51
|
Ferrari F, Moretti A, Villa RF. Incretin-based drugs as potential therapy for neurodegenerative diseases: current status and perspectives. Pharmacol Ther 2022; 239:108277. [DOI: 10.1016/j.pharmthera.2022.108277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
|
52
|
Shao S, Zhang X, Xu Q, Pan R, Chen Y. Emerging roles of Glucagon like peptide-1 in the management of autoimmune diseases and diabetes-associated comorbidities. Pharmacol Ther 2022; 239:108270. [DOI: 10.1016/j.pharmthera.2022.108270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
|
53
|
Xie Y, Zhou Q, He Q, Wang X, Wang J. Opportunities and challenges of incretin-based hypoglycemic agents treating type 2 diabetes mellitus from the perspective of physiological disposition. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
54
|
Hakim M, Fathi M, Abdulraziq M, Al Shehri M. Incidence of adhesions in patients using liraglutide before laparoscopic sleeve gastrectomy. Surg Endosc 2022; 36:8503-8508. [PMID: 35488131 DOI: 10.1007/s00464-022-09294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/18/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND The current study objectively identified the incidence of adhesions between the stomach and pancreas in laparoscopic sleeve gastrectomy (LSG) patients on liraglutide (cases group) and off (control group) liraglutide. METHODS This observational prospective study was conducted in the Department of General Surgery at Saudi German Hospital, Al-Aseer, Saudi Arabia (SGH) after approval by the Institutional Review Board. 117 patients with prior use of liraglutide and 101 patients with no liraglutide use scheduled for LSG over 12 months were included. Inclusion criteria included patients undergoing LSG with or without prior use of liraglutide. Exclusion criteria included patients with prior abdominal surgeries, bariatric surgery revisions, prior upper GI scope showing gastritis, Gastroesophageal Reflux Disease (GERD) or any other pathology, and other known causes of other causes of pancreatitis. Using laparoscopy obtained imaging during LSG cases adhesions between the posterior stomach and pancreas were identified. RESULTS The mean age of the patients in the cases and control groups was 32.44 ± 9.90 years and 28.23 ± 8.48 years (p = 0.001). The mean BMI of patients in the cases and control groups was 43.56 ± 4.59 and 45.00 ± 4.78, respectively (p = 0.024). 85% of the patients were females, while 17.0% were males in the cases group. 53.5% of the patients were females, while 47.0% were males in the control group (p < 0.001). In the cases group, 48.7% of patients had stopped liraglutide for no obvious reason. Under the cases group, 77.8% of the patients had no adhesions, while 22.2% had adhesions. Under the controls group, no adhesions were seen (p < 0.001). CONCLUSIONS Our results for the first time demonstrate an incidence of adhesions in 22.2% of patients undergoing LSG on prior liraglutide intake (p < 0.001). This study brings to light the possibility of adhesions in patients with prior exposure to liraglutide undergoing LSG. Surgeons performing LSG in patients with prior exposure to liraglutide should be cognizant of this possibility, thereby requiring careful meticulous dissection.
Collapse
Affiliation(s)
- Mumin Hakim
- Department of General Surgery, Saudi German Hospital, Khamis Mushait, Al-Aseer, Saudi Arabia.
- Department of Plastic and Reconstructive Surgery, Jacobi Medical Center, Bronx, NY, USA.
| | - Mohammed Fathi
- Department of General Surgery, Saudi German Hospital, Khamis Mushait, Al-Aseer, Saudi Arabia
| | - Mohammed Abdulraziq
- Department of General Surgery, Saudi German Hospital, Khamis Mushait, Al-Aseer, Saudi Arabia
| | - Mohammed Al Shehri
- Department of General Surgery, Saudi German Hospital, Khamis Mushait, Al-Aseer, Saudi Arabia
| |
Collapse
|
55
|
Zhou R, Guo L, Gao X, Wang Y, Xu W, Zou Y, Li W, Zhuang Y, Liu G, Liu Y. A phase I study comparing the pharmacokinetics of the biosimilar (RD12014) with liraglutide (Victoza) in healthy Chinese male subjects. Clin Transl Sci 2022; 15:2458-2467. [PMID: 35871497 PMCID: PMC9579399 DOI: 10.1111/cts.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/25/2023] Open
Abstract
This study aimed to evaluate the pharmacokinetics (PKs), safety, and immunogenicity of the biosimilar (RD12014) compared to reference liraglutide (Victoza) in healthy Chinese male subjects, so as to provide the basis for the similarity evaluation of the two drugs. Eligible subjects were randomized 1:1 to two sequences (RD12014-Victoza or Victoza-RD12014). Subjects received a single 0.6 mg dose of Victoza or RD12014 by abdominal subcutaneous injection during the first period. After a 7-day washout period, subjects received the alternative drug during the second period. Blood samples were collected at predefined timepoints for PKs and immunogenicity assessment. The primary PK end points were maximum plasma concentration (Cmax ) and area under the concentration-time curve from time zero to the time of the last quantifiable concentration (AUC0-last ). PK bioequivalence was achieved, if the 90% confidence intervals (CIs) of the geometric mean ratio (GMR) of Cmax and AUC0-last were within the range of 80.00-125.00%. Safety was assessed throughout the study. The 90% CIs of the GMR of RD12014 to Victoza for Cmax and AUC0-last were completely within the range of 80.00-125.00%. Thirteen treatment-related adverse events (TRAEs) were reported in 11 subjects (22.4%) in the RD12014 group, compared to 12 TRAEs reported in 12 subjects (24.5%) in the Victoza group. The blood samples of 49 subjects were negative for anti-drug antibody and the neutralizing antibody was not further detected. This study demonstrated PK similarity of RD12014 to Victoza in healthy Chinese male subjects. Safety and immunogenicity profiles were comparable between the two groups.
Collapse
Affiliation(s)
- Ruirui Zhou
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for DrugsShanghaiChina
| | - Linfeng Guo
- Sunshine Lake Pharma Co., Ltd.GuangdongChina
| | | | - Yijun Wang
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for DrugsShanghaiChina
| | - Wenjing Xu
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for DrugsShanghaiChina
| | - Yang Zou
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for DrugsShanghaiChina
| | - Wenjia Li
- Sunshine Lake Pharma Co., Ltd.GuangdongChina
| | | | - Gangyi Liu
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for DrugsShanghaiChina
| | - Yanmei Liu
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for DrugsShanghaiChina
| |
Collapse
|
56
|
Idrees Z, Cancarevic I, Huang L. FDA-Approved Pharmacotherapy for Weight Loss Over the Last Decade. Cureus 2022; 14:e29262. [PMID: 36277516 PMCID: PMC9579826 DOI: 10.7759/cureus.29262] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/05/2022] Open
Abstract
Obesity is a recently defined illness whose diagnosis and treatment continue to be stigmatized. Currently, due to lifestyle changes brought on by technological advancements and the wide availability and affordability of high-calorie foods, millions of people around the world suffer from obesity and/or its sequelae. Finding adequate prevention and treatment options would therefore lead to massive improvements in the duration and quality of life of affected individuals. In this review, we searched the PubMed database for studies exploring the safety and efficacy of the five medications currently approved by the FDA for the treatment of obesity. We included only studies pertaining to adult patients that have been published between 2012 and 2022. We found evidence that all the drugs analyzed such as orlistat, phentermine/topiramate, naltrexone/bupropion, liraglutide, and semaglutide appear to be effective in inducing weight loss, with the suggestion that semaglutide may have superior efficacy. However, a massive obstacle in developing treatment guidelines remains the lack of prolonged studies monitoring the long-term safety and efficacy of obesity medications. Nevertheless, in patients at risk of complications from obesity, the benefits of losing fat mass may outweigh the potential side effects associated with these medications and clinicians should prescribe whichever of the FDA-approved pharmacotherapy they deem most appropriate for the patient’s specific set of circumstances.
Collapse
|
57
|
Yang B, Gomes Dos Santos A, Puri S, Bak A, Zhou L. The industrial design, translation, and development strategies for long-acting peptide delivery. Expert Opin Drug Deliv 2022; 19:1233-1245. [PMID: 35787229 DOI: 10.1080/17425247.2022.2098276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Peptides are widely recognized as therapeutic agents in the treatment of a wide range of diseases, such as cancer, diabetes etc. However, their use has been limited by their short half-life, due to significant metabolism by exo- and endo-peptidases as well as their inherent poor physical and chemical stability. Research with the aim of improving their half-life in the body, and thus improving patient compliance (by decreasing the frequency of injections) has gained significant attention. AREAS COVERED This review outlines the current landscape and industrial approaches to achieve extended peptide exposure and reduce dosing frequency. Emphasis is placed on identifying challenges in drug product manufacturing and desirable critical quality attributes that are essential for activity and safety, providing insights into chemistry and design aspects impacting peptide release, and summarizing important considerations for CMC developability assessments of sustained release peptide drugs. EXPERT OPINION Bring the patient and disease perspective early into development. Substantial advances have been made in the field of sustained delivery of peptides despite their complexity. The article will also highlight considerations for early-stage product design and development, providing an industrial perspective on risk mitigation in developing sustained release peptide drug products.
Collapse
Affiliation(s)
- Bin Yang
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ana Gomes Dos Santos
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Sanyogitta Puri
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Annette Bak
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, USA
| | - Liping Zhou
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, USA
| |
Collapse
|
58
|
Ren G, Ma X, Jiao P. Effect of liraglutide combined with metformin or acarbose on glucose control in type 2 diabetes mellitus and risk factors of gastrointestinal adverse reactions. Am J Transl Res 2022; 14:3207-3215. [PMID: 35702127 PMCID: PMC9185051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate the effect of liraglutide combined with metformin or acarbose on glucose control in patients with type 2 diabetes mellitus (T2DM) and to analyze the risk factors of gastrointestinal adverse reactions. METHODS This retrospective study was conducted on 88 T2DM patients who were treated in our hospital from February 2019 to August 2021. The patients were divided into Group A (n=40) and Group B (n=48) according to different treatment methods. Group A was treated with liraglutide and metformin, while Group B was given liraglutide and acarbose. The effects of glucose control (FPG, 2hPG, HbA1c), inflammatory indexes (IL-6, CRP, SAA), fasting C-peptide, 2-h postprandial C-peptide levels and adverse reactions were compared. Afterwards, The risk factors of gastrointestinal adverse reactions were assessed via logistics regression. RESULTS It was found that the FPG, 2hPG and HbA1c levels after treatment were lower than those before treatment (P<0.05), and the levels in group A were lower than those in group B (P<0.05). The serum IL-6, CRP and SAA levels after treatment were lower than those before treatment (P<0.05), but there was no marked difference between the two groups after treatment (P>0.05). The fasting C-peptide and 2-h postprandial C-peptide levels in group A after treatment were higher than those in group B (P<0.05). Logistics regression analysis revealed that complicated digestive system diseases and combined use of acarbose were independent risk factors. CONCLUSION Compared with liraglutide and acarbose, liraglutide and metformin has better glucose control effect in T2DM. Although there is no obvious difference in eliminating inflammation, liraglutide combined with acarbose will increase the incidence of gastrointestinal adverse reactions in patients. So, liraglutide combined with metformin is recommended for T2DM treatment.
Collapse
Affiliation(s)
- Gaofei Ren
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Xiaojun Ma
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Pengfei Jiao
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| |
Collapse
|
59
|
Loganathan J, Cohen AC, Kaloupis GM, Harris C, Chronopoulos A, James V, Hamilton J, Green S, Wallis A, Morgan S, Dauer R, Gilfillan C, Dear AE. A pilot clinical study to Evaluate Liraglutide-mediated Anti-platelet activity in patients with type-2 Diabetes (ELAID study). J Diabetes Complications 2022; 36:108188. [PMID: 35382966 DOI: 10.1016/j.jdiacomp.2022.108188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Liraglutide is an effective treatment for the management of type 2 diabetes mellitus (T2DM). In addition to glycemic control and potential cardioprotective effects, recent studies suggest a possible role for liraglutide in the inhibition of platelet reactivity, further attenuating atherothrombotic risk in patients with T2DM. We evaluated the in-vivo antiplatelet effect of liraglutide in T2DM patients without macrovascular disease or concurrent anti-platelet therapy. METHODS A double-blind, placebo-controlled pilot study of 16 T2DM patients, 51-69 y/o, (mean age 60.4 y/o, 63.0% male) randomised to receive liraglutide (1.8 mg/day) or placebo (saline) for 6 months was conducted. Platelet aggregation studies at baseline and after initiation of the study intervention: days 1, 7, and 14 and months 1, 3 and 6 were performed. RESULTS Liraglutide (n = 7) and placebo (n = 9) treated patients demonstrated normal platelet aggregation responses although transient and significant attenuation in maximum slope of platelet aggregation in response to collagen (p ≤ 0.05), arachidonic acid (p ≤ 0.05) and ADP (p ≤ 0.02) was observed in liraglutide compared to placebo treated patients in the first week. CONCLUSIONS In this pilot study of patients with T2DM liraglutide treatment was associated with a significant, early and transient decrease in maximum slope of platelet aggregation. The clinical significance of this effect is currently unknown and may warrant further investigation. CLINICAL TRIAL REGISTRATION NUMBER UTN 1111-1181-9567.
