51
|
Gombert WM, Farris SD, Rubio ED, Morey-Rosler KM, Schubach WH, Krumm A. The c-myc insulator element and matrix attachment regions define the c-myc chromosomal domain. Mol Cell Biol 2004; 23:9338-48. [PMID: 14645543 PMCID: PMC309672 DOI: 10.1128/mcb.23.24.9338-9348.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insulator elements and matrix attachment regions are essential for the organization of genetic information within the nucleus. By comparing the pattern of histone modifications at the mouse and human c-myc alleles, we identified an evolutionarily conserved boundary at which the c-myc transcription unit is separated from the flanking condensed chromatin enriched in lysine 9-methylated histone H3. This region harbors the c-myc insulator element (MINE), which contains at least two physically separable, functional activities: enhancer-blocking activity and barrier activity. The enhancer-blocking activity is mediated by CTCF. Chromatin immunoprecipitation assays demonstrate that CTCF is constitutively bound at the insulator and at the promoter region independent of the transcriptional status of c-myc. This result supports an architectural role of CTCF rather than a regulatory role in transcription. An additional higher-order nuclear organization of the c-myc locus is provided by matrix attachment regions (MARs) that define a domain larger than 160 kb. The MARs of the c-myc domain do not act to prevent the association of flanking regions with lysine 9-methylated histones, suggesting that they do not function as barrier elements.
Collapse
Affiliation(s)
- Wendy M Gombert
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA 98104, USA
| | | | | | | | | | | |
Collapse
|
52
|
Abstract
The structure of replication origins in metazoans is only nominally similar to that in model organisms, such as Saccharomyces cerevisiae. By contrast to the compact origins of budding yeast, in metazoans multiple elements act as replication start sites or control replication efficiency. We first reported that replication forks diverge from an origin 5' to the human c-myc gene and that a 2.4-kb core fragment of the origin displays autonomous replicating sequence activity in plasmids and replicator activity at an ectopic chromosomal site. Here we have used clonal HeLa cell lines containing mutated c-myc origin constructs integrated at the same chromosomal location to identify elements important for DNA replication. Replication activity was measured before or after integration of the wild-type or mutated origins using PCR-based nascent DNA abundance assays. We find that deletions of several segments of the c-myc origin, including the DNA unwinding element and transcription factor binding sites, substantially reduced replicator activity, whereas deletion of the c-myc promoter P1 had only a modest effect. Substitution mutagenesis indicated that the sequence of the DNA unwinding element, rather than the spacing of flanking sequences, is critical. These results identify multiple functional elements essential for c-myc replicator activity.
Collapse
Affiliation(s)
- Guoqi Liu
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435, USA
| | | | | |
Collapse
|
53
|
Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A 2002; 99:11593-8. [PMID: 12195017 PMCID: PMC129314 DOI: 10.1073/pnas.182256799] [Citation(s) in RCA: 1840] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The nuclease hypersensitivity element III(1) upstream of the P1 promoter of c-MYC controls 85-90% of the transcriptional activation of this gene. We have demonstrated that the purine-rich strand of the DNA in this region can form two different intramolecular G-quadruplex structures, only one of which seems to be biologically relevant. This biologically relevant structure is the kinetically favored chair-form G-quadruplex, which is destabilized when mutated with a single G --> A transition, resulting in a 3-fold increase in basal transcriptional activity of the c-MYC promoter. The cationic porphyrin TMPyP4, which has been shown to stabilize this G-quadruplex structure, is able to suppress further c-MYC transcriptional activation. These results provide compelling evidence that a specific G-quadruplex structure formed in the c-MYC promoter region functions as a transcriptional repressor element. Furthermore, we establish the principle that c-MYC transcription can be controlled by ligand-mediated G-quadruplex stabilization.
Collapse
|
54
|
Dudley JP, Mertz JA, Rajan L, Lozano M, Broussard DR. What retroviruses teach us about the involvement of c-Myc in leukemias and lymphomas. Leukemia 2002; 16:1086-98. [PMID: 12040439 DOI: 10.1038/sj.leu.2402451] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2001] [Accepted: 01/03/2002] [Indexed: 12/14/2022]
Abstract
Overexpression of the cellular oncogene c-Myc frequently occurs during induction of leukemias and lymphomas in many species. Retroviruses have enhanced our understanding of the role of c-Myc in such tumors. Leukemias and lymphomas induced by retroviruses activate c-Myc by: (1) use of virally specified proteins that increase c-Myc transcription, (2) transduction and modification of c-Myc to generate a virally encoded form of the gene, v-Myc, and (3) proviral integration in or near c-Myc. Proviral integrations elevate transcription by insertion of retroviral enhancers found in the long terminal repeat (LTR). Studies of the LTR enhancer elements from these retroviruses have revealed the importance of these elements for c-Mycactivation in several cell types. Retroviruses also have been used to identify genes that collaborate with c-Myc during development and progression of leukemias and lymphomas. In these experiments, animals that are transgenic for c-Mycoverexpression (often in combination with the overexpression or deletion of known proto-oncogenes) have been infected with retroviruses that then insertionally activate novel co-operating cellular genes. The retrovirus then acts as a molecular 'tag' for cloning of these genes. This review covers several aspects of c-Myc involvement in retrovirally induced leukemias and lymphomas.
Collapse
Affiliation(s)
- J P Dudley
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78705, USA.
| | | | | | | | | |
Collapse
|
55
|
Schubert LA, Cron RQ, Cleary AM, Brunner M, Song A, Lu LS, Jullien P, Krensky AM, Lewis DB. A T cell-specific enhancer of the human CD40 ligand gene. J Biol Chem 2002; 277:7386-95. [PMID: 11751888 DOI: 10.1074/jbc.m110350200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We observed that the human CD40 ligand (CD40L) gene 5'-flanking region conferred weak promoter activity in activated CD4 T cells, suggesting that additional regions are required for optimal CD40L gene transcription. We therefore examined a 3'-flanking segment of the CD40L gene, which contained a putative NF-kappaB/Rel cis-element, for its ability to enhance CD40L promoter function. This segment augmented CD40L promoter activity in an orientation-independent manner in CD4 T-lineage cells but not in human B cell or monocyte cell lines. Mapping of CD4 T-lineage cell nuclei identified a DNase I-hypersensitive site in the flanking region near the NF-kappaB/Rel sequence, suggesting a transcriptional regulatory role. This was further supported by truncation analysis and site-directed mutagenesis, which indicated that the CD40L 3'-flanking NF-kappaB/Rel cis-element was critical for enhancer function. Electrophoretic mobility shift assays showed that the cis-element preferentially bound the p50 form of the NF-kappaB1 gene contained in human T cell nuclear protein extracts. This binding also appeared to occur in vivo in CD4 T cells based on chromatin immunoprecipitation assays using NF-kappaB p50-specific antiserum. Together, these results suggest that the CD40L gene 3'-flanking region acts as a T cell-specific classical transcriptional enhancer by a NF-kappaB p50-dependent mechanism.
Collapse
MESH Headings
- B-Lymphocytes
- Base Sequence
- Binding Sites
- Binding, Competitive
- CD4 Antigens/biosynthesis
- CD40 Ligand/metabolism
- Cell Line
- Cell Nucleus/metabolism
- DNA/metabolism
- DNA, Complementary/metabolism
- Deoxyribonuclease I/metabolism
- Dose-Response Relationship, Drug
- Enhancer Elements, Genetic
- Genes, Reporter
- Humans
- Interleukin-2/metabolism
- Jurkat Cells
- Models, Genetic
- Molecular Sequence Data
- Monocytes/metabolism
- Mutagenesis, Site-Directed
- NF-kappa B/chemistry
- NF-kappa B/metabolism
- NF-kappa B p50 Subunit
- Plasmids/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Proto-Oncogene Proteins c-rel/metabolism
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Lisa A Schubert
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
The purpose of the study was to elucidate how DNA tetraplex (also referred to as G-quadruplex)-forming oligonucleotides mediate suppression of the human c-myc gene at the level of transcription initiation. A 22-base-long oligonucleotide, which is rich in guanines and folds into an intrastrand DNA tetraplex under physiological conditions, was administered to a Burkitt's lymphoma cell line overexpressing a (8:14) translocated c-myc allele. Administration of the oligonucleotide at nanomolar concentrations to the surrounding medium resulted in efficient cellular uptake, and was accompanied by a substantial concentration- and conformation-dependent decrease in growth rate. We discuss how c-myc transcription is initiated at the molecular level and speculate that the oligonucleotide exerts a dual effect on c-myc expression in vivo.
Collapse
Affiliation(s)
- Tomas Simonsson
- Department of Molecular Biotechnology, Lunfberg Laboratory, Chalmers University of Technology, P.O. Box 462, SE 405 30 Göteborg, Sweden.
| | | |
Collapse
|
57
|
Kitajima K, Haque M, Nakamura H, Hirano T, Utiyama H. Loss of irreversibility of granulocytic differentiation induced by dimethyl sulfoxide in HL-60 sublines with a homogeneously staining region. Biochem Biophys Res Commun 2001; 288:1182-7. [PMID: 11700036 DOI: 10.1006/bbrc.2001.5892] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human HL-60 acute leukemia cell line harbors double minutes (dmins) during early passages. During its continuous culture for a long term, a single marker chromosome with a homogeneously staining region (HSR) replaces the dmins. The both structures harbor amplified c-MYC sequences. Here we ask how the cellular phenotype is altered by the c-MYC integration into a HSR. Treatment with dimethyl sulfoxide induces granulocytic differentiation in the both types of cells. In contrast to HL-60/dmin cells, however, no apoptosis followed differentiation and the differentiation phenotype was reverted upon withdrawal of the drug in HL-60/HSR cells. Terminal differentiation and loss of DNase I hypersensitivity sites at c-MYC P2 promoter appeared to be unlinked in the both types of cells. By comparison with HL-60/dmin cells, we conclude that the integration into a HSR of an extrachromosomal gene(s) but not c-MYC likely leads to the loss of irreversibility of the differentiation phenotype.
Collapse
Affiliation(s)
- K Kitajima
- Life Science Group, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | | | | | | | | |
Collapse
|
58
|
Ortiz BD, Harrow F, Cado D, Santoso B, Winoto A. Function and factor interactions of a locus control region element in the mouse T cell receptor-alpha/Dad1 gene locus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3836-45. [PMID: 11564801 DOI: 10.4049/jimmunol.167.7.3836] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Locus control regions (LCRs) refer to cis-acting elements composed of several DNase I hypersensitive sites, which synergize to protect transgenes from integration-site dependent effects in a tissue-specific manner. LCRs have been identified in many immunologically important gene loci, including one between the TCRdelta/TCRalpha gene segments and the ubiquitously expressed Dad1 gene. Expression of a transgene under the control of all the LCR elements is T cell specific. However, a subfragment of this LCR is functional in a wide variety of tissues. How a ubiquitously active element can participate in tissue-restricted LCR activity is not clear. In this study, we localize the ubiquitously active sequences of the TCR-alpha LCR to an 800-bp region containing a prominent DNase hypersensitive site. In isolation, the activity in this region suppresses position effect transgene silencing in many tissues. A combination of in vivo footprint examination of this element in widely active transgene and EMSAs revealed tissue-unrestricted factor occupancy patterns and binding of several ubiquitously expressed transcription factors. In contrast, tissue-specific, differential protein occupancies at this element were observed in the endogenous locus or full-length LCR transgene. We identified tissue-restricted AML-1 and Elf-1 as proteins that potentially act via this element. These data demonstrate that a widely active LCR module can synergize with other LCR components to produce tissue-specific LCR activity through differential protein occupancy and function and provide evidence to support a role for this LCR module in the regulation of both TCR and Dad1 genes.
Collapse
Affiliation(s)
- B D Ortiz
- Department of Biological Sciences, City University of New York, Hunter College, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
59
|
Abstract
c-MYC is the prototype for oncogene activation by chromosomal translocation. In contrast to the tightly regulated expression of c-myc in normal cells, c-myc is frequently deregulated in human cancers. Herein, aspects of c-myc gene activation and the function of the c-Myc protein are reviewed. The c-myc gene produces an oncogenic transcription factor that affects diverse cellular processes involved in cell growth, cell proliferation, apoptosis and cellular metabolism. Complete removal of c-myc results in slowed cell growth and proliferation, suggesting that while c-myc is not required for cell proliferation, it acts as an integrator and accelerator of cellular metabolism and proliferation.
Collapse
Affiliation(s)
- L M Boxer
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, California CA 94305, USA
| | | |
Collapse
|
60
|
Rangan A, Fedoroff OY, Hurley LH. Induction of duplex to G-quadruplex transition in the c-myc promoter region by a small molecule. J Biol Chem 2001; 276:4640-6. [PMID: 11035006 DOI: 10.1074/jbc.m005962200] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major control element of the human c-myc oncogene is the nuclease-hypersensitive purine/pyrimidine-rich sequence. This double-stranded DNA fragment, corresponding to the 27-base pair segment in the nuclease-hypersensitive element of the c-myc promoter region, forms a stable Watson-Crick double helix under physiological conditions. However, this duplex DNA can be effectively converted to G-quadruplex DNA by a small molecular weight ligand. Both intermolecular and intramolecular G-quadruplex forms can be induced by this ligand. Similar transitional changes are also observed with the duplex telomeric sequence from the Oxytricha species. These results provide additional support to the idea that G-quadruplex structures may play structural roles in vivo and also provide insight into novel methodologies for rational drug design. These structurally altered DNA elements might serve as regulatory signals in gene expression or in telomere dynamics and hence are promising targets for drug action.
Collapse
Affiliation(s)
- A Rangan
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, TX 78712, USA
| | | | | |
Collapse
|
61
|
Simonsson T, Pribylova M, Vorlickova M. A nuclease hypersensitive element in the human c-myc promoter adopts several distinct i-tetraplex structures. Biochem Biophys Res Commun 2000; 278:158-66. [PMID: 11071868 DOI: 10.1006/bbrc.2000.3783] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleic acid structure-function correlations are pivotal to major biological events like transcription, replication, and recombination. Depending on intracellular conditions in vivo and buffer composition in vitro, DNA appears capable of inexhaustible structure variation. At moderately acidic, or even neutral pH, DNA strands that are rich in cytosine bases can associate both inter- and intramolecularly to form i-tetraplexes. The hemiprotonated cytosine(+)-cytosine base pair constitutes the building block for the formation of i-tetraplexes, and motifs for their formation are frequent in vertebrate genomes. A major control element upstream of the human c-myc gene, which has been shown to interact sequence specifically with several transcription factors, becomes hypersensitive to nucleases upon c-myc expression. The control element is asymmetric inasmuch as that one strand is uncommonly rich in cytosines and exhibits multiple motifs for the formation of i-tetraplexes. To investigate the propensity for their formation we employ circular dichroism (CD) in combination with ultra violet (UV) spectroscopy and native gel electrophoresis. Our results demonstrate the cooperative formation of well-defined i-tetraplex structures. We conclude that i-tetraplex formation occurs in the promoter region of the human c-myc gene in vitro, and discuss implications of possible biological roles for i-tetraplex structures in vivo. Hypothetical formation of intramolecular fold-back i-tetraplexes is important to c-myc transcription, whereas chromosomal translocation events might involve the formation of bimolecular i-tetraplex structures.
Collapse
Affiliation(s)
- T Simonsson
- Department of Molecular Biotechnology, Chalmers University of Technology, SE 405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
62
|
Agou F, Raveh S, Véron M. The binding mode of human nucleoside diphosphate kinase B to single-strand DNA. J Bioenerg Biomembr 2000; 32:285-92. [PMID: 11768312 DOI: 10.1023/a:1005593130867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this paper, we studied the interaction of the human isoform B of nucleoside diphosphate kinase (NDP kinase B) with the nuclease hypersensitive element (NHE) present in the promoter element of the c-myc oncogene. The DNA-binding properties of NDP kinase B and other NDP kinases are compared and the nucleotide requirement for binding are discussed. Using quantitative methods, we identified the DNA-binding sites on the protein and we proposed a structural model for a complex of one hexameric NDP kinase B with an oligonucleotide.
Collapse
Affiliation(s)
- F Agou
- Institut Pasteur, Unité de Régulation Enzymatique des Activités Cellulaires, CNRS URA 1773, Paris, France
| | | | | |
Collapse
|
63
|
Rivella S, Callegari JA, May C, Tan CW, Sadelain M. The cHS4 insulator increases the probability of retroviral expression at random chromosomal integration sites. J Virol 2000; 74:4679-87. [PMID: 10775605 PMCID: PMC111989 DOI: 10.1128/jvi.74.10.4679-4687.2000] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviruses are highly susceptible to transcriptional silencing and position effects imparted by chromosomal sequences at their integration site. These phenomena hamper the use of recombinant retroviruses as stable gene delivery vectors. As insulators are able to block promoter-enhancer interactions and reduce position effects in some transgenic animals, we examined the effect of an insulator on the expression and structure of randomly integrated recombinant retroviruses. We used the cHS4 element, an insulator from the chicken beta-like globin gene cluster, which has been shown to reduce position effects in transgenic Drosophila. A large panel of mouse erythroleukemia cells that bear a single copy of integrated recombinant retroviruses was generated without using drug selection. We show that the cHS4 increases the probability that integrated proviruses will express and dramatically decreases the level of de novo methylation of the 5' long terminal repeat. These findings support a primary role of methylation in the silencing of retroviruses and suggest that cHS4 could be useful in gene therapy applications to overcome silencing of retroviral vectors.
Collapse
Affiliation(s)
- S Rivella
- Department of Human Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
64
|
Takano Y, Iuchi Y, Ito J, Otsu K, Kuzumaki T, Ishikawa K. Characterization of the responsive elements to hormones in the rat aldolase B gene. Arch Biochem Biophys 2000; 377:58-64. [PMID: 10775441 DOI: 10.1006/abbi.2000.1757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription of the aldolase B gene, AldB, in the liver is regulated by hormones such as insulin and glucagon. To characterize the elements that are responsive to these hormones in the upstream region of AldB, plasmids carrying various length of the upstream region of this gene were constructed and transfected to primary cultured rat hepatocytes. The promoter activities were gradually increased by progressive deletion of the 5'-upstream region, and high activities were observed for constructs carrying the sequence between -408 and -85 bp, suggesting the presence of suppressive element(s) in the upstream region of -409 bp. The transcription activities of the mutants containing the sequences between -228 and -85 bp were enhanced by insulin, and glucagon suppressed the transcription activities of those containing the sequence between -764 and -85 bp. Two sequence elements similar to the cAMP-responsive element (CRE), one from -89 to -82 bp and another from +13 to +20 bp, were found in the upstream sequence of the gene. The latter element is not functional because its deletion did not affect either the transcription efficiency or glucagon response. However, the deletion of the former element diminished both functions. A gel retardation assay showed that the nuclear factor binds to the former element, which was competitive with authentic CRE oligonucleotide but not with the mutant CRE one. These results suggest that the CRE-like element in the promoter region is prerequisite for both fundamental transcription efficiency of the gene and suppression by glucagon in hepatocytes.
Collapse
Affiliation(s)
- Y Takano
- Department of Biochemistry, Yamagata University School of Medicine, Yamagata, 990-9585, Japan
| | | | | | | | | | | |
Collapse
|
65
|
Cao E, Sun X, Zhang X, Li J, Bai C. Fold-back tetraplex DNA species in DNase I-resistant DNA isolated from HeLa cells. J Biomol Struct Dyn 2000; 17:871-8. [PMID: 10798531 DOI: 10.1080/07391102.2000.10506575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A DNase I-resistant DNA species has been isolated and purified from HeLa cells by gel electrophoresis. Our studies indicate that the DNase I-resistant DNA species was about 40-60 bp fragment sizes responding to double-strand DNA marker and has higher guanine content. The image of AFM showed that this species has been assumed to be tetraplex structure according to its apparent width and height. Its CD, UV spectrum also exhibited characteristics similar to some tetraplex structure, which was different from the standard duplex DNA. 32P-labeled probes (TTAGGG)4 and 5'-TGGGGAGGGTGGGGAGGGTGGGGAAGG-3' could be hybridized to purified DNase I-resistant species. All results suggest that the DNase I-resistant DNA species have at least two components, which adopt an intrastrand fold-back DNA tetraplex. Their sequences were similar to human telomere and human c-myc locus (NHE), respectively.
Collapse
Affiliation(s)
- E Cao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing.
| | | | | | | | | |
Collapse
|
66
|
Grigorieva I, Grigoriev VG, Rowney MK, Hoover RG. Regulation of c-myc transcription by interleukin-2 (IL-2). Identification of a novel IL-2 response element interacting with STAT-4. J Biol Chem 2000; 275:7343-50. [PMID: 10702306 DOI: 10.1074/jbc.275.10.7343] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of c-myc expression is known to occur at the level of transcription initiation. However, the participating promoter elements and their cognate binding proteins have not been fully characterized. c-myc transcription can be stimulated by a number of cytokines including interleukin-2 (IL-2). We have identified a novel IL-2-responsive element, located in the 5'-flanking region of the c-myc gene, between nucleotides -1406 and -1387 (relative to the P2 promoter). This element belongs to the family of interferon-gamma activation site-like responsive elements and has the core sequence TTCCAATAA. We confirmed that IL-2-mediated signaling involves activation by phosphorylation of Jak2 tyrosine kinase and subsequently STAT4. The transcription factor STAT4 binds the TTCCAATAA motif within this responsive element and, therefore, is probably involved in enhancing c-myc transcription upon IL-2 stimulation. Our results propose participation of Jak2 and STAT4 in IL-2-induced up-regulation of c-myc.
Collapse
Affiliation(s)
- I Grigorieva
- Department of Pathology, St. Louis University, St. Louis, Missouri 63104, USA.
| | | | | | | |
Collapse
|
67
|
Subramanian A, Miller DM. Structural analysis of alpha-enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J Biol Chem 2000; 275:5958-65. [PMID: 10681589 DOI: 10.1074/jbc.275.8.5958] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myc-binding protein-1 (MBP-1) is a 37-kDa protein with sequence homology to the 3' portion of the alpha-enolase gene. alpha-Enolase is a 48-kDa protein, which plays a critical role in the glycolytic pathway. MBP-1 binds to the c-myc P2 promoter and down-regulates c-myc expression. We have investigated the role of alpha-enolase in regulation of the c-myc protooncogene. RNase protection assay shows that alpha-enolase is transcribed into a single RNA species in HeLa cells. A start codon, 400 base pairs downstream of the alpha-enolase ATG, corresponds to the MBP-1 ATG, suggesting that MBP-1 is an alternative translation initiation product of the alpha-enolase RNA. Domain mapping was performed using constructs containing truncations of the alpha-enolase gene. In vitro binding to the c-myc gene was abolished after deletion of the N-terminal portion of alpha-enolase. In order to determine the relationship between DNA binding activity and transcription inhibition, we performed co-transfection assays in HeLa cells. These studies confirmed that an N-terminal deletion of alpha-enolase is unable to down-regulate c-myc promoter activity. Our data suggest that alpha-enolase plays an important role in regulation of c-myc promoter activity in the form of an alternative translation product MBP-1, which is distinct from its role as a glycolytic enzyme.
Collapse
Affiliation(s)
- A Subramanian
- Comprehensive Cancer Center, Department of Biochemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294-3300, USA
| | | |
Collapse
|
68
|
Wittekindt NE, Hörtnagel K, Geltinger C, Polack A. Activation of c-myc promoter P1 by immunoglobulin kappa gene enhancers in Burkitt lymphoma: functional characterization of the intron enhancer motifs kappaB, E box 1 and E box 2, and of the 3' enhancer motif PU. Nucleic Acids Res 2000; 28:800-8. [PMID: 10637333 PMCID: PMC102546 DOI: 10.1093/nar/28.3.800] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/1999] [Revised: 12/02/1999] [Accepted: 12/02/1999] [Indexed: 01/31/2023] Open
Abstract
Deregulated expression of the proto-oncogene c- myc in Burkitt lymphoma (BL) cells carrying a t(2;8) translocation is mediated by a synergistic interaction of the translocated immunoglobulin (Ig) kappa gene intron (kappaEi) and 3' (kappaE3') enhancers and characterized by a strong activation of the promoter P1. We have investigated the functional role of distinct kappa enhancer sequence motifs in P1 activation on both mini-chromosomes and reporter gene constructs. Stable and transient transfections of BL cells revealed critical roles of the kappaEi and kappaE3' elements kappaB and PU, respectively. Joint mutation of kappaB and PU completely abolished P1 activity, implying that an interaction of kappaB- and PU-binding factors is essential for the enhancer synergism. Mutation of the E box 1 and E box 2 motifs markedly decreased P1 activity in transient but not in stable transfection experiments. Co-expression of the NF-kappaB subunit p65(RelA) and Sp1, an essential factor for P1 transcription, in Drosophila melanogaster SL2 cells synergistically enhanced promoter activity. Our results support a model which proposes cross-talk between promoter and enhancer binding factors as the basic mechanism for kappa enhancer-mediated c- myc activation in BL cells.
Collapse
Affiliation(s)
- N E Wittekindt
- GSF-National Research Center for Environment and Health, Institute of Clinical Molecular Biology and Tumor Genetics, Marchioninistrasse 25, D-81377 Munich, Germany.
| | | | | | | |
Collapse
|
69
|
The Wsh, W57, and Ph Kit Expression Mutations Define Tissue-Specific Control Elements Located Between −23 and −154 kb Upstream of Kit. Blood 1999. [DOI: 10.1182/blood.v94.8.2658.420k23_2658_2666] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Kit and PDGFRa receptor tyrosine kinases are encoded in close proximity at the murine white spotting (W) and patch (Ph) loci. Whereas W mutations affect hematopoiesis, melanogenesis, and gametogenesis, the Ph mutation affects melanogenesis and causes early lethality in homozygotes. TheWsh, W57, and Phmutations diminish Kit expression in certain cell types such as mast cells and enhance it in others. The Wsh,W57, and Ph mutations arose from deletions and inversions affecting sequences in between the Kit andPDGFRa genes. We have determined the precise location of the breakpoint of the Wshinversion and the endpoints of the W57deletion upstream of the Kittranscription start site and examined the effect of these mutations on Kit expression in mast cells and hematopoietic stem cells and lineage progenitors. Our results indicate that positive elements controlling Kit expression in mast cells mapping in between −23 and −154 kb from the transcription start site can be dissociated from negative elements controlling Kit misexpression during embryonic development in the vicinity of the PDGFRa gene. In addition, we have identified two clusters of hypersensitive sites in mast cells at −23 −28 kb and −147 −154 kb from the Kit gene transcription start site. Analysis of these hypersensitive sites in mutant mast cells indicates a role for HS4-6 in Kit expression in mast cells. These findings provide a molecular basis for the phenotype of these Kit expression mutations and they provide insight into the complex mechanisms governing the regulation ofKit expression.
Collapse
|
70
|
Baker JE, Kang J, Xiong N, Chen T, Cado D, Raulet DH. A novel element upstream of the Vgamma2 gene in the murine T cell receptor gamma locus cooperates with the 3' enhancer to act as a locus control region. J Exp Med 1999; 190:669-79. [PMID: 10477551 PMCID: PMC2195622 DOI: 10.1084/jem.190.5.669] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/1999] [Accepted: 06/28/1999] [Indexed: 12/16/2022] Open
Abstract
Transgenic expression constructs were employed to identify a cis-acting transcription element in the T cell receptor (TCR)-gamma locus, called HsA, between the Vgamma5 and Vgamma2 genes. In constructs lacking the previously defined enhancer (3'E(Cgamma1)), HsA supports transcription in mature but not immature T cells in a largely position-independent fashion. 3'E(Cgamma1), without HsA, supports transcription in immature and mature T cells but is subject to severe position effects. Together, the two elements support expression in immature and mature T cells in a copy number-dependent, position-independent fashion. Furthermore, HsA was necessary for consistent rearrangement of transgenic recombination substrates. These data suggest that HsA provides chromatin-opening activity and, together with 3'E(Cgamma1), constitutes a T cell-specific locus control region for the TCR-gamma locus.
Collapse
Affiliation(s)
- Jeanne E. Baker
- From the Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California at Berkeley, Berkeley, California 94720
| | - Joonsoo Kang
- From the Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California at Berkeley, Berkeley, California 94720
| | - Na Xiong
- From the Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California at Berkeley, Berkeley, California 94720
| | - Tempe Chen
- From the Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California at Berkeley, Berkeley, California 94720
| | - Dragana Cado
- From the Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California at Berkeley, Berkeley, California 94720
| | - David H. Raulet
- From the Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California at Berkeley, Berkeley, California 94720
| |
Collapse
|
71
|
Simonsson T, Sjöback R. DNA tetraplex formation studied with fluorescence resonance energy transfer. J Biol Chem 1999; 274:17379-83. [PMID: 10358100 DOI: 10.1074/jbc.274.24.17379] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is emerging that DNA tetraplexes are pivotal for many major cellular processes, and techniques that assess their structure and nature to the point are under development. Here we show how the structural conversion of largely unstructured single-stranded DNA molecules into compact intrastrand DNA tetraplexes can be monitored by fluorescence resonance energy transfer. We recently reported that intrastrand tetraplex formation takes place in a nuclease hypersensitive element upstream of the human c-myc proto-oncogene. Despite the highly repetitive guanine-rich sequence of the hypersensitive element, fluorescence resonance energy transfer measurements indicate that only one well defined tetraplex structure forms therein. The proposed structure, which is specifically stabilized by potassium ions in vitro, has a core of three stacked guanine tetrads that is capped by two intrastrand A-T base pairs.
Collapse
Affiliation(s)
- T Simonsson
- Department of Biochemistry, Lundberg Institute, Chalmers University of Technology, Box 462, SE 405 30 Göteborg, Sweden.
| | | |
Collapse
|
72
|
Ortiz BD, Cado D, Winoto A. A new element within the T-cell receptor alpha locus required for tissue-specific locus control region activity. Mol Cell Biol 1999; 19:1901-9. [PMID: 10022877 PMCID: PMC83983 DOI: 10.1128/mcb.19.3.1901] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Locus control regions (LCRs) are cis-acting regulatory elements thought to provide a tissue-specific open chromatin domain for genes to which they are linked. The gene for T-cell receptor alpha chain (TCRalpha) is exclusively expressed in T cells, and the chromatin at its locus displays differentially open configurations in expressing and nonexpressing tissues. Mouse TCRalpha exists in a complex locus containing three differentially regulated genes. We previously described an LCR in this locus that confers T-lineage-specific expression upon linked transgenes. The 3' portion of this LCR contains an unrestricted chromatin opening activity while the 5' portion contains elements restricting this activity to T cells. This tissue-specificity region contains four known DNase I hypersensitive sites, two located near transcriptional silencers, one at the TCRalpha enhancer, and another located 3' of the enhancer in a 1-kb region of unknown function. Analysis of this region using transgenic mice reveals that the silencer regions contribute negligibly to LCR activity. While the enhancer is required for complete LCR function, its removal has surprisingly little effect on chromatin structure or expression outside the thymus. Rather, the region 3' of the enhancer appears responsible for the tissue-differential chromatin configurations observed at the TCRalpha locus. This region, herein termed the "HS1' element," also increases lymphoid transgene expression while suppressing ectopic transgene activity. Thus, this previously undescribed element is an integral part of the TCRalphaLCR, which influences tissue-specific chromatin structure and gene expression.
Collapse
MESH Headings
- Animals
- Chromatin
- Enhancer Elements, Genetic
- Locus Control Region
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Tissue Distribution
- Transcription, Genetic
- Transgenes
Collapse
Affiliation(s)
- B D Ortiz
- Department of Molecular and Cell Biology, Cancer Research Laboratory and Division of Immunology, University of California, Berkeley, California 94720-3200, USA
| | | | | |
Collapse
|
73
|
Kuramasu A, Saito H, Suzuki S, Watanabe T, Ohtsu H. Mast cell-/basophil-specific transcriptional regulation of human L-histidine decarboxylase gene by CpG methylation in the promoter region. J Biol Chem 1998; 273:31607-14. [PMID: 9813077 DOI: 10.1074/jbc.273.47.31607] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
L-Histidine decarboxylase (HDC) catalyzes the formation of histamine from L-histidine, and in hematopoietic cell lineages the gene is expressed only in mast cells and basophils. We attempted here to discover how HDC gene expression is restricted in these cells. In the cultured cell lines tested, only the mast cells and basophils strongly transcribed the HDC gene. However, in transient transfection analysis, the reporter constructs with the HDC promoter were active not only in expressing cells but also in nonexpressing cells. Detailed analyses of the HDC promoter region revealed that the GC box is essential for transactivation. Also, the promoter region of the HDC gene proved to be sensitive to DNase I and restriction endonucleases exclusively in HDC-expressing cells, suggesting that the promoter region is readily accessible to trans-acting factor(s). Furthermore, the promoter region in HDC-expressing cell lines was found to be selectively unmethylated. The correlation between HDC expression and hypomethylation was also found in primary human mast cells. Methylation of the HDC promoter in vitro reduced the luciferase reporter activity in transient expression analysis, suggesting that methylation of the promoter region is functionally important for HDC gene expression. These results imply that alteration of DNA methylation is one of the mechanisms regulating cell-specific expression of the HDC gene.
Collapse
Affiliation(s)
- A Kuramasu
- Department of Cellular Pharmacology, Tohoku University School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | |
Collapse
|
74
|
Madisen L, Krumm A, Hebbes TR, Groudine M. The immunoglobulin heavy chain locus control region increases histone acetylation along linked c-myc genes. Mol Cell Biol 1998; 18:6281-92. [PMID: 9774645 PMCID: PMC109215 DOI: 10.1128/mcb.18.11.6281] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In chromosome translocations characteristic of Burkitt lymphomas (BL) and murine plasmacytomas, c-myc genes become juxtaposed to immunoglobulin heavy-chain (IgH) sequences, resulting in aberrant c-myc transcription. Translocated c-myc alleles that retain the first exon exhibit increased transcription from the normally minor c-myc promoter, P1, and increased transcriptional elongation through inherent pause sites proximal to the major c-myc promoter, P2. We recently demonstrated that a cassette derived from four DNase I-hypersensitive sites (HS1234) in the 3'Calpha region of the IgH locus functions as an enhancer-locus control region (LCR) and directs a similar pattern of deregulated expression of linked c-myc genes in BL and plasmacytoma cell lines. Here, we report that the HS1234 enhancer-LCR mediates a widespread increase in histone acetylation along linked c-myc genes in Raji BL cells. Significantly, the increase in acetylation was not restricted to nucleosomes within the promoter region but also was apparent upstream and downstream of the transcription start sites as well as along vector sequences. Histone hyperacetylation of control c-myc genes, which was induced by the deacetylase inhibitor trichostatin A, mimics the effect of the HS1234 enhancer on expression from the c-myc P2 promoter, but not that from the P1 promoter. These results suggest that the HS1234 enhancer stimulates transcription of c-myc by a combination of mechanisms. Whereas HS1234 activates expression from the P2 promoter through a mechanism that includes increased histone acetylation, a general increase in histone acetylation is not sufficient to explain the HS1234-mediated activation of transcription from P1.
Collapse
Affiliation(s)
- L Madisen
- Fred Hutchinson Cancer Research Center, University of Washington School of Medicine, Seattle, Washington, USA
| | | | | | | |
Collapse
|
75
|
Ohki R, Hirota M, Oishi M, Kiyama R. Conservation and continuity of periodic bent DNA in genomic rearrangements between the c-myc and immunoglobulin heavy chain mu loci. Nucleic Acids Res 1998; 26:3026-33. [PMID: 9611251 PMCID: PMC147631 DOI: 10.1093/nar/26.12.3026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Periodic bent DNA was mapped in the human c- myc and immunoglobulin heavy chain mu (Ig mu) loci. A total of 12 DNA bend sites in the c- myc gene and 11 sites in the Ig mu locus were aligned at average intervals of 694.2 +/- 281.4 and 654.5 +/- 222.7 bp respectively. Although some of the bend sites retained the distance of 700 bp, their periodicity was disturbed at several locations, including the exons of the c- myc gene and the enhancer element present in the Ig mu locus. Analysis of rearrangements that resulted in tumorigenesis of lymphocytes showed that the continuity of DNA bend sites was conserved in three lymphoma cell lines, Manca, BL22 and Ramos, suggesting that the genomic rearrangements gain stability by retaining their periodicity. This adds further evidence that the periodic bent DNA plays a crucial role in genomic structure.
Collapse
Affiliation(s)
- R Ohki
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | |
Collapse
|
76
|
Simonsson T, Pecinka P, Kubista M. DNA tetraplex formation in the control region of c-myc. Nucleic Acids Res 1998; 26:1167-72. [PMID: 9469822 PMCID: PMC147388 DOI: 10.1093/nar/26.5.1167] [Citation(s) in RCA: 479] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The c-myc oncogene is one of the most commonly malfunctioning genes in human cancers, and is an attractive target for anti-gene therapy. Although synthetic oligonucleotides designed to silence c-myc expression via one of its major control elements function well in vitro, their mode of action has been indefinite. Here we show that the targeted control element adopts an intrastrand fold-back DNA tetraplex, which requires potassium ions for stability in vitro. We believe formation of the tetraplex is important for c-myc activation in vivo, and propose a transcription initiation mechanism that explains how anti-gene therapy silence c-myc at the molecular level.
Collapse
Affiliation(s)
- T Simonsson
- Department of Biochemistry, Lundberg Institute, Chalmers University of Technology, Medicinaregatan 9C, SE-413 90 Goteborg, Sweden.
| | | | | |
Collapse
|
77
|
Levens D, Duncan RC, Tomonaga T, Michelotti GA, Collins I, Davis-Smyth T, Zheng T, Michelotti EF. DNA conformation, topology, and the regulation of c-myc expression. Curr Top Microbiol Immunol 1997; 224:33-46. [PMID: 9308226 DOI: 10.1007/978-3-642-60801-8_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- D Levens
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Mills FC, Harindranath N, Mitchell M, Max EE. Enhancer complexes located downstream of both human immunoglobulin Calpha genes. J Exp Med 1997; 186:845-58. [PMID: 9294139 PMCID: PMC2199054 DOI: 10.1084/jem.186.6.845] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To investigate regulation of human immunoglobulin heavy chain expression, we have cloned DNA downstream from the two human Calpha genes, corresponding to the position in the mouse IgH cluster of a locus control region (LCR) that includes an enhancer which regulates isotype switching. Within 25 kb downstream of both the human immunoglobulin Calpha1 and Calpha2 genes we identified several segments of DNA which display B lymphoid-specific DNase I hypersensitivity as well as enhancer activity in transient transfections. The corresponding sequences downstream from each of the two human Calpha genes are nearly identical to each other. These enhancers are also homologous to three regions which lie in similar positions downstream from the murine Calpha gene and form the murine LCR. The strongest enhancers in both mouse and human have been designated HS12. Within a 135-bp core homology region, the human HS12 enhancers are approximately 90% identical to the murine homolog and include several motifs previously demonstrated to be important for function of the murine enhancer; additional segments of high sequence conservation suggest the possibility of previously unrecognized functional motifs. On the other hand, certain functional elements in the murine enhancer, including a B cell-specific activator protein site, do not appear to be conserved in human HS12. The human homologs of the murine enhancers designated HS3 and HS4 show lower overall sequence conservation, but for at least two of the functional motifs in the murine HS4 (a kappaB site and an octamer motif ) the human HS4 homologs are exactly conserved. An additional hypersensitivity site between human HS3 and HS12 in each human locus displays no enhancer activity on its own, but includes a region of high sequence conservation with mouse, suggesting the possibility of another novel functional element.
Collapse
Affiliation(s)
- F C Mills
- Laboratory of Cell and Viral Regulation, Division of Hematologic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
79
|
Ortiz BD, Cado D, Chen V, Diaz PW, Winoto A. Adjacent DNA elements dominantly restrict the ubiquitous activity of a novel chromatin-opening region to specific tissues. EMBO J 1997; 16:5037-45. [PMID: 9305645 PMCID: PMC1170138 DOI: 10.1093/emboj/16.16.5037] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Locus control regions (LCRs) are thought to provide a dominant tissue-specific open chromatin domain that allows for proper gene regulation by enhancers/silencers and their associated transcription factors. Expression of the T-cell receptor alpha (TCR alpha) gene is limited to T cells and its locus exists in different chromatin configurations in expressing and nonexpressing cell types. Here we show that eight DNase I-hypersensitive sites in the TCR alpha locus comprise an LCR that confers T-cell compartment-specific expression upon a linked heterologous transgene. Removal of the three 5'-most hypersensitive sites of this LCR, containing TCR alpha enhancers/silencers, abolishes tissue-differential chromatin structure and results in transgene expression in all tissues examined. The remaining five DNase I-hypersensitive sites therefore constitute a novel control element possessing a widely active chromatin-opening function that allows for ubiquitous expression of a linked transgene in all transgenic founder mice. Furthermore, these data show that cis-acting elements without inherent LCR activity can dominantly modulate chromatin structure to determine tissue-specific gene expression in vivo.
Collapse
Affiliation(s)
- B D Ortiz
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200, USA
| | | | | | | | | |
Collapse
|
80
|
Albert T, Mautner J, Funk JO, Hörtnagel K, Pullner A, Eick D. Nucleosomal structures of c-myc promoters with transcriptionally engaged RNA polymerase II. Mol Cell Biol 1997; 17:4363-71. [PMID: 9234694 PMCID: PMC232290 DOI: 10.1128/mcb.17.8.4363] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Organization of DNA into chromatin has been shown to contribute to a repressed state of gene transcription. Disruption of nucleosomal structure is observed in response to gene induction, suggesting a model in which RNA polymerase II (pol II) is recruited to the promoter upon reorganization of nucleosomes. Here we show that induction of c-myc transcription correlates with the disruption of two nucleosomes in the upstream promoter region. This nucleosomal disruption, however, is not necessary for the binding of pol II to the promoter. Transcriptionally engaged pol II complexes can be detected when the upstream chromatin is in a more closed configuration. Thus, upstream chromatin opening is suggested to affect activation of promoter-bound pol II rather than entry of polymerases into the promoter. Interestingly, pol II complexes are detectable in both sense and antisense transcriptional directions, but only complexes in the sense direction respond to activation signals resulting in processive transcription.
Collapse
Affiliation(s)
- T Albert
- Institut für Klinische Molekularbiologie und Tumorgenetik, GSF-Forschungszentrum für Umwelt und Gesundheit, Munich, Germany
| | | | | | | | | | | |
Collapse
|
81
|
Hong NA, Cado D, Mitchell J, Ortiz BD, Hsieh SN, Winoto A. A targeted mutation at the T-cell receptor alpha/delta locus impairs T-cell development and reveals the presence of the nearby antiapoptosis gene Dad1. Mol Cell Biol 1997; 17:2151-7. [PMID: 9121464 PMCID: PMC232063 DOI: 10.1128/mcb.17.4.2151] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Locus control regions are cis gene regulatory elements comprised of DNase I-hypersensitive sites. These regions usually do not stimulate transcription outside of a chromosomal context, and therefore their ability to regulate the expression of genes is thought to occur through the modification of chromatin accessibility. A locus control region is located downstream of the T-cell receptor (TCR) alpha/delta locus on mouse chromosome 14. This locus control region is known to drive T-cell-specific TCR alpha transcription in transgenic mice. In this report, we describe a targeted deletion of this locus control region and show that this mutation acts at a critical checkpoint in alphabeta T-cell development, between the TCR-intermediate and TCR-high stages. Our analysis further reveals that the antiapoptosis gene Dad1 is at the 3' end of the TCR alpha/delta locus and that Dad1 is required for embryogenesis. We show that mouse Dad1 has a broader expression pattern than the TCR genes, in terms of both tissue and temporal specificity. Finally, we report that the chromatin between TCR alpha and Dad1 is DNase I hypersensitive in a variety of cell types, thus correlating with Dad1 expression and raising the possibility that Dad1 regulatory sequences reside in this region.
Collapse
MESH Headings
- Alleles
- Animals
- Apoptosis/genetics
- Apoptosis Regulatory Proteins
- DNA/genetics
- Deoxyribonuclease I
- Enhancer Elements, Genetic
- Gene Expression Regulation, Developmental
- Gene Targeting
- Genes, Regulator
- Membrane Proteins
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Mutation
- Proteins/genetics
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Ribonucleases
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- N A Hong
- Department of Molecular and Cell Biology, University of California at Berkeley, 94720-3200, USA
| | | | | | | | | | | |
Collapse
|
82
|
Abstract
The process of oncogenic transformation has been widely studied but is still poorly understood. We have focused on the mechanism of deregulation of the c-myc gene during transformation of a temperature-sensitive SV40-transformed mouse cell line. Run-on transcription assays showed that the two c-myc minor promoters, P1 and P3, are transiently activated following induction of transformation and that peak activation of both promoters is preceded by a large increase in transcription of a small RNA (7SK). To test the possibility that this RNA might participate in promoter activation, we transfected cells with sense and antisense oligodeoxynucleotides corresponding to different regions of the 7SK RNA predicted to be accessible within the RNP particle. Out of 14 oligos tested, inhibition of activation of P1 and/or P3 was observed with four antisense oligonucleotides corresponding to looped regions in the putative 7SK secondary structure. To identify c-myc promoter sequences which might serve as targets for 7SK activity, we carried out mobility-shift assays with either whole or 7SK-depleted cell extracts. The CT element of the c-myc promoter formed a 7SK-dependent complex which could be competed only with the same antisense 7SK oligo that suppressed P1 and P3 activation in vivo. Taken together these results suggest that 7SK RNP participates in transformation-dependent c-myc deregulation.
Collapse
Affiliation(s)
- Y Luo
- Department of Biology, University of New Brunswick, Fredericton, Canada
| | | | | | | |
Collapse
|
83
|
Sakatsume O, Tsutsui H, Wang Y, Gao H, Tang X, Yamauchi T, Murata T, Itakura K, Yokoyama KK. Binding of THZif-1, a MAZ-like zinc finger protein to the nuclease-hypersensitive element in the promoter region of the c-MYC protooncogene. J Biol Chem 1996; 271:31322-33. [PMID: 8940139 DOI: 10.1074/jbc.271.49.31322] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A detailed analysis is reported of the binding of the zinc finger protein THZif-1 to the nuclease-hypersensitive element (NHE) in the promoter region of the c-MYC gene using the electrophoretic mobility shift assay and a series of mutants of a fusion protein composed of glutathione S-transferase and THZif-1. The THZif-1 protein bound specifically to the single-stranded (ss) pyrimidine-rich DNA of the NHE (ss c-myc NHE-C) with an apparent dissociation constant (Kd (app)) of 0.077 microM. By contrast, no binding to the single-stranded purine-rich DNA of the NHE (ss c-myc NHE-G) was detected. Moreover, the binding affinity of THZif-1 protein was 2-fold higher for the single-stranded 5-methyl-2'-deoxycytidine derivative of NHE (ss c-myc NHE-me5C) than for the unmethylated NHE. In the case of the binding of THZif-1 to methylated double-stranded (ds) NHE (ds c-myc NHE-me5CG), no significant binding to the DNA was observed. The decrease in binding to DNA of THZif-1 was significant in the case of mutated ds c-myc NHE, in which more than two sites of deoxycytidine residues were methylated. However, the binding affinity of THZif-1 protein for methylated and for unmethylated triple-helical DNA of the NHE was almost identical. Moreover, the domain of the THZif-1 protein that made the major contribution to binding to ss c-myc NHE-C or ss c-myc NHE-me5C corresponded to the amino-terminal second zinc finger motif. Taken together, the results indicate that the THZif-1 protein exhibits preferential DNA-binding activity with ss c-myc NHE-C, ds c-myc NHE-CG, and ts c-myc NHE but not with ss c-myc NHE-G and ds c-myc NHE-me5CG in vitro.
Collapse
Affiliation(s)
- O Sakatsume
- Tsukuba Life Science Center, RIKEN (The Institute of Physical and Chemical Research), 3-1-1 Koyadai, Tsukuba, Ibaraki 305, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Pullner A, Mautner J, Albert T, Eick D. Nucleosomal structure of active and inactive c-myc genes. J Biol Chem 1996; 271:31452-7. [PMID: 8940157 DOI: 10.1074/jbc.271.49.31452] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The nucleosomal structure of active and inactive c-myc genes has been analyzed in detail in undifferentiated and differentiated cells of the promyelocytic leukemia cell line HL60. The c-myc P2 promoter was never found in nucleosomal configuration, no matter whether c-myc was expressed or not. Differences in the nucleosomal structure, however, were found in the promoter upstream region proximal to a previously described DNase I-hypersensitive site I, at the P0 promoter, and at the P1 promoter and upstream thereof. In these regions nucleosomes were detected in differentiated but not undifferentiated HL60 cells. Similar patterns of nucleosomes as found for active and inactive c-myc genes in HL60 cells were found for active and inactive episomal c-myc genes in stably transfected B cell lines. In these cell lines three activation stages could be described for episomal c-myc constructs: (i) uninducible, (ii) inducible, and (iii) induced. Significant differences in the nucleosomal structure of c-myc were observed for the uninducible and inducible stages, but not for the inducible and induced stages.
Collapse
Affiliation(s)
- A Pullner
- Institut für Klinische Molekularbiologie und Tumorgenetik, GSF-Forschungszentrum für Umwelt und Gesundheit, Marchioninistrasse 25, 81377 München, Germany.
| | | | | | | |
Collapse
|
85
|
Ponton A, Thirion JP, Sirois P. Changes in chromatin conformation regulate the 5-lipoxygenase gene expression during differentiation of HL60 cells. Prostaglandins Leukot Essent Fatty Acids 1996; 55:139-43. [PMID: 8931109 DOI: 10.1016/s0952-3278(96)90088-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The HL60 cell line does not express the 5-lipoxygenase gene prior to differentiation with various agents. In this paper we have shown by DNase I sensitivity that the chromatin conformation of the 5-lipoxygenase gene changes following differentiation of HL60 cells with dimethyl sulfoxide (DMSO). Moreover, run-on analysis suggests that transcription of the 5-lipoxygenase gene is enhanced after differentiation. We proposed that the chromatin conformation represses the expression of the 5-lipoxygenase gene in HL60 cell line and that differentiation of these cells with DMSO changes the chromatin conformation, which allows the expression of the 5-lipoxygenase gene. The HeLa cells which, like the HL60 cells, do not express the 5-lipoxygenase, were insensitive to DNase I treatment. These results suggest that chromatin structure might represent a form of regulation for the 5-lipoxygenase gene.
Collapse
Affiliation(s)
- A Ponton
- Department of Pharmacology, Faculty of Medicine, University of Sherbrooke, Canada
| | | | | |
Collapse
|
86
|
Kawasaki H, Machida M, Komatsu M, Li HO, Murata T, Tsutsui H, Fujita A, Matsumura M, Kobayashi Y, Taira K, Yokoyama KK. Specific regulation of gene expression by antisense nucleic acids: a summary of methodologies and associated problems. Artif Organs 1996; 20:836-48. [PMID: 8853793 DOI: 10.1111/j.1525-1594.1996.tb04556.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gene therapy based on gene-specific nucleic acids has moved from theory to a practical possibility in a very short time. The new DNA and RNA therapeutic reagents are intended to stop the growth of cancerous cells or the production of viruses. At the practical level, the efficacy of antisense oligomers as therapeutic reagents has been carefully examined in various clinical contexts. For the efficient use of antisense nucleic acids as pharmaceutical agents, a complete analysis of their mechanisms of action is necessary. The use of antisense oligomers always involves the following problems: basepair specificity, stereoisomer specificity, stability and resistance to nucleases of sense-antisense duplexes, permeability of the cell membrane and targeting of the oligomer, safety, and the preparation of large amounts of oligomer. Herein, we review the basic concepts and problems associated with the exploitation of antisense technology. We have identified a new transcription factor triple-helix-binding zinc-finger protein-1 (THZif-1) induced by antisense c-myc RNA in the antisense-transformed HL60 cells. The encoded protein functions as the repressor of c-myc to achieve the reduction of the endogenous expression of c-myc gene. Therefore, the introduction of THZif-1 gene into HL60 cells in conjunction with antisense c-myc oligomers may result in the efficient repression of the expression of the c-myc gene. The molecular features of this factor are herein discussed.
Collapse
Affiliation(s)
- H Kawasaki
- Tsukuba Life Science Center, RIKEN (The Institute of Physical and Chemical Research), Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Murphy LC, Huzel N, Davie JR. Novel DNase I hypersensitive sites in the 3'-flanking region of the human c-myc gene. DNA Cell Biol 1996; 15:543-8. [PMID: 8756335 DOI: 10.1089/dna.1996.15.543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
DNase I hypersensitivity regions correlate with genetic regulatory loci and binding sites for sequence-specific DNA-binding proteins. We present data supporting the presence of novel DNase 1 hypersensitive sites (which we have designated sites VI-IX) in both the body of the human c-myc gene downstream from exon 2 and the 3'-flanking region of the c-myc gene in HL-60 cells. All of these novel DH sites are markedly decreased when HL-60 cells are treated with either dimethyl sulfoxide (DMSO) or retinoic acid. Moreover, a similar pattern of DNase I hypersensitive sites in this region of c-myc was present in MCF-7 human breast cancer cells growing in culture. Our results suggest a potential role for these sites in transcriptional regulation of the human c-myc gene.
Collapse
Affiliation(s)
- L C Murphy
- Department of Biochemistry and Molecular Biology, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
88
|
Michelotti GA, Michelotti EF, Pullner A, Duncan RC, Eick D, Levens D. Multiple single-stranded cis elements are associated with activated chromatin of the human c-myc gene in vivo. Mol Cell Biol 1996; 16:2656-69. [PMID: 8649373 PMCID: PMC231256 DOI: 10.1128/mcb.16.6.2656] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transcription activation and repression of eukaryotic genes are associated with conformational and topological changes of the DNA and chromatin, altering the spectrum of proteins associated with an active gene. Segments of the human c-myc gene possessing non-B structure in vivo located with enzymatic and chemical probes. Sites hypertensive to cleavage with single-strand-specific S1 nuclease or the single-strand-selective agent potassium permanganate included the major promoters P1 and P2 as well as the far upstream sequence element (FUSE) and CT elements, which bind, respectively, the single-strand-specific factors FUSE-binding protein and heterogeneous nuclear ribonucleoprotein K in vitro. Active and inactive c-myc genes yielded different patterns of S1 nuclease and