51
|
Wang R, Levi-Polyanchenko N, Morykwas M, Argenta L, Wagner WD. Novel nanofiber-based material for endovascular scaffolds. J Biomed Mater Res A 2014; 103:1150-8. [DOI: 10.1002/jbm.a.35267] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/17/2014] [Accepted: 06/25/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Rui Wang
- Department of Plastic and Reconstructive Surgery; Wake Forest University School of Medicine; Medical Center Blvd Winston-Salem North Carolina 27157
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Science; Medical Center Blvd Winston-Salem North Carolina 27157
| | - Nicole Levi-Polyanchenko
- Department of Plastic and Reconstructive Surgery; Wake Forest University School of Medicine; Medical Center Blvd Winston-Salem North Carolina 27157
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Science; Medical Center Blvd Winston-Salem North Carolina 27157
| | - Michael Morykwas
- Department of Plastic and Reconstructive Surgery; Wake Forest University School of Medicine; Medical Center Blvd Winston-Salem North Carolina 27157
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Science; Medical Center Blvd Winston-Salem North Carolina 27157
| | - Louis Argenta
- Department of Plastic and Reconstructive Surgery; Wake Forest University School of Medicine; Medical Center Blvd Winston-Salem North Carolina 27157
| | - William D. Wagner
- Department of Plastic and Reconstructive Surgery; Wake Forest University School of Medicine; Medical Center Blvd Winston-Salem North Carolina 27157
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Science; Medical Center Blvd Winston-Salem North Carolina 27157
| |
Collapse
|
52
|
Miragoli M, Yacoub MH, El-Hamamsy I, Sanchez-Alonso JL, Moshkov A, Mongkoldhumrongkul N, Padala M, Paramagurunathan S, Sarathchandra P, Korchev YE, Gorelik J, Chester AH. Side-specific mechanical properties of valve endothelial cells. Am J Physiol Heart Circ Physiol 2014; 307:H15-24. [DOI: 10.1152/ajpheart.00228.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aortic valve endothelial cells (ECs) function in vastly different levels of shear stress. The biomechanical characteristics of cells on each side of valve have not been investigated. We assessed the morphology and mechanical properties of cultured or native valve ECs on intact porcine aortic valve cusps using a scanning ion conductance microscope (SICM). The autocrine influence of several endothelial-derived mediators on cell compliance and the expression of actin were also examined. Cells on the aortic side of the valve are characterized by a more elongated shape and were aligned along a single axis. Measurement of EC membrane compliance using the SICM showed that the cells on the aortic side of intact valves were significantly softer than those on the ventricular side. A similar pattern was seen in cultured cells. Addition of 10−6 M of the nitric oxide donor sodium nitroprusside caused a significant reduction in the compliance of ventricular ECs but had no effect on cells on the aortic side of the valve. Conversely, endothelin-1 (10−10-10−8 M) caused an increase in the compliance of aortic cells but had no effect on cells on the ventricular side of the valve. Aortic side EC compliance was also increased by 10−4 M of the nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester. Immunofluorescent staining of actin filaments revealed a great density of staining in ECs on the ventricular surface. The expression of actin and the relative membrane compliance of ECs on both side of the valve were not affected by ventricular and aortic patterns of flow. This study has shown side-specific differences in the biomechanics of aortic valve ECs. These differences can have important implications for valve function.
Collapse
Affiliation(s)
- Michele Miragoli
- Imperial College, National Heart and Lung Institute, Department of Cardiac Medicine, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus, London, United Kingdom
- Humanitas Clinical and Research Center, Rozzano (Milan), Italy
| | - Magdi H. Yacoub
- Imperial College, National Heart and Lung Institute, Heart Science Centre, Harefield, Middlesex, United Kingdom
- Qatar Cardiovascular Research Centre, Qatar Foundation, Doha, Qatar
| | - Ismail El-Hamamsy
- Imperial College, National Heart and Lung Institute, Heart Science Centre, Harefield, Middlesex, United Kingdom
| | - Jose L. Sanchez-Alonso
- Imperial College, National Heart and Lung Institute, Department of Cardiac Medicine, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus, London, United Kingdom
| | - Alexey Moshkov
- Imperial College, National Heart and Lung Institute, Department of Cardiac Medicine, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus, London, United Kingdom
| | | | - Muralindar Padala
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia; and
| | - Saravanan Paramagurunathan
- Imperial College, National Heart and Lung Institute, Heart Science Centre, Harefield, Middlesex, United Kingdom
| | - Padmini Sarathchandra
- Imperial College, National Heart and Lung Institute, Heart Science Centre, Harefield, Middlesex, United Kingdom
| | - Yuri E. Korchev
- Division of Medicine, Imperial College, Hammersmith Campus, London, United Kingdom
| | - Julia Gorelik
- Imperial College, National Heart and Lung Institute, Department of Cardiac Medicine, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus, London, United Kingdom
| | - Adrian H. Chester
- Imperial College, National Heart and Lung Institute, Heart Science Centre, Harefield, Middlesex, United Kingdom
- Qatar Cardiovascular Research Centre, Qatar Foundation, Doha, Qatar
| |
Collapse
|
53
|
Biomechanical properties of native and tissue engineered heart valve constructs. J Biomech 2014; 47:1949-63. [DOI: 10.1016/j.jbiomech.2013.09.023] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 11/18/2022]
|
54
|
Abstract
In the past two decades, major advances have been made in the clinical evaluation and treatment of valvular heart disease owing to the advent of noninvasive cardiac imaging modalities. In clinical practice, valvular disease evaluation is typically performed on two-dimensional (2D) images, even though most imaging modalities offer three-dimensional (3D) volumetric, time-resolved data. Such 3D data offer researchers the possibility to reconstruct the 3D geometry of heart valves at a patient-specific level. When these data are integrated with computational models, native heart valve biomechanical function can be investigated, and preoperative planning tools can be developed. In this review, we outline the advances in valve geometry reconstruction, tissue property modeling, and loading and boundary definitions for the purpose of realistic computational structural analysis of cardiac valve function and intervention.
Collapse
Affiliation(s)
- Wei Sun
- Tissue Mechanics Lab, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30313;
| | | | | |
Collapse
|
55
|
Buchanan RM, Sacks MS. Interlayer micromechanics of the aortic heart valve leaflet. Biomech Model Mechanobiol 2013; 13:813-26. [PMID: 24292631 DOI: 10.1007/s10237-013-0536-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
While the mechanical behaviors of the fibrosa and ventricularis layers of the aortic valve (AV) leaflet are understood, little information exists on their mechanical interactions mediated by the GAG-rich central spongiosa layer. Parametric simulations of the interlayer interactions of the AV leaflets in flexure utilized a tri-layered finite element (FE) model of circumferentially oriented tissue sections to investigate inter-layer sliding hypothesized to occur. Simulation results indicated that the leaflet tissue functions as a tightly bonded structure when the spongiosa effective modulus was at least 25 % that of the fibrosa and ventricularis layers. Novel studies that directly measured transmural strain in flexure of AV leaflet tissue specimens validated these findings. Interestingly, a smooth transmural strain distribution indicated that the layers of the leaflet indeed act as a bonded unit, consistent with our previous observations (Stella and Sacks in J Biomech Eng 129:757-766, 2007) of a large number of transverse collagen fibers interconnecting the fibrosa and ventricularis layers. Additionally, when the tri-layered FE model was refined to match the transmural deformations, a layer-specific bimodular material model (resulting in four total moduli) accurately matched the transmural strain and moment-curvature relations simultaneously. Collectively, these results provide evidence, contrary to previous assumptions, that the valve layers function as a bonded structure in the low-strain flexure deformation mode. Most likely, this results directly from the transverse collagen fibers that bind the layers together to disable physical sliding and maintain layer residual stresses. Further, the spongiosa may function as a general dampening layer while the AV leaflets deforms as a homogenous structure despite its heterogeneous architecture.
Collapse
Affiliation(s)
- Rachel M Buchanan
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA
| | | |
Collapse
|
56
|
Myles V, Liao J, Warnock JN. Cyclic pressure and angiotensin II influence the biomechanical properties of aortic valves. J Biomech Eng 2013; 136:011011. [PMID: 24240552 DOI: 10.1115/1.4026041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Indexed: 11/08/2022]
Abstract
Hypertension is a known risk factor for aortic stenosis. The elevated blood pressure increases the transvalvular load and can elicit inflammation and extracellular matrix (ECM) remodeling. Elevated cyclic pressure and the vasoactive agent angiotensin II (Ang II) both promote collagen synthesis, an early hallmark of aortic sclerosis. In the current study, it was hypothesized that elevated cyclic pressure and/or angiotensin II decreases extensibility of aortic valve leaflets due to an increase in collagen content and/or interstitial cell stiffness. Porcine aortic valve leaflets were exposed to pressure conditions of increasing magnitude (static atmospheric pressure, 80, and 120 mmHg) with and without 10−6 M Ang II. Biaxial mechanical testing was performed to determine extensibility in the circumferential and radial directions and collagen content was determined using a quantitative dye-binding method at 24 and 48 h. Isolated aortic valve interstitial cells exposed to the same experimental conditions were subjected to atomic force microscopy to assess cellular stiffness at 24 h. Leaflet tissue incubated with Ang II decreased tissue extensibility in the radial direction, but not in the circumferential direction. Elevated cyclic pressure decreased extensibility in both the radial and circumferential directions. Ang II and elevated cyclic pressure both increased the collagen content in leaflet tissue. Interstitial cells incubated with Ang II were stiffer than those incubated without Ang II while elevated cyclic pressure caused a decrease in cell stiffness. The results of the current study demonstrated that both pressure and Ang II play a role in altering the biomechanical properties of aortic valve leaflets. Ang II and elevated cyclic pressure decreased the extensibility of aortic valve leaflet tissue. Ang II induced direction specific changes in extensibility, demonstrating different response mechanisms. These findings help to provide a better understanding of the responses of aortic valves to mechanical and biochemical changes that occur under hypertensive conditions.
Collapse
|
57
|
Gould ST, Srigunapalan S, Simmons CA, Anseth KS. Hemodynamic and cellular response feedback in calcific aortic valve disease. Circ Res 2013; 113:186-97. [PMID: 23833293 DOI: 10.1161/circresaha.112.300154] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review highlights aspects of calcific aortic valve disease that encompass the entire range of aortic valve disease progression from initial cellular changes to aortic valve sclerosis and stenosis, which can be initiated by changes in blood flow (hemodynamics) and pressure across the aortic valve. Appropriate hemodynamics is important for normal valve function and maintenance, but pathological blood velocities and pressure can have profound consequences at the macroscopic to microscopic scales. At the macroscopic scale, hemodynamic forces impart shear stresses on the surface of the valve leaflets and cause deformation of the leaflet tissue. As discussed in this review, these macroscale forces are transduced to the microscale, where they influence the functions of the valvular endothelial cells that line the leaflet surface and the valvular interstitial cells that populate the valve extracellular matrix. For example, pathological changes in blood flow-induced shear stress can cause dysfunction, impairing their homeostatic functions, and pathological stretching of valve tissue caused by elevated transvalvular pressure can activate valvular interstitial cells and latent paracrine signaling cytokines (eg, transforming growth factor-β1) to promote maladaptive tissue remodeling. Collectively, these coordinated and complex interactions adversely impact bulk valve tissue properties, feeding back to further deteriorate valve function and propagate valve cell pathological responses. Here, we review the role of hemodynamic forces in calcific aortic valve disease initiation and progression, with focus on cellular responses and how they feed back to exacerbate aortic valve dysfunction.
Collapse
Affiliation(s)
- Sarah T Gould
- Department of Chemical and Biological Engineering, The Biofrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | | | | | | |
Collapse
|
58
|
Weltert L, de Tullio MD, Afferrante L, Salica A, Scaffa R, Maselli D, Verzicco R, De Paulis R. Annular dilatation and loss of sino-tubular junction in aneurysmatic aorta: implications on leaflet quality at the time of surgery. A finite element study. Interact Cardiovasc Thorac Surg 2013; 17:8-12. [PMID: 23536020 DOI: 10.1093/icvts/ivt116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES In the belief that stress is the main determinant of leaflet quality deterioration, we sought to evaluate the effect of annular and/or sino-tubular junction dilatation on leaflet stress. A finite element computer-assisted stress analysis was used to model four different anatomic conditions and analyse the consequent stress pattern on the aortic valve. METHODS Theoretical models of four aortic root configurations (normal, with dilated annulus, with loss of sino-tubular junction and with both dilatation simultaneously) were created with computer-aided design technique. The pattern of stress and strain was then analysed by means of finite elements analysis, when a uniform pressure of 100 mmHg was applied to the model. Analysis produced von Mises charts (colour-coded, computational, three-dimensional stress-pattern graphics) and bidimensional plots of compared stress on arc-linear line, which allowed direct comparison of stress in the four different conditions. RESULTS Stresses both on the free margin and on the 'belly' of the leaflet rose from 0.28 MPa (normal conditions) to 0.32 MPa (+14%) in case of isolated dilatation of the sino-tubular junction, while increased to 0.42 MPa (+67%) in case of isolated annular dilatation, with no substantial difference whether sino-tubular junction dilatation was present or not. CONCLUSIONS Annular dilatation is the key element determining an increased stress on aortic leaflets independently from an associated sino-tubular junction dilatation. The presence of annular dilatation associated with root aneurysm greatly decreases the chance of performing a valve sparing procedure without the need for additional manoeuvres on leaflet tissue. This information may lead to a refinement in the optimal surgical strategy.
Collapse
Affiliation(s)
- Luca Weltert
- Department of Cardiac Surgery, European Hospital, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Side-specific endothelial-dependent regulation of aortic valve calcification: interplay of hemodynamics and nitric oxide signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1922-31. [PMID: 23499458 DOI: 10.1016/j.ajpath.2013.01.037] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 01/10/2013] [Accepted: 01/18/2013] [Indexed: 01/05/2023]
Abstract
Arterial endothelial cells maintain vascular homeostasis and vessel tone in part through the secretion of nitric oxide (NO). In this study, we determined how aortic valve endothelial cells (VEC) regulate aortic valve interstitial cell (VIC) phenotype and matrix calcification through NO. Using an anchored in vitro collagen hydrogel culture system, we demonstrate that three-dimensionally cultured porcine VIC do not calcify in osteogenic medium unless under mechanical stress. Co-culture with porcine VEC, however, significantly attenuated VIC calcification through inhibition of myofibroblastic activation, osteogenic differentiation, and calcium deposition. Incubation with the NO donor DETA-NO inhibited VIC osteogenic differentiation and matrix calcification, whereas incubation with the NO blocker l-NAME augmented calcification even in 3D VIC-VEC co-culture. Aortic VEC, but not VIC, expressed endothelial NO synthase (eNOS) in both porcine and human valves, which was reduced in osteogenic medium. eNOS expression was reduced in calcified human aortic valves in a side-specific manner. Porcine leaflets exposed to the soluble guanylyl cyclase inhibitor ODQ increased osteocalcin and α-smooth muscle actin expression. Finally, side-specific shear stress applied to porcine aortic valve leaflet endothelial surfaces increased cGMP production in VEC. Valve endothelial-derived NO is a natural inhibitor of the early phases of valve calcification and therefore may be an important regulator of valve homeostasis and pathology.
Collapse
|
60
|
Eckert CE, Fan R, Mikulis B, Barron M, Carruthers CA, Friebe VM, Vyavahare NR, Sacks MS. On the biomechanical role of glycosaminoglycans in the aortic heart valve leaflet. Acta Biomater 2013; 9:4653-60. [PMID: 23036945 PMCID: PMC3508081 DOI: 10.1016/j.actbio.2012.09.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 09/09/2012] [Accepted: 09/25/2012] [Indexed: 12/14/2022]
Abstract
While the role of collagen and elastin fibrous components in heart valve valvular biomechanics has been extensively investigated, the biomechanical role of the glycosaminoglycan (GAG) gelatinous-like material phase remains unclear. In the present study, we investigated the biomechanical role of GAGs in porcine aortic valve (AV) leaflets under tension utilizing enzymatic removal. Tissue specimens were removed from the belly region of porcine AVs and subsequently treated with either an enzyme solution for GAG removal or a control (buffer with no enzyme) solution. A dual stress level test methodology was used to determine the effects at low and high (physiological) stress levels. In addition, planar biaxial tests were conducted both on-axis (i.e. aligned to the circumferential and radial axes) and at 45° off-axis to induce maximum shear, to explore the effects of augmented fiber rotations on the fiber-fiber interactions. Changes in hysteresis were used as the primary metric of GAG functional assessment. A simulation of the low-force experimental setup was also conducted to clarify the internal stress system and provide viscoelastic model parameters for this loading range. Results indicated that under planar tension the removal of GAGs had no measureable affect extensional mechanical properties (either on- or 45° off-axis), including peak stretch, hysteresis and creep. Interestingly, in the low-force range, hysteresis was markedly reduced, from 35.96±2.65% in control group to 25.00±1.64% (p<0.001) as a result of GAG removal. Collectively, these results suggest that GAGs do not play a direct role in modulating the time-dependent tensile properties of valvular tissues. Rather, they appear to be strongly connected with fiber-fiber and fiber-matrix interactions at low force levels. Thus, we speculate that GAGs may be important in providing a damping mechanism to reduce leaflet flutter when the leaflet is not under high tensile stress.
Collapse
Affiliation(s)
- Chad E Eckert
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Borghi A, New SEP, Chester AH, Taylor PM, Yacoub MH. Time-dependent mechanical properties of aortic valve cusps: effect of glycosaminoglycan depletion. Acta Biomater 2013; 9:4645-52. [PMID: 22963848 DOI: 10.1016/j.actbio.2012.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/30/2012] [Accepted: 09/01/2012] [Indexed: 11/19/2022]
Abstract
Aortic valve (AV) performance is closely linked to its structural components. Glycosaminoglycans (GAGs) are thought to influence the time-dependent properties of living tissues. This study investigates the effect of GAGs on the viscoelastic behaviour of the AV. Fresh porcine AV cusps were either treated enzymatically to remove GAGs or left untreated (control). The specimens were tested for stress relaxation and tensile properties under equibiaxial load conditions. The stress relaxation curves were fitted using a double exponential decay equation and the early relaxation constant (τ(1)) and late relaxation constant (τ(2)) calculated for each specimen. Immunohistochemistry confirmed the successful depletion of both sulphated and non-sulphated GAGs from the AV cusps. A statistical increase in τ(1) was found for both the radial and circumferential directions between the control and -GAGs group (radial, control 17.37s vs. -GAGs 25.65 s; circumferential, control 21.47s vs. -GAGs 27.37 s). It was also found that τ(1) differed between the two directions for the control group but not after GAG depletion (control, radial 17.37s vs. circumferential 21.47 s; -GAGs, radial 25.65 s vs. circumferential 27.37s). No effect on stiffness was found. The results showed that the presence of GAGs influences the mechanical viscoelastic properties of the AV but has no effect on the stiffness. The natural anisotropy, which reflects the relaxation kinematics, is lost after GAG depletion.
Collapse
Affiliation(s)
- Alessandro Borghi
- Institute of Biomedical Engineering, Imperial College London, South Kensington, London, UK
| | | | | | | | | |
Collapse
|
62
|
Dimakopoulos Y, Bogaerds AC, Anderson PD, Hulsen MA, Baaijens FP. Direct numerical simulation of a 2D-stented aortic heart valve at physiological flow rates. Comput Methods Biomech Biomed Engin 2012; 15:1157-79. [DOI: 10.1080/10255842.2011.581238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
63
|
Comparison and critical analysis of invariant-based models with respect to their ability in fitting human aortic valve data. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s12356-012-0028-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
64
|
Anssari-Benam A, Gupta HS, Screen HRC. Strain Transfer Through the Aortic Valve. J Biomech Eng 2012; 134:061003. [DOI: 10.1115/1.4006812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The complex structural organization of the aortic valve (AV) extracellular matrix (ECM) enables large and highly nonlinear tissue level deformations. The collagen and elastin (elastic) fibers within the ECM form an interconnected fibrous network (FN) and are known to be the main load-bearing elements of the AV matrix. The role of the FN in enabling deformation has been investigated and documented. However, there is little data on the correlation between tissue level and FN-level strains. Investigating this correlation will help establish the mode of strain transfer (affine or nonaffine) through the AV tissue as a key feature in microstructural modeling and will also help characterize the local FN deformation across the AV sample in response to applied tissue level strains. In this study, the correlation between applied strains at tissue level, macrostrains across the tissue surface, and local FN strains were investigated. Results showed that the FN strain distribution across AV samples was inhomogeneous and nonuniform, as well as anisotropic. There was no direct transfer of the deformation applied at tissue level to the fibrous network. Loading modes induced in the FN are different than those applied at the tissue as a result of different local strains in the valve layers. This nonuniformity of local strains induced internal shearing within the FN of the AV, possibly exposing the aortic valve interstitial cells (AVICs) to shear strains and stresses.
Collapse
Affiliation(s)
- Afshin Anssari-Benam
- School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, E1 4NS London, UK
| | - Himadri S. Gupta
- School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, E1 4NS London, UK
| | - Hazel R. C. Screen
- School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, E1 4NS London, UK
| |
Collapse
|
65
|
Amini R, Eckert CE, Koomalsingh K, McGarvey J, Minakawa M, Gorman JH, Gorman RC, Sacks MS. On the in vivo deformation of the mitral valve anterior leaflet: effects of annular geometry and referential configuration. Ann Biomed Eng 2012; 40:1455-67. [PMID: 22327292 DOI: 10.1007/s10439-012-0524-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 01/25/2012] [Indexed: 11/29/2022]
Abstract
Alteration of the native mitral valve (MV) shape has been hypothesized to have a profound effect on the local tissue stress distribution, and is potentially linked to limitations in repair durability. The present study was undertaken to elucidate the relation between MV annular shape and central mitral valve anterior leaflet (MVAL) strain history, using flat annuloplasty in an ovine model. In addition, we report for the first time the presence of residual in vivo leaflet strains. In vivo leaflet deformations were measured using sonocrystal transducers sutured to the MVAL (n = 10), with the 3D positions acquired over the full cardiac cycle. In six animals a flat ring was sutured to the annulus and the transducer positions recorded, while in the remaining four the MV was excised from the exsanguinated heart and the stress-free transducer positions obtained. In the central region of the MVAL the peak stretch values, referenced to the minimum left ventricular pressure (LVP), were 1.10 ± 0.01 and 1.31 ± 0.03 (mean ± standard error) in the circumferential and radial directions, respectively. Following flat ring annuloplasty, the central MVAL contracted 28% circumferentially and elongated 16% radially at minimum LVP, and the circumferential direction was under a negative strain state during the entire cardiac cycle. After valve excision from the exsanguinated heart, the MVAL contracted significantly (18 and 30% in the circumferential and radial directions, respectively), indicating the presence of substantial in vivo residual strains. While the physiological function of the residual strains (and their associated stresses) are at present unknown, accounting for their presence is clearly necessary for accurate computational simulations of MV function. Moreover, we demonstrated that changes in annular geometry dramatically alter valvular functional strains in vivo. As levels of homeostatic strains are related to tissue remodeling and homeostasis, our results suggest that surgically introduced alterations in MV shape could lead to the long term MV mechanobiological and microstructural alterations that could ultimately affect MV repair durability.
Collapse
Affiliation(s)
- Rouzbeh Amini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Leong J, Munnelly A, Liberio B, Cochrane L, Vyavahare N. Neomycin and carbodiimide crosslinking as an alternative to glutaraldehyde for enhanced durability of bioprosthetic heart valves. J Biomater Appl 2011; 27:948-60. [DOI: 10.1177/0885328211430542] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glutaraldehyde cross-linked porcine aortic valves, referred to as bioprosthetic heart valves (BHVs), are often used in heart valve replacements. Glutaraldehyde does not stabilize glycosaminoglycans (GAGs) and they are lost during preparation, in vivo implantation, cyclic fatigue, and storage. We report that binding of neomycin, a hyaluronidase inhibitor, to the tissues with carbodiimide cross-linking improves GAG retention without reducing collagen and elastin stability. It also led to improved biomechanical properties. Neomycin carbodiimide cross-linking did not significantly reduce calcification in a rat subdermal implantation model when they were stored in formaldehyde after cross-linking. Removal of formaldehyde storage significantly reduced calcification.
Collapse
Affiliation(s)
- Joshua Leong
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Amy Munnelly
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Brianna Liberio
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Leonard Cochrane
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Naren Vyavahare
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
67
|
The elastic properties of valve interstitial cells undergoing pathological differentiation. J Biomech 2011; 45:882-7. [PMID: 22189247 DOI: 10.1016/j.jbiomech.2011.11.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2011] [Indexed: 10/14/2022]
Abstract
Increasing evidence indicates that the progression of calcific aortic valve disease (CAVD) is influenced by the mechanical forces experienced by valvular interstitial cells (VICs) embedded within the valve matrix. The ability of VICs to sense and respond to tissue-level mechanical stimuli depends in part on cellular-level biomechanical properties, which may change with disease. In this study, we used micropipette aspiration to measure the instantaneous elastic modulus of normal VICs and of VICs induced to undergo pathological differentiation in vitro to osteoblast or myofibroblast lineages on compliant and stiff collagen gels, respectively. We found that VIC elastic modulus increased after subculturing on stiff tissue culture-treated polystyrene and with pathological differentiation on the collagen gels. Fibroblast, osteoblast, and myofibroblast VICs had distinct cellular-level elastic properties that were not fully explained by substrate stiffness, but were correlated with α-smooth muscle actin expression levels. C-type natriuretic peptide, a peptide expressed in aortic valves in vivo, prevented VIC stiffening in vitro, consistent with its ability to inhibit α-smooth muscle actin expression and VIC pathological differentiation. These data demonstrate that VIC phenotypic plasticity and mechanical adaptability are linked and regulated both biomechanically and biochemically, with the potential to influence the progression of CAVD.
Collapse
|
68
|
Gerson CJ, Elkins RC, Goldstein S, Heacox AE. Structural integrity of collagen and elastin in SynerGraft® decellularized-cryopreserved human heart valves. Cryobiology 2011; 64:33-42. [PMID: 22119932 DOI: 10.1016/j.cryobiol.2011.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022]
Abstract
SynerGraft® (SG) decellularized-cryopreserved cardiac valve allografts have been developed to provide a valve replacement option that has reduced antigenicity, retained structural integrity, and the ability to be stored long-term until needed for implantation. However, it is critical to ensure that both the SG processing and cryopreservation of these allografts do not detrimentally affect the extracellular matrix architecture within the tissue. This study evaluates the effects of SG decellularization and subsequent cryopreservation on the extracellular matrix integrity of allograft heart valves. Human aortic and pulmonary valves were trisected, with one-third of each either left fresh (no further processing after dissection), decellularized, or decellularized and cryopreserved. Two-photon laser scanning confocal microscopy was used to visualize collagen and elastin in leaflets and conduits. The optimized percent laser transmission (OPLT) required for full dynamic range imaging of each site was determined, and changes in OPLT were used to infer changes in collagen and elastin signal intensity. Collagen fiber crimp period and collagen and elastin fiber diameter were measured in leaflet tissue. Statistically significant differences in OPLT and the dimensional characteristics of collagen and elastin in study groups were determined through single factor ANOVA. The majority of donor-aggregated average OPLT observations showed no statistically significant differences among all groups, indicating no difference in collagen or elastin signal strength. Morphometric analysis of collagen and elastin fibers revealed no significant alterations in treated leaflet tissues relative to fresh tissues. Collagen and elastin structural integrity within allograft heart valves are maintained through SynerGraft® decellularization and subsequent cryopreservation.
Collapse
|
69
|
Sider KL, Blaser MC, Simmons CA. Animal models of calcific aortic valve disease. Int J Inflam 2011; 2011:364310. [PMID: 21826258 PMCID: PMC3150155 DOI: 10.4061/2011/364310] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 04/27/2011] [Indexed: 11/20/2022] Open
Abstract
Calcific aortic valve disease (CAVD), once thought to be a degenerative disease, is now recognized to be an active pathobiological process, with chronic inflammation emerging as a predominant, and possibly driving, factor. However, many details of the pathobiological mechanisms of CAVD remain to be described, and new approaches to treat CAVD need to be identified. Animal models are emerging as vital tools to this end, facilitated by the advent of new models and improved understanding of the utility of existing models. In this paper, we summarize and critically appraise current small and large animal models of CAVD, discuss the utility of animal models for priority CAVD research areas, and provide recommendations for future animal model studies of CAVD.
Collapse
Affiliation(s)
- Krista L Sider
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, Canada M5S 3G9
| | | | | |
Collapse
|
70
|
Abstract
The mature heart valves are made up of highly organized extracellular matrix (ECM) and valve interstitial cells (VICs) surrounded by an endothelial cell layer. The ECM of the valves is stratified into elastin-, proteoglycan-, and collagen-rich layers that confer distinct biomechanical properties to the leaflets and supporting structures. Signaling pathways have critical functions in primary valvulogenesis as well as the maintenance of valve structure and function over time. Animal models provide powerful tools to study valve development and disease processes. Valve disease is a significant public health problem, and increasing evidence implicates aberrant developmental mechanisms underlying pathogenesis. Further studies are necessary to determine regulatory pathway interactions underlying valve pathogenesis in order to generate new avenues for novel therapeutics.
Collapse
Affiliation(s)
- Robert B Hinton
- Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, Ohio 45229, USA
| | | |
Collapse
|
71
|
Abstract
The hallmarks of calcific aortic valve disease (CAVD) are the significant changes that occur in the organization, composition, and mechanical properties of the extracellular matrix (ECM), ultimately resulting in stiffened stenotic leaflets that obstruct flow and compromise cardiac function. Increasing evidence suggests that ECM maladaptations are not simply a result of valve cell dysfunction; they also contribute to CAVD progression by altering cellular and molecular signaling. In this review, we summarize the ECM changes that occur in CAVD. We also discuss examples of how the ECM influences cellular processes by signaling through adhesion receptors (matricellular signaling), by regulating the presentation and availability of growth factors and cytokines to cells (matricrine signaling), and by transducing externally applied forces and resisting cell-generated tractional forces (mechanical signaling) to regulate a wide range of pathological processes, including differentiation, fibrosis, calcification, and angiogenesis. Finally, we suggest areas for future research that should lead to new insights into bidirectional cell–ECM interactions in the aortic valve, their contributions to homeostasis and pathobiology, and possible targets to slow or prevent the progression of CAVD.
Collapse
Affiliation(s)
- Jan-Hung Chen
- From the Institute of Biomaterials and Biomedical Engineering (J.H.C., C.A.S.), Department of Mechanical and Industrial Engineering (J.H.C., C.A.S.), and Faculty of Dentistry (C.A.S.), University of Toronto, Toronto, Ontario, Canada
| | - Craig A. Simmons
- From the Institute of Biomaterials and Biomedical Engineering (J.H.C., C.A.S.), Department of Mechanical and Industrial Engineering (J.H.C., C.A.S.), and Faculty of Dentistry (C.A.S.), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
72
|
Tseng H, Grande-Allen K. Elastic fibers in the aortic valve spongiosa: a fresh perspective on its structure and role in overall tissue function. Acta Biomater 2011; 7:2101-8. [PMID: 21255691 DOI: 10.1016/j.actbio.2011.01.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 01/10/2011] [Accepted: 01/13/2011] [Indexed: 11/26/2022]
Abstract
This study characterizes the elastic fiber structure within the aortic valve spongiosa, the middle layer of the tri-laminate leaflet. The layer is rich in glycosaminoglycans and proteoglycans, through which it resists compression and lubricates shear between the outer layers. Elastin in this layer forms a fine, interweaving structure, yet it is unclear how this particular structure, which uses elasticity to preload the leaflet, assists spongiosa function. In this study, immunohistochemistry (IHC) and scanning electron microscopy (SEM) are used to characterize spongiosa elastin, as well as investigate regional differences in structure. IHC for elastin highlights an intermediate structure which varies in thickness and density between regions. In particular, the spongiosa elastin is thicker in the hinge and coaptation region than in the belly. SEM of NaOH-digested leaflets shows a rectilinear pattern of elastic fibers in the hinge and coaptation region, as opposed to a radially oriented stripe pattern in the belly. In conclusion, elastic fibers in the spongiosa connect the two outer layers and vary regionally in structure, while possibly playing a role in responding to regionally specific loading patterns.
Collapse
|
73
|
Yip CYY, Simmons CA. The aortic valve microenvironment and its role in calcific aortic valve disease. Cardiovasc Pathol 2011; 20:177-82. [DOI: 10.1016/j.carpath.2010.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 12/01/2010] [Indexed: 12/01/2022] Open
|
74
|
Bouten C, Dankers P, Driessen-Mol A, Pedron S, Brizard A, Baaijens F. Substrates for cardiovascular tissue engineering. Adv Drug Deliv Rev 2011; 63:221-41. [PMID: 21277921 DOI: 10.1016/j.addr.2011.01.007] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 12/26/2010] [Accepted: 01/14/2011] [Indexed: 12/29/2022]
Abstract
Cardiovascular tissue engineering aims to find solutions for the suboptimal regeneration of heart valves, arteries and myocardium by creating 'living' tissue replacements outside (in vitro) or inside (in situ) the human body. A combination of cells, biomaterials and environmental cues of tissue development is employed to obtain tissues with targeted structure and functional properties that can survive and develop within the harsh hemodynamic environment of the cardiovascular system. This paper reviews the up-to-date status of cardiovascular tissue engineering with special emphasis on the development and use of biomaterial substrates. Key requirements and properties of these substrates, as well as methods and readout parameters to test their efficacy in the human body, are described in detail and discussed in the light of current trends toward designing biologically inspired microenviroments for in situ tissue engineering purposes.
Collapse
|
75
|
Butcher JT, Mahler GJ, Hockaday LA. Aortic valve disease and treatment: the need for naturally engineered solutions. Adv Drug Deliv Rev 2011; 63:242-68. [PMID: 21281685 DOI: 10.1016/j.addr.2011.01.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/05/2011] [Accepted: 01/14/2011] [Indexed: 01/21/2023]
Abstract
The aortic valve regulates unidirectional flow of oxygenated blood to the myocardium and arterial system. The natural anatomical geometry and microstructural complexity ensures biomechanically and hemodynamically efficient function. The compliant cusps are populated with unique cell phenotypes that continually remodel tissue for long-term durability within an extremely demanding mechanical environment. Alteration from normal valve homeostasis arises from genetic and microenvironmental (mechanical) sources, which lead to congenital and/or premature structural degeneration. Aortic valve stenosis pathobiology shares some features of atherosclerosis, but its final calcification endpoint is distinct. Despite its broad and significant clinical significance, very little is known about the mechanisms of normal valve mechanobiology and mechanisms of disease. This is reflected in the paucity of predictive diagnostic tools, early stage interventional strategies, and stagnation in regenerative medicine innovation. Tissue engineering has unique potential for aortic valve disease therapy, but overcoming current design pitfalls will require even more multidisciplinary effort. This review summarizes the latest advancements in aortic valve research and highlights important future directions.
Collapse
|
76
|
Regional analysis of dynamic deformation characteristics of native aortic valve leaflets. J Biomech 2011; 44:1459-65. [PMID: 21458817 DOI: 10.1016/j.jbiomech.2011.03.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 01/06/2011] [Accepted: 03/14/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND The mechanical environment of the aortic valve (AV) has a significant impact on valve cellular biology and disease progression, but the regional variation in stretch across the AV leaflet is not well understood. This study, therefore, sought to quantify the regional variation in dynamic deformation characteristics of AV leaflets in the native mechanical environment in order to link leaflet stretch variation to reported AV calcification patterns. METHODS Whole porcine AVs (n=6) were sutured into a physiological left heart simulator and subjected to pulsatile and physiologically normal hemodynamic conditions. A grid of ink dots was marked on the entire ventricular surface of the AV leaflet. Dual camera stereo photogrammetry was used to determine the stretch magnitudes across the entire ventricular surface over the entire diastolic duration. RESULTS Elevated stretch magnitudes were observed along the leaflet base and coaptation line consistent with previously reported calcification patterns suggesting the higher mechanical stretch experienced by the leaflets in these regions may contribute to increased disease propensity. Transient stretch overloads were observed during diastolic closing, predominantly along the leaflet base, indicating the presence of a dynamic fluid hammer effect resulting from retrograde blood flow impacting the leaflet. We speculate the function of the leaflet base to act in cooperation with the sinuses of Valsalva to dampen the fluid hammer effect and reduce stress levels imparted on the rest of the leaflet.
Collapse
|
77
|
Zhao R, Sider KL, Simmons CA. Measurement of layer-specific mechanical properties in multilayered biomaterials by micropipette aspiration. Acta Biomater 2011; 7:1220-7. [PMID: 21056128 DOI: 10.1016/j.actbio.2010.11.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/12/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
Many biomaterials and tissues are complex multilayered structures in which the individual layers have distinct mechanical properties that influence the mechanical behavior and define the local cellular microenvironment. Characterization of the mechanical properties of individual layers in intact tissues is technically challenging. Micropipette aspiration (MA) is a proven method for the analysis of local mechanical properties of soft single-layer biomaterials, but its applicability for multilayer structures has not been demonstrated. We sought to determine and validate MA experimental parameters that would permit measurement of the mechanical properties of only the top layer of an intact multilayer biomaterial or tissue. To do so, we performed parametric nonlinear finite-element (FE) analyses and validation experiments using a multilayer gelatin system. The parametric FE analyses demonstrated that measurement of the properties of only the top layer of a multilayer structure is sensitive to the ratio of the pipette inner diameter (D) to top layer thickness (ttop), and that accurate measurement of the top layer modulus requires D/ttop<1. These predictions were confirmed experimentally by MA of the gelatin system. Using this approach and an inverse FE method, the mean effective modulus of the fibrosa layer of intact porcine aortic valve leaflets was determined to be greater than that of the ventricularis layer (P<0.01), consistent with data obtained by tensile testing of dissected layers. This study provides practical guidelines for the use of MA to measure the mechanical properties of single layers in intact multilayer biomaterials and tissues.
Collapse
|
78
|
Chen JH, Chen WLK, Sider KL, Yip CYY, Simmons CA. β-Catenin Mediates Mechanically Regulated, Transforming Growth Factor-β1–Induced Myofibroblast Differentiation of Aortic Valve Interstitial Cells. Arterioscler Thromb Vasc Biol 2011; 31:590-7. [DOI: 10.1161/atvbaha.110.220061] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jan-Hung Chen
- From the Institute of Biomaterials and Biomedical Engineering (J.-H.C., W.L.K.C., K.L.S., C.Y.Y.Y., C.A.S.), Department of Mechanical and Industrial Engineering (J.-H.C., C.A.S.), and Faculty of Dentistry (C.A.S.), University of Toronto, Toronto, Ontario, Canada
| | - Wen Li Kelly Chen
- From the Institute of Biomaterials and Biomedical Engineering (J.-H.C., W.L.K.C., K.L.S., C.Y.Y.Y., C.A.S.), Department of Mechanical and Industrial Engineering (J.-H.C., C.A.S.), and Faculty of Dentistry (C.A.S.), University of Toronto, Toronto, Ontario, Canada
| | - Krista L. Sider
- From the Institute of Biomaterials and Biomedical Engineering (J.-H.C., W.L.K.C., K.L.S., C.Y.Y.Y., C.A.S.), Department of Mechanical and Industrial Engineering (J.-H.C., C.A.S.), and Faculty of Dentistry (C.A.S.), University of Toronto, Toronto, Ontario, Canada
| | - Cindy Ying Yin Yip
- From the Institute of Biomaterials and Biomedical Engineering (J.-H.C., W.L.K.C., K.L.S., C.Y.Y.Y., C.A.S.), Department of Mechanical and Industrial Engineering (J.-H.C., C.A.S.), and Faculty of Dentistry (C.A.S.), University of Toronto, Toronto, Ontario, Canada
| | - Craig A. Simmons
- From the Institute of Biomaterials and Biomedical Engineering (J.-H.C., W.L.K.C., K.L.S., C.Y.Y.Y., C.A.S.), Department of Mechanical and Industrial Engineering (J.-H.C., C.A.S.), and Faculty of Dentistry (C.A.S.), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
79
|
Stephens EH, Kearney DL, Grande-Allen KJ. Insight into pathologic abnormalities in congenital semilunar valve disease based on advances in understanding normal valve microstructure and extracellular matrix. Cardiovasc Pathol 2011; 21:46-58. [PMID: 21349746 DOI: 10.1016/j.carpath.2011.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 11/19/2010] [Accepted: 01/07/2011] [Indexed: 12/17/2022] Open
Abstract
Congenitally diseased valves are relatively frequent causes of significant morbidity and mortality. Pathology descriptions of such valves have primarily focused on gross structural features including the number of leaflets or commissures (bicuspid/bicommissural valve) and alterations in the contour, thickness, and consistency of the leaflets (dysplastic valve). Functional correlates of these pathologic alterations are valvar stenosis, insufficiency, or both. Further characterization of the microstructural abnormalities seen in these malformed valves may not only provide insight into the correlation of distinct pathologies with their respective pathogenesis and clinical sequelae but also prove pivotal in uncovering new avenues for therapeutic interventions and prevention regimens. This review summarizes microstructural findings in congenital semilunar valve disease (CSVD) and discusses their relevance in light of recent advances in knowledge of normal valve microstructure, biology, and function. Specifically, the biological and mechanical roles of various matrix components and their interactions are discussed in the context of CSVD. Indeed, recent research in normal valves adds significant insight into CSVD and raises many hypotheses that will need to be addressed by future studies.
Collapse
|
80
|
Eckert CE, Mikulis BT, Gottlieb D, Gerneke D, LeGrice I, Padera RF, Mayer JE, Schoen FJ, Sacks MS. Three-dimensional quantitative micromorphology of pre- and post-implanted engineered heart valve tissues. Ann Biomed Eng 2010; 39:205-22. [PMID: 20853027 DOI: 10.1007/s10439-010-0162-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 09/02/2010] [Indexed: 11/26/2022]
Abstract
There is a significant gap in our knowledge of engineered heart valve tissue (EHVT) development regarding detailed three-dimensional (3D) tissue formation and remodeling from the point of in vitro culturing to full in vivo function. As a step toward understanding the complexities of EHVT formation and remodeling, a novel serial confocal microscopy technique was employed to obtain 3D microstructural information of pre-implant (PRI) and post-implant for 12 weeks (POI) EHVT fabricated from PGA:PLLA scaffolds and seeded with ovine bone-marrow-derived mesenchymal stem cells. Custom scaffold fiber tracking software was developed to quantify scaffold fiber architectural features such as length, tortuosity, and minimum scaffold fiber-fiber separation distance and scaffold fiber orientation was quantified utilizing a 3D fabric tensor. In addition, collagen and cellular density of ovine pulmonary valve leaflet tissue were also analyzed for baseline comparisons. Results indicated that in the unseeded state, scaffold fibers formed a continuous, oriented network. In the PRI state, the scaffold showed some fragmentation with a scaffold volume fraction of 7.79%. In the POI specimen, the scaffold became highly fragmented, forming a randomly distributed short fibrous network (volume fraction of 2.03%) within a contiguous, dense collagenous matrix. Both PGA and PLLA scaffold fibers were observed in the PRI and POI specimens. Collagen density remained similar in both PRI and POI specimens (74.2 and 71.5%, respectively), though the distributions in the transmural direction appeared slightly more homogenous in the POI specimen. Finally, to guide future 2D histological studies for large-scale studies (since acquisition of high-resolution volumetric data is not practical for all specimens), we investigated changes in relevant collagen and scaffold metrics (collagen density and scaffold fiber orientation) with varying section spacing. It was found that a sectioning spacing up to 25 μm (for scaffold morphology) and 50 μm (for collagen density) in both PRI and POI tissues did not result in loss of information fidelity, and that sectioning in the circumferential or radial direction provides the greatest preservation of information. This is the first known work to investigate EHVT microstructure over a large volume with high resolution and to investigate time evolving in vivo EHVT morphology. The important scaffold fiber structural changes observed provide morphological information crucial for guiding future structurally based constitutive modeling efforts focused on better understanding EHVT tissue formation and remodeling.
Collapse
Affiliation(s)
- Chad E Eckert
- Department of Bioengineering, Swanson School of Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 300 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Stephens EH, de Jonge N, McNeill MP, Durst CA, Grande-Allen KJ. Age-related changes in material behavior of porcine mitral and aortic valves and correlation to matrix composition. Tissue Eng Part A 2010; 16:867-78. [PMID: 19814589 DOI: 10.1089/ten.tea.2009.0288] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recent studies showing significant changes in valvular matrix composition with age offer design criteria for age-specific tissue-engineered heart valves. However, knowledge regarding aging-related changes in valvular material properties is limited. Therefore, 6-week, 6-month, and 6-year-old porcine aortic valves (AV) and mitral valves (MV) were subjected to uniaxial tensile testing. In addition to standard material parameters, the radius of transition curvature (RTC) was measured to assess the acuteness of the transition region of the tension-strain curve. Radially, the MV had greater stiffness and a smaller RTC compared with the AV. Circumferentially, the center of the MV anterior leaflet (MVAC) had the highest stiffness (MVAC > AV > MV free edge [MVF]), greater stress relaxation (MVAC > MVF/AV), lowest extensibility (MVAC < AV < MVF), and smaller RTC compared with MVF (AV < MVAC < MVF). AV and MV radial strips had a larger RTC compared with circumferential strips. Aging elevated stiffness for MV and AV radial and circumferential strips, elevated stress relaxation in AV and MVF circumferential strips, and increased RTC for MV radial and MVF circumferential strips. In conclusion, there are significant age-related differences in the material properties of heart valves, which parallel differences in tissue composition and structure, likely impact valve function, and highlight the need for age-specific design goals for tissue-engineered heart valves.
Collapse
|
82
|
Cox MA, Kortsmit J, Driessen N, Bouten CV, Baaijens FP. Tissue-Engineered Heart Valves Develop Native-like Collagen Fiber Architecture. Tissue Eng Part A 2010; 16:1527-37. [DOI: 10.1089/ten.tea.2009.0263] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Martijn A.J. Cox
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jeroen Kortsmit
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Niels Driessen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carlijn V.C. Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Frank P.T. Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
83
|
On the multiscale modeling of heart valve biomechanics in health and disease. Biomech Model Mechanobiol 2010; 9:373-87. [PMID: 20066464 DOI: 10.1007/s10237-009-0181-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 11/26/2009] [Indexed: 01/10/2023]
Abstract
Theoretical models of the human heart valves are useful tools for understanding and characterizing the dynamics of healthy and diseased valves. Enabled by advances in numerical modeling and in a range of disciplines within experimental biomechanics, recent models of the heart valves have become increasingly comprehensive and accurate. In this paper, we first review the fundamentals of native heart valve physiology, composition and mechanics in health and disease. We will then furnish an overview of the development of theoretical and experimental methods in modeling heart valve biomechanics over the past three decades. Next, we will emphasize the necessity of using multiscale modeling approaches in order to provide a comprehensive description of heart valve biomechanics able to capture general heart valve behavior. Finally, we will offer an outlook for the future of valve multiscale modeling, the potential directions for further developments and the challenges involved.
Collapse
|
84
|
Yap CH, Kim HS, Balachandran K, Weiler M, Haj-Ali R, Yoganathan AP. Dynamic deformation characteristics of porcine aortic valve leaflet under normal and hypertensive conditions. Am J Physiol Heart Circ Physiol 2009; 298:H395-405. [PMID: 19915178 DOI: 10.1152/ajpheart.00040.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcific aortic valve (AV) disease has a high prevalence in the United States, and hypertension is correlated to early onset of the disease. The cause of the disease is poorly understood, although biological and remodeling responses to mechanical forces, such as membrane tension, have been hypothesized to play a role. The mechanical behavior of the native AV has, therefore, been the focus of many recent studies. In the present study, the dynamic deformation characteristics of the AV leaflet and the effects of hypertension on leaflet deformation are quantified. Whole porcine aortic roots were trimmed and mounted in an in vitro pulsatile flow loop and subjected to normal (80/120 mmHg), hypertensive (120/160 mmHg), or severe hypertensive (150/190 mmHg) conditions. Local valve leaflet deformations were calculated with dual-camera photogrammetry method: by tracking the motion of markers placed on the AV leaflets in three dimensions and calculating their spatial deformations. The results demonstrate that, first, during diastole, high transvalvular pressure induces a stretch waveform which plateaus over the diastolic duration in both circumferential and radial directions. During systole, the leaflet stretches in the radial direction due to forward flow drag forces but compresses in the circumferential direction in a manner in agreement with Poisson's effect. Second, average diastolic and systolic stretch ratios were quantified in the radial and circumferential directions in the base and belly region of the leaflet, and diastolic stretch was found to increase with increasing pressure conditions.
Collapse
Affiliation(s)
- Choon Hwai Yap
- School of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | | | | | | | | | | |
Collapse
|
85
|
Stephens EH, Timek TA, Daughters GT, Kuo JJ, Patton AM, Baggett LS, Ingels NB, Miller DC, Grande-Allen KJ. Significant changes in mitral valve leaflet matrix composition and turnover with tachycardia-induced cardiomyopathy. Circulation 2009; 120:S112-9. [PMID: 19752355 DOI: 10.1161/circulationaha.108.844159] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) involves significant remodeling of the left ventricular-mitral valve (MV) complex, but little is known regarding the remodeling of the mitral leaflets. The aim of this study was to assess changes in matrix composition and turnover in MV leaflets with DCM. METHODS AND RESULTS Radiopaque markers were implanted in 24 sheep to delineate the MV; 10 sheep underwent tachycardia-induced cardiomyopathy (TIC), whereas 14 sheep remained as controls. Biplane videofluoroscopy was performed before and after TIC. Immunohistochemistry was performed on leaflet cross-sections taken from the septal, lateral, anterior, and posterior commissures attachment segments. Staining intensity was quantified within each attachment segment and leaflet region (basal, mid-leaflet, and free edge). Mitral regurgitation increased from 0.2+/-0.4 before TIC to 2.2+/-0.9 after TIC (P<0.0002). TIC leaflets demonstrated significant remodeling compared to controls, including greater cell density and loss of leaflet layered structure (all P<0.05). Collagen and elastic fiber turnover was greater in TIC, as was the myofibroblast phenotype (all P<0.05). Compositional differences between TIC and control leaflets were heterogeneous by annular segment and leaflet region, and related to regional changes in leaflet segment length with TIC. CONCLUSIONS This study shows that the MV leaflets are significantly remodeled in DCM with changes in leaflet composition, structure, and valve cell phenotype. Understanding how alterations in leaflet mechanics, such as those induced by DCM, drive cell-mediated remodeling of the extracellular matrix will be important in developing future treatment strategies.
Collapse
|
86
|
Mohammadi H, Bahramian F, Wan W. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method. Med Eng Phys 2009; 31:1110-7. [PMID: 19773193 DOI: 10.1016/j.medengphy.2009.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 11/27/2022]
Abstract
Modeling soft tissue using the finite element method is one of the most challenging areas in the field of biomechanical engineering. To date, many models have been developed to describe heart valve leaflet tissue mechanics, which are accurate to some extent. Nevertheless, there is no comprehensive method to modeling soft tissue mechanics, This is because (1) the degree of anisotropy in the heart valve leaflet changes layer by layer due to a variety of collagen fiber densities and orientations that cannot be taken into account in the model and also (2) a constitutive material model fully describing the mechanical properties of the leaflet structure is not available in the literature. In this framework, we develop a new high-order element using p-type finite element formulation to create anisotropic material properties similar to those of the heart valve leaflet tissue in only one single element. This element also takes the nonlinearity of the leaflet tissue into consideration using a bilinear material model. This new element is composed a two-dimensional finite element in the principal directions of leaflet tissue and a p-type finite element in the direction of thickness. The proposed element is easy to implement, much more efficient than standard elements available in commercial finite element packages. This study is one step towards the modeling of soft tissue mechanics using a meshless finite element approach to be applied in real-time haptic feedback of soft-tissue models in virtual reality simulation.
Collapse
Affiliation(s)
- Hadi Mohammadi
- Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|
87
|
Sacks MS, David Merryman W, Schmidt DE. On the biomechanics of heart valve function. J Biomech 2009; 42:1804-24. [PMID: 19540499 DOI: 10.1016/j.jbiomech.2009.05.015] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 05/04/2009] [Accepted: 05/08/2009] [Indexed: 11/18/2022]
Abstract
Heart valves (HVs) are fluidic control components of the heart that ensure unidirectional blood flow during the cardiac cycle. However, this description does not adequately describe the biomechanical ramifications of their function in that their mechanics are multi-modal. Moreover, they must replicate their cyclic function over an entire lifetime, with an estimated total functional demand of least 3x10(9) cycles. The focus of the present review is on the functional biomechanics of heart valves. Thus, the focus of the present review is on functional biomechanics, referring primarily to biosolid as well as several key biofluid mechanical aspects underlying heart valve physiological function. Specifically, we refer to the mechanical behaviors of the extracellular matrix structural proteins, underlying cellular function, and their integrated relation to the major aspects of valvular hemodynamic function. While we focus on the work from the author's laboratories, relevant works of other investigators have been included whenever appropriate. We conclude with a summary of important future trends.
Collapse
Affiliation(s)
- Michael S Sacks
- Department of Bioengineering, Engineered Tissue Mechanics and Mechanobiology Laboratory, The McGowan Institute, University of Pittsburgh, Pittsburgh, PA, United States.
| | | | | |
Collapse
|
88
|
Yip CYY, Chen JH, Zhao R, Simmons CA. Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler Thromb Vasc Biol 2009; 29:936-42. [PMID: 19304575 DOI: 10.1161/atvbaha.108.182394] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Extensive remodeling of the valve ECM in calcific aortic valve sclerosis alters its mechanical properties, but little is known about the impact of matrix mechanics on the cells within the valve interstitium. In this study, the influence of matrix stiffness in modulating calcification by valve interstitial cells (VICs), and their differentiation to pathological phenotypes was assessed. METHODS AND RESULTS Primary porcine aortic VICs were cultured in standard media or calcifying media on constrained type I fibrillar collagen gels. Matrix stiffness was altered by changing only the thickness of the gels. Calcification did not occur in standard media, regardless of matrix stiffness. However, when VICs were grown in calcifying media on relatively compliant matrices with stiffness similar to that of normal tissue, they readily formed calcified aggregates of viable cells that expressed osteoblast-related transcripts and proteins. In contrast, VICs cultured in calcifying media on stiffer matrices (similar to stenotic tissue) differentiated to myofibroblasts and formed calcified aggregates that contained apoptotic cells. Actin depolymerization reduced aggregation on stiff, but not compliant, matrices. TGF-beta1 potentiated aggregate formation on stiff matrices by enhancing alpha-smooth muscle actin expression and cellular contractility, but not on compliant matrices attributable to downregulation of TGF-beta receptor I. Cell contraction by VICs inhibited Akt activation and enhanced apoptosis-dependent calcification on stiff matrices. CONCLUSIONS Differentiation of VICs to pathological phenotypes in response to biochemical cues is modulated by matrix stiffness. Although osteogenic or myofibrogenic differentiation of VICs can result in calcification, the processes are distinct.
Collapse
Affiliation(s)
- Cindy Ying Yin Yip
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, ON, Canada
| | | | | | | |
Collapse
|
89
|
Weltert L, De Paulis R, Scaffa R, Maselli D, Bellisario A, D'Alessandro S. Re-creation of a sinuslike graft expansion in Bentall procedure reduces stress at the coronary button anastomoses: A finite element study. J Thorac Cardiovasc Surg 2009; 137:1082-7. [PMID: 19379971 DOI: 10.1016/j.jtcvs.2008.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 08/24/2008] [Accepted: 10/10/2008] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The Bentall procedure is routinely performed using a straight Dacron graft coupled with a mechanical or a biologic valve. Creation of coronary ostia buttons significantly reduces tension on the coronary anastomoses and consequently the incidence of pseudoaneurysm formation. We sought to evaluate if the use of a specifically designed graft with a sinuslike root portion that bulges out upon pressurization can reduce stress on coronary anastomoses. A finite element computer-assisted stress analysis was used to simulate these 2 different anatomic conditions and to analyze tension in computed tomographic scans obtained from patients operated on with either a straight or a "sinus" graft. METHODS Theoretical models of the procedures with finite element computer-aided design technique were created and tested with the Abaqus Standard Suite, verifying the pattern of stress and strain when a uniform pressure of 200 mm Hg was applied to the model. Next, using SimpleWare SCanIP technology, computed tomographic scans of patients having both procedures were used to obtain finite element mesh models. A uniform pressure of 200 mm Hg was then applied, and the distribution of stress and strain was analyzed. RESULTS Von Mises Charts are color-coded, computational, 3-dimensional stress-pattern graphics that show that stress around the coronary ostia in a standard straight graft model is nearly double compared with the model with sinuses (peak stress of 0.4 Mpa for the sinus model and 0.7 Mpa for the traditional straight model). In computed tomographic scan reconstructions, the stress contour is uniformly distributed in the graft with sinuses, and it is highly concentrated around the ostia in the straight graft. Accordingly, higher-peak stress values are registered in the straight configuration (1.8 MPa for the sinus graft and 2.5 MPa for standard graft). CONCLUSION Even though finite elements technique is necessarily a simplification of a real biologic environment, all tests seem to indicate that a standard tubular graft gives a higher stress to coronary sutures. Relieving the stress on the coronary anastomoses by using a graft with preformed sinuses of Valsalva may decrease the incidence of postoperative complications such as bleeding and late pseudoaneurysm formation.
Collapse
Affiliation(s)
- Luca Weltert
- Cardiac Surgery Department, European Hospital, Rome, Italy
| | | | | | | | | | | |
Collapse
|
90
|
Kidane AG, Burriesci G, Cornejo P, Dooley A, Sarkar S, Bonhoeffer P, Edirisinghe M, Seifalian AM. Current developments and future prospects for heart valve replacement therapy. J Biomed Mater Res B Appl Biomater 2009; 88:290-303. [DOI: 10.1002/jbm.b.31151] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
91
|
Khan Z, Boughner DR, Lacefield JC. Anisotropy of high-frequency integrated backscatter from aortic valve cusps. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:1504-1512. [PMID: 18407400 DOI: 10.1016/j.ultrasmedbio.2008.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 01/17/2008] [Accepted: 02/04/2008] [Indexed: 05/26/2023]
Abstract
The biaxial anisotropy of integrated backscatter from aortic valve cusps was characterized ex vivo as an initial assessment of the suitability of high-frequency ultrasound for nondestructive evaluation of fiber alignment in tissue-engineered heart valves. Apparent integrated backscatter (AIB) from eight fresh, intact porcine cusps was measured over an 80 degrees range of insonification angles using a 40-MHz ultrasound system. Angular dependence of backscatter was characterized by fitting a sinusoid to plots of AIB versus insonification angle for data acquired while rotating the transducer about the cusps in the circumferential and radial directions. Angular variations in backscatter were detected along both directions in individual specimens, although the mean amplitude of the fitted sinusoid was significantly greater for the circumferential data (12.1 +/- 2.6 dB) than the radial data (3.5 +/- 3.1 dB, p = 0.002). The higher angular variation of backscatter in the circumferential direction implies that collagen fibers in the fibrosa layer are the most prominent source of high-frequency scattering from porcine aortic valve cusps. The ability to characterize anisotropic backscattering from individual specimens demonstrates that high-frequency ultrasound can be used for nondestructive evaluation of fiber alignment in heart valve biomaterials.
Collapse
Affiliation(s)
- Zamir Khan
- Biomedical Engineering Graduate Program, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
92
|
Abstract
A set of multiscale simulations has been created to examine the dynamic behavior of the human aortic valve (AV) at the cell, tissue, and organ length scales. Each model is fully three-dimensional and includes appropriate nonlinear, anisotropic material models. The organ-scale model is a dynamic fluid-structure interaction that predicts the motion of the blood, cusps, and aortic root throughout the full cycle of opening and closing. The tissue-scale model simulates the behavior of the AV cusp tissue including the sub-millimeter features of multiple layers and undulated geometry. The cell-scale model predicts cellular deformations of individual cells within the cusps. Each simulation is verified against experimental data. The three simulations are linked: deformations from the organ-scale model are applied as boundary conditions to the tissue-scale model, and the same is done between the tissue and cell scales. This set of simulations is a major advance in the study of the AV as it allows analysis of transient, three-dimensional behavior of the AV over the range of length scales from cell to organ.
Collapse
|
93
|
Christov AM, Liu L, Lowe S, Icton C, Dunmore-Buyze J, Boughner DR, Dai E, Lucas A. Laser-Induced Fluorescence (LIF) Recognition of the Structural Composition of Porcine Heart Valves. Photochem Photobiol 2008. [DOI: 10.1111/j.1751-1097.1999.tb03302.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
94
|
Stella JA, Sacks MS. On the biaxial mechanical properties of the layers of the aortic valve leaflet. J Biomech Eng 2007; 129:757-66. [PMID: 17887902 DOI: 10.1115/1.2768111] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
All existing constitutive models for heart valve leaflet tissues either assume a uniform transmural stress distribution or utilize a membrane tension formulation. Both approaches ignore layer specific mechanical contributions and the implicit nonuniformity of the transmural stress distribution. To begin to address these limitations, we conducted novel studies to quantify the biaxial mechanical behavior of the two structurally distinct, load bearing aortic valve (AV) leaflet layers: the fibrosa and ventricularis. Strip biaxial tests, with extremely sensitive force sensing capabilities, were further utilized to determine the mechanical behavior of the separated ventricularis layer at very low stress levels. Results indicated that both layers exhibited very different nonlinear, highly anisotropic mechanical behaviors. While the leaflet tissue mechanical response was dominated by the fibrosa layer, the ventricularis contributed double the amount of the fibrosa to the total radial tension and experienced four times the stress level. The strip biaxial test results further indicated that the ventricularis exhibited substantial anisotropic mechanical properties at very low stress levels. This result suggested that for all strain levels, the ventricularis layer is dominated by circumferentially oriented collagen fibers, and the initial loading phase of this layer cannot be modeled as an isotropic material. Histological-based thickness measurements indicated that the fibrosa and ventricularis constitute 41% and 29% of the total layer thickness, respectively. Moreover, the extensive network of interlayer connections and identical strains under biaxial loading in the intact state suggests that these layers are tightly bonded. In addition to advancing our knowledge of the subtle but important mechanical properties of the AV leaflet, this study provided a comprehensive database required for the development of a true 3D stress constitutive model for the native AV leaflet.
Collapse
Affiliation(s)
- John A Stella
- Engineered Tissue Mechanics Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | |
Collapse
|
95
|
Abstract
Heart valves (HVs) are cardiac structures whose physiological function is to ensure directed blood flow through the heart over the cardiac cycle. While primarily passive structures that are driven by forces exerted by the surrounding blood and heart, this description does not adequately describe their elegant and complex biomechanical function. Moreover, they must replicate their cyclic function over an entire lifetime, with an estimated total functional demand of least 3x10(9) cycles. As in many physiological systems, one can approach HV biomechanics from a multi-length-scale approach, since mechanical stimuli occur and have biological impact at the organ, tissue and cellular scales. The present review focuses on the functional biomechanics of HVs. Specifically, we refer to the unique aspects of valvular function, and how the mechanical and mechanobiological behaviours of the constituent biological materials (e.g. extracellular matrix proteins and cells) achieve this remarkable feat. While we focus on the work from the authors' respective laboratories, the works of most investigators known to the authors have been included whenever appropriate. We conclude with a summary and underscore important future trends.
Collapse
Affiliation(s)
- Michael S Sacks
- Engineered Tissue Mechanics and Mechanobiology Laboratory, Department of Bioengineering and the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | | |
Collapse
|
96
|
Abstract
It has been hypothesized that repetitive flexural stresses contribute to the fatigue-induced failure of bioprosthetic heart valves. Although experimental apparatuses capable of measuring the bending properties of biomaterials have been described, a theoretical framework to analyze the resulting data is lacking. Given the large displacements present in these bending experiments and the nonlinear constitutive behavior of most biomaterials, such a formulation must be based on finite elasticity theory. We present such a theory in this work, which is capable of fitting bending moment versus radius of curvature experimental data to an arbitrary strain energy function. A simple finite element model was constructed to study the validity of the proposed method. To demonstrate the application of the proposed approach, bend testing data from the literature for gluteraldehyde-fixed bovine pericardium were fit to a nonlinear strain energy function, which showed good agreement to the data. This method may be used to integrate bending behavior in constitutive models for soft tissue.
Collapse
Affiliation(s)
- Mark A Nicosia
- Department of Mechanical Engineering, Widener University, Chester, PA, USA.
| |
Collapse
|
97
|
Stella JA, Liao J, Sacks MS. Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet. J Biomech 2007; 40:3169-77. [PMID: 17570376 PMCID: PMC2085441 DOI: 10.1016/j.jbiomech.2007.04.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 03/26/2007] [Accepted: 04/01/2007] [Indexed: 11/16/2022]
Abstract
Despite continued progress in the treatment of aortic valve (AV) disease, current treatments continue to be challenged to consistently restore AV function for extended durations. Improved approaches for AV repair and replacement rests upon our ability to more fully comprehend and simulate AV function. While the elastic behavior the AV leaflet (AVL) has been previously investigated, time-dependent behaviors under physiological biaxial loading states have yet to be quantified. In the current study, we performed strain rate, creep, and stress-relaxation experiments using porcine AVL under planar biaxial stretch and loaded to physiological levels (60 N/m equi-biaxial tension), with strain rates ranging from quasi-static to physiologic. The resulting stress-strain responses were found to be independent of strain rate, as was the observed low level of hysteresis ( approximately 17%). Stress relaxation and creep results indicated that while the AVL exhibited significant stress relaxation, it exhibited negligible creep over the 3h test duration. These results are all in accordance with our previous findings for the mitral valve anterior leaflet (MVAL) [Grashow, J.S., Sacks, M.S., Liao, J., Yoganathan, A.P., 2006a. Planar biaxial creep and stress relaxatin of the mitral valve anterior leaflet. Annals of Biomedical Engineering 34 (10), 1509-1518; Grashow, J.S., Yoganathan, A.P., Sacks, M.S., 2006b. Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Annals of Biomedical Engineering 34 (2), 315-325], and support our observations that valvular tissues are functionally anisotropic, quasi-elastic biological materials. These results appear to be unique to valvular tissues, and indicate an ability to withstand loading without time-dependent effects under physiologic loading conditions. Based on a recent study that suggested valvular collagen fibrils are not intrinsically viscoelastic [Liao, J., Yang, L., Grashow, J., Sacks, M.S., 2007. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet. Journal of Biomechanical Engineering 129 (1), 78-87], we speculate that the mechanisms underlying this quasi-elastic behavior may be attributed to inter-fibrillar structures unique to valvular tissues. These mechanisms are an important functional aspect of native valvular tissues, and are likely critical to improve our understanding of valvular disease and help guide the development of valvular tissue engineering and surgical repair.
Collapse
Affiliation(s)
- John A Stella
- Engineered Tissue Mechanics Laboratory, Department of Bioengineering and the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
98
|
Shi Y, Rittman L, Vesely I. Novel Geometries for Tissue-Engineered Tendonous Collagen Constructs. ACTA ACUST UNITED AC 2006; 12:2601-9. [PMID: 16995793 DOI: 10.1089/ten.2006.12.2601] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A promising approach to addressing the performance limitations of currently available mechanical and bioprosthetic heart valves lies in tissue engineering. Tissue-engineered valves should incorporate the complex microstructure of the native valves to mimic their unique mechanics. This would include a layered topology, mesh networks, and branched collagen fiber bundles. Our approach to heart valve tissue engineering is to develop the functional components of the aortic valve cusps separately in vitro and, once they are mature, integrate them into a composite valve structure. Here we report on our efforts to create more complex collagenous structures, suitable for heart valve tissue engineering. Collagen fiber bundles were fabricated using the principle of directed collagen gel contraction, using neonatal rat aortic smooth muscle cells and acid-soluble type I rat-tail tendon collagen. The collagen gels were cast into rectangular or branched wells with porous end holders that constrained the gels longitudinally but allowed contraction to occur transverse to the long axis. Pairs of such constructs were placed in direct contact with each other and cultured further to determine whether they integrated to form continuous tissue. After 6-8 weeks of culture, highly compacted and aligned collagen fiber bundles formed. Mechanical testing revealed that linear constructs (2 free ends) with an 8:1 aspect ratio were significantly stronger than similar constructs with an aspect ratio of 2:1 (mean +/- SD, 298 +/- 90 kPa vs. 152 +/- 49 kPa; p < .001). Branching reduced mechanical strength considerably. Constructs fabricated with 4 free ends were significantly weaker than constructs with 3 ends (31 +/- 32 kPa vs. 116 +/- 66 kPa; p < .003). Histologic images demonstrated the integration of the crossed collagen bundles, with a bonding strength of 2.1 +/- 1.1 g (0.02 N). We found that the geometry of the molds into which the collagen constructs are cast can greatly affect their mechanical strength: multibranched constructs were the weakest, and long, linear constructs were the strongest. We also found that integration of collagen constructs occurs in vitro and that the fabrication of a composite structure in vitro is probably feasible.
Collapse
Affiliation(s)
- Yaling Shi
- Department of Cardiothoracic Surgery, Keck School of Medicine, University of Southern California, USA
| | | | | |
Collapse
|
99
|
Johnston DE, Boughner DR, Cimini M, Rogers KA. Radial artery as an autologous cell source for valvular tissue engineering efforts. J Biomed Mater Res A 2006; 78:383-93. [PMID: 16680699 DOI: 10.1002/jbm.a.30640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To create a viable tissue-engineered aortic valve, it is important to identify suitable autologous cell sources that may be seeded onto a biocompatible scaffold. This study focused on the radial artery (RA) as one possible source, investigated optimal culture conditions, and determined the usefulness of small intestinal submucosa (SIS) as a scaffold for tissue-engineering. Porcine RA cells were cultured on either two-dimensional (2D) 100-mm dishes or three-dimensional (3D) 1-cm(2) SIS sheets, producing cell-scaffold composites (CSCs). Both 2D and 3D cultures were maintained in either Medium 199 (M199) or endothelial growth media (EGM) to determine optimal growth conditions. Cellular phenotype and matrix metalloproteinase (MMP) profiles were determined by immunoblotting of cell lysates and zymography of conditioned media, respectively. Cellular invasion was analyzed immunohistochemically on CSC tissue sections. We show that the RA contains phenotypes consistent with those found in the normal aortic valve. EGM, compared with M199, promotes the invasion and remodeling of SIS by RA cells, which is crucial in the process of replacing the foreign tissue scaffold prior to implantation. To our knowledge, this is the first study to show that the RA is a suitable source for the generation of a tissue-engineered valve.
Collapse
Affiliation(s)
- Danielle E Johnston
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | |
Collapse
|
100
|
Mirnajafi A, Raymer JM, McClure LR, Sacks MS. The flexural rigidity of the aortic valve leaflet in the commissural region. J Biomech 2005; 39:2966-73. [PMID: 16360160 DOI: 10.1016/j.jbiomech.2005.10.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Accepted: 10/20/2005] [Indexed: 11/27/2022]
Abstract
Flexure is a major deformation mode of the aortic valve (AV) leaflet, particularly in the commissural region where the upper portion of the leaflet joins the aortic root. However, there are no existing data known on the mechanical properties of leaflet in the commissural region. To address this issue, we quantified the effective stiffness of the commissural region using a cantilever beam method. Ten specimens were prepared, with each specimen flexed in the direction of natural leaflet motion (forward) and against the natural motion (reverse). At a flexure angle (phi) of 30 degrees , the effective forward direction modulus E was 42.63+/-4.44 kPa and the reverse direction E was 75.01+/-14.53 kPa (p=0.049). Further, E-phi response was linear (r(2) approximately 0.9) in both flexural directions. Values for dE/dphi were -2.24+/-0.6 kPa/ degrees and -1.90+/-0.3 kPa/ degrees in the forward and reverse directions, respectively (not statistically different, p=0.424), indicating a consistent decrease in stiffness with increased flexure. In comparison, we have reported that the effective tissue stiffness of AV leaflet belly region was 150-200 kPa [Merryman, W.D., Huang, H.Y.S., Schoen, F.J., Sacks, M.S. (2006). The effects of cellular contraction on AV leaflet flexural stiffness. Journal of Biomechanics 39 (1), 88-96], which was also independent of direction and amount of flexure. Histological studies of the commissure region indicated that tissue buckling was a probable mechanism for decrease in E with increasing flexure. The observed change in E with flexural angle in the commissural region is a subtle aspect of valve function. From a valve design perspective, these findings can be used as design criteria in fabricating prosthetic devices AV resulting in better functional performance.
Collapse
Affiliation(s)
- Ali Mirnajafi
- Engineered Tissue Mechanics Laboratory, Department of Bioengineering, University of Pittsburgh, 100 Technology drive, Room 234, Pittsburgh, PA 15219, USA
| | | | | | | |
Collapse
|