Collapse
Affiliation(s)
- Jayasree Loganathan
- Eastern Health Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Adam C Cohen
- Eastern Health Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Georgia M Kaloupis
- Eastern Health Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Carolyn Harris
- Eastern Health Clinical School, Monash University, Melbourne, Victoria, Australia
| | | | - Vanessa James
- Eastern Health Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Justin Hamilton
- Australian Centre for Blood Diseases, Monash University, Prahran, Melbourne, Victoria, Australia
| | - Sarah Green
- Alfred Pathology Service, Alfred Health, Alfred Hospital, Melbourne, Victoria, Australia
| | - Andrew Wallis
- Alfred Pathology Service, Alfred Health, Alfred Hospital, Melbourne, Victoria, Australia
| | - Susan Morgan
- Alfred Pathology Service, Alfred Health, Alfred Hospital, Melbourne, Victoria, Australia
| | - Raymond Dauer
- Department of Pathology, Eastern Health, Box Hill Hospital, Melbourne, Australia
| | - Christopher Gilfillan
- Eastern Health Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Endocrinology, Eastern Health, Box Hill Hospital, Melbourne, Victoria, Australia
| | - Anthony E Dear
- Eastern Health Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
60
|
Li SL, Wang ZM, Xu C, Che FH, Hu XF, Cao R, Xie YN, Qiu Y, Shi HB, Liu B, Dai C, Yang J. Liraglutide Attenuates Hepatic Ischemia-Reperfusion Injury by Modulating Macrophage Polarization. Front Immunol 2022; 13:869050. [PMID: 35450076 PMCID: PMC9016191 DOI: 10.3389/fimmu.2022.869050] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a common complication associated with liver surgery, and macrophages play an important role in hepatic IRI. Liraglutide, a glucagon-like peptide-1 (GLP-1) analog primarily used to treat type 2 diabetes and obesity, regulates intracellular calcium homeostasis and protects the cardiomyocytes from injury; however, its role in hepatic IRI is not yet fully understood. This study aimed to investigate whether liraglutide can protect the liver from IRI and determine the possible underlying mechanisms. Our results showed that liraglutide pretreatment significantly alleviated the liver damage caused by ischemia-reperfusion (I/R), as evidenced by H&E staining, serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, and TUNEL staining. Furthermore, the levels of inflammatory cytokines elicited by I/R were distinctly suppressed by liraglutide pretreatment, accompanied by significant reduction in TNF-α, IL-1β, and IL-6 levels. Furthermore, pretreatment with liraglutide markedly inhibited macrophage type I (M1) polarization during hepatic IRI, as revealed by the significant reduction in CD68+ levels in Kupffer cells (KCs) detected via flow cytometry. However, the protective effects of liraglutide on hepatic IRI were partly diminished in GLP-1 receptor-knockout (GLP-1R-/-) mice. Furthermore, in an in vitro study, we assessed the role of liraglutide in macrophage polarization by examining the expression profiles of M1 in bone marrow-derived macrophages (BMDMs) from GLP-1R-/- and C57BL/6J mice. Consistent with the results of the in vivo study, liraglutide treatment attenuated the LPS-induced M1 polarization and reduced the expression of M1 markers. However, the inhibitory effect of liraglutide on LPS-induced M1 polarization was largely abolished in BMDMs from GLP-1R-/- mice. Collectively, our study indicates that liraglutide can ameliorate hepatic IRI by inhibiting macrophage polarization towards an inflammatory phenotype via GLP-1R. Its protective effect against liver IRI suggests that liraglutide may serve as a potential drug for the clinical treatment of liver IRI.
Collapse
Affiliation(s)
- Shang-Lin Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhi-Min Wang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Xu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Fu-Heng Che
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiao-Fan Hu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Rui Cao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ya-Nan Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yang Qiu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Hui-Bo Shi
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Bin Liu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Chen Dai
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
61
|
Ammar RA, Mohamed AF, Kamal MM, Safar MM, Abdelkader NF. Neuroprotective effect of liraglutide in an experimental mouse model of multiple sclerosis: role of AMPK/SIRT1 signaling and NLRP3 inflammasome. Inflammopharmacology 2022; 30:919-934. [PMID: 35364735 PMCID: PMC9135867 DOI: 10.1007/s10787-022-00956-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 12/28/2022]
Abstract
The heterogeneous nature of multiple sclerosis (MS) and the unavailability of treatments addressing its intricate network and reversing the disease state is yet an area that needs to be elucidated. Liraglutide, a glucagon-like peptide-1 analogue, recently exhibited intriguing potential neuroprotective effects. The currents study investigated its potential effect against mouse model of MS and the possible underlying mechanisms. Demyelination was induced in C57Bl/6 mice by cuprizone (400 mg/kg/day p.o.) for 5 weeks. Animals received either liraglutide (25 nmol/kg/day i.p.) or dorsomorphin, an AMPK inhibitor, (2.5 mg/Kg i.p.) 30 min before the liraglutide dose, for 4 weeks (starting from the second week). Liraglutide improved the behavioral profile in cuprizone-treated mice. Furthermore, it induced the re-myelination process through stimulating oligodendrocyte progenitor cells differentiation via Olig2 transcription activation, reflected by increased myelin basic protein and myelinated nerve fiber percentage. Liraglutide elevated the protein content of p-AMPK and SIRT1, in addition to the autophagy proteins Beclin-1 and LC3B. Liraglutide halted cellular damage as manifested by reduced HMGB1 protein and consequently TLR-4 downregulation, coupled with a decrease in NF-κB. Liraglutide also suppressed NLRP3 transcription. Dorsomorphin pre-administration indicated a possible interplay between AMPK/SIRT1 and NLRP3 inflammasome activation as it partially reversed liraglutide’s effects. Immunohistochemical examination of Iba+ microglia emphasized these findings. In conclusion, liraglutide exerts neuroprotection against cuprizone-induced demyelination via anti-inflammatory, autophagic flux activation, NLRP3 inflammasome suppression, and anti-apoptotic mechanisms, possibly mediated, at least in part, via AMPK/SIRT1, autophagy, TLR-4/ NF-κB/NLRP3 signaling.
Collapse
Affiliation(s)
- Reham A Ammar
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Mohamed M Kamal
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Marwa M Safar
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Noha F Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| |
Collapse
|
62
|
Population Pharmacokinetics of Cotadutide in Subjects with Type 2 Diabetes. Clin Pharmacokinet 2022; 61:833-845. [PMID: 35235191 DOI: 10.1007/s40262-021-01094-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVES Cotadutide is a balanced dual glucagon-like peptide-1/glucagon receptor agonist under development for the treatment of nonalcoholic steatohepatitis and chronic kidney disease with type 2 diabetes. The objectives of the analysis were to characterize the population pharmacokinetics of cotadutide following daily subcutaneous injection in subjects with type 2 diabetes and to evaluate the effect of demographic and clinical variables of interest on cotadutide pharmacokinetics. METHODS This study analyzed 8834 plasma concentrations of cotadutide from 759 subjects with type 2 diabetes who received daily subcutaneous doses from 20 to 600 μg from six clinical studies. The impact of covariates on cotadutide pharmacokinetics was quantified, and body weight effect on cotadutide exposure was further evaluated using a simulation approach. The model performance was evaluated through prediction-corrected visual predictive checks. RESULTS A one-compartment model with first-order absorption and elimination described cotadutide pharmacokinetic data well. The mean values for cotadutide apparent clearance, apparent distribution volume, absorption rate constant, and half-life were 1.04 L/h (interindividual variability [IIV]: 26.5%), 18.7 L (IIV: 28.7%), 0.343 h-1 (IIV: 38.6%), and 12.9 h, respectively. Higher body weight, lower albumin, and higher alanine aminotransferase were associated with an increase in cotadutide clearance, while an increase in anti-drug antibody titers was associated with a decrease in cotadutide clearance. These statistically significant effects were not considered clinically significant and did not warrant dose adjustment. Effects of other tested baseline covariates (age, sex, body mass index, hemoglobin A1c, renal function, duration of diabetes) were not found to statistically significantly affect cotadutide pharmacokinetics. CONCLUSIONS Cotadutide pharmacokinetics was adequately described by a one-compartment linear model with first-order absorption and elimination. Body weight-based dosing is not necessary for cotadutide based on the simulation using the final population pharmacokinetic modeling. This model will be used to evaluate exposure-response relationships for efficacy and safety in different indications that are being studied for cotadutide.
Collapse
|
63
|
Kaimala S, Kumar CA, Allouh MZ, Ansari SA, Emerald BS. Epigenetic modifications in pancreas development, diabetes, and therapeutics. Med Res Rev 2022; 42:1343-1371. [PMID: 34984701 PMCID: PMC9306699 DOI: 10.1002/med.21878] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 11/24/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022]
Abstract
A recent International Diabetes Federation report suggests that more than 463 million people between 20 and 79 years have diabetes. Of the 20 million women affected by hyperglycemia during pregnancy, 84% have gestational diabetes. In addition, more than 1.1 million children or adolescents are affected by type 1 diabetes. Factors contributing to the increase in diabetes prevalence are complex and include contributions from genetic, environmental, and epigenetic factors. However, molecular regulatory mechanisms influencing the progression of an individual towards increased susceptibility to metabolic diseases such as diabetes are not fully understood. Recent studies suggest that the pathogenesis of diabetes involves epigenetic changes, resulting in a persistently dysregulated metabolic phenotype. This review summarizes the role of epigenetic mechanisms, mainly DNA methylation and histone modifications, in the development of the pancreas, their contribution to the development of diabetes, and the potential employment of epigenetic modulators in diabetes treatment.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Challagandla Anil Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Mohammed Z Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
64
|
Dong M, Wen S, Zhou L. The Relationship Between the Blood-Brain-Barrier and the Central Effects of Glucagon-Like Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter-2 Inhibitors. Diabetes Metab Syndr Obes 2022; 15:2583-2597. [PMID: 36035518 PMCID: PMC9417299 DOI: 10.2147/dmso.s375559] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetes and obesity are growing problems worldwide and are associated with a range of acute and chronic complications, including acute myocardial infarction (AMI) and stroke. Novel anti-diabetic medications designed to treat T2DM, such as glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT-2is), exert beneficial effects on metabolism and the cardiovascular system. However, the underlying mechanisms are poorly understood. GLP-1RAs induce anorexic effects by inhibiting the central regulation of food intake to reduce body weight. Central/peripheral administration of GLP-1RAs inhibits food intake, accompanied by an increase in c-Fos expression in neurons within the paraventricular nucleus (PVN), amygdala, the nucleus of the solitary tract (NTS), area postrema (AP), lateral parabrachial nucleus (LPB) and arcuate nucleus (ARC), induced by the activation of GLP-1 receptors in the central nervous system (CNS). Therefore, GLP-1RAs need to pass through the blood-brain barrier to exert their pharmacological effects. In addition, studies revealed that SGLT-2is could reduce the risk of chronic heart failure in people with type 2 diabetes. SGLT-2 is extensively expressed throughout the CNS, and c-Fos expression was also observed within 2 hours of administration of SGLT-2is in mice. Recent clinical studies reported that SGLT-2is improved hypertension and atrial fibrillation by modulating the "overstimulated" renin-angiotensin-aldosterone system (RAAS) and suppressing the sympathetic nervous system (SNS) by directly/indirectly acting on the rostral ventrolateral medulla. Despite extensive research into the central mechanism of GLP-1RAs and SGLT-2is, the penetration of the blood-brain barrier (BBB) remains controversial. This review discusses the interaction between GLP-1RAs and SGLT-2is and the BBB to induce pharmacological effects via the CNS.
Collapse
Affiliation(s)
- Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Shanghai, People’s Republic of China
- Correspondence: Ligang Zhou, Tel +8613611927616, Email
| |
Collapse
|
65
|
Du H, Meng X, Yao Y, Xu J. The mechanism and efficacy of GLP-1 receptor agonists in the treatment of Alzheimer's disease. Front Endocrinol (Lausanne) 2022; 13:1033479. [PMID: 36465634 PMCID: PMC9714676 DOI: 10.3389/fendo.2022.1033479] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
Since type 2 diabetes mellitus (T2DM) is a risk factor for Alzheimer's disease (AD) and both have the same pathogenesis (e.g., insulin resistance), drugs used to treat T2DM have been gradually found to reduce the progression of AD in AD models. Of these drugs, glucagon-like peptide 1 receptor (GLP-1R) agonists are more effective and have fewer side effects. GLP-1R agonists have reducing neuroinflammation and oxidative stress, neurotrophic effects, decreasing Aβ deposition and tau hyperphosphorylation in AD models, which may be a potential drug for the treatment of AD. However, this needs to be verified by further clinical trials. This study aims to summarize the current information on the mechanisms and effects of GLP-1R agonists in AD.
Collapse
Affiliation(s)
- Haiyang Du
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyu Meng
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Yu Yao
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Xu
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jun Xu,
| |
Collapse
|
66
|
Dong Y, Carty J, Goldstein N, He Z, Hwang E, Chau D, Wallace B, Kabahizi A, Lieu L, Peng Y, Gao Y, Hu L, Betley JN, Williams KW. Time and metabolic state-dependent effects of GLP-1R agonists on NPY/AgRP and POMC neuronal activity in vivo. Mol Metab 2021; 54:101352. [PMID: 34626854 PMCID: PMC8590079 DOI: 10.1016/j.molmet.2021.101352] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Long-acting glucagon-like peptide-1 receptor agonists (GLP-1RAs), like liraglutide and semaglutide, are viable treatments for diabetes and obesity. Liraglutide directly activates hypothalamic proopiomelanocortin (POMC) neurons while indirectly inhibiting Neuropeptide Y/Agouti-related peptide (NPY/AgRP) neurons ex vivo. While temporal control of GLP-1R agonist concentration as well as accessibility to tissues/cells can be achieved with relative ease ex vivo, in vivo this is dependent upon the pharmacokinetics of these agonists and relative penetration into structures of interest. Thus, whether liraglutide or semaglutide modifies the activity of POMC and NPY/AgRP neurons in vivo as well as mechanisms required for any changes in cellular activity remains undefined. METHODS In order to resolve this issue, we utilized neuron-specific transgenic mouse models to examine changes in the activity of POMC and NPY/AgRP neurons after injection of either liraglutide or semaglutide (intraperitoneal - I.P. and subcutaneous - S·C.). POMC and NPY/AgRP neurons were targeted for patch-clamp electrophysiology as well as in vivo fiber photometry. RESULTS We found that liraglutide and semaglutide directly activate and increase excitatory tone to POMC neurons in a time-dependent manner. This increased activity of POMC neurons required GLP-1Rs in POMC neurons as well as a downstream mixed cation channel comprised of TRPC5 subunits. We also observed an indirect upregulation of excitatory input to POMC neurons originating from glutamatergic cells that also required TRPC5 subunits. Conversely, GLP-1Ra's decreased excitatory input to and indirectly inhibited NPY/AgRP neurons through activation of K-ATP and TRPC5 channels in GABAergic neurons. Notably, the temporal activation of POMC and inhibition of NPY/AgRP neuronal activity after liraglutide or semaglutide was injected [either intraperitoneal (I.P.) or subcutaneous (S·C.)] was dependent upon the nutritional state of the animals (fed vs food-deprived). CONCLUSIONS Our results support a mechanism of liraglutide and semaglutide in vivo to activate POMC while inhibiting NPY/AgRP neurons, which depends upon metabolic state and mirrors the pharmacokinetic profile of these compounds in vivo.
Collapse
Affiliation(s)
- Yanbin Dong
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Center for Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Jamie Carty
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nitsan Goldstein
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhenyan He
- Department of Neurosurgery, the affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, 450008, China
| | - Eunsang Hwang
- Center for Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Dominic Chau
- Center for Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Briana Wallace
- Center for Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Anita Kabahizi
- Center for Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Linh Lieu
- Center for Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Yunqian Peng
- Center for Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ling Hu
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - J Nicholas Betley
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
67
|
Chequin A, Costa LE, de Campos FF, Moncada ADB, de Lima LTF, Sledz LR, Picheth GF, Adami ER, Acco A, Gonçalves MB, Manica GCM, Valdameri G, de Noronha L, Telles JEQ, Jandrey EHF, Costa ET, Costa FF, de Souza EM, Ramos EAS, Klassen G. Antitumoral activity of liraglutide, a new DNMT inhibitor in breast cancer cells in vitro and in vivo. Chem Biol Interact 2021; 349:109641. [PMID: 34534549 DOI: 10.1016/j.cbi.2021.109641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Breast cancer (BC) is the most frequently diagnosed female cancer and second leading cause of death. Despite the discovery of many antineoplastic drugs for BC, the current therapy is not totally efficient. In this study, we investigated the potential of repurposing the well-known diabetes type II drug liraglutide to modulate epigenetic modifications in BC cells lines in vitro and in vivo via Ehrlich mice tumors models. The in vitro results revealed a significant reduction on cell viability, migration, DNMT activity and displayed lower levels of global DNA methylation in BC cell lines after liraglutide treatment. The interaction between liraglutide and the DNMT enzymes resulted in a decrease profile of DNA methylation for the CDH1, ESR1 and ADAM33 gene promoter regions and, consequently, increased their gene and protein expression levels. To elucidate the possible interaction between liraglutide and the DNMT1 protein, we performed an in silico study that indicates liraglutide binding in the catalytic cleft via hydrogen bonds and salt bridges with the interdomain contacts and disturbs the overall enzyme conformation. The in vivo study was also able to reveal that liraglutide and the combined treatment of liraglutide and paclitaxel or methotrexate were effective in reducing tumor growth. Moreover, the modulation of CDH1 and ADAM33 mouse gene expression by DNA demethylation suggests a role for liraglutide in DNMT activity in vivo. Altogether, these results indicate that liraglutide may be further analysed as a new adjuvant treatment for BC.
Collapse
Affiliation(s)
- Andressa Chequin
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Luiz E Costa
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Felipe F de Campos
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Angie D B Moncada
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Lucas T F de Lima
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Lucas R Sledz
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Guilherme F Picheth
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Eliana R Adami
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Marcos B Gonçalves
- Department of Physics, Federal Technological University of Paraná, Curitiba, Parana, Brazil
| | - Graciele C M Manica
- Department of Clinical Analysis, Federal University of Paraná, Curitiba, PR, Brazil
| | - Gláucio Valdameri
- Department of Clinical Analysis, Federal University of Paraná, Curitiba, PR, Brazil
| | - Lucia de Noronha
- Department of Clinical Pathology, Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
| | - José E Q Telles
- Department of Medical Pathology, Federal University of Paraná, Brazil
| | - Elisa H F Jandrey
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Erico T Costa
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | | | - Emanuel M de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Edneia A S Ramos
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Giseli Klassen
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
68
|
Li Y, Xu B, Yang J, Wang L, Tan X, Hu X, Sun L, Chen S, Zhu L, Chen X, Chen G. Liraglutide protects against lethal renal ischemia-reperfusion injury by inhibiting high-mobility group box 1 nuclear-cytoplasmic translocation and release. Pharmacol Res 2021; 173:105867. [PMID: 34481074 DOI: 10.1016/j.phrs.2021.105867] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Liraglutide, a glucagon-like peptide-1 receptor (GLP-1R) agonist, has been reported to exert protective effects against myocardial, hepatic, and gastric ischemia-reperfusion injury (IRI), but whether it can protect against renal IRI remains unknown. Here, a lethal renal IRI model was established with a 100% mortality rate in untreated mice. Treatment with liraglutide involving a regimen of multiple doses resulted in 100% survival, remarkable preservation of renal function, a significant reduction in pathological damage, and blunted upregulation of TNF-α, IL-1β, IL-6, MCP-1, TLR-2, TLR-4, and RAGE mRNA. We found that liraglutide treatment dramatically inhibited ischemia-induced nucleocytoplasmic translocation and release of HMGB1. This inhibition was associated with a marked decrease (~ 60%) in nuclear histone acetyltransferase activity. In addition, the protective effects of liraglutide on renal IRI were largely abolished by the administration of exogenous HMGB1. When the GLP-1R antagonist exendin (9-39) was given to mice before each liraglutide administration, or GLP-1R-/- mice were used for the renal IRI experiments, the protective effect of liraglutide on renal IRI was partially reversed. Moreover, liraglutide pretreatment significantly inhibited HMGB1 nucleocytoplasmic translocation during hypoxic culture of HK-2 cells in vitro, but the addition of exendin (9-39) significantly eliminated this inhibition. We demonstrate here that liraglutide can exert a strong protective effect on lethal renal IRI in mice. This protection appears to be related to the inhibition of HMGB1 nuclear-cytoplasmic translocation and release and partially depends on GLP-1R. Thus, liraglutide may be therapeutically useful for the clinical prevention and treatment of organ IRI.
Collapse
Affiliation(s)
- Yakun Li
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bingyang Xu
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Xiaosheng Tan
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofan Hu
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Sun
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Song Chen
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Lan Zhu
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Xiaoping Chen
- Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China.
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
69
|
Youssef N, Noureldein M, Njeim R, Ghadieh HE, Harb F, Azar ST, Fares N, Eid AA. Reno-Protective Effect of GLP-1 Receptor Agonists in Type1 Diabetes: Dual Action on TRPC6 and NADPH Oxidases. Biomedicines 2021; 9:biomedicines9101360. [PMID: 34680477 PMCID: PMC8533165 DOI: 10.3390/biomedicines9101360] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 01/12/2023] Open
Abstract
Diabetic kidney disease (DKD), a serious diabetic complication, results in podocyte loss and proteinuria through NADPH oxidases (NOX)-mediated ROS production. DUOX1 and 2 are NOX enzymes that require calcium for their activation which enters renal cells through the pivotal TRPC channels. Hypoglycemic drugs such as liraglutide can interfere with this deleterious mechanism imparting reno-protection. Herein, we aim to investigate the reno-protective effect of GLP1 receptor agonist (GLP1-RA), via its effect on TRPC6 and NADPH oxidases. To achieve our aim, control or STZ-induced T1DM Sprague-Dawley rats were used. Rats were treated with liraglutide, metformin, or their combination. Functional, histological, and molecular parameters of the kidneys were assessed. Our results show that treatment with liraglutide, metformin or their combination ameliorates DKD by rectifying renal function tests and protecting against fibrosis paralleled by restored mRNA levels of nephrin, DUOX1 and 2, and reduced ROS production. Treatment with liraglutide reduces TRPC6 expression, while metformin treatment shows no effect. Furthermore, TRPC6 was found to be directly interacting with nephrin, and indirectly interacting with DUOX1, DUOX2 and GLP1-R. Our findings suggest that treatment with liraglutide may prevent the progression of diabetic nephropathy by modulating the crosstalk between TRPC6 and NADPH oxidases.
Collapse
Affiliation(s)
- Natalie Youssef
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut 1107-2020, Lebanon; (N.Y.); (M.N.); (R.N.); (H.E.G.)
- American University of Beirut (AUB) Diabetes, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut 1107-2020, Lebanon;
| | - Mohamed Noureldein
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut 1107-2020, Lebanon; (N.Y.); (M.N.); (R.N.); (H.E.G.)
- American University of Beirut (AUB) Diabetes, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut 1107-2020, Lebanon;
| | - Rachel Njeim
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut 1107-2020, Lebanon; (N.Y.); (M.N.); (R.N.); (H.E.G.)
- American University of Beirut (AUB) Diabetes, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut 1107-2020, Lebanon;
| | - Hilda E. Ghadieh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut 1107-2020, Lebanon; (N.Y.); (M.N.); (R.N.); (H.E.G.)
- American University of Beirut (AUB) Diabetes, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut 1107-2020, Lebanon;
| | - Frederic Harb
- Department of Life and Earth Sciences, Faculty of Sciences, Lebanese University, Fanar, Jdeidat P.O. Box 90656, Lebanon;
| | - Sami T. Azar
- American University of Beirut (AUB) Diabetes, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut 1107-2020, Lebanon;
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut 1107-2020, Lebanon
| | - Nassim Fares
- Laboratory of Physiology and Physiopathology, Faculty of Medicine, Saint Joseph University of Beirut, Damas Street, 11-5076, Riad El-Solh, Beirut 1107-2180, Lebanon
- Correspondence: (N.F.); (A.A.E.); Tel.: +961-(1)-421000 (ext. 6772) (N.F.); +961-1-350000 (ext. 4781) (A.A.E.)
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut 1107-2020, Lebanon; (N.Y.); (M.N.); (R.N.); (H.E.G.)
- American University of Beirut (AUB) Diabetes, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut 1107-2020, Lebanon;
- Correspondence: (N.F.); (A.A.E.); Tel.: +961-(1)-421000 (ext. 6772) (N.F.); +961-1-350000 (ext. 4781) (A.A.E.)
| |
Collapse
|
70
|
Zobel EH, Ripa RS, von Scholten BJ, Rotbain Curovic V, Kjaer A, Hansen TW, Rossing P, Størling J. Effect of liraglutide on expression of inflammatory genes in type 2 diabetes. Sci Rep 2021; 11:18522. [PMID: 34535716 PMCID: PMC8448739 DOI: 10.1038/s41598-021-97967-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Anti-inflammatory effects of glucagon-like peptide 1 receptor agonist (GLP-1 RA) treatment in T2D may contribute to the cardiovascular benefits observed with GLP-1 RAs in outcome studies. We investigated if the GLP-1 RA liraglutide exerts anti-inflammatory effects through modulation of inflammatory gene expression in peripheral blood mononuclear cells (PBMCs). From 54 participants of a double-blinded trial where individuals with type 2 diabetes (T2D) were randomized to liraglutide (1.8 mg/day) or placebo for 26 weeks, a sub-study was performed in which PBMCs were extracted from fresh blood at study start and at end-of-treatment. The expression of selected inflammatory genes in PBMCs were measured by quantitative real-time polymerase chain reaction (PCR). Moreover, the expression of the GLP-1 receptor (GLP1R) was examined in a subset (n = 40) of the PBMC samples. The human monocytic cell line THP-1 was used for in vitro GLP-1 exposure experiments. The expression of tumor necrosis factor-α (TNFA) (p = 0.004) and interleukin-1β (IL1B) was downregulated (p = 0.046) in the liraglutide-treated group (n = 31), and unchanged in the placebo group (n = 21, p ≥ 0.11), with no significant differences between the two groups (p ≥ 0.67). The expression of interferon-γ (IFNG) and cluster of differentiation 163 (CD163) were upregulated in both groups (p ≤ 0.006) with no differences between groups (p ≥ 0.47). C-C Motif Chemokine Ligand 5 (CCL5) was upregulated in the liraglutide-treated group (p = 0.002) and unchanged in the placebo group (p = 0.14), with no significant difference between groups (p = 0.36). Intercellular adhesion molecule 1 (ICAM1) was unchanged in both groups (p ≥ 0.43). GLP1R expression in the PBMCs was undetectable. In vitro experiments showed no effect of GLP-1 treatment on inflammatory gene expression in THP-1 cells. GLP1R expression in THP-1 cells was not detectable. In summary, we observed a discrete modulatory effect of liraglutide on the expression of inflammatory genes in PBMCs. The lack of evidence for GLP1R expression in PBMCs and THP-1 cells suggests that possible effects of liraglutide on the PBMCs' gene expression are most likely indirect. Further investigations are needed to establish the anti-inflammatory potential of GLP-1 RAs.
Collapse
Affiliation(s)
- Emilie H Zobel
- Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, 2820, Gentofte, Denmark.
| | - Rasmus S Ripa
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bernt J von Scholten
- Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, 2820, Gentofte, Denmark
- Novo Nordisk A/S, Søborg, Denmark
| | | | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tine W Hansen
- Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, 2820, Gentofte, Denmark
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, 2820, Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Størling
- Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, 2820, Gentofte, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
71
|
Shi Y, Guo S, Liang Y, Liu L, Wang A, Sun K, Li Y. Construction and evaluation of liraglutide delivery system based on milk exosomes: a new idea for oral peptide delivery. Curr Pharm Biotechnol 2021; 23:1072-1079. [PMID: 34414872 DOI: 10.2174/1389201022666210820114236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Increasing the bioavailability of peptide or protein drugs has always been an essential topic in pharmacy. Milk exosomes as a carrier for oral drug delivery systems have begun to attract attention in recent years. The application of oral milk exosomes carriers to peptide drugs such as liraglutide is worth trying. OBJECTIVE Milk-derived exosomes are used in this study to encapsulate the GLP-1 receptor agonist liraglutide. It also explored the feasibility of using this drug delivery system for oral biomolecules delivery in the future. METHODS The size and morphology of milk exosomes were characterized. The gastrointestinal stability of milk exosomes was evaluated in a dialysis bag. The cellular uptake of milk exosomes in an intestinal cell was observed. Six drug loading methods have been evaluated and compared preliminarily, and they are the incubation method, sonication method, extrusion method, freeze-thaw cycles method, saponin-assisted method, and electroporation method. RESULTS As demonstrated in this study, milk exosomes showed significant stability in the gastrointestinal environment and excellent affinity with intestinal cells, indicating their unique benefits used for oral drug delivery. Effective drug loading method for exosomes is challenging. Among the six drug loading methods used in this study, the liraglutide-Exo prepared by the extrusion method obtained the most significant drug load, which was 2.45 times the direct incubation method. The liraglutide-Exo obtained by the freeze-thaw cycles method has the slightest morphological change. CONCLUSION The study showed milk exosome-based oral drug delivery systems are promising.
Collapse
Affiliation(s)
- Yanan Shi
- College of Life Science, Yantai University, Yantai, 264005. China
| | - Shiqi Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005. China
| | - Yanzi Liang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005. China
| | - Lanze Liu
- College of Life Science, Yantai University, Yantai, 264005. China
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005. China
| | - Kaoxiang Sun
- College of Life Science, Yantai University, Yantai, 264005. China
| | - Youxin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005. China
| |
Collapse
|
72
|
Lv S, Liu H, Wang H. Exogenous Hydrogen Sulfide Plays an Important Role by Regulating Autophagy in Diabetic-Related Diseases. Int J Mol Sci 2021; 22:ijms22136715. [PMID: 34201520 PMCID: PMC8268438 DOI: 10.3390/ijms22136715] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a vital cell mechanism which plays an important role in many physiological processes including clearing long-lived, accumulated and misfolded proteins, removing damaged organelles and regulating growth and aging. Autophagy also participates in a variety of biological functions, such as development, cell differentiation, resistance to pathogens and nutritional hunger. Recently, autophagy has been reported to be involved in diabetes, but the mechanism is not fully understood. Hydrogen sulfide (H2S) is a colorless, water-soluble, flammable gas with the typical odor of rotten eggs, which has been known as a highly toxic gas for many years. However, it has been reported recently that H2S, together with nitric oxide and carbon monoxide, is an important gas signal transduction molecule. H2S has been reported to play a protective role in many diabetes-related diseases, but the mechanism is not fully clear. Recent studies indicate that H2S plays an important role by regulating autophagy in many diseases including cancer, tissue fibrosis diseases and glycometabolic diseases; however, the related mechanism has not been fully studied. In this review, we summarize recent research on the role of H2S in regulating autophagy in diabetic-related diseases to provide references for future related research.
Collapse
|
73
|
Morillas C, D’Marco L, Puchades MJ, Solá-Izquierdo E, Gorriz-Zambrano C, Bermúdez V, Gorriz JL. Insulin Withdrawal in Diabetic Kidney Disease: What Are We Waiting for? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5388. [PMID: 34070103 PMCID: PMC8158374 DOI: 10.3390/ijerph18105388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/09/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022]
Abstract
The prevalence of type 2 diabetes mellitus worldwide stands at nearly 9.3% and it is estimated that 20-40% of these patients will develop diabetic kidney disease (DKD). DKD is the leading cause of chronic kidney disease (CKD), and these patients often present high morbidity and mortality rates, particularly in those patients with poorly controlled risk factors. Furthermore, many are overweight or obese, due primarily to insulin compensation resulting from insulin resistance. In the last decade, treatment with sodium-glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP1-RA) have been shown to be beneficial in renal and cardiovascular targets; however, in patients with CKD, the previous guidelines recommended the use of drugs such as repaglinide or dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors), plus insulin therapy. However, new guidelines have paved the way for new treatments, such as SGLT2i or GLP1-RA in patients with CKD. Currently, the new evidence supports the use of GLP1-RA in patients with an estimated glomerular filtration rate (eGFR) of up to 15 mL/min/1.73 m2 and an SGLT2i should be started with an eGFR > 60 mL/min/1.73 m2. Regarding those patients in advanced stages of CKD, the usual approach is to switch to insulin. Thus, the add-on of GLP1-RA and/or SGLT2i to insulin therapy can reduce the dose of insulin, or even allow for its withdrawal, as well as achieve a good glycaemic control with no weight gain and reduced risk of hypoglycaemia, with the added advantage of cardiorenal benefits.
Collapse
Affiliation(s)
- Carlos Morillas
- Endocrinology Department, Hospital Doctor Peset, 46020 Valencia, Spain; (C.M.); (E.S.-I.)
| | - Luis D’Marco
- Nephrology Department, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, 46010 Valencia, Spain; (L.D.); (M.J.P.)
| | - María Jesús Puchades
- Nephrology Department, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, 46010 Valencia, Spain; (L.D.); (M.J.P.)
| | - Eva Solá-Izquierdo
- Endocrinology Department, Hospital Doctor Peset, 46020 Valencia, Spain; (C.M.); (E.S.-I.)
| | | | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simon Bolivar, Barranquilla 080001, Colombia;
| | - José Luis Gorriz
- Nephrology Department, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, 46010 Valencia, Spain; (L.D.); (M.J.P.)
| |
Collapse
|
74
|
GLP-1 peptide analogs for targeting pancreatic beta cells. Drug Discov Today 2021; 26:1936-1943. [PMID: 33839290 DOI: 10.1016/j.drudis.2021.03.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/01/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Loss or dysfunction of the pancreatic beta cells or insulin receptors leads to diabetes mellitus (DM). This usually occurs over many years; therefore, the development of methods for the timely detection and clinical intervention are vital to prevent the development of this disease. Glucagon-like peptide-1 receptor (GLP-1R) is the receptor of GLP-1, an incretin hormone that causes insulin secretion in a glucose-dependent manner. GLP-1R is highly expressed on the surface of pancreatic beta cells, providing a potential target for bioimaging. In this review, we provide an overview of various strategies, such as the development of GLP-1R agonists (e.g., exendin-4), and GLP-1 sequence modifications for GLP-1R targeting for the diagnosis and treatment of pancreatic beta cell disorders. We also discuss the challenges of targeting pancreatic beta cells and strategies to address such challenges.
Collapse
|
75
|
Hanif W, Ali SN, Bellary S, Patel V, Farooqi A, Karamat MA, Saeed M, Sivaprasad S, Patel K, Khunti K. Pharmacological management of South Asians with type 2 diabetes: Consensus recommendations from the South Asian Health Foundation. Diabet Med 2021; 38:e14497. [PMID: 33301625 DOI: 10.1111/dme.14497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/27/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022]
Abstract
South Asians constitute approximately 1.6 billion people from the Indian subcontinent, comprising Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka; and make up the largest diaspora globally. Compared to the White European population, this group is at a higher risk of developing type 2 diabetes along with cardiovascular, renal and eye complications. Over the recent years, a number of new therapies for type 2 diabetes have become available for which cardiovascular outcome trials (CVOTs) have been published. The recent ADA/EASD consensus guidelines on diabetes, pre-diabetes and cardiovascular diseases' offer a transitional shift in type 2 diabetes management. The new consensus recommendations are based on recent CVOTs, many of which had a representation of South Asian cohorts. In light of this new evidence, there is urgent need for an integrated, evidence-based, cost-effective and individualised approach specific for South Asians. This review takes into consideration the evidence from these CVOTs and provides best practice recommendations for optimal management of South Asian people with type 2 diabetes, alongside the previously published consensus report from South Asian Health Foundation in 2014 [1].
Collapse
Affiliation(s)
- Wasim Hanif
- Diabetes & Endocrinology, CSL Diabetes, University Hospitals of Birmingham, South Asian Health Foundation, Birmingham, UK
| | - Sarah N Ali
- Diabetes and Endocrinology, Royal Free London NHS Foundation Trust, Diabetes Working Group, South Asian Health Foundation, Birmingham, UK
| | - Srikanth Bellary
- School of Life and Health Sciences, Aston University, University Hospitals Birmingham, Birmingham, UK
| | - Vinod Patel
- Diabetes and Clinical Skills, Warwick Medical School, University of Warwick, Coventry, UK
- South Asian Health Foundation, Birmingham, UK
| | - Azhar Farooqi
- East Leicester Medical Practice, Leicester City CCG, BME Centre for Health, ARC East Midlands, Leicester, UK
| | - Muhammad Ali Karamat
- Diabetes and Endocrinology, UHB TPD Diabetes and Endocrinology, Health Education, Birmingham, UK
| | - Mujahid Saeed
- Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham, University of Birmingham, Birmingham, UK
| | - Sobha Sivaprasad
- NIHR Moorfields Biomedical Research Centre and UCL Institute of Ophthalmology, London, UK
| | - Kiran Patel
- South Asian Health Foundation, Birmingham, UK
- University Hospitals Coventry & Warwickshire NHS Trust, Warwick Medical School, University of Warwick, Coventry University, Coventry, UK
| | - Kamlesh Khunti
- South Asian Health Foundation, Birmingham, UK
- Primary Care Diabetes & Vascular Medicine, Diabetes Research Centre and The Centre for Black Minority Health, University of Leicester, Leicester, UK
| |
Collapse
|
76
|
Shekhawat RS, Mandal CC. Anti-obesity Medications in Cancer Therapy: A Comprehensive Insight. Curr Cancer Drug Targets 2021; 21:476-494. [PMID: 34225630 DOI: 10.2174/1568009621666210322122829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/29/2020] [Accepted: 12/10/2020] [Indexed: 11/22/2022]
Abstract
The interplay between cancer and obesity is multifactorial and complex with the increased risk of cancer development in obese individuals posing a significant threat. Obesity leads to the upregulation or hyperactivation of several oncogenic pathways in cancer cells, which drives them towards a deleterious phenotype. The cross-talk between cancer and obesity is considered a large contributing factor in the development of chemotherapeutic drug resistance and the resistance to radiotherapy. The link between obesity and the development of cancer is so strong that a medication that demonstrates effectiveness against both conditions would serve as an essential step. In this context, anti-obesity medications provide a worthy list of candidates based on their chemo-preventive potential and chemotherapeutic properties. The current study focuses on exploring the potential of anti-obesity medicines as dual anticancer drugs. These medications target several key signaling pathways (e.g., AMPK, PI3K/Akt/mTOR, MAPK, NF-κB, JNK/ERK), which prove to be crucial for both cancer growth and metastases. Some of these drugs also play an important role in attenuating the signaling and cellular events which incite cancer-obesity cross-talk and demonstrate efficient counteraction of neoplastic transformation. Thus, this review highlights a comprehensive view of the potential use of anti-obesity medicines to treat both cancer and obesity for patients exhibiting both comorbities.
Collapse
Affiliation(s)
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, India
| |
Collapse
|
77
|
Liu X, Wu S, Sun J, Ni S, Lu L, Hu W, Wei H, Zou Y, Li T, Li J, Mijiti B, Fang P, Zhao L, Zhou H, Xing X, Niu H, Cao Y. Changes in clinical trials of endocrine disorder and metabolism and nutrition disorder drugs in mainland China over 2010-2019. Pharmacol Res Perspect 2021; 9:e00729. [PMID: 33660404 PMCID: PMC7931124 DOI: 10.1002/prp2.729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/03/2023] Open
Abstract
With the improvements in relevant policies, laws, and regulations regarding drug clinical trials in China, the quantity and quality of drug clinical trials have gradually improved, and the development prospects of drug clinical trials for endocrine disorders and metabolism and nutrition disorders are promising. Based on information from the clinical trials from the online drug clinical trial registration platform of the National Medical Products Administration, we aimed to review and evaluate the development of clinical trials of drugs for endocrine disorders and metabolism and nutrition disorders in mainland China from 2010 to 2019, as well as the trends over time. A total of 861 trials were carried out on 254 types of drugs for endocrine disorders and metabolism and nutrition disorders, among which 531 (61.67%) involved endocrine disorders, and 330 (38.33%) addressed metabolism and nutrition disorders. The annual number of clinical trials has been increasing gradually, with a significant increase in 2017. Among them, the proportion of clinical trials with Chinese epidemiological characteristics was relatively large (Wu, Annual Report on Development Health Management and Health Industry in China, 2018). The largest number of trials were for diabetes drugs (55.63%), followed by trials of drugs for hyperlipidemia (19.4%) and those for hyperuricemia (7.9%). It was found that the geographical area of the leading units also showed obvious unevenness according to the analysis of the test unit data. Based on the statistics and evaluation of the data, comprehensive information is provided to support the cooperation of global pharmaceutical R&D companies and research units in China and the development of international multicenter clinical trials in China. This work additionally provides clinical trial units with a self‐evaluation of scientific research competitiveness and hospital development strategies. At the same time, it provides a reference with basic data for sponsors and stakeholders in these trials to determine their development strategy goals.
Collapse
Affiliation(s)
- Xin Liu
- School of Pharmacy, Qingdao University, Qingdao, Shandong, China
| | - Suqin Wu
- Phase I Clinical Research Center, The Traditional Chinese Medicine Hospital of Heze, Heze, China
| | - Jian Sun
- Department of Clinical Research, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Suiqin Ni
- Department of Pharmacy, Guangzhou First People's Hospital, Guangzhou, Guangdong, China
| | - Laichun Lu
- National Institute for Drug Clinical Trial, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hua Wei
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yanqin Zou
- GCP Office, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ting Li
- Clinical Research Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jintong Li
- Clinical Trial Center, China-Japan Friendship Hospital, Beijing, China
| | - Bugela Mijiti
- Clinical Research Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - PingFei Fang
- Phase I Clinical Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Limei Zhao
- Phase I Clinical Research Center, The Shengjing Hospital Affiliated China Medical University, Shenyang, Liaoning, China
| | - Huan Zhou
- Phase I Center of Durg Clinical Trial Institution, The Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaoming Xing
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haitao Niu
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yu Cao
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
78
|
Hur J, Kang JY, Kim YK, Lee SY, Lee HY. Glucagon-like peptide 1 receptor (GLP-1R) agonist relieved asthmatic airway inflammation via suppression of NLRP3 inflammasome activation in obese asthma mice model. Pulm Pharmacol Ther 2021; 67:102003. [PMID: 33588055 DOI: 10.1016/j.pupt.2021.102003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/29/2020] [Accepted: 02/07/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Obesity is a correctable factor for uncontrolled bronchial asthma. However, the effects of glucagon-like peptide-1 receptor (GLP-1R) agonist, a recently approved antiobestic drug, on airway hyperresponsiveness (AHR) and immune responses are not known. METHODS Mice were fed with high-fat diet (HFD, 60% fat) for 8 weeks to induce obesity. Ovalbumin (OVA) sensitization and challenges were performed for 7 weeks. The mice were injected intraperitoneally with GLP-1R agonist 5 times a week for 4 weeks after OVA sensitization. After AHR measurement, expression of Th2, Th17 cytokines, and interleukin (IL)-33 were measured in BALF and lung tissues. Moreover, IL-1β and activity level of nucleotide oligomerization domain-like receptor protein 3 (NLRP3) were analyzed to investigate the mechanism of GLP-1R agonist on asthmatic airway inflammation. RESULTS HFD induced significant weight gain, OVA sensitization and challenge in obese mice made eosinophilic airway inflammation, and increased AHR. Treatment with GLP-1R agonist-induced weight loss suppressed eosinophilic airway inflammation and decreased AHR. Expression of IL-4, 5, and 33 was increased in BALF of obese asthma mice followed by a decrease in response to GLP-1R agonist treatment. Moreover, lung tissue H&E stain revealed that peribronchial inflammation induced by obesity and OVA was effectively suppressed by GLP-1R agonist. Expressions of NLRP3, activated caspase-1, and IL-1β were increased in lung tissues of obese asthma mice and demonstrated a decrease in response to GLP-1R agonist treatment. CONCLUSIONS GLP-1R agonist effectively induced weight loss, suppressed eosinophilic bronchial airway inflammation, and AHR in obese asthma mice. These effects were mediated by suppression of NLRP3 inflammasome activity and IL-1β. GLP-1R agonist is proposed as a novel anti-asthmatic agent targeting the obese asthmatics.
Collapse
Affiliation(s)
- Jung Hur
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Young Kang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young Kyoon Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sook Young Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hwa Young Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
79
|
Kim SH, Abbasi F, Nachmanoff C, Stefanakis K, Kumar A, Kalra B, Savjani G, Mantzoros CS. Effect of the glucagon-like peptide-1 analogue liraglutide versus placebo treatment on circulating proglucagon-derived peptides that mediate improvements in body weight, insulin secretion and action: A randomized controlled trial. Diabetes Obes Metab 2021; 23:489-498. [PMID: 33140542 PMCID: PMC7856054 DOI: 10.1111/dom.14242] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 11/29/2022]
Abstract
AIM To examine how circulating glucagon-like peptide-1 (GLP-1) concentrations during liraglutide treatment relate to its therapeutic actions on glucose and weight, and to study the effects of liraglutide on other proglucagon-derived peptides (PGDPs), including endogenous GLP-1, glucagon-like peptide-2, glucagon, oxyntomodulin, glicentin and major proglucagon fragment, which also regulate metabolic and weight control. MATERIALS AND METHODS Adults who were overweight/obese (body mass index 27-40 kg/m2 ) with prediabetes were randomized to liraglutide (1.8 mg/day) versus placebo for 14 weeks. We used specific assays to measure exogenous (liraglutide, GLP-1 agonist [GLP-1A]) and endogenous (GLP-1E) GLP-1, alongside five other PGDP concentrations during a mixed meal tolerance test (MMTT) completed at baseline and at week 14 (liraglutide, n = 16; placebo, n = 19). Glucose during MMTT, steady-state plasma glucose (SSPG) concentration for insulin resistance and insulin secretion rate (ISR) were previously measured. MMTT area-under-the-curve (AUC) was calculated for ISR, glucose and levels of PGDPs. RESULTS Participants on liraglutide versus placebo had significantly (P ≤ .004) decreased weight (mean -3.6%, 95% CI [-5.2% to -2.1%]), SSPG (-32% [-43% to -22%]) and glucose AUC (-7.0% [-11.5% to -2.5%]) and increased ISR AUC (30% [16% to 44%]). GLP-1A AUC at study end was significantly (P ≤ .04) linearly associated with % decrease in weight (r = -0.54) and SSPG (r = -0.59) and increase in ISR AUC (r = 0.51) in the liraglutide group. Treatment with liraglutide significantly (P ≤ .005) increased exogenous GLP-1A AUC (median 310 vs. 262 pg/mL × 8 hours at baseline but decreased endogenous GLP-1E AUC [13.1 vs. 24.2 pmol/L × 8 hours at baseline]), as well as the five other PGDPs. Decreases in the PGDPs processed in the intestines are independent of weight loss, indicating a probable direct effect of GLP-1 receptor agonists to decrease their endogenous production in contrast to weight loss-dependent changes in glucagon and major proglucagon fragment that are processed in pancreatic alpha cells. CONCLUSIONS Circulating GLP-1A concentrations, reflecting liraglutide levels, predict improvement in weight, insulin action and secretion in a linear manner. Importantly, liraglutide also downregulates other PGDPs, normalization of the levels of which may provide additional metabolic and weight loss benefits in the future.
Collapse
Affiliation(s)
- Sun H. Kim
- Division of Endocrinology, Gerontology and Metabolism, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, S025, Stanford, CA 94305-5103
- Stanford Diabetes Research Center, Stanford University School of Medicine, 279 Campus Drive, B300, Stanford, CA 94305
| | - Fahim Abbasi
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, 870 Quarry Road, Stanford, CA 94305
- Stanford Diabetes Research Center, Stanford University School of Medicine, 279 Campus Drive, B300, Stanford, CA 94305
| | - Clara Nachmanoff
- Division of Endocrinology, Gerontology and Metabolism, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, S025, Stanford, CA 94305-5103
| | - Konstantinos Stefanakis
- Department of Medicine, Boston VA Healthcare system and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 330 Brookline Avenue, Boston, MA 02215
| | - Ajay Kumar
- Ansh Labs, 445 Medical Center Blvd, Webster, TX 77598
| | - Bhanu Kalra
- Ansh Labs, 445 Medical Center Blvd, Webster, TX 77598
| | - Gopal Savjani
- Ansh Labs, 445 Medical Center Blvd, Webster, TX 77598
| | - Christos S. Mantzoros
- Department of Medicine, Boston VA Healthcare system and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 330 Brookline Avenue, Boston, MA 02215
| |
Collapse
|
80
|
Shadboorestan A, Tarighi P, Koosha M, Faghihi H, Ghahremani MH, Montazeri H. Growth Promotion and Increased ATP-Binding Cassette Transporters Expression by Liraglutide in Triple Negative Breast Cancer Cell Line MDA-MB-231. Drug Res (Stuttg) 2021; 71:307-311. [PMID: 33477190 DOI: 10.1055/a-1345-7890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Glucagon-like petide-1 (GLP-1) agonists such as liraglutide are widely employed in type 2 diabetes due to their glucose reducing properties and small risk of hypoglycemia. Recently, it has been shown that GLP-1agonists can inhibit breast cancer cells growth. Nonetheless, concerns are remained about liraglutide tumor promoting effects as stated by population studies. MATERIAL AND METHODS We evaluated the effects liraglutide on proliferation of MDA-MB-231 cells by MTT assay and then ATP-binding cassette (ABC) transporters expressions assessed by Real time PCR. Statistical comparisons were made using one-way analysis of variance followed by a post hoc Dunnett test. RESULTS Here, we report that liraglutide can stimulate the growth of highly invasive triple negative cell line MDA-MB-231; which can be attributed to AMPK-dependent epithelial-mesenchymal transition (EMT) happening in MDA-MB-231 context. Toxicity effects were only observed with concentrations far above the serum liraglutide concentration. ATP-binding cassette (ABC) transporters expressions were upregulated, indicating the possible drug resistance and increased EMT. CONCLUSION In conclusion, these results suggest that liraglutide should be used with caution in patients who are suffering or have the personal history of triple negative breast cancer. However, more detailed studies are required to deepen understanding of liraglutide consequences in triple negative breast cancer. ▶Graphical Abstract.
Collapse
Affiliation(s)
- Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Koosha
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Homa Faghihi
- Department of Pharmaceutics, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Montazeri
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
81
|
Medak KD, Shamshoum H, Peppler WT, Wright DC. GLP1 receptor agonism protects against acute olanzapine-induced hyperglycemia. Am J Physiol Endocrinol Metab 2020; 319:E1101-E1111. [PMID: 33017220 DOI: 10.1152/ajpendo.00309.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Olanzapine is a second-generation antipsychotic (SGA) used in the treatment of schizophrenia and a number of off-label conditions. Although effective in reducing psychoses, acute olanzapine treatment causes hyperglycemia. Pharmacological agonists of the glucagon-like peptide 1 (GLP1) receptor have been shown to offset weight gain associated with chronic SGA administration. It is not known whether GLP1 receptor agonism would mitigate the acute metabolic side effects of SGAs. Within this context, we sought to determine whether pharmacological targeting of the GLP1 receptor would be sufficient to protect against acute olanzapine-induced impairments in glucose and lipid homeostasis. Male C57BL/6J mice were treated with olanzapine and/or the GLP1 receptor agonists liraglutide and exendin 4, and the blood glucose response was measured. We found that liraglutide or exendin 4 completely protected male mice against olanzapine-induced hyperglycemia in parallel with increases in circulating insulin (liraglutide, exendin 4) and reductions in glucagon (liraglutide only). In additional experiments, female mice, which are protected from acute olanzapine-induced hyperglycemia, displayed hyperglycemia, increases in glucagon, and reductions in insulin when treated with olanzapine and the GLP1 receptor antagonist exendin 9-39 compared with olanzapine treatment alone. Although in some instances the pharmacological targeting of the GLP1 receptor attenuated indexes of olanzapine-induced lipolysis, increases in liver triglyceride accumulation were not impacted. Our findings provide evidence that signaling through the GLP1 receptor can remarkably influence acute olanzapine-induced hyperglycemia, and from the standpoint of protecting against acute excursions in blood glucose, GLP1 receptor agonists should be considered as an adjunct treatment approach.NEW & NOTEWORTHY Antipsychotic drugs cause rapid perturbations in glucose and lipid metabolism. In the present study we have demonstrated that cotreatment with glucagon-like peptide 1 (GLP1) receptor agonists, such as liraglutide, protects against metabolic dysregulation caused by the antipsychotic drug olanzapine. These findings suggest that pharmacological targeting of the GLP1 receptor could be an effective adjunct approach to mitigate the harmful acute metabolic side effects of antipsychotic drugs.
Collapse
Affiliation(s)
- Kyle D Medak
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Hesham Shamshoum
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Willem T Peppler
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
82
|
He S, Zhang J, Wang T, Wu P, Liu J, Li M, Ma B. The Biological Role of Optimized Recombinant Oral Long-Acting Glucagon Like Peptide-1 and Its Impact on the Expression of Genes Associated with Glucose Metabolism of Diabetes. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
83
|
Glucagon-Like Peptide-1 Analog Liraglutide Attenuates Pressure-Overload Induced Cardiac Hypertrophy and Apoptosis through Activating ATP Sensitive Potassium Channels. Cardiovasc Drugs Ther 2020; 35:87-101. [PMID: 33057968 DOI: 10.1007/s10557-020-07088-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE This study aimed to investigate whether inhibition of glucagon-like peptide-1 (GLP-1) on pressure overload induced cardiac hypertrophy and apoptosis is related to activation of ATP sensitive potassium (KATP) channels. METHODS Male SD rats were randomly divided into five groups: sham, control (abdominal aortic constriction), GLP-1 analog liraglutide (0.3 mg/kg/twice day), KATP channel blocker glibenclamide (5 mg/kg/day), and liraglutide plus glibenclamide. RESULTS Relative to the control on week 16, liraglutide upregulated protein and mRNA levels of KATP channel subunits Kir6.2/SUR2 and their expression in the myocardium, vascular smooth muscle, aortic endothelium, and cardiac microvasculature. Consistent with a reduction in aortic wall thickness (61.4 ± 7.6 vs. 75.0 ± 7.6 μm, p < 0.05), liraglutide enhanced maximal aortic endothelium-dependent relaxation in response to acetylcholine (71.9 ± 8.7 vs. 38.6 ± 4.8%, p < 0.05). Along with a reduction in heart to body weight ratio (2.6 ± 0.1 vs. 3.4 ± 0.4, mg/g, p < 0.05) by liraglutide, hypertrophied cardiomyocytes (371.0 ± 34.4 vs. 933.6 ± 156.6 μm2, p < 0.05) and apoptotic cells (17.5 ± 8.2 vs. 44.7 ± 7.9%, p < 0.05) were reduced. Expression of anti-apoptotic protein BCL-2 and contents of myocardial ATP were augmented, and expression of cleaved-caspase 3 and levels of serum Tn-I/-T were reduced. Echocardiography and hemodynamic measurement showed that cardiac systolic function was enhanced as evidenced by increased ejection fraction (88.4 ± 4.8 vs. 73.8 ± 5.1%, p < 0.05) and left ventricular systolic pressure (105.2 ± 10.8 vs. 82.7 ± 7.9 mmHg, p < 0.05), and diastolic function was preserved as shown by a reduction of ventricular end-diastolic pressure (-3.1 ± 2.9 vs. 6.7 ± 2.8 mmHg, p < 0.05). Furthermore, left ventricular internal diameter at end-diastole (5.8 ± 0.5 vs. 7.7 ± 0.6 mm, p < 0.05) and left ventricular internal diameter at end-systole (3.0 ± 0.6 vs. 4.7 ± 0.4 mm, p < 0.05) were improved. Dietary administration of glibenclamide alone did not alter all the parameters measured but significantly blocked liraglutide-exerted cardioprotection. CONCLUSION Liraglutide ameliorates cardiac hypertrophy and apoptosis, potentially via activating KATP channel-mediated signaling pathway. These data suggest that liraglutide might be considered as an adjuvant therapy to treat patients with heart failure.
Collapse
|
84
|
Tibaldi J, Mercado ME, Strong J. How Effective Is the Fixed-Ratio Combination of Insulin Degludec and Liraglutide (IDegLira) in Different Patient Populations, and When Should It Be Used in Clinical Practice? Clin Diabetes 2020; 38:339-347. [PMID: 33132503 PMCID: PMC7566936 DOI: 10.2337/cd20-0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The efficacy and safety of the fixed-ratio combination of insulin degludec (degludec) and liraglutide (IDegLira) were confirmed in the DUAL clinical trial program, in which IDegLira demonstrated superior or noninferior glycemic control over comparators in addition to its low risks of hypoglycemia and weight gain. This article identifies the patient types for whom IDegLira is most appropriate by reviewing the DUAL results and subsequent post hoc analyses and presenting real-world cases in which IDegLira has been used effectively in U.S. clinical practice. In the clinic, IDegLira has been used effectively when patients wanted to avoid more complex injectable regimens, particularly those with renal insufficiency for whom treatment options are limited.
Collapse
Affiliation(s)
- Joseph Tibaldi
- Department of Medicine, New York Presbyterian Queens, New York, NY
| | | | - Jodi Strong
- Ascension St. Michael’s Hospital, Stevens Point, WI
| |
Collapse
|
85
|
Liu Q, Cai BY, Zhu LX, Xin X, Wang X, An ZM, Li S, Hu YY, Feng Q. Liraglutide modulates gut microbiome and attenuates nonalcoholic fatty liver in db/db mice. Life Sci 2020; 261:118457. [PMID: 32961235 DOI: 10.1016/j.lfs.2020.118457] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
AIMS Liraglutide, a glucagon-like peptide-1(GLP-1) analog, is effective for the treatment of type II diabetes and nonalcoholic fatty liver disease (NAFLD). It was proved that gut microbiome plays a role in the development of NAFLD. This study aims to observe the therapeutic effect of liraglutide on nonalcoholic fatty liver (NAFL) in mice and effect on the gut microbial community. MAIN METHODS The db/db mice were used as the NAFL model, and lactulose was used as the positive control drug. Hepatic triglyceride, liver histopathology, and indices of glucolipid metabolism, including fasting blood glucose, fasting insulin, insulin resistance index and blood lipids were evaluated after treatment of liraglutide or lactulose for four weeks. The colonic microbiome of the mice was analyzed by 16S rRNA gene sequencing. KEY FINDINGS Liraglutide significantly reduced the hepatic triglyceride (TG) content, alanine aminotransferase (ALT) activity, fasting blood glucose, insulin resistance and serum low density lipoprotein (LDL) in the db/db mice. In terms of hepatic pathologies, hepatic steatosis was significantly improved after liraglutide treating. Microbiome analysis revealed that liraglutide significantly increased the abundance of Akkermansia, Romboutsia, norank_f_Bacteroidales_S24-7_group, and decreased the abundance of Klebsiella, Anaerotruncus, Bacteroides, Lachnospiraceae_UCG-001, Lachnospiraceae_NK4A136_group, Ruminiclostridium, uncultured_f__Ruminococcaceae, and Desulfovibrio. SIGNIFICANCE The results of the present study suggested that liraglutide had a certain therapeutic effect on fatty liver in db/db mice and had an impact on the composition of the intestinal microflora, especially some bacteria related to glucolipid metabolism and intestinal inflammation. Affecting gut microbiome might be a potential mechanism of liraglutide in treating NAFL.
Collapse
Affiliation(s)
- Qian Liu
- Shuguang Hospital Affliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203,China; Baoshan District Hospital of Integrated Traditional Chinese Medicine of Shanghai, Shanghai 201900, China
| | - Bei-Yu Cai
- Shuguang Hospital Affliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203,China
| | - Li-Xin Zhu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 510655, China
| | - Xin Xin
- Shuguang Hospital Affliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203,China
| | - Xin Wang
- Shuguang Hospital Affliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203,China
| | - Zi-Ming An
- Shuguang Hospital Affliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203,China
| | - Shuang Li
- Baoshan District Hospital of Integrated Traditional Chinese Medicine of Shanghai, Shanghai 201900, China.
| | - Yi-Yang Hu
- Shuguang Hospital Affliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203,China.
| | - Qin Feng
- Shuguang Hospital Affliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203,China.
| |
Collapse
|
86
|
Pilati D, Howard KA. Albumin-based drug designs for pharmacokinetic modulation. Expert Opin Drug Metab Toxicol 2020; 16:783-795. [DOI: 10.1080/17425255.2020.1801633] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Diego Pilati
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C Denmark
| | - Kenneth A. Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C Denmark
| |
Collapse
|
87
|
Quast DR, Schenker N, Menge BA, Nauck MA, Kapitza C, Meier JJ. Effects of Lixisenatide Versus Liraglutide (Short- and Long-Acting GLP-1 Receptor Agonists) on Esophageal and Gastric Function in Patients With Type 2 Diabetes. Diabetes Care 2020; 43:2137-2145. [PMID: 32647054 DOI: 10.2337/dc20-0720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/09/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Short-acting glucagon-like peptide 1 receptor agonists (GLP-1 RAs) decelerate gastric emptying more than long-acting GLP-1 RAs. Delayed gastric emptying is a risk factor for gastroesophageal reflux disease. We aimed to measure esophageal reflux and function as well as gastric emptying and acid secretion during treatment with short-acting (lixisenatide) and long-acting (liraglutide) GLP-1 RAs. RESEARCH DESIGN AND METHODS A total of 57 subjects with type 2 diabetes were randomized to a 10-week treatment with lixisenatide or liraglutide. Changes from baseline in the number of reflux episodes during 24-h pH registration in the lower esophagus, lower esophagus sphincter pressure, gastric emptying (13C-sodium octanoate acid breath test), and gastric acid secretion (13C-calcium carbonate breath test) were analyzed. RESULTS Gastric emptying half-time was delayed by 52 min (Δ 95% CI 16, 88) with lixisenatide (P = 0.0065) and by 25 min (3, 46) with liraglutide (P = 0.025). There was no difference in the number of reflux episodes (mean ± SEM 33.7 ± 4.1 vs. 40.1 ± 5.3 for lixisenatide and liraglutide, respectively, P = 0.17) or the extent of gastroesophageal reflux (DeMeester score) (35.1 ± 6.7 vs. 39.7 ± 7.5, P = 0.61), with similar results for the individual GLP-1 RAs. No significant changes from baseline in other parameters of esophageal motility and lower esophageal sphincter function were observed. Gastric acidity decreased significantly by -20.7% (-40.6, -0.8) (P = 0.042) with the GLP-1 RAs. CONCLUSIONS Lixisenatide exerted a more pronounced influence on gastric emptying after breakfast than liraglutide. Neither lixisenatide nor liraglutide had significant effects on esophageal reflux or motility. Gastric acid secretion appears to be slightly reduced by GLP-1 RAs.
Collapse
Affiliation(s)
- Daniel R Quast
- Diabetes Division, Department of Medicine I, St Josef-Hospital Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Nina Schenker
- Diabetes Division, Department of Medicine I, St Josef-Hospital Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Björn A Menge
- Diabetes Division, Department of Medicine I, St Josef-Hospital Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Michael A Nauck
- Diabetes Division, Department of Medicine I, St Josef-Hospital Bochum, Ruhr-University Bochum, Bochum, Germany
| | | | - Juris J Meier
- Diabetes Division, Department of Medicine I, St Josef-Hospital Bochum, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
88
|
Petri KCC, Hale PM, Hofman PL, Jacobsen LV. Liraglutide pharmacokinetics and exposure-response in pediatric patients with type 2 diabetes. J Pediatr Endocrinol Metab 2020; 33:1289-1292. [PMID: 32817582 DOI: 10.1515/jpem-2020-0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Objectives Based on the ellipse trial, liraglutide was recently approved for use in pediatric patients with type 2 diabetes. We report the comparative exposure of liraglutide in pediatric vs. adult patients. Methods In this pharmacokinetic (PK) and exposure-response meta-analysis, data from two pediatric trials (including ellipse) and two adult trials of liraglutide were compiled (1,137 PK observations from 116 patients) to determine the impact of body weight, age and sex on liraglutide exposure. The exposure-response relationship for glycated hemoglobin (HbA1c) and body weight was compared between pediatric and adult patients. Additionally, the relationships between exposure and change from baseline in body mass index (BMI) and BMI standard deviation score (SDS) were assessed. Results The same liraglutide dose showed comparable exposure levels in pediatric and adult patients. Body weight and sex were the most important covariates for liraglutide exposure. There was an increasing response with higher liraglutide concentrations, and greater reductions were observed from baseline in HbA1c at 26 weeks vs. placebo. A trend toward lower body weight, BMI and BMI SDS was observed at 26 weeks. Conclusions These results support use of the same liraglutide dosing regimen in children and adolescents, aged ≥10 years, as that used in adults.
Collapse
Affiliation(s)
| | | | - Paul L Hofman
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
89
|
Ferrari F, Moretti A, Villa RF. The treament of hyperglycemia in acute ischemic stroke with incretin-based drugs. Pharmacol Res 2020; 160:105018. [PMID: 32574826 DOI: 10.1016/j.phrs.2020.105018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/21/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Stroke is a major cause of mortality and morbidity worldwide. Considerable experimental and clinical evidence suggests that both diabetes mellitus (DM) and post-stroke hyperglycemia are associated with increased mortality rate and worsened clinical conditions in acute ischemic stroke (AIS) patients. Insulin treatment does not seem to provide convincing benefits for these patients, therefore prompting a change of strategy. The selective agonists of Glucagon-Like Peptide-1 Receptors (GLP-1Ras) and the Inhibitors of Dipeptidyl Peptidase-IV (DPP-IVIs, gliptins) are two newer classes of glucose-lowering drugs used for the treatment of DM. This review examines in detail the rationale for their development and the physicochemical, pharmacokinetic and pharmacodynamic properties and clinical activities. Emphasis will be placed on their neuroprotective effects at cellular and molecular levels in experimental models of acute cerebral ischemia. In perspective, an adequate basis does exist for a novel therapeutic approach to hyperglycemia in AIS patients through the additive treatment with GLP-1Ras plus DPP-IVIs.
Collapse
Affiliation(s)
- Federica Ferrari
- Department of Advanced Diagnostic and Therapeutic Technologies, Section of Neuroradiology, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162 Milano, Italy; Departments of Biology-Biotechnology and Chemistry, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Antonio Moretti
- Departments of Biology-Biotechnology and Chemistry, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Roberto Federico Villa
- Departments of Biology-Biotechnology and Chemistry, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy.
| |
Collapse
|
90
|
Staby A, Steensgaard DB, Haselmann KF, Marino JS, Bartholdy C, Videbæk N, Schelde O, Bosch-Traberg H, Spang LT, Asgreen DJ. Influence of Production Process and Scale on Quality of Polypeptide Drugs: a Case Study on GLP-1 Analogs. Pharm Res 2020; 37:120. [DOI: 10.1007/s11095-020-02817-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/05/2020] [Indexed: 11/30/2022]
|
91
|
Iorga RA, Bacalbasa N, Carsote M, Bratu OG, Stanescu AMA, Bungau S, Pantis C, Diaconu CC. Metabolic and cardiovascular benefits of GLP-1 agonists, besides the hypoglycemic effect (Review). Exp Ther Med 2020; 20:2396-2400. [PMID: 32765722 DOI: 10.3892/etm.2020.8714] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Patients with type 2 diabetes exhibit higher cardiovascular risk than normal individuals. Optimal blood glucose levels are rarely achieved in diabetic patients. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have emerged as a new antidiabetic drug class with multiple metabolic effects. Some trials have evaluated their safety, but it has been recently demonstrated that this new class has cardiovascular benefits, through other mechanisms than glycemic control. The use of GLP-1RAs was associated with a significant reduction of cardiovascular and all-cause mortality, with a safe profile related to pancreatitis or thyroid cancer, as compared with placebo. This review presents the cardiovascular and metabolic benefits of GLP-1 RAs versus placebo, in patients with type 2 diabetes. Semaglutide and liraglutide demonstrated a reduction in cardiovascular events, with similar rates on cardiovascular mortality. Ongoing trials assess the cardiovascular benefits and side effects of dulaglutide treatment. Exenatide and liraglutide demonstrated the decrease of blood pressure values, weight reduction and improvement of dyslipidemia. Liraglutide induced, both in vivo and in vitro, an improvement of blood circulation, increasing the nitric oxide level and inhibiting the adhesion and procoagulant factors. Also, liraglutide demonstrated beneficial effects on cardiac remodeling after myocardial infarction, but more large trials are required. However, the international guidelines recommend using GLP-1 RAs as first-line therapy in type 2 diabetes patients with high cardiovascular risk or as first-line agents in patients intolerant to metformin.
Collapse
Affiliation(s)
- Roua Anamaria Iorga
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Nicolae Bacalbasa
- Department 13 Obstetrics-Gynecology, 'Ion Cantacuzino' Clinical Hospital, 'Carol Davila' University of Medicine and Pharmacy, 030167 Bucharest, Romania
| | - Mara Carsote
- Department 2 Endocrinology, National Institute of Endocrinology 'C.I. Parhon', 'Carol Davila' University of Medicine and Pharmacy, 011863 Bucharest, Romania
| | - Ovidiu Gabriel Bratu
- Urology Department, Emergency University Central Military Hospital, 'Carol Davila' University of Medicine and Pharmacy, 010825 Bucharest, Romania.,Academy of Romanian Scientists, 050045 Bucharest, Romania
| | | | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Carmen Pantis
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Camelia Cristina Diaconu
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 'Carol Davila' University of Medicine and Pharmacy, 014461 Bucharest, Romania
| |
Collapse
|
92
|
Xing Y, Chen J, Zhao L, Ma H. Analysis of the effect of liraglutide on glycemic variability in patients with type 2 diabetes. Endocr J 2020; 67:455-468. [PMID: 31996492 DOI: 10.1507/endocrj.ej19-0530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The efficacy of liraglutide in the treatment of glycemic variability in type 2 diabetic patients remains to be fully elucidated. Some studies evaluated the efficacy and safety of liraglutide in glycemic variability, and this meta-analysis was performed to evaluate the accuracy of the results of existing studies on the efficacy of liraglutide. We conducted a comprehensive search for all relevant studies published in PubMed, EMBASE, Cochrane Library, and China Academic Journal Full-Text Database from the beginning of 2011 to October 31, 2019. The mean ± SD and 95% confidence interval were used for evaluation, and subgroup and sensitivity analysis were carried out. Publication bias was estimated by funnel plots and Egger's tests. A total of 16 studies were included in the meta-analysis involving 492 participants. MAGE (mean amplitude of glycemic excursion), LAGE (largest amplitude of glycemic excursions), SD (standard deviation of blood glucose), and MODD (mean of daily differences) were collected to reflect the variability of blood glucose. The glycemic variability indexes of patients before and after treatment with liraglutide were compared. Patients with treatment had lower glycemic variability compared with patients receiving treatment of liraglutide. Compared with the patients before the treatment, the patients after the treatment had a smaller glycemic variability (MAGE: I2 = 92%, p < 0.01, Z = 11.91, p < 0.01, MD = -2.78, 95%CI: -3.24 - -2.32; LAGE: I2 = 76%, p = 0.08, Z = 9.94, p < 0.01, MD = -2.20, 95%CI: -2.59 - -1.81; MODD: I2 = 74%, p = 0.002, Z = 14.03, p < 0.01, MD = -0.90, 95%CI: -1.02 - -0.77; SD: I2 = 93%, p < 0.01, Z = 3.62, p < 0.01, SMD = -1.77, 95%CI: -2.73 - -0.81). Sensitivity analysis showed that our results were reliable and no evidence of significant publication bias was detected. The results of this study suggest that patients with type 2 diabetes treated with liraglutide are associated with lower glycemic variability.
Collapse
Affiliation(s)
- Yuling Xing
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang 050017, China
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Jinhu Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang 050017, China
| | - Liying Zhao
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Huijuan Ma
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang 050017, China
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital Shijiazhuang, Hebei 050051, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| |
Collapse
|
93
|
Wolff M, Schüler A, Gast K, Seckler R, Evers A, Pfeiffer-Marek S, Kurz M, Nagel N, Haack T, Wagner M, Thalhammer A. Self-Assembly of Exendin-4-Derived Dual Peptide Agonists is Mediated by Acylation and Correlated to the Length of Conjugated Fatty Acyl Chains. Mol Pharm 2020; 17:965-978. [DOI: 10.1021/acs.molpharmaceut.9b01195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Martin Wolff
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Anja Schüler
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Klaus Gast
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Robert Seckler
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Andreas Evers
- Sanofi-Aventis Deutschland GmbH, Industrial Park Höchst, D-65926 Frankfurt, Germany
| | | | - Michael Kurz
- Sanofi-Aventis Deutschland GmbH, Industrial Park Höchst, D-65926 Frankfurt, Germany
| | - Norbert Nagel
- Sanofi-Aventis Deutschland GmbH, Industrial Park Höchst, D-65926 Frankfurt, Germany
| | - Torsten Haack
- Sanofi-Aventis Deutschland GmbH, Industrial Park Höchst, D-65926 Frankfurt, Germany
| | - Michael Wagner
- Sanofi-Aventis Deutschland GmbH, Industrial Park Höchst, D-65926 Frankfurt, Germany
| | - Anja Thalhammer
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| |
Collapse
|
94
|
Villalba A, Rodriguez-Fernandez S, Perna-Barrull D, Ampudia RM, Gomez-Muñoz L, Pujol-Autonell I, Aguilera E, Coma M, Cano-Sarabia M, Vázquez F, Verdaguer J, Vives-Pi M. Repurposed Analog of GLP-1 Ameliorates Hyperglycemia in Type 1 Diabetic Mice Through Pancreatic Cell Reprogramming. Front Endocrinol (Lausanne) 2020; 11:258. [PMID: 32477262 PMCID: PMC7237704 DOI: 10.3389/fendo.2020.00258] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease caused by the destruction of the insulin-producing β-cells. An ideal immunotherapy should combine the blockade of the autoimmune response with the recovery of functional target cell mass. With the aim to develop new therapies for type 1 diabetes that could contribute to β-cell mass restoration, a drug repositioning analysis based on systems biology was performed to identify the β-cell regenerative potential of commercially available compounds. Drug repositioning is a strategy used for identifying new uses for approved drugs that are outside the scope of the medical indication. A list of 28 non-synonymous repurposed drug candidates was obtained, and 16 were selected as diabetes mellitus type 1 treatment candidates regarding pancreatic β-cell regeneration. Drugs with poor safety profile were further filtered out. Lastly, we selected liraglutide for its predictive efficacy values for neogenesis, transdifferentiation of α-cells, and/or replication of pre-existing β-cells. Liraglutide is an analog of glucagon-like peptide-1, a drug used in patients with type 2 diabetes. Liraglutide was tested in immunodeficient NOD-Scid IL2rg-/- (NSG) mice with type 1 diabetes. Liraglutide significantly improved the blood glucose levels in diabetic NSG mice. During the treatment, a significant increase in β-cell mass was observed due to a boost in β-cell number. Both parameters were reduced after withdrawal. Interestingly, islet bihormonal glucagon+insulin+ cells and insulin+ ductal cells arose during treatment. In vitro experiments showed an increase of insulin and glucagon gene expression in islets cultured with liraglutide in normoglycemia conditions. These results point to β-cell replacement, including transdifferentiation and neogenesis, as aiding factors and support the role of liraglutide in β-cell mass restoration in type 1 diabetes. Understanding the mechanism of action of this drug could have potential clinical relevance in this autoimmune disease.
Collapse
Affiliation(s)
- Adrian Villalba
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Silvia Rodriguez-Fernandez
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - David Perna-Barrull
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Rosa-Maria Ampudia
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Laia Gomez-Muñoz
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Irma Pujol-Autonell
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Eva Aguilera
- Endocrinology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | | | - Mary Cano-Sarabia
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and The Barcelona Institute of Science and Technology, Bellaterra, Spain
| | - Federico Vázquez
- Endocrinology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Joan Verdaguer
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, IRBLleida, University of Lleida, Lleida, Spain
- CIBER of Diabetes and Associated Metabolic Disease (CIBERDEM), ISCIII, Madrid, Spain
| | - Marta Vives-Pi
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
- CIBER of Diabetes and Associated Metabolic Disease (CIBERDEM), ISCIII, Madrid, Spain
- *Correspondence: Marta Vives-Pi
| |
Collapse
|
95
|
Lin CH, Shao L, Zhang YM, Tu YJ, Zhang Y, Tomlinson B, Chan P, Liu Z. An evaluation of liraglutide including its efficacy and safety for the treatment of obesity. Expert Opin Pharmacother 2019; 21:275-285. [PMID: 31790314 DOI: 10.1080/14656566.2019.1695779] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The prevalence of obesity is increasing worldwide and associated conditions, particularly type 2 diabetes mellitus (T2DM), also show increasing prevalence. Lifestyle intervention should be the first line of management for obesity but additional pharmacotherapy is often required and bariatric surgery is appropriate in more severe cases. Drugs acting as glucagon-like peptide-1 receptor agonists (GLP-1RAs) developed for the management of T2DM reduce body weight and liraglutide is the first GLP-1RA to be approved for the treatment of obesity in patients with and without T2DM.Areas covered: In this review of relevant published material, the authors summarize the pharmacokinetics, pharmacodynamics, clinical efficacy and safety of liraglutide for the treatment of obesity.Expert opinion: Liraglutide effectively reduces body weight and body fat through mechanisms involving reduced appetite and lowered energy intake, independent of its glucose-lowering effects. Like most of the other medications currently available for obesity, liraglutide has some common adverse effects, although generally not serious ones. Liraglutide has additional benefits in reducing cardiovascular events in patients with T2DM but the cost and the need for daily injections may limit its use in obesity. Newer GLP-1RAs, such as semaglutide, or other drugs in development for obesity may have advantages over liraglutide.
Collapse
Affiliation(s)
- Chen-Hsiu Lin
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li Shao
- The VIP Department, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Mei Zhang
- The VIP Department, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Ju Tu
- The VIP Department, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuzhen Zhang
- Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Brian Tomlinson
- Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Paul Chan
- Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | - Zhongmin Liu
- Department of Cardiac Surgery, Shanghai East Hospital, Tongji University, Shanghai, China
| |
Collapse
|
96
|
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30:72-130. [PMID: 31767182 PMCID: PMC6812410 DOI: 10.1016/j.molmet.2019.09.010] [Citation(s) in RCA: 915] [Impact Index Per Article: 183.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - B Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - D D'Alessio
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - D J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, M5G1X5, Canada
| | - P R Flatt
- SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - A Fritsche
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - F Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - H J Grill
- Institute of Diabetes, Obesity and Metabolism, Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - J J Meier
- Diabetes Division, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M A Nauck
- Diabetes Center Bochum-Hattingen, St Josef Hospital (Ruhr-Universität Bochum), Bochum, Germany
| | - D Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | - A Pocai
- Cardiovascular & ImmunoMetabolism, Janssen Research & Development, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - F Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - D A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DL-2200, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M Tang-Christensen
- Obesity Research, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - S C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - R D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
97
|
Erdoğan MA, Taşkıran E, Yiğittürk G, Erbaş O, Taşkıran D. The investigation of therapeutic potential of oxytocin and liraglutide on vincristine-induced neuropathy in rats. J Biochem Mol Toxicol 2019; 34:e22415. [PMID: 31682045 DOI: 10.1002/jbt.22415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 09/11/2019] [Accepted: 10/07/2019] [Indexed: 11/09/2022]
Abstract
The aim of this study was to assess the therapeutic potential of oxytocin and liraglutide (LIR), a GLP-1 analogue, in a rat model of vincristine-induced neuropathy. Rats were injected with vincristine (VCR) at a dose of 4 mg/kg twice a week for 5 weeks. The VCR-administered rats were divided into three groups and received saline, oxytocin, or liraglutide simultaneously with VCR. After the treatment period, electrophysiological, biochemical, histological, and immunohistochemical investigations were performed. Electromyography (EMG) recordings demonstrated significant alterations in the VCR + saline group (p < .001). Also, motor performance was decreased in the VCR + saline group (p < .05). Histologically, the axonal diameter was decreased in all groups. VCR + saline group showed significantly increased lipid peroxidation and decreased nerve growth factor (NGF) expression. However, the administration of oxytocin and liraglutide significantly prevented the EMG alterations, lipid peroxidation, and reduction in neuronal NGF expression. On the basis of these findings, oxytocin and liraglutide may be considered as potential agents for the prevention of VCR-induced neuropathy.
Collapse
Affiliation(s)
- Mümin A Erdoğan
- Department of Physiology, Katip Çelebi University School of Medicine, Izmir, Turkey
| | - Emin Taşkıran
- Department of Internal Medicine, Ege University School of Medicine, Izmir, Turkey
| | - Gürkan Yiğittürk
- Department of Histology and Embryology, Muğla Sıtkı Koçman University School of Medicine, Izmir, Turkey
| | - Oytun Erbaş
- Department of Physiology, Istanbul Bilim University School of Medicine, Istanbul, Turkey
| | - Dilek Taşkıran
- Department of Physiology, Ege University School of Medicine, Izmir, Turkey
| |
Collapse
|
98
|
Cope RJ, Fischetti BS, Kavanagh RK, Lepa TM, Sorbera MA. Safety and Efficacy of Weight-Loss Pharmacotherapy in Persons Living with HIV: A Review of the Literature and Potential Drug-Drug Interactions with Antiretroviral Therapy. Pharmacotherapy 2019; 39:1204-1215. [PMID: 31602703 DOI: 10.1002/phar.2342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The prevalence of obesity among persons living with human immunodeficiency virus (HIV) has increased significantly and may be linked to the use of antiretroviral therapy. Although weight-loss medications approved by the U.S. Food and Drug Administration are recommended as an adjunct to diet and exercise to treat obesity in the general population, little is known about the safety and efficacy of these drugs specifically in persons living with HIV. We review the available evidence regarding the effective use of weight-loss pharmacotherapy in persons living with HIV and its potential to interact with antiretroviral therapy. Persons living with HIV are frequently not reported or included in clinical trials for weight-loss medications; however, treatment efficacy is likely similar to the general population. Several important reported or theoretical drug-drug interactions exist between antiobesity pharmacotherapy and antiretroviral therapy. Orlistat is a weight-loss drug available in the United States without a prescription and was linked to HIV viral rebound in several case reports. Clinicians should be aware of the potential for loss of HIV viremia control when certain weight-loss pharmacotherapies are used in combination with antiretrovirals.
Collapse
|
99
|
He Z, Gao Y, Lieu L, Afrin S, Cao J, Michael NJ, Dong Y, Sun J, Guo H, Williams KW. Direct and indirect effects of liraglutide on hypothalamic POMC and NPY/AgRP neurons - Implications for energy balance and glucose control. Mol Metab 2019; 28:120-134. [PMID: 31446151 PMCID: PMC6822260 DOI: 10.1016/j.molmet.2019.07.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The long-acting glucagon-like peptide-1 receptor (GLP-1R) agonist, liraglutide, stimulates insulin secretion and efficiently suppresses food intake to reduce body weight. As such, liraglutide is growing in popularity in the treatment of diabetes and chronic weight management. Within the brain, liraglutide has been shown to alter the activity of hypothalamic proopiomelanocortin (POMC) and Neuropeptide Y/Agouti-related peptide (NPY/AgRP) neurons. Moreover, the acute activities of POMC and NPY neurons have been directly linked to feeding behavior, body weight, and glucose metabolism. Despite the increased usage of liraglutide and other GLP-1 analogues as diabetic and obesity interventions, the cellular mechanisms by which liraglutide alters the activity of metabolically relevant neuronal populations are poorly understood. METHODS In order to resolve this issue, we utilized neuron-specific transgenic mouse models to identify POMC and NPY neurons for patch-clamp electrophysiology experiments. RESULTS We found that liraglutide directly activated arcuate POMC neurons via TrpC5 channels, sharing a similar mechanistic pathway to the adipose-derived peptide leptin. Liraglutide also indirectly increases excitatory tone to POMC neurons. In contrast, liraglutide inhibited NPY/AgRP neurons through post-synaptic GABAA receptors and enhanced activity of pre-synaptic GABAergic neurons, which required both TrpC5 subunits and K-ATP channels. In support of an additive role of leptin and liraglutide in suppressing food intake, leptin potentiated the acute effects of liraglutide to activate POMC neurons. TrpC5 subunits in POMC neurons were also required for the intact pharmacological effects of liraglutide on food intake and body weight. Thus, the current study adds to recent work from our group and others, which highlight potential mechanisms to amplify the effects of GLP-1 agonists in vivo. Moreover, these data highlight multiple sites of action (both pre- and post-synaptic) for GLP-1 agonists on this circuit. CONCLUSIONS Taken together, our results identify critical molecular mechanisms linking GLP-1 analogues in arcuate POMC and NPY/AgRP neurons with metabolism.
Collapse
Affiliation(s)
- Zhenyan He
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Yong Gao
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA; National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Linh Lieu
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Sadia Afrin
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Jianhong Cao
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA; Pi-wei Institute, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China
| | - Natalie J Michael
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Yanbin Dong
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA; Pi-wei Institute, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China
| | - Jia Sun
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Hongbo Guo
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Kevin W Williams
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
100
|
Gutierrez MDM, Mateo MG, Corbacho N, Vidal F, Domingo P. Drug-drug interactions when treating HIV-related metabolic disorders. Expert Opin Drug Metab Toxicol 2019; 15:787-802. [PMID: 31512529 DOI: 10.1080/17425255.2019.1667334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Drug-drug interactions (DDI) between antiretroviral drugs and drugs for the treatment of metabolic disturbances in people living with human immunodeficiency virus (HIV) (PLWH) have represented a problem of paramount importance in the recent times. The problem has been mainly driven by sharing common metabolizing pathways. This problem has classically been worsened by the frequent use of pharmacokinetic boosters to enhance protease inhibitors and some integrase inhibitors plasma levels. Areas covered: This article focuses on the interactions between antiretroviral drugs and those drugs used to treat metabolic disturbances which frequently appear in PLWH. These include dyslipidemia, diabetes mellitus, hyperuricemia, and finally, drugs for the treatment of overweight and clinical obesity. References from PubMed, Embase, or Web of Science, among others, were reviewed. Expert opinion: The advent of safer drugs, in terms of DDI, in the antiretroviral and the metabolic field,such as non-boosted antiretrovirals and drugs with divergent metabolizing paths. Besides, learning by the caregivers on how to decrease and manage DDI, together with the extensive use of online updated DDI databases, has undoubtedly minimized the problem. The foreseeable increase in the burden of HIV-associated comorbidities and their associated treatments anticipates further complexities in the management of DDI in PLWH.
Collapse
Affiliation(s)
- Maria Del Mar Gutierrez
- Department of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, Institut de Recerca del Hospital de la Santa Creu i Sant Pau , Barcelona , Spain
| | - Mª Gracia Mateo
- Department of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, Institut de Recerca del Hospital de la Santa Creu i Sant Pau , Barcelona , Spain
| | - Noemí Corbacho
- Department of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, Institut de Recerca del Hospital de la Santa Creu i Sant Pau , Barcelona , Spain
| | - Francesc Vidal
- HIV Infection Unit, Department of Internal Medicine, Hospital Universitari Joan XXIII, Institut de Recerca Rovira i Virgili , Tarragona , Spain
| | - Pere Domingo
- Department of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, Institut de Recerca del Hospital de la Santa Creu i Sant Pau , Barcelona , Spain
| |
Collapse
|