51
|
Abstract
Beta-endorphin is an endogenous opioid peptide, implicated in the behavioral effects of drugs of abuse. It is synthesized in the arcuate nucleus and secreted into the nucleus accumbens. In the present study, we examined the interaction between arcuate nucleus dopaminergic cells and accumbal beta-endorphin, during cocaine exposure. Using microdialysis, we found that blockade of arcuate dopamine-2 receptors with a selective antagonist significantly attenuated cocaine-induced increases of beta-endorphin levels in the nucleus accumbens. Moreover, rats chronically exposed to cocaine using the self-administration paradigm displayed extinction-like behavior following blockade of dopamine-2 receptors. These findings indicate that dopaminergic neurons in the arcuate nucleus may induce the secretion of beta-endorphin in the nucleus accumbens, and that they are implicated in the cocaine reward pathway.
Collapse
Affiliation(s)
- Ravid Doron
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | |
Collapse
|
52
|
CRINER SH, LIU J, SCHULTEIS G. Rapid neuroadaptation in the nucleus accumbens and bed nucleus of the stria terminalis mediates suppression of operant responding during withdrawal from acute opioid dependence. Neuroscience 2007; 144:1436-46. [PMID: 17161915 PMCID: PMC1805631 DOI: 10.1016/j.neuroscience.2006.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 10/30/2006] [Accepted: 11/01/2006] [Indexed: 11/19/2022]
Abstract
Single injections of morphine induce a state of acute opioid dependence in humans and animals, measured as precipitated withdrawal when an antagonist is administered 4-24 h after morphine. Additional morphine exposure at daily or weekly intervals results in further increases in withdrawal severity, suggesting that acute opioid dependence reflects the early stages in the development of a chronic state of dependence. The current study evaluated the role of the nucleus accumbens (NAC), bed nucleus of stria terminalis (BNST), interstitial nucleus of posterior limb of the anterior commissure (IPAC), and central amygdala (CeA) in the expression of antagonist-precipitated suppression of operant responding for food as a measure of withdrawal from acute opioid dependence. Rats trained on a fixed-ratio 15 schedule received one or four daily injections of morphine, with the lipophobic opioid antagonist methylnaloxonium (16-2000 ng) infused into one of the brain regions or the lateral ventricle (i.c.v.) 4 h after the final morphine injection. After acute morphine methylnaloxonium was more potent upon infusion into the NAC (17.9-fold potency shift), BNST (6.8-fold) and CeA (5.5-fold) than it was upon i.c.v. administration. Following repeat morphine the NAC and BNST but not CeA continued to show greater sensitivity relative to i.c.v. infusion (12.9-, 8.7-, and 3.2-fold potency shifts, respectively). The IPAC was insensitive to methylnaloxonium after acute or repeat morphine at doses that reliably suppressed responding upon i.c.v. infusion (125-500 ng). Thus, among the components of extended amygdala examined in this study, rapid neuroadaptation within the nucleus accumbens and bed nucleus of the stria terminalis appear to play the most prominent role in antagonist-precipitated suppression of operant responding during the early stages in the development of opioid dependence.
Collapse
Affiliation(s)
- S. H. CRINER
- Department of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - J. LIU
- Department of Anesthesiology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - G. SCHULTEIS
- Department of Anesthesiology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego CA 92161, USA
| |
Collapse
|
53
|
Abstract
The ability of food to establish and maintain response habits and conditioned preferences depends largely on the function of brain dopamine systems. While dopaminergic transmission in the nucleus accumbens appears sufficient for some forms of reward, the role of dopamine in food reward does not appear to be restricted to this region. Dopamine plays an important role in both the ability to energize feeding and to reinforce food-seeking behaviour; the role in energizing feeding is secondary to the prerequisite role in reinforcement. Dopaminergic activation is triggered by the auditory and visual as well as the tactile, olfactory, and gustatory stimuli of foods. While dopamine plays a central role in the feeding and food-seeking of normal animals, some food rewarded learning can be seen in genetically engineered dopamine-deficient mice.
Collapse
Affiliation(s)
- Roy A Wise
- Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, Baltimore, MD 21224, USA.
| |
Collapse
|
54
|
Zangen A, Solinas M, Ikemoto S, Goldberg SR, Wise RA. Two brain sites for cannabinoid reward. J Neurosci 2006; 26:4901-7. [PMID: 16672664 PMCID: PMC6674153 DOI: 10.1523/jneurosci.3554-05.2006] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The recent findings that Delta9tetrahydrocannabinol (Delta9THC), the active agent in marijuana and hashish, (1) is self-administered intravenously, (2) potentiates the rewarding effects of electrical brain stimulation, and (3) can establish conditioned place preferences in laboratory animals, suggest that these drugs activate biologically primitive brain reward mechanisms. Here, we identify two chemical trigger zones for stimulant and rewarding actions of Delta9THC. Microinjections of Delta9THC into the posterior ventral tegmental area (VTA) or into the shell of the nucleus accumbens (NAS) increased locomotion, and rats learned to lever-press for injections of Delta9THC into each of these regions. Substitution of vehicle for drug or treatment with a cannabinoid CB1 receptor antagonist caused response cessation. Microinjections of Delta9THC into the posterior VTA and into the posterior shell of NAS established conditioned place preferences. Injections into the core of the NAS, the anterior VTA, or dorsal to the VTA were ineffective. These findings link the sites of rewarding action of Delta9THC to brain regions where such drugs as amphetamines, cocaine, heroin, and nicotine are also thought to have their sites of rewarding action.
Collapse
|
55
|
Drakenberg K, Nikoshkov A, Horváth MC, Fagergren P, Gharibyan A, Saarelainen K, Rahman S, Nylander I, Bakalkin G, Rajs J, Keller E, Hurd YL. Mu opioid receptor A118G polymorphism in association with striatal opioid neuropeptide gene expression in heroin abusers. Proc Natl Acad Sci U S A 2006; 103:7883-8. [PMID: 16682632 PMCID: PMC1472539 DOI: 10.1073/pnas.0600871103] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Indexed: 01/25/2023] Open
Abstract
Mu opioid receptors are critical for heroin dependence, and A118G SNP of the mu opioid receptor gene (OPRM1) has been linked with heroin abuse. In our population of European Caucasians (n = 118), approximately 90% of 118G allelic carriers were heroin users. Postmortem brain analyses showed the OPRM1 genotype associated with transcription, translation, and processing of the human striatal opioid neuropeptide system. Whereas down-regulation of preproenkephalin and preprodynorphin genes was evident in all heroin users, the effects were exaggerated in 118G subjects and were most prominent for preproenkephalin in the nucleus accumbens shell. Reduced opioid neuropeptide transcription was accompanied by increased dynorphin and enkephalin peptide concentrations exclusively in 118G heroin subjects, suggesting that the peptide processing is associated with the OPRM1 genotype. Abnormal gene expression related to peptide convertase and ubiquitin/proteosome regulation was also evident in heroin users. Taken together, alterations in opioid neuropeptide systems might underlie enhanced opiate abuse vulnerability apparent in 118G individuals.
Collapse
Affiliation(s)
| | | | - Monika Cs Horváth
- Sections of *Psychiatry and
- Department of Pharmaceutical Biosciences, Division of Pharmacology, Uppsala University, S-751 24 Uppsala, Sweden; and
| | | | - Anna Gharibyan
- Alcohol and Drug Dependence Research, Department of Clinical Neuroscience, and
| | | | - Sadia Rahman
- Department of Pharmaceutical Biosciences, Division of Pharmacology, Uppsala University, S-751 24 Uppsala, Sweden; and
| | - Ingrid Nylander
- Department of Pharmaceutical Biosciences, Division of Pharmacology, Uppsala University, S-751 24 Uppsala, Sweden; and
| | - Georgy Bakalkin
- Alcohol and Drug Dependence Research, Department of Clinical Neuroscience, and
| | - Jovan Rajs
- Department of Forensic Medicine, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Eva Keller
- Department of Forensic Medicine, Semmelweis University, HU 1091, Budapest, Hungary
| | | |
Collapse
|
56
|
Caillé S, Parsons LH. Cannabinoid modulation of opiate reinforcement through the ventral striatopallidal pathway. Neuropsychopharmacology 2006; 31:804-13. [PMID: 16123766 DOI: 10.1038/sj.npp.1300848] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent evidence indicates that cannabinoid-1 (CB1) receptors play a role in the mediation of opiate reward, though the neural mechanisms for this process have not been characterized. The present experiments investigated the influence of CB1 receptors in the ventral striatopallidal system on opiate-induced neurochemical events and opiate self-administration behavior in rats. Acute morphine administration (3 mg/kg) significantly reduced ventral pallidal GABA efflux in a manner similar to that produced by heroin self-administration. This neurochemical effect was reversed by doses of the selective CB1 antagonist SR 141716A (Rimonabant; 1 and 3 mg/kg) that also significantly reduce opiate reward. Morphine-induced increases in nucleus accumbens dopamine levels were unaltered by SR 141716A. Intravenous heroin self-administration (0.02 mg/infusion) was significantly reduced by intra-accumbens, but not intraventral pallidal SR 141716A infusions (1 and 3 microg/side), implicating nucleus accumbens CB1 receptors in the modulation of opiate reinforcement. In contrast, SR14716A did not alter cocaine self-administration (0.125 mg/inf), cocaine-induced (10 mg/kg) decrements in ventral pallidal GABA efflux or cocaine-induced increases in accumbens dopamine. This is consistent with evidence that selective inactivation of CB1 receptors reduces opiate-, but not psychostimulant-maintained self-administration. The CB1 receptor agonist WIN 55,212-2 (5 mg/kg) reduced pallidal GABA efflux in a manner similar to morphine, and this effect was reversed by the opiate receptor antagonist naloxone. Collectively these findings suggest that CB1 receptors modulate opiate reward through the ventral striatopallidal projection and that the modulation of this projection system may be involved in the reciprocal behavioral effects between cannabinoids, and opioids.
