Health and Safety, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kirsten Soules
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David S. Mukai
- Beckman Laser Institute, University of California, Irvine, California
| | - Adriano Chan
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Joseph K. Maddry
- 59th Medical Wing/Science & Technology, Lackland Air Force Base, Texas,San Antonio Military Medical Center, JBSA-Ft Sam Houston, San Antonio, Texas
| | - Carl W. White
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jangwoen Lee
- Beckman Laser Institute, University of California, Irvine, California
| | - Sari B. Mahon
- Beckman Laser Institute, University of California, Irvine, California
| | - Matthew Brenner
- Beckman Laser Institute, University of California, Irvine, California
| | - Gerry R. Boss
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Vikhyat S. Bebarta
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
55
|
Cortese-Krott MM. Red Blood Cells as a "Central Hub" for Sulfide Bioactivity: Scavenging, Metabolism, Transport, and Cross-Talk with Nitric Oxide. Antioxid Redox Signal 2020; 33:1332-1349. [PMID: 33205994 DOI: 10.1089/ars.2020.8171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Sulfide was revealed to be an endogenous signaling molecule regulating a plethora of cellular functions. It is involved in the regulation of fundamental processes, including blood pressure regulation, suspended animation, and metabolic activity of mitochondria, pain, and inflammation. The underlying biochemical pathways and pharmacological targets are still largely unidentified. Recent Advances: Red blood cells (RBCs) are known as oxygen transporters and were proposed to contribute to cardiovascular homeostasis by regulating nitric oxide (NO) metabolism, also via interaction of hemoglobin with nitrite and NO itself. Interestingly, recent evidence indicates that RBCs may also play a central role in systemic sulfide metabolism and homeostasis, and, potentially, in the crosstalk with NO. Heme-containing proteins such as hemoglobin were shown to be targeted by both NO and sulfide. In this article, we aim at revising and discussing the potential impact of RBCs on systemic sulfide metabolism in the cardiovascular system. Critical Issues: Although the synthetic pathways and the reactivity of hemoglobin and other heme proteins with sulfide and NO are known, the in vivo role of RBCs in sulfide metabolism, physiology, pharmacology, and its pathophysiological implications have not been characterized so far. Future Directions: To allow a better understanding of the role of RBCs in systemic sulfide metabolism and its cross-talk with NO, basic and translational science studies should be focused on dissecting the enzymatic and nonenzymatic sulfur metabolic pathways in RBCs in vivo and their impact on the cardiovascular system in animal models and clinical settings.
Collapse
Affiliation(s)
- Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
56
|
Dilek N, Papapetropoulos A, Toliver-Kinsky T, Szabo C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol Res 2020; 161:105119. [PMID: 32781284 DOI: 10.1016/j.phrs.2020.105119] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as an endogenous signaling gasotransmitter in mammals. It is produced by mammalian cells and tissues by various enzymes - predominantly cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) - but part of the H2S is produced by the intestinal microbiota (colonic H2S-producing bacteria). Here we summarize the available information on the production and functional role of H2S in the various cell types typically associated with innate immunity (neutrophils, macrophages, dendritic cells, natural killer cells, mast cells, basophils, eosinophils) and adaptive immunity (T and B lymphocytes) under normal conditions and as it relates to the development of various inflammatory and immune diseases. Special attention is paid to the physiological and the pathophysiological aspects of the oral cavity and the colon, where the immune cells and the parenchymal cells are exposed to a special "H2S environment" due to bacterial H2S production. H2S has many cellular and molecular targets. Immune cells are "surrounded" by a "cloud" of H2S, as a result of endogenous H2S production and exogenous production from the surrounding parenchymal cells, which, in turn, importantly regulates their viability and function. Downregulation of endogenous H2S producing enzymes in various diseases, or genetic defects in H2S biosynthetic enzyme systems either lead to the development of spontaneous autoimmune disease or accelerate the onset and worsen the severity of various immune-mediated diseases (e.g. autoimmune rheumatoid arthritis or asthma). Low, regulated amounts of H2S, when therapeutically delivered by small molecule donors, improve the function of various immune cells, and protect them against dysfunction induced by various noxious stimuli (e.g. reactive oxygen species or oxidized LDL). These effects of H2S contribute to the maintenance of immune functions, can stimulate antimicrobial defenses and can exert anti-inflammatory therapeutic effects in various diseases.
Collapse
Affiliation(s)
- Nahzli Dilek
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tracy Toliver-Kinsky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
57
|
Methylene blue-based 7-nitro-1,2,3-benzoxadiazole NIR fluorescent probe triggered by H2S. Bioorg Med Chem Lett 2020; 30:127221. [DOI: 10.1016/j.bmcl.2020.127221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 11/18/2022]
|
58
|
Maddry JK, Paredes RM, Rebeles J, Olson G, Castaneda M, Canellis K, Ng PC, Bebarta VS. Efficacy of Intravenous Hydroxocobalamin for Treatment of Sodium Methanethiolate Exposure in a Swine Model (Sus scrofa) of Severe Methanethiol Toxicity. J Med Toxicol 2020; 16:388-397. [PMID: 32239422 DOI: 10.1007/s13181-020-00767-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022] Open
Abstract
INTRODUCTION Methanethiol is a highly toxic chemical present in crude oil and natural gas. At high concentrations, methanethiol causes metabolic acidosis, seizures, myocardial infarction, coma, and death. Occupational Health and Safety Administration lists methanethiol as a potential terrorist weapon. Methanethiol blocks the electron transport chain, resulting in lactic acidosis and acidemia. There is no specific treatment for methanethiol. Our objective was to measure the efficacy of intravenous (IV) hydroxocobalamin (HOC) versus no treatment (control) in methanethiol-induced apnea in a swine model. METHODS Sixteen anesthetized swine received IV sodium methanethiolate to apnea and were randomized to receive either IV HOC or no treatment. Physiologic and laboratory parameters were monitored throughout the study. Power analysis indicated that 8 animals per group would be sufficient to find a moderate effect (f = 0.24) with 2 groups, α = 0.05, and 80% power. RESULTS Both groups were similar in baseline characteristics. Following treatment, the HOC group had significantly higher heart rate and blood pressure at 5-10 minutes post-apnea, higher systemic vascular resistance at 5 minutes post-apnea, higher tidal volume, higher end-tidal carbon dioxide, and lower end-tidal oxygen 10-15 minutes post-apnea compared with controls. None of the animals survived to the end of the study (60 minutes). The Kaplan-Meier survival curves were significantly different between cohorts (log-rank p = 0.0321), with the HOC group surviving longer than controls (32.4 ± 7.3 vs. 25.8 ± 1.0 minutes). CONCLUSIONS In our model of intravenous methanethiolate poisoning, IV HOC administration resulted in a transient improvement in vital signs and prolonged time to death; however, it did not improve survival.
Collapse
Affiliation(s)
- Joseph K Maddry
- 59th MDW, U.S. Air Force En route Care Research Center, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, Bldg. 3610, JBSA Fort Sam Houston, TX, USA.
| | - R Madelaine Paredes
- 59th MDW, U.S. Air Force En route Care Research Center, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, Bldg. 3610, JBSA Fort Sam Houston, TX, USA
| | - Jennifer Rebeles
- 59th MDW, U.S. Air Force En route Care Research Center, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, Bldg. 3610, JBSA Fort Sam Houston, TX, USA
| | - Glen Olson
- 59th MDW, U.S. Air Force En route Care Research Center, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, Bldg. 3610, JBSA Fort Sam Houston, TX, USA
| | - Maria Castaneda
- 59th MDW, U.S. Air Force En route Care Research Center, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, Bldg. 3610, JBSA Fort Sam Houston, TX, USA
| | - Kaysie Canellis
- 59th MDW, U.S. Air Force En route Care Research Center, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, Bldg. 3610, JBSA Fort Sam Houston, TX, USA
| | - Patrick C Ng
- Rocky Mountain Poison and Drug Center, Denver Health and Hospital Authority, Denver, CO, USA.,Department of Emergency Medicine, University of Colorado School of Medicine, 12401 E. 17th Ave 7th Floor, Aurora, CO, USA
| | - Vikhyat S Bebarta
- 59th MDW, U.S. Air Force En route Care Research Center, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, Bldg. 3610, JBSA Fort Sam Houston, TX, USA.,Department of Emergency Medicine, University of Colorado School of Medicine, 12401 E. 17th Ave 7th Floor, Aurora, CO, USA
| |
Collapse
|
59
|
Hendry-Hofer TB, Ng PC, McGrath AM, Mukai D, Brenner M, Mahon S, Maddry JK, Boss GR, Bebarta VS. Intramuscular aminotetrazole cobinamide as a treatment for inhaled hydrogen sulfide poisoning in a large swine model. Ann N Y Acad Sci 2020; 1479:159-167. [PMID: 32233102 DOI: 10.1111/nyas.14339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 01/28/2023]
Abstract
Hydrogen sulfide (H2 S), a high-threat chemical agent, occurs naturally in a variety of settings. Despite multiple incidents of exposures and deaths, no FDA-approved antidote exists. A rapid-acting, easy to administer antidote is needed. We conducted a randomized control trial in swine comparing intramuscular administration of aminotetrazole cobinamide (2.9 mL, 18 mg/kg) to no treatment following inhalation of H2 S gas. We found that aminotetrazole cobinamide administered 2 min after the onset of respiratory depression-defined as a tidal volume of less than 3 mL/kg for 2 consecutive minutes-yielded 100% survival, while all control animals died. Respiratory depression resolved in the treatment group within 3.6 ± 1.5 min (mean ± SD) of cobinamide administration, whereas control animals had intermittent gasping until death. Blood pressure and arterial oxygen saturation (SO2 ) returned to baseline values within 5 and 10 min, respectively, of cobinamide treatment, and plasma lactate concentration decreased to less than 50% of the highest value by the end of the experiment. In control animals, plasma lactate rose continuously until death. We conclude that intramuscular aminotetrazole cobinamide is effective in a large animal, inhalational model of acute, severe H2 S poisoning.
Collapse
Affiliation(s)
- Tara B Hendry-Hofer
- Department of Emergency Medicine, School of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado
| | - Patrick C Ng
- Department of Emergency Medicine, School of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado.,Brooke Army Medical Center, Ft Sam Houston, San Antonio, Texas
| | - Alison M McGrath
- Department of Environmental Health and Safety, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado
| | - David Mukai
- Beckman Laser Institute and Medical Clinic, University of California Irvine, Irvine, California
| | - Matthew Brenner
- Beckman Laser Institute and Medical Clinic, University of California Irvine, Irvine, California
| | - Sari Mahon
- Beckman Laser Institute and Medical Clinic, University of California Irvine, Irvine, California
| | - Joseph K Maddry
- Brooke Army Medical Center, Ft Sam Houston, San Antonio, Texas.,59th Medical Wing/Science & Technology, Lackland Air Force Base, Lackland AFB, Texas
| | - Gerry R Boss
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Vikhyat S Bebarta
- Department of Emergency Medicine, School of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado.,Office of the Chief Scientist, US Air Force Reserve, Joint Base San Antonio-Lackland, San Antonio, Texas
| |
Collapse
|
60
|
Szabo C. The re-emerging pathophysiological role of the cystathionine-β-synthase - hydrogen sulfide system in Down syndrome. FEBS J 2020; 287:3150-3160. [PMID: 31955501 DOI: 10.1111/febs.15214] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
Abstract
Down syndrome (DS) is associated with significant perturbances in many morphological and biochemical features. Cystathionine-β-synthase (CBS) is one of the key mammalian enzymes that is responsible for the biological production of the gaseous transmitter hydrogen sulfide (H2 S). When H2 S is overproduced, it can exert detrimental cellular effects, in part due to inhibition of mitochondrial Complex IV activity. An increased expression of CBS and the consequent overproduction of H2 S are well documented in individuals with DS. Two decades ago, it has been proposed that a toxic overproduction of H2 S importantly contributes to the metabolic and neurological deficits associated with DS. However, until recently, this hypothesis has not yet been tested experimentally. Recent data generated in human dermal fibroblasts show that DS cells overproduce H2 S, which, in turn, suppresses mitochondrial Complex IV activity and impairs mitochondrial oxygen consumption and ATP generation. Therapeutic CBS inhibition lifts the tonic (and reversible) suppression of Complex IV: This results in the normalization of mitochondrial function in DS cells. H2 S may also contribute to the cellular dysfunction via several other molecular mechanisms through interactions with various mitochondrial and extramitochondrial molecular targets. The current article provides a historical background of the field, summarizes the recently published data and their potential implications, and outlines potential translational approaches (such as CBS inhibition and H2 S neutralization) and future experimental studies in this re-emerging field of pathobiochemistry.
Collapse
Affiliation(s)
- Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| |
Collapse
|
61
|
Kim DS, Anantharam P, Padhi P, Thedens DR, Li G, Gilbreath E, Rumbeiha WK. Transcriptomic profile analysis of brain inferior colliculus following acute hydrogen sulfide exposure. Toxicology 2020; 430:152345. [PMID: 31843631 PMCID: PMC8324331 DOI: 10.1016/j.tox.2019.152345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
Hydrogen sulfide (H2S) is a gaseous molecule found naturally in the environment, and as an industrial byproduct, and is known to cause acute death and induces long-term neurological disorders following acute high dose exposures. Currently, there is no drug approved for treatment of acute H2S-induced neurotoxicity and/or neurological sequelae. Lack of a deep understanding of pathogenesis of H2S-induced neurotoxicity has delayed the development of appropriate therapeutic drugs that target H2S-induced neuropathology. RNA sequencing analysis was performed to elucidate the cellular and molecular mechanisms of H2S-induced neurodegeneration, and to identify key molecular elements and pathways that contribute to H2S-induced neurotoxicity. C57BL/6J mice were exposed by whole body inhalation to 700 ppm of H2S for either one day, two consecutive days or 4 consecutive days. Magnetic resonance imaging (MRI) scan analyses showed H2S exposure induced lesions in the inferior colliculus (IC) and thalamus (TH). This mechanistic study focused on the IC. RNA Sequencing analysis revealed that mice exposed once, twice, or 4 times had 283, 193 and 296 differentially expressed genes (DEG), respectively (q-value < 0.05, fold-change> 1.5). Hydrogen sulfide exposure modulated multiple biological pathways including unfolded protein response, neurotransmitters, oxidative stress, hypoxia, calcium signaling, and inflammatory response in the IC. Hydrogen sulfide exposure activated PI3K/Akt and MAPK signaling pathways. Pro-inflammatory cytokines were shown to be potential initiators of the modulated signaling pathways following H2S exposure. Furthermore, microglia were shown to release IL-18 and astrocytes released both IL-1β and IL-18 in response to H2S. This transcriptomic analysis data revealed complex signaling pathways involved in H2S-induced neurotoxicity and may provide important associated mechanistic insights.
Collapse
Affiliation(s)
- Dong-Suk Kim
- VDPAM, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Poojya Anantharam
- VDPAM, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Piyush Padhi
- VDPAM, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Daniel R Thedens
- Radiology, School of Medicine, University of Iowa, Iowa City, IA, United States
| | - Ganwu Li
- VDPAM, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ebony Gilbreath
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, United States
| | | |
Collapse
|