Collapse
Affiliation(s)
- Stéphanie Caillé
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
57
|
Borsook D, Becerra L, Carlezon WA, Shaw M, Renshaw P, Elman I, Levine J. Reward-aversion circuitry in analgesia and pain: implications for psychiatric disorders. Eur J Pain 2006; 11:7-20. [PMID: 16495096 DOI: 10.1016/j.ejpain.2005.12.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 11/16/2005] [Accepted: 12/13/2005] [Indexed: 01/06/2023]
Abstract
Sensory and emotional systems normally interact in a manner that optimizes an organism's ability to survive using conscious and unconscious processing. Pain and analgesia are interpreted by the nervous system as aversive and rewarding processes that trigger specific behavioral responses. Under normal physiological conditions these processes are adaptive. However, under chronic pain conditions, functional alterations of the central nervous system frequently result in maladaptive behaviors. In this review, we examine: (a) the interactions between sensory and emotional systems involved in processing pain and analgesia in the physiological state; (b) the role of reward/aversion circuitry in pain and analgesia; and (c) the role of alterations in reward/aversion circuitry in the development of chronic pain and co-morbid psychiatric disorders. These underlying features have implications for understanding the neurobiology of functional illnesses such as depression and anxiety and for the development and evaluation of novel therapeutic interventions.
Collapse
Affiliation(s)
- David Borsook
- PAIN Group, Department of Psychiatry, Brain Imaging Center, McLean Hospital and Harvard Medical School, Belmont MA 02748, United States.
| | | | | | | | | | | | | |
Collapse
|
58
|
XU MING. Unraveling Dopamine D3Receptor Function in Response to Psychostimulants Using a Genetic Approacha. Ann N Y Acad Sci 2006; 844:27-39. [DOI: 10.1111/j.1749-6632.1998.tb08219.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
59
|
O'Brien CP, Gardner EL. Critical assessment of how to study addiction and its treatment: human and non-human animal models. Pharmacol Ther 2006; 108:18-58. [PMID: 16183393 DOI: 10.1016/j.pharmthera.2005.06.018] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 06/17/2005] [Indexed: 10/25/2022]
Abstract
Laboratory models, both animal and human, have made enormous contributions to our understanding of addiction. For addictive disorders, animal models have the great advantage of possessing both face validity and a significant degree of predictive validity, already demonstrated. Another important advantage to this field is the ability of reciprocal interplay between preclinical and clinical experiments. These models have made important contributions to the development of medications to treat addictive disorders and will likely result in even more advances in the future. Human laboratory models have gone beyond data obtained from patient histories and enabled investigators to make direct observations of human drug self-administration and test the effects of putative medications on this behavior. This review examines in detail some animal and human models that have led not only to important theories of addiction mechanisms but also to medications shown to be effective in the clinic.
Collapse
Affiliation(s)
- Charles P O'Brien
- Philadelphia VA Medical Center, Mental Illness Research and Education Center, 3900 Chestnut Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
60
|
Abstract
Electrical stimulation of the medial forebrain bundle can reward arbitrary acts or motivate biologically primitive, species-typical behaviors like feeding or copulation. The subsystems involved in these behaviors are only partially characterized, but they appear to transsynaptically activate the mesocorticolimbic dopamine system. Basal function of the dopamine system is essential for arousal and motor function; phasic activation of this system is rewarding and can potentiate the effectiveness of reward-predictors that guide learned behaviors. This system is phasically activated by most drugs of abuse and such activation contributes to the habit-forming actions of these drugs.
Collapse
Affiliation(s)
- Roy A Wise
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224, USA.
| |
Collapse
|
61
|
Hnasko TS, Sotak BN, Palmiter RD. Morphine reward in dopamine-deficient mice. Nature 2005; 438:854-7. [PMID: 16341013 DOI: 10.1038/nature04172] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 09/01/2005] [Indexed: 11/08/2022]
Abstract
Dopamine has been widely implicated as a mediator of many of the behavioural responses to drugs of abuse. To test the hypothesis that dopamine is an essential mediator of various opiate-induced responses, we administered morphine to mice unable to synthesize dopamine. We found that dopamine-deficient mice are unable to mount a normal locomotor response to morphine, but a small dopamine-independent increase in locomotion remains. Dopamine-deficient mice have a rightward shift in the dose-response curve to morphine on the tail-flick test (a pain sensitivity assay), suggesting either a decreased sensitivity to the analgesic effects of morphine and/or basal hyperalgesia. In contrast, dopamine-deficient mice display a robust conditioned place preference for morphine when given either caffeine or l-dihydroxyphenylalanine (a dopamine precursor that restores dopamine throughout the brain) during the testing phases. Together, these data demonstrate that dopamine is a crucial component of morphine-induced locomotion, dopamine may contribute to morphine analgesia, but that dopamine is not required for morphine-induced reward as measured by conditioned place preference.
Collapse
Affiliation(s)
- Thomas S Hnasko
- Graduate Program in Neurobiology & Behavior, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
62
|
Elmer GI, Pieper JO, Levy J, Rubinstein M, Low MJ, Grandy DK, Wise RA. Brain stimulation and morphine reward deficits in dopamine D2 receptor-deficient mice. Psychopharmacology (Berl) 2005; 182:33-44. [PMID: 16136297 DOI: 10.1007/s00213-005-0051-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 04/29/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE The rewarding effects of lateral hypothalamic brain stimulation, various natural rewards, and several drugs of abuse are attenuated by D1 or D2 dopamine receptor (D1R or D2R) antagonists. Much of the evidence for dopaminergic involvement in rewards is based on pharmacological agents with limited or "relative" selectivity for dopamine receptor subtypes. Genetically engineered animal models provide a complementary approach to pharmacological investigations. OBJECTIVES In the present study, we explored the contribution of dopamine D2Rs to (1) brain stimulation reward (BSR) and (2) the potentiation of this behavior by morphine and amphetamine using D2R-deficient mice. METHODS Wild-type (D2Rwt), heterozygous (D2Rhet), and D2R knockout (D2Rko) mice were trained to turn a wheel for rewarding brain stimulation. Once equivalent rate-frequency curves were established, morphine-induced (0, 1.0, 3.0, and 5.6 mg/kg s.c.) and amphetamine-induced (0, 1.0, 2.0, and 4.0 mg/kg i.p.) potentiations of BSR were determined. RESULTS The D2Rko mice required approximately 50% more stimulation than the D2Rwt mice did. With the equi-rewarding levels of stimulation current, amphetamine potentiated BSR equally across the three genotypes. In contrast, morphine potentiated rewarding stimulation in the D2Rwt, had no effect in the D2Rhet, and antagonized rewarding stimulation in the D2Rko mice. CONCLUSIONS D2R elimination decreases, but does not eliminate, the rewarding effects of lateral hypothalamic stimulation. After compensation for this deficit, amphetamine continues to potentiate BSR, while morphine does not.
Collapse
Affiliation(s)
- G I Elmer
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland, Maple and Locust Streets, Baltimore, MD 21228, USA.
| | | | | | | | | | | | | |
Collapse
|
63
|
Pierce RC, Kumaresan V. The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 2005; 30:215-38. [PMID: 16099045 DOI: 10.1016/j.neubiorev.2005.04.016] [Citation(s) in RCA: 590] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 04/05/2005] [Accepted: 04/19/2005] [Indexed: 11/23/2022]
Abstract
In this review we will critically assess the hypothesis that the reinforcing effect of virtually all drugs of abuse is primarily dependent on activation of the mesolimbic dopamine system. The focus is on five classes of abused drugs: psychostimulants, opiates, ethanol, cannabinoids and nicotine. For each of these drug classes, the pharmacological and physiological mechanisms underlying the direct or indirect influence on mesolimbic dopamine transmission will be reviewed. Next, we evaluate behavioral pharmacological experiments that specifically assess the influence of activation of the mesolimbic dopamine system on drug reinforcement, with particular emphasis on animal experiments using drug self-administration paradigms. There is overwhelming evidence that all five classes of abused drugs increase dopamine transmission in limbic regions of the brain through interactions with a variety of transporters, ionotropic receptors and metabotropic receptors. Behavioral pharmacological experiments indicate that increased dopamine transmission is clearly both necessary and sufficient to promote psychostimulant reinforcement. For the other four classes of abused substances, self-administration experiments suggest that although increasing mesolimbic dopamine transmission plays an important role in the reinforcing effects of opiates, ethanol, cannabinoids and nicotine, there are also dopamine-independent processes that contribute significantly to the reinforcing effects of these compounds.
Collapse
Affiliation(s)
- R Christopher Pierce
- Department of Pharmacology, Boston University School of Medicine, 715 Albany Street, L603 Boston, MA 02118, USA.
| | | |
Collapse
|
64
|
Wakasa Y, Sasaki M, Fujiwara A, Iino M. [Investigation of reinforcing effects and central nervous system effects by drug self-administration procedures]. Nihon Yakurigaku Zasshi 2005; 126:5-9. [PMID: 16141611 DOI: 10.1254/fpj.126.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
65
|
Cornish JL, Lontos JM, Clemens KJ, McGregor IS. Cocaine and heroin ('speedball') self-administration: the involvement of nucleus accumbens dopamine and mu-opiate, but not delta-opiate receptors. Psychopharmacology (Berl) 2005; 180:21-32. [PMID: 15682301 DOI: 10.1007/s00213-004-2135-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Accepted: 11/22/2004] [Indexed: 10/25/2022]
Abstract
RATIONALE The combined administration of heroin and cocaine ('speedball') is common among intravenous drug users. Dopamine receptors in the nucleus accumbens play a key role in cocaine self-administration; however, their role in speedball self-administration is unknown, as is the role of opiate receptors in this region. OBJECTIVES The effect of blocking dopamine D1, D2, mu-opiate or delta-opiate receptors in the nucleus accumbens on the intravenous self-administration of combined heroin and cocaine was examined in rats. METHODS Rats with bilateral cannulae implanted into the nucleus accumbens were trained to self-administer intravenous speedball (ratio of cocaine/heroin, 17:1) under a progressive ratio (PR) schedule. Prior to their self-administration session, rats were then microinjected with the dopamine D1 receptor antagonist SCH 23390 (1 and 6 nmol side(-1)), the D2 receptor antagonist raclopride (3 and 10 nmol side(-1)), the mu-opiate receptor antagonist CTOP (0.1, 0.3 and 1.0 nmol side(-1)), the delta-opiate receptor antagonist naltrindole (1.0, 3.0 and 10 nmol side(-1)) or a cocktail of SCH 23390 (1 nmol side(-1)) and CTOP (0.1 nmol side(-1)) into the nucleus accumbens. RESULTS Microinjection of SCH 23390, raclopride or CTOP into the nucleus accumbens produced dose-dependent decreases in breakpoints under the PR schedule, while naltrindole was without effect. The highest dose of SCH 23390 also significantly reduced locomotor activity measured during speedball self-administration. The combination of SCH 23390 and CTOP significantly reduced breakpoints, while not affecting locomotor activity. CONCLUSIONS These results indicate that dopamine and mu-opiate receptors, but not delta-opiate receptors, in the nucleus accumbens are involved in the reinforcing effects of speedball. Combined administration of D1 and mu-opiate receptor antagonists may be more selective at reducing the reinforcing effects of speedball self-administration than either drug alone.
Collapse
MESH Headings
- Animals
- Cocaine/administration & dosage
- Cocaine/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Heroin/administration & dosage
- Heroin/pharmacology
- Male
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Rats
- Receptors, Dopamine/physiology
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/physiology
- Receptors, Opioid/physiology
- Receptors, Opioid, mu/physiology
- Receptors, sigma/physiology
- Reinforcement Schedule
- Self Administration
- Substance Abuse, Intravenous/metabolism
- Substance Abuse, Intravenous/physiopathology
Collapse
|
66
|
Affiliation(s)
- Roy A Wise
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
67
|
Nestler EJ. Historical review: Molecular and cellular mechanisms of opiate and cocaine addiction. Trends Pharmacol Sci 2004; 25:210-8. [PMID: 15063085 DOI: 10.1016/j.tips.2004.02.005] [Citation(s) in RCA: 330] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The National Institute on Drug Abuse was founded in 1974, and since that time there have been significant advances in understanding the processes by which drugs of abuse cause addiction. The initial protein targets for almost all drugs of abuse are now known. Animal models that replicate key features of addiction are available, and these models have made it possible to characterize the brain regions that are important for addiction and other drug effects, such as physical dependence. A large number of drug-induced changes at the molecular and cellular levels have been identified in these brain areas and rapid progress is being made in relating individual changes to specific behavioral abnormalities in animal models of addiction. The current challenges are to translate this increasingly impressive knowledge of the basic neurobiology of addiction to human addicts, and to identify the specific genes that make some individuals either particularly vulnerable or resistant to addiction. In this article, I present a historical review of basic research on opiate and cocaine addiction.
Collapse
Affiliation(s)
- Eric J Nestler
- Department of Psychiatry and Center for Basic Neuroscience The University of Texas Southwestern Medical Center 5323 Harry Hines Blvd, Dallas, TX 75390-9070, USA.
| |
Collapse
|
68
|
Hall FS, Goeb M, Li XF, Sora I, Uhl GR. mu-Opioid receptor knockout mice display reduced cocaine conditioned place preference but enhanced sensitization of cocaine-induced locomotion. ACTA ACUST UNITED AC 2004; 121:123-30. [PMID: 14969743 DOI: 10.1016/j.molbrainres.2003.10.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2003] [Indexed: 01/04/2023]
Abstract
The mu-opioid receptor (OPRM1) is expressed in brain regions implicated in reward and locomotor processes. Reduced reward, not only from opiates, but also from several other abused substances has been observed in mice with lifelong deletions of the OPRM1 gene. To further define the roles of mu-opioid receptors in psychostimulant actions, cocaine psychomotor stimulant and rewarding effects were examined in wild-type (WT), heterozygous and homozygous mu-opioid receptor knockout mice. While mu-opioid receptor knockout did not affect basal locomotion, locomotor stimulant effects of cocaine were enhanced in a within-subjects dose-response experiment. However, further study revealed that in mice injected with 20 mg/kg for the first time, there was no difference in the locomotor-stimulating effects of cocaine between knockout and wild-type mice. In a sensitization study (modeled after the conditions in the dose-response experiment) although not observed in WT mice, OPRM1-/- mice did exhibit cocaine sensitization. By stark contrast, and similar to the effects of other rewarding drugs in OPRM1 KO mice, cocaine reward, as assessed by conditioned place preference, was reduced in both homozygous and heterozygous OPRM1 KO mice. The present results confirm a central role of the mu-opioid receptor in drug reward but opposing effects on locomotor sensitization. The reduced cocaine reward identified in heterozygous mu-opioid receptor knockout mice supports the possibility that humans with fewer available mu-opioid receptors might experience less cocaine reward.
Collapse
MESH Headings
- Analysis of Variance
- Anesthetics, Local/pharmacology
- Animals
- Behavior, Animal
- Cocaine/pharmacology
- Conditioning, Operant/drug effects
- Dose-Response Relationship, Drug
- Heterozygote
- Homozygote
- Locomotion/drug effects
- Locomotion/genetics
- Mice
- Mice, Knockout
- Receptors, Opioid, mu/deficiency
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- F Scott Hall
- Molecular Neurobiology Branch, National Institute on Drug Abuse-IRP, NIH/DHHS, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
69
|
Rezayof A, Zarrindast MR, Sahraei H, Haeri-Rohani A. Involvement of dopamine receptors of the dorsal hippocampus on the acquisition and expression of morphine-induced place preference in rats. J Psychopharmacol 2003; 17:415-23. [PMID: 14870954 DOI: 10.1177/0269881103174005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, the effects of bilateral intrahippocampal CA1 injections of dopamine receptor agonists and antagonists on the acquisition and expression of morphine-induced place preference were examined in male Wistar rats. Subcutaneous administration of different doses of morphine sulphate (0.5-10 mg/kg) produced a conditioned place preference (CPP) dose-dependently. Using a 3-day schedule of conditioning, it was found that dopamine D1 receptor agonist, SKF 38393 (0.01-1 microg/rat), dopamine D1 receptor antagonist, SCH 23390 (0.25-1 microg/rat), dopamine D(2/3) receptor agonist, quinpirole (0.3-3 microg/rat) or dopamine D2 receptor antagonist, sulpiride (0.04-5 microg/rat) did not produce significant place preference. The administration of SKF 38393 (1 microg/rat) significantly potentiated the acquisition of morphine (0.5 and 2.5 mg/kg)-induced place preference. This potentiation was reversed by SCH 23390 (1 microg/rat) pretreatment. Quinpirole injection (0.3 microg/rat) induced CPP in combination with the lower doses of morphine but decreased the response of the higher doses of morphine. These responses of quinpirole were reversed by sulpiride (5 microg/rat) pretreatment. SCH 23390 or sulpiride reduced the acquisition of morphine (7.5 mg/kg)-induced place preference. The administration of sulpiride, but not other drugs, during acquisition showed an increase in the locomotor activity on the testing days. SKF 38393, SCH 23390 or sulpiride, but not quinpirole when used before testing, reduced the expression of morphine-induced place preference. Sulpiride, but not other drugs, increased locomotion when used before testing. It is concluded that dorsal hippocampal dopamine receptors may play an active role in morphine reward.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Benzazepines/pharmacology
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Dose-Response Relationship, Drug
- Hippocampus/metabolism
- Hippocampus/physiology
- Injections, Subcutaneous
- Male
- Morphine/pharmacology
- Motor Activity/drug effects
- Quinpirole/pharmacology
- Rats
- Rats, Wistar
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3
- Sulpiride/pharmacology
Collapse
Affiliation(s)
- Ameneh Rezayof
- Department of Biology, Faculty of Science, Tehran University, Tehran, Iran
| | | | | | | |
Collapse
|
70
|
Chartoff EH, Papadopoulou M, Konradi C, Carlezon WA. Dopamine-dependent increases in phosphorylation of cAMP response element binding protein (CREB) during precipitated morphine withdrawal in primary cultures of rat striatum. J Neurochem 2003; 87:107-18. [PMID: 12969258 PMCID: PMC4205588 DOI: 10.1046/j.1471-4159.2003.01992.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chronic morphine leads to compensatory up-regulation of cAMP signaling pathways in numerous brain regions. One potential consequence of up-regulated cAMP signaling is increased phosphorylation of cAMP response element binding protein (CREB), a transcription factor that may regulate neuroadaptations related to morphine dependence. Altered gene expression within the nucleus accumbens (NAc), a ventral component of the striatum that receives substantial dopaminergic input, may play a role in some of the motivational aspects of opiate withdrawal. To determine if morphine withdrawal leads to increased CREB phosphorylation in striatal tissues, we examined the effects of naloxone-precipitated morphine withdrawal on CREB phosphorylation in primary cultures of rat striatal neurons. Precipitated morphine withdrawal was associated with enhanced dopamine-, SKF 82958 (D1 receptor agonist)-, and forskolin-induced CREB phosphorylation. During precipitated withdrawal, D1 receptor-mediated CREB phosphorylation was dependent on cAMP-dependent protein kinase (PKA). Precipitated withdrawal also led to up-regulation of c-fos mRNA in response to SKF 82958. CREB protein levels were not altered by acute or chronic morphine. These results suggest that D1 receptor-mediated signal transduction is enhanced during morphine withdrawal. Furthermore, they are consistent with in vivo evidence suggesting that increased CREB activation in portions of the striatum (e.g. the NAc) is related to dysphoric states associated with drug withdrawal.
Collapse
Affiliation(s)
- Elena H Chartoff
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
| | | | | | | |
Collapse
|
71
|
Roth-Deri I, Zangen A, Aleli M, Goelman RG, Pelled G, Nakash R, Gispan-Herman I, Green T, Shaham Y, Yadid G. Effect of experimenter-delivered and self-administered cocaine on extracellular beta-endorphin levels in the nucleus accumbens. J Neurochem 2003; 84:930-8. [PMID: 12603818 DOI: 10.1046/j.1471-4159.2003.01584.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Beta-endorphin is an endogenous opioid peptide that has been hypothesized to be involved in the behavioral effects of drugs of abuse including psychostimulants. Using microdialysis, we studied the effect of cocaine on extracellular levels of beta-endorphin in the nucleus accumbens, a brain region involved in the reinforcing effects of psychostimulant drugs. Experimenter-delivered cocaine (2 mg/kg, i.v.) increased extracellular beta-endorphin immunoreactive levels in the nucleus accumbens, an effect attenuated by 6-hydroxy-dopamine lesions or systemic administration of the D1-like receptor antagonist, SCH-23390 (0.25 mg/kg, i.p.). The effect of cocaine on beta-endorphin release in the nucleus accumbens was mimicked by a local perfusion of dopamine (5 microm) and was blocked by coadministration of SCH-23390 (10 microm). Self-administered cocaine (1 mg/kg/infusion, i.v.) also increased extracellular beta-endorphin levels in the nucleus accumbens. In addition, using functional magnetic resonance imaging, we found that cocaine (1 mg/kg, i.v.) increases regional brain activity in the nucleus accumbens and arcuate nucleus. We demonstrate an increase in beta-endorphin release in the nucleus accumbens following experimenter-delivered and self-administered cocaine mediated by the local dopaminergic system. These findings suggest that activation of the beta-endorphin neurons within the arcuate nucleus-nucleus accumbens pathway may be important in the neurobiological mechanisms underlying the behavioral effects of cocaine.
Collapse
Affiliation(s)
- I Roth-Deri
- Neuropharmacology Section, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Greenwell TN, Zangen A, Martin-Schild S, Wise RA, Zadina JE. Endomorphin-1 and -2 immunoreactive cells in the hypothalamus are labeled by fluoro-gold injections to the ventral tegmental area. J Comp Neurol 2002; 454:320-8. [PMID: 12442322 DOI: 10.1002/cne.10464] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Endomorphin-1 and -2 (EM1, EM2) are endogenous opioids with high affinity and selectivity for the mu-opioid receptor. Cells expressing EM-like immunoreactivity (EM-LI) are present in the hypothalamus, and fibers containing EM-LI project to many brain regions, including the ventral tegmental area (VTA). The VTA is one of the most sensitive brain regions for the rewarding and locomotor effects of opioids. It contains mu-opioid receptors, which are thought to mediate gamma-aminobutyric acid-dependent disinhibition of dopamine transmission to the nucleus accumbens. We investigated whether hypothalamic EM-LI cells project to the VTA, where they could play a natural role in this circuitry. The retrograde tracer Fluoro-Gold (FG) was microinjected into the anterior or posterior VTA in rats. Nine days later, colchicine was injected, and 24 hours later, the animals were perfused and processed for fluorescence immunocytochemistry. Numerous FG-labeled cells were detected in the hypothalamus. Both EM1-LI and EM2-LI cells were present in the periventricular nucleus, between the dorsomedial and ventromedial hypothalamus and between the ventromedial and arcuate nuclei. Subpopulations of EM1-LI and EM2-LI cells were labeled by FG. Injections of FG to the anterior and posterior VTA were both effective in producing double-labeled cells, and an anterior-posterior topographical organization between the VTA and hypothalamus was observed. The results support the idea that some endomorphin-containing neurons in the hypothalamus project to the VTA, where they may modulate reward and locomotor circuitry.
Collapse
Affiliation(s)
- Thomas N Greenwell
- Neuroscience Program, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
73
|
Abstract
The natural incentives that shape behavior reach the central circuitry of motivation trans-synaptically, via the five senses, whereas the laboratory rewards of intracranial stimulation or drug injections activate reward circuitry directly, bypassing peripheral sensory pathways. The unsensed incentives of brain stimulation and intracranial drug injections thus give us tools to identify reward circuit elements within the associational portions of the CNS. Such studies have implicated the mesolimbic dopamine system and several of its afferents and efferents in motivational function. Comparisons of natural and laboratory incentives suggest hypotheses as to why some habits become compulsive and give insights into the roles of reinforcement and of prediction of reinforcement in habit formation.
Collapse
Affiliation(s)
- Roy A Wise
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
74
|
Rewarding and psychomotor stimulant effects of endomorphin-1: anteroposterior differences within the ventral tegmental area and lack of effect in nucleus accumbens. J Neurosci 2002. [PMID: 12177217 DOI: 10.1523/jneurosci.22-16-07225.2002] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endomorphin-1 (EM-1) is a recently isolated endogenous peptide having potent analgesic activity and high affinity and selectivity for the mu-opioid receptor. The present study was designed to investigate the rewarding and psychomotor stimulant effects of EM-1 in specific brain regions. We found that rats would learn without priming or response shaping to lever-press for microinjections of EM-1 into the ventral tegmental area (VTA); responding was most vigorous for high-dose injections into the posterior VTA. Rats did not learn to lever-press for microinjections of EM-1 into the nucleus accumbens (NAS) or regions just dorsal to the VTA. Lever-pressing for EM-1 in the VTA was extinguished when vehicle was substituted for the peptide and was reinstated when EM-1 reinforcement was re-established. Conditioned place preference was established by EM-1 injections into the posterior but not the anterior VTA or the NAS. Injection of EM-1 (0.1-1.0 nmol) into the posterior VTA induced robust increases in locomotor activity, whereas injections into the anterior VTA had very weak locomotor-stimulating effects. When injected into the NAS, EM-1 (0.1-10.0 nmol) did not affect locomotor activity. The present findings implicate the posterior VTA as a highly specific and sensitive site for opioid reward and suggest a role for EM-1-containing projections to the posterior VTA in the rewarding effects of other reinforcers.
Collapse
|
75
|
Abstract
This overview has attempted to highlight the brain regions associated with reward, and the pathways and neurotransmitters responsible for communication between these regions. Work conducted in this field has shown that stimulants and opioids, despite interactions with different receptor types and different neurotransmitter reuptake transporters, appear to share a common action on brain reward pathways. Their effects on these pathways (the distinct brain regions making up the mesocorticolimbic dopaminergic system) are predominantly mediated through changes in dopamine neurotransmission, and compounds aimed at selectively modulating these effects may form the basis of drugs to treat addiction. Other transmitters such as GABA, acetylcholine and serotonin inevitably have a role to play in reward, although at present the exact nature of their effects remains unclear. Diverging from manipulating the CNS directly as a management strategy for dependence, it might be possible to exploit the immune system to prevent administered psychostimulants penetrating the brain, but antibody saturation and specificity are problematic.
Collapse
Affiliation(s)
- P N Deslandes
- Mechanisms of Drug Action Group, Welsh School of Pharmacy, Cardiff University, UK
| | | | | |
Collapse
|
76
|
Colantuoni C, Rada P, McCarthy J, Patten C, Avena NM, Chadeayne A, Hoebel BG. Evidence that intermittent, excessive sugar intake causes endogenous opioid dependence. OBESITY RESEARCH 2002; 10:478-88. [PMID: 12055324 DOI: 10.1038/oby.2002.66] [Citation(s) in RCA: 335] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The goal was to determine whether withdrawal from sugar can cause signs of opioid dependence. Because palatable food stimulates neural systems that are implicated in drug addiction, it was hypothesized that intermittent, excessive sugar intake might create dependency, as indicated by withdrawal signs. RESEARCH METHODS AND PROCEDURES Male rats were food-deprived for 12 hours daily, including 4 hours in the early dark, and then offered highly palatable 25% glucose in addition to chow for the next 12 hours. Withdrawal was induced by naloxone or food deprivation. Withdrawal signs were measured by observation, ultrasonic recordings, elevated plus maze tests, and in vivo microdialysis. RESULTS Naloxone (20 mg/kg intraperitoneally) caused somatic signs, such as teeth chattering, forepaw tremor, and head shakes. Food deprivation for 24 hours caused spontaneous withdrawal signs, such as teeth chattering. Naloxone (3 mg/kg subcutaneously) caused reduced time on the exposed arm of an elevated plus maze, where again significant teeth chattering was recorded. The plus maze anxiety effect was replicated with four control groups for comparison. Accumbens microdialysis revealed that naloxone (10 and 20 mg/kg intraperitoneally) decreased extracellular dopamine (DA), while dose-dependently increasing acetylcholine (ACh). The naloxone-induced DA/ACh imbalance was replicated with 10% sucrose and 3 mg/kg naloxone subcutaneously. DISCUSSION Repeated, excessive intake of sugar created a state in which an opioid antagonist caused behavioral and neurochemical signs of opioid withdrawal. The indices of anxiety and DA/ACh imbalance were qualitatively similar to withdrawal from morphine or nicotine, suggesting that the rats had become sugar-dependent.
Collapse
Affiliation(s)
- Carlo Colantuoni
- Department of Psychology, Princeton University, New Jersey 08544, USA
| | | | | | | | | | | | | |
Collapse
|
77
|
Schmidt BL, Tambeli CH, Levine JD, Gear RW. mu/delta Cooperativity and opposing kappa-opioid effects in nucleus accumbens-mediated antinociception in the rat. Eur J Neurosci 2002; 15:861-8. [PMID: 11906528 DOI: 10.1046/j.1460-9568.2002.01915.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously demonstrated that noxious peripheral stimulation (e.g. subdermal capsaicin injection in the hind paw) produces antinociception that is mediated by opioid receptors in nucleus accumbens. The current study used the trigeminal jaw-opening nociceptive reflex responses in the rat to assess the role of intra-accumbens mu-, delta- and kappa-opioid receptors in the antinociceptive effect of noxious stimulation and intra-accumbens opioid agonism. Whilst intra-accumbens injection of either the mu-receptor-selective antagonist Cys2,Tyr3,Orn5,Pen7amide (CTOP) or the delta-receptor-selective antagonist naltrindole blocked capsaicin-induced antinociception, neither the selective mu-agonist [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO; 150 or 300 ng) nor the selective delta-agonist D-Pen2,5-enkephalin (DPDPE; 150 or 300 ng) alone induced antinociception. Simultaneous injection of DAMGO and DPDPE (150 ng each), however, produced significant antinociception. Capsaicin-induced antinociception was not blocked by the selective kappa-receptor antagonist nor-binaltorphimine, but was blocked by the kappa-agonist U69,593. U69,593 also antagonized the antinociceptive effect of the DAMGO/DPDPE combination. Thus, in nucleus accumbens, mu- and delta- but not kappa-opioid receptors contributed to capsaicin-induced antinociception; selective activation of individual receptor subtypes was insufficient, but coactivation of mu- and delta-opioid receptors induced antinociception, and kappa-receptors appeared to play an antianalgesic role in nucleus accumbens.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Benzeneacetamides
- Capsaicin/pharmacology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Male
- Narcotic Antagonists/pharmacology
- Neurons/drug effects
- Neurons/metabolism
- Nociceptors/drug effects
- Nociceptors/metabolism
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Pain/drug therapy
- Pain/metabolism
- Pain/physiopathology
- Pyrrolidines/pharmacology
- Rats
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Reflex/drug effects
- Reflex/physiology
Collapse
Affiliation(s)
- Brian L Schmidt
- Graduate Program in Oral Biology, University of California at San Francisco, San Francisco, CA 94143-0440, USA
| | | | | | | |
Collapse
|
78
|
Abstract
Using functional magnetic resonance imaging (fMRI), we observed that noxious thermal stimuli (46 degrees C) produce significant signal change in putative reward circuitry as well as in classic pain circuitry. Increases in signal were observed in the sublenticular extended amygdala of the basal forebrain (SLEA) and the ventral tegmentum/periaqueductal gray (VT/PAG), while foci of increased signal and decreased signal were observed in the ventral striatum and nucleus accumbens (NAc). Early and late phases were observed for signals in most brain regions, with early activation in reward related regions such as the SLEA, VT/PAG, and ventral striatum. In contrast, structures associated with somatosensory perception, including SI somatosensory cortex, thalamus, and insula, showed delayed activation. These data support the notion that there may be a shared neural system for evaluation of aversive and rewarding stimuli.
Collapse
Affiliation(s)
- L Becerra
- Center for Functional Pain Neuroimaging and Therapy Research, Boston, MA 02129, USA
| | | | | | | | | |
Collapse
|
79
|
Amalric M, Cline EJ, Martinez JL, Bloom FE, Koob GF. Rewarding properties of beta-endorphin as measured by conditioned place preference. Psychopharmacology (Berl) 2001; 91:14-9. [PMID: 2950541 DOI: 10.1007/bf00690919] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The role of beta-endorphin as a possible mediator in the reinforcing properties of opiates was investigated using a conditioned place preference paradigm. Heroin, a synthetic opiate known to have reinforcing properties, produced a strong preference for an environment previously paired with heroin injection at all doses tested (0.25, 0.5, 1.0, 2.0 mg/kg SC). No such place preference was observed following saline injections. Rats also showed dose-dependent place preference for the environment paired with beta-endorphin when injected intracerebroventricularly (significant dose was 2.5 micrograms). At higher doses (5.0 and 10.0 micrograms) rats showed no preference for the paired environment, but were catatonic. Pretreatment with naloxone (0.04, 0.2, 1.0 mg/kg SC) attenuated the rewarding effect of beta-endorphin (2.5 micrograms) at all doses tested. The lowest dose of naloxone which had no aversive effect when tested alone could also significantly block the positive effect of beta-endorphin. The reinforcing dose of beta-endorphin (2.5 micrograms) also produced an increase in locomotor activity, when tested in photocell cages. This suggests that the hyperactivity induced by beta-endorphin may contribute to the preference for an environment previously paired with the same drug. The reinforcing effect of beta-endorphin is most probably mediated by the mu and/or delta opioid subtype receptor, since beta-endorphin has a high affinity for these receptors. These results demonstrate positive reinforcing properties of beta-endorphin in the central nervous system.
Collapse
|
80
|
Wise RA. Interactions between medial prefrontal cortex and meso-limbic components of brain reward circuitry. PROGRESS IN BRAIN RESEARCH 2001; 126:255-62. [PMID: 11105651 DOI: 10.1016/s0079-6123(00)26018-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- R A Wise
- National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA.
| |
Collapse
|
81
|
Brown CM, Coscina DV, Fletcher PJ. The rewarding properties of neuropeptide Y in perifornical hypothalamus vs. nucleus accumbens. Peptides 2000; 21:1279-87. [PMID: 11035216 DOI: 10.1016/s0196-9781(00)00270-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
There is a high coexistence of substance abuse in humans with eating disorders. One theory offered to account for this fact is that a common biochemical substrate may exist that mediates both processes. Brain neuropeptide Y (NPY) is one neurochemical system that might contribute to these separate, yet related, problems. To clarify the role of NPY in mediating reward processes and the possible interaction between reward and feeding, the present study examined the effects of injecting NPY bilaterally into the perifornical hypothalamus (PFH) vs. the nucleus accumbens (NAC) on intake of preferred vs. non-preferred food types, as well as on conditioned place preference (CPP) learning. NPY (24, 78, 156 and 235 pmol/side) stimulated intake of both regular powdered chow and sucrose when injected into the PFH, but not the NAC. A CPP that was negatively correlated with food intake occurred with the low (24 pmol/side) dose of NPY in the PFH, while a CPP that was not correlated with food intake was produced with the same dose in the NAC. The extent of the CPPs produced by NPY injection in both brain sites mirrored that produced by peripheral injection of amphetamine (2.5 mg/kg). These results indicate that NPY elicits reward-related behavior, but not feeding, from the NAC, and both behaviors from the PFH. However, the feeding effect derived from the PFH appears to overshadow a rewarding effect derived from this site. Considered together, these findings suggest that altered NPY functioning in both brain regions may contribute to some of the pathophysiological processes observed in eating disordered patients who have additional proclivities for substance abuse.
Collapse
Affiliation(s)
- C M Brown
- Section of Biopsychology, Centre for Addiction and Mental Health, Clarke Division, Toronto, ON, Canada M5T 1R8
| | | | | |
Collapse
|
82
|
McBride WJ, Murphy JM, Ikemoto S. Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res 1999; 101:129-52. [PMID: 10372570 DOI: 10.1016/s0166-4328(99)00022-4] [Citation(s) in RCA: 417] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Intracranial self-administration (ICSA) and intracranial place conditioning (ICPC) methodologies have been mainly used to study drug reward mechanisms, but they have also been applied toward examining brain reward mechanisms. ICSA studies in rodents have established that the ventral tegmental area (VTA) is a site supporting morphine and ethanol reinforcement. ICPC studies confirmed that injection of morphine into the VTA produces conditioned place preference (CPP). Further confirmation that activation of opioid receptors within the VTA is reinforcing comes from the findings that the endogenous opioid peptide met-enkephalin injected into the VTA produces CPP, and that the mu- and delta-opioid agonists, DAMGO and DPDPE, are self-infused into the VTA. Activation of the VTA dopamine (DA) system may produce reinforcing effects in general because (a) neurotensin is self-administered into the VTA, and injection of neurotensin into the VTA produces CPP and enhances DA release in the nucleus accumbens (NAC), and (b) GABA(A) antagonists are self-administered into the anterior VTA and injections of GABA(A) antagonists into the anterior VTA enhance DA release in the NAC. The NAC also appears to have a major role in brain reward mechanisms, whereas most data from ICSA and ICPC studies do not support an involvement of the caudate-putamen in reinforcement processes. Rodents will self-infuse a variety of drugs of abuse (e.g. amphetamine, morphine, phencyclidine and cocaine) into the NAC, and this occurs primarily in the shell region. ICPC studies also indicate that injection of amphetamine into the shell portion of the NAC produces CPP. Activation of the DA system within the shell subregion of the NAC appears to play a key role in brain reward mechanisms. Rats will ICSA the DA uptake blocker, nomifensine, into the NAC shell; co-infusion with a D2 antagonist can block this behavior. In addition, rats will self-administer a mixture of a D1 plus a D2 agonist into the shell, but not the core, region of the NAC. The ICSA of this mixture can be blocked with the co-infusion of either a D1 or a D2 antagonist. However, the interactions of other transmitter systems within the NAC may also play key roles because NMDA antagonists and the muscarinic agonist carbachol are self-infused into the NAC. The medial prefrontal (MPF) cortex supports the ICSA of cocaine and phencyclidine. The DA system also seems to play a role in this behavior since cocaine self-infusion into the MPF cortex can be blocked by co-infusing a D2 antagonist, or with 6-OHDA lesions of the MPF cortex. Limited studies have been conducted on other CNS regions to elucidate their role in brain and drug reward mechanisms using ICSA or ICPC procedures. Among these regions, ICPC findings suggest that cocaine and amphetamine are rewarding in the rostral ventral pallidum (VP); ICSA and ICPC studies indicate that morphine is rewarding in the dorsal hippocampus, central gray and lateral hypothalamus. Finally, substance P mediated systems within the caudal VP (nucleus basalis magnocellularis) and serotonin systems of the dorsal and median raphe nuclei may also be important anatomical components involved in brain reward mechanisms. Overall, the ICSA and ICPC studies indicate that there are a number of receptors, neuronal pathways, and discrete CNS sites involved in brain reward mechanisms.
Collapse
Affiliation(s)
- W J McBride
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis 46202-4887, USA
| | | | | |
Collapse
|
83
|
Janak PH, Chang JY, Woodward DJ. Neuronal spike activity in the nucleus accumbens of behaving rats during ethanol self-administration. Brain Res 1999; 817:172-84. [PMID: 9889360 DOI: 10.1016/s0006-8993(98)01245-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many lines of evidence support the importance of the nucleus accumbens (NAC) for ethanol-reinforced behavior. The nature of the neuronal activity that occurs in this region during ethanol self-administration is not known. We recorded from ensembles of single-units primarily located within the shell of the NAC during operant responding for oral ethanol solutions by well-trained rats. Of 90 units recorded from seven sessions from seven rats, 41 (46%) did not exhibit significant changes in relation to the experimental events. Of the 49 units (54%) that did exhibit significant phasic changes, alterations in firing rate occurred in relation to the following experimental events: operant response (63%), tone stimulus (20%), and ethanol delivery (63%). In addition, changes in spike activity during the intervals between the three experimental events were noted in 33% of the units. Most units (55% of responsive units) responded to multiple experimental events. Thus different but overlapping populations of neurons in the NAC represent each event that occurs along the temporal dimension of a single trial performed to obtain ethanol reward. The data suggest that the NAC plays a crucial role in linking together conditioned and unconditioned internal and external stimuli with motor plans to allow for ethanol-seeking behavior to occur.
Collapse
Affiliation(s)
- P H Janak
- Department of Physiology and Pharmacology, Wake Forest University, School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157,
| | | | | |
Collapse
|
84
|
Ramsey NF, Gerrits MA, Van Ree JM. Naltrexone affects cocaine self-administration in naïve rats through the ventral tegmental area rather than dopaminergic target regions. Eur Neuropsychopharmacol 1999; 9:93-9. [PMID: 10082233 DOI: 10.1016/s0924-977x(98)00009-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Behavioural studies have shown an involvement of central endogenous opioid systems in experimental cocaine addiction. Seeking to further localize the attenuating effect of opioid blockade on the reinforcing effects of cocaine, naltrexone was administered locally to different regions of the mesocorticolimbic system, which are thought to be critically involved in cocaine self-administration behaviour. Both cell body and nerve terminal regions of this system were targeted. Using a model for the initiation of cocaine self-administration behaviour, no effect of naltrexone was found in caudate, amygdaloid or accumbens nuclei, nor in the medial prefrontal cortex. However, blockade of endogenous opioid receptors in the ventral tegmental area region attenuated cocaine self-administration. With the initiation model, this finding reflects an attenuating effect on the reinforcing effects of cocaine. The attenuation of self-administration was dependent on the naltrexone dose. The present findings suggest that endogenous opioid systems in the ventral tegmental area modulate the reinforcing efficacy of cocaine.
Collapse
Affiliation(s)
- N F Ramsey
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, Utrecht University, Netherlands
| | | | | |
Collapse
|
85
|
Nantwi KD, Hicks S, Bradley D, Schoener EP. Interactions of buprenorphine and selective dopamine receptor antagonists in the rat nucleus accumbens. GENERAL PHARMACOLOGY 1998; 31:425-9. [PMID: 9703213 DOI: 10.1016/s0306-3623(98)00020-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1. Extracellular recording of spontaneously active nucleus accumbens neurons was employed to characterize interactions of the mixed opioid buprenorphine and selective dopamine receptor antagonists. 2. Buprenorphine caused depression of single-unit activity at all doses tested but evoked facilitation only at low doses. 3. In experiments with the D1 antagonist SCH 23390, buprenorphine-induced depression was consistently blocked, but facilitation was unaffected. 4. Conversely, the D2 antagonist eticlopride blocked buprenorphine-induced facilitation, though it was ineffective against depression.
Collapse
Affiliation(s)
- K D Nantwi
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
86
|
Abstract
Drug addiction is characterized by motivational disturbances such as compulsive drug taking and episodes of intense drug craving. Recent advances using animal models of relapse have shown that drug-seeking behaviour can be triggered by drug-associated cues, by stress and by 'priming' injections of the drugs themselves, events also known to trigger drug craving in human drug addicts. Current evidence suggests that these stimuli all induce relapse, at least in part, by their common ability to activate the mesolimbic dopamine system. Drug-associated cues and stress can activate this system via neural circuits from the prefrontal cortex and amygdala and through activation of the hypothalamic-pituitary-adrenal axis. Our studies suggest that dopamine triggers relapse to drug-seeking behaviour by stimulating D2-dopamine receptors which inhibit the cyclic AMP second messenger pathway in the neurones of the nucleus accumbens. In contrast, compounds which activate D1 receptors prevent relapse to drug-seeking behaviour, possibly through satiation of reward pathways. Chronic neuroadaptations in dopamine receptor signalling pathways in the nucleus accumbens caused by repeated drug use are hypothesized to produce tolerance to the rewarding effects of D1-receptor stimulation, leading to increased drug intake during drug self-administration. Conversely, these same neuroadaptations are hypothesized to enhance drug craving by potentiating D2 receptor-mediated signals during abstinence. These findings identify D1 and D2-dopamine receptor mechanisms as potential targets for developing anticraving compounds to treat drug addiction.
Collapse
Affiliation(s)
- D W Self
- Division of Molecular Psychiatry, Center for Genes and Behavior, Yale University School of Medicine and Connecticut Mental Health Center, New Haven 06508, USA.
| |
Collapse
|
87
|
Affiliation(s)
- R A Wise
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| |
Collapse
|
88
|
White NM, Hiroi N. Preferential localization of self-stimulation sites in striosomes/patches in the rat striatum. Proc Natl Acad Sci U S A 1998; 95:6486-91. [PMID: 9600993 PMCID: PMC27819 DOI: 10.1073/pnas.95.11.6486] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/1997] [Indexed: 02/07/2023] Open
Abstract
Histological sections of the mammalian striatum reveal a "matrix" that is histochemically distinguishable from patches, or "striosomes". The latter are cross sections of a compartment that consists primarily of tube-shaped structures radiating through the matrix. As a test of the hypothesis that the function of the striosome/patch compartment includes the mediation of behaviors related to reward, the present study examined electrical self-stimulation of the caudoputamen in rats with electrodes in either of the two compartments. Rats acquired and maintained bar-pressing responses that were contingent on stimulation through electrodes making contact with striosomes/patches more reliably than animals with electrodes terminating exclusively in the matrix. The results provide in vivo evidence that the striosome/patch compartment is functionally differentiated from the matrix compartment: Stimulation centered in or around the striosome/patch compartment but not in the matrix led to rapid acquisition of a new behavior.
Collapse
Affiliation(s)
- N M White
- Department of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montreal, Quebec, Canada H3A 1B1.
| | | |
Collapse
|
89
|
Schildein S, Agmo A, Huston JP, Schwarting RK. Intraaccumbens injections of substance P, morphine and amphetamine: effects on conditioned place preference and behavioral activity. Brain Res 1998; 790:185-94. [PMID: 9593886 DOI: 10.1016/s0006-8993(98)00062-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nucleus accumbens of the rat plays a critical role in behavioral activation and appetitive motivation. Within the nucleus accumbens, the shell subarea may be especially relevant, since this site is anatomically related to other brain areas that are considered to play a critical role in the processing of motivation. We investigated the behavioral effects of local drug treatments aimed at the shell of the nucleus accumbens and tested the indirect dopamine agonist d-amphetamine, the opiate agonist morphine, and the neurokinin substance P. These substances are known to exert positive reinforcing effects, and can affect behavioral activity; effects that are physiologically closely related to the nucleus accumbens and its inputs and outputs. Our results show that unilateral microinjections of amphetamine (1.0 microg, 10.0 microg) into the shell of the nucleus accumbens dose-dependently stimulated behavioral activity (locomotion, rears, sniffing), and led to conditioned place preference. Furthermore, the effect of amphetamine on place preference was negatively related to the psychomotor stimulant action on rears. Morphine injections (5.0 microg) also stimulated behavioral activity and elicited contraversive turning, but were ineffective with respect to place preference. Finally, the neuropeptide substance P, injected in a dose range of 0.1-10.0 ng, had no significant behavioral effects. These findings are discussed with respect to the role of dopaminergic, peptidergic and cholinergic mechanisms in the nucleus accumbens. It is suggested that dopamine, opiates, and neurokinins in the shell of the nucleus accumbens are differentially involved in mediating behavioral activity and appetitive motivation.
Collapse
Affiliation(s)
- S Schildein
- Institute of Physiological Psychology I, and Center for Biological and Medical Research, Heinrich-Heine-Universität of Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
90
|
Kamei J, Ohsawa M, Suzuki T, Nagase H. Modification of morphine-induced place preference by diabetes. Eur J Pharmacol 1997; 337:137-45. [PMID: 9430407 DOI: 10.1016/s0014-2999(97)01302-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of diabetes on morphine-induced place preference in mice were examined. Morphine caused dose-related place preference in both diabetic and non-diabetic mice. This morphine-induced place preference in diabetic mice was greater than that in non-diabetic mice. The morphine (5 mg/kg)-induced place preference in both diabetic and non-diabetic mice was significantly antagonized by pretreatment with beta-funaltrexamine, a selective mu-opioid receptor antagonist, but not with naloxonazine, a selective mu1-opioid receptor antagonist. The morphine (5 mg/kg)-induced place preference in non-diabetic mice was attenuated by pretreatment with either naltriben, a selective delta2-opioid receptor antagonist, or 7-benzylidenenaltrexone. a selective delta1-opioid receptor antagonist. Moreover, the morphine (10 mg/kg)-induced place preference in non-diabetic mice was antagonized by pretreatment with 7-benzylidenenaltrexone (0.7 mg/kg). Although 7-benzylidenenaltrexone had no effect on the place preference induced by 5 mg/kg morphine in diabetic mice, it reduced the place preference induced by 3 mg/kg morphine. Furthermore, the morphine (5 mg/kg)-induced place preference in diabetic mice was significantly antagonized by co-pretreatment with beta-funaltrexamine (10 mg/kg) and 7-benzylidenenaltrexone (0.7 mg/kg). 2-Methyl-4a alpha-(3-hydroxyphenyl)- 1,2,3,4,4a,5,12,12a alpha-octahydroquinolino[2,3,3-g]isoquinoline (TAN-67), a non-peptide delta-opioid receptor agonist, produced place preference in diabetic, but not in non-diabetic mice. These results support the hypothesis that the morphine-induced place preference is mainly mediated through the activation of the mu2-opioid receptor. Furthermore, the enhancement of the morphine-induced place preference in diabetic mice may be due to the up-regulation of delta-opioid receptor-mediated functions.
Collapse
Affiliation(s)
- J Kamei
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | | | | | | |
Collapse
|
91
|
Xu M, Koeltzow TE, Santiago GT, Moratalla R, Cooper DC, Hu XT, White NM, Graybiel AM, White FJ, Tonegawa S. Dopamine D3 receptor mutant mice exhibit increased behavioral sensitivity to concurrent stimulation of D1 and D2 receptors. Neuron 1997; 19:837-48. [PMID: 9354330 DOI: 10.1016/s0896-6273(00)80965-4] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The dopamine D3 receptor is expressed primarily in regions of the brain that are thought to influence motivation and motor functions. To specify in vivo D3 receptor function, we generated mutant mice lacking this receptor. Our analysis indicates that in a novel environment, D3 mutant mice are transiently more active than wild-type mice, an effect not associated with anxiety state. Moreover, D3 mutant mice exhibit enhanced behavioral sensitivity to combined injections of D1 and D2 class receptor agonists, cocaine and amphetamine. However, the combined electrophysiological effects of the same D1 and D2 agonists on single neurons within the nucleus accumbens were not altered by the D3 receptor mutation. We conclude that one function of the D3 receptor is to modulate behaviors by inhibiting the cooperative effects of postsynaptic D1 and other D2 class receptors at systems level.
Collapse
MESH Headings
- Amphetamine/pharmacology
- Animals
- Anxiety
- Chimera
- Cocaine/pharmacology
- Conditioning, Operant
- Crosses, Genetic
- Cues
- Dopamine Agonists/pharmacology
- Electrophysiology/methods
- Female
- Habituation, Psychophysiologic
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Motor Activity/drug effects
- Motor Activity/physiology
- Neurons/drug effects
- Neurons/physiology
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/physiology
- Polymerase Chain Reaction
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/deficiency
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/physiology
- Receptors, Dopamine D3
Collapse
Affiliation(s)
- M Xu
- Center for Learning and Memory and Department of Biology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
Neuroscience techniques have made major contributions to the understanding of appetitive behavior. Highlights in six areas are summarized to illustrate progress during the 25 years of the Columbia Appetitive Behavior Seminar: (1) discovery of angiotensin and aldosterone in the control of thirst and salt appetite; (2) electrophysiological decoding of chemoreceptive information in the brain; (3) a new foundation in the hypothalamus built on peptides, such as neuropeptide Y and galanin, interacting with monoamines and steroids in the control of appetite for macronutrients; (4) discovery of numerous peptides that mediate and integrate satiety, such as cholecystokinin, insulin, leptin and enterostatin, and other systems that suppress eating during illness; (5) better understanding of appetite suppressant drugs, and (6) exploration of a circuit that translates hypothalamic signals into behavioral action through connections to brainstem reflex arcs and forebrain instrumental response systems.
Collapse
Affiliation(s)
- B G Hoebel
- Department of Psychology, Princeton, NJ 08544, USA
| |
Collapse
|
93
|
Dual ultrastructural localization of mu-opioid receptors and NMDA-type glutamate receptors in the shell of the rat nucleus accumbens. J Neurosci 1997. [PMID: 9169542 DOI: 10.1523/jneurosci.17-12-04839.1997] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effectiveness of NMDA antagonists in modulating the motor and motivational effects of opiates is attributed, in part, to functional associations involving NMDA receptors and micro-opioid receptors (MORs) in the shell of the nucleus accumbens (Acb). To determine the subcellular sites for potential functional interactions between opiate ligands and NMDA receptors in this region, we examined the ultrastructural localization of antipeptide antisera against MOR and the R1 subunit of the NMDA receptor in the Acb shell of the adult rat brain. MOR-like immunoreactivity (MOR-LI) was seen primarily in dendrites, whereas NMDAR1-like immunoreactivity (NMDAR1-LI) was detected more often in axon terminals forming asymmetric synapses. In these profiles, MOR labeling was localized mainly to extrasynaptic plasma membranes, whereas NMDAR1-LI was associated with both synaptic and extrasynaptic sites. Of 307 MOR-labeled processes, 17.9% of the dendrites and 9.4% of the axon terminals also contained NMDAR1-LI. In addition, 24.7% of the dendrites containing only MOR-LI were apposed to NMDAR1-labeled axons or terminals. We conclude that in the shell of the Acb, the output of single neurons can be dually modulated by (1) activation of MOR and NMDA receptors in the same dendrites or (2) combined activation of presynaptic NMDA receptors in afferents contacting dendrites containing MOR. In addition, the colocalization of MOR and NMDAR1 in certain axon terminals in the Acb suggests their dual involvement in the presynaptic release of neurotransmitters in this region.
Collapse
|
94
|
Abstract
Social play behavior is one of the earliest forms of non-mother-directed social behavior appearing in ontogeny in mammalian species. During the last century, there has been a lot of debate on the significance of social play behavior, but behavioral studies have indicated that social play behavior is a separate and relevant category of behavior. The present review provides a comprehensive survey of studies on the neurobiology of social play behavior. Evidence is presented that opioid and dopamine systems play a role in the reward aspect of social play behavior. The role of cholinergic, noradrenergic and opioid systems in attentional processes underlying the generation of social play behavior and the involvement of androgens in the sexual differentiation of social play behavior in rats is summarized. It is concluded that there is not only behavioral, but also neurobiological evidence to suggest that social play behavior represents a separate category of behavior, instead of a precursor for adult social, sexual or aggressive behavior.
Collapse
Affiliation(s)
- L J Vanderschuren
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, Faculty of Medicine, Utrecht University, The Netherlands.
| | | | | |
Collapse
|
95
|
Duvauchelle CL, Fleming SM, Kornetsky C. Involvement of delta- and mu-opioid receptors in the potentiation of brain-stimulation reward. Eur J Pharmacol 1996; 316:137-43. [PMID: 8982679 DOI: 10.1016/s0014-2999(96)00674-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A rate-free method of determining brain-stimulation reward thresholds was used to identify the rewarding effects of the delta-opioid receptor and mu-opioid receptor agonist peptides, [D-Pen2, D-Pen5]enkephalin (DPDPE) and [D-Ala2-MePhe4-Gly(o1)5]enkephalin (DAMGO). The nucleus accumbens-delivered opioid receptor agonists produced marked lowering of the threshold for ventral tegmental area brain-stimulation reward. No change in baseline thresholds was seen after peripheral administration of the nonpeptide delta-opioid receptor antagonist, naltrindole. However, an unexpected finding was that naltrindole blocked the threshold-lowering effects of both DPDPE and DAMGO. These data demonstrate nucleus accumbens activation of delta- and mu-opioid receptors and ventral tegmental area brain-stimulation reward share common brain substrates. In addition, the interference of both delta- and mu-opioid receptor mediated reward by naltrindole may have implications for therapeutic use.
Collapse
Affiliation(s)
- C L Duvauchelle
- Boston University School of Medicine, Laboratory of Behavioral Pharmacology, MA 02118, USA
| | | | | |
Collapse
|
96
|
Abstract
The development of tolerance and dependence has traditionally been considered an integral aspect of the drug addiction process, and opiate dependence has been studied extensively as a model system in this regard. However, recent emphasis on the positive reinforcing properties of drugs has led to the suggestion that tolerance, dependence, and withdrawal may be of secondary or even negligible importance in motivating compulsive drug use. The current article argues for an integrated view of addiction in the form of a homeostatic neuroadaptation model which emphasizes the motivational significance of both the positive affective state produced by opiates and the negative affective state characteristic of drug withdrawal. The model is supported by evidence at both the behavioral and neural systems levels of analysis. Understanding the important distinction between somatic and affective components of opiate withdrawal is key to recognizing the factors which contribute to the motivational significance of opiate dependence and withdrawal. In addition, the critical role of conditioning processes in the maintenance of compulsive drug use and relapse after periods of abstention is discussed. Finally, it is argued that both the positive reinforcement produced by acute administration of a drug and the negative affective state produced by withdrawal are common to multiple classes of abused drugs, suggesting that an understanding of homeostatic neuroadaptation within motivational systems provides a key to the etiology, treatment and prevention of drug addiction.
Collapse
Affiliation(s)
- G Schulteis
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, CA, USA.
| | | |
Collapse
|
97
|
Rewarding actions of phencyclidine and related drugs in nucleus accumbens shell and frontal cortex. J Neurosci 1996. [PMID: 8622141 DOI: 10.1523/jneurosci.16-09-03112.1996] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rats learned to lever-press when such behavior was reinforced by microinjections of phencyclidine (PCP) directly into the ventromedial (shell) region of nucleus accumbens, indicating that the drug has direct rewarding actions in that region. Separate groups of rats learned to lever-press when reinforced with microinjections of dizoclipine (MK-801) or 3-((+/-)2-carboxypiperazin-4yl)propyl-1-phosphate (CPP), drugs known to block NMDA receptor function but not dopamine uptake, into the same region. Each drug was ineffective or markedly less effective when injected at a slightly more dorsal and lateral site in the core of nucleus accumbens. Self-administration of PCP, MK-801, or CPP directly into nucleus accumbens was not altered by co-infusion of a dose of the dopamine antagonist sulpiride that effectively blocked intracranial self-administration of the dopamine uptake inhibitor nomifensine, suggesting that the rewarding actions of the NMDA receptor antagonists are not dopamine-dependent. Rats also developed lever-pressing habits when PCP, MK-801, and CPP were each microinjected directly into frontal cortex, a region previously associated with the rewarding actions of cocaine but not nomifensine. Thus nucleus accumbens and frontal cortex are each potential substrates for the rewarding properties of PCP and related drugs, and the ability of these drugs to disrupt NMDA receptor function seems sufficient to account for their rewarding actions. When considered with independent evidence, the present results suggest a model of drug reward within which the critical event is inhibition of medium spiny neurons in nucleus accumbens.
Collapse
|
98
|
Tokuyama S, Wakabayashi H, Hoskins B, Ho IK. Naloxone-precipitated changes in biogenic amines and their metabolites in various brain regions of butorphanol-dependent rats. Pharmacol Biochem Behav 1996; 54:461-8. [PMID: 8743609 DOI: 10.1016/0091-3057(95)02213-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Influence of a naloxone (an opioid receptor antagonist) challenge (5 mg/kg, IP) on levels of biogenic amines and their metabolites in various brain regions of rats infused continuously with butorphanol (a mu/delta/kappa mixed opioid receptor agonist; 26 nmol/microliter/h) or morphine (a mu-opioid receptor agonist; 26 nmol/microliter/h) was investigated using high-performance liquid chromatography with electrochemical detection (HPLC-ED). Naloxone precipitated a withdrawal syndrome and decreased the levels of: dopamine (DA) in the cortex and striatum, 3,4-dihydroxyphenylacetic acid (DOPAC) in the striatum, homovanilic acid (HVA) in the striatum, limbic, midbrain, and pons/medulla regions in butorphanol-dependent rats. However, the levels of norepinephrine (NE), serotonin (5-hydroxytryptamine; 5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in the regions studied were not affected by naloxone-precipitated withdrawal. In addition, naloxone increased the HVA/DA ratio in the cortex, while this ratio was reduced in the limbic, midbrain, and pons/medulla. The reduction of 5-HIAA/5-HT ratio was also detected in the limbic area. In the animals rendered dependent on morphine, the results obtained were similar to those of butorphanol-dependent rats except for changes of 5-HIAA levels in some brain regions. These results suggest that an alteration of dopaminergic neuron activity following a reduction of DA and its metabolites in specific brain regions (e.g., striatum, limbic, midbrain, and pons/medulla) play an important role in the expression of the opioid withdrawal syndrome.
Collapse
Affiliation(s)
- S Tokuyama
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson 39216, USA
| | | | | | | |
Collapse
|
99
|
Johnson PI, Parente MA, Stellar JR. NMDA-induced lesions of the nucleus accumbens or the ventral pallidum increase the rewarding efficacy of food to deprived rats. Brain Res 1996; 722:109-17. [PMID: 8813355 DOI: 10.1016/0006-8993(96)00202-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The role of the nucleus accumbens (NAC) and ventral pallidum (VP) in food reward modulation was investigated using Heyman's [24] curve fitting approach in food deprived rats. All rats were maintained at 80% normal body weight, and trained to lever press for food reinforcement. Each rat was tested daily with a series of four variable-interval (VI) reinforcement schedules (80, 40, 20, and 10 s) designed to approximate an exponential distribution, and randomly administered in ascending or descending order. The maximum response rate (Rmax) and the reinforcement rate required to maintain half-maximal responding (Re50) were recorded for each rat's daily test session. Following the establishment of baseline responding, the excitotoxin N-methyl-D-aspartic acid (NMDA) was bilaterally administered into the NAC (30 micrograms per side) or VP (20 micrograms per side) over a 10 min period. Both groups displayed substantial damage to the intended structure, with the lateral regions typically sustaining more damage than medial regions, and minor damage to surrounding areas. When tested at three weeks post-lesion, a suppression of motor activity was evident in all animals when compared to pre-lesion baseline. Moreover, in almost all rats, Re50 decreased, suggesting that the rewarding efficacy of food had increased. These data are surprising, given the extensive literature on the relationship between damage in the NAC and loss of reward efficacy. However, based on pharmacological and anatomical findings, both brain regions have been divided into several subregions. Behavioral studies suggest that these subregions may differentially regulate reward and motor functions. The results from the present study suggest that (1) both the NAC and VP are involved in the modulation of food reward, (2) that lateral subregions in each structure may function to dampen food reward efficacy, and (3) that medial subregions may enhance food reward.
Collapse
Affiliation(s)
- P I Johnson
- Department of Psychology, Northeastern University, Boston, MA 02115, USA
| | | | | |
Collapse
|
100
|
Olmstead MC, Franklin KB. Differential effects of ventral striatal lesions on the conditioned place preference induced by morphine or amphetamine. Neuroscience 1996; 71:701-8. [PMID: 8867042 DOI: 10.1016/0306-4522(95)00486-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present experiment examined the role of the ventral striatum in the rewarding effect of morphine and amphetamine by testing whether lesions of cell bodies within this region disrupt the development of a conditioned place preference to either drug. Bilateral, N-methyl-D-aspartate- or kainic acid-induced lesions of the ventral striatum block a conditioned place preference to amphetamine (1.5 mg/kg x 3 pairings) but not to morphine (2 mg/kg x 3 pairings). Because both lesions spared anterior portions of the ventral striatum, we examined the effect of larger or more selective ventral striatal lesions on a conditioned place preference induced by morphine. Destruction of the entire ventral striatum reduced, but did not eliminate, a conditioned place preference to morphine, whereas selective lesions of the anterior ventral striatum were ineffective. These results indicate that the ventral striatum is not critically involved in morphine's rewarding effect and support the suggestion that the rewarding effects of opiates and stimulants do not involve identical neural substrates.
Collapse
Affiliation(s)
- M C Olmstead
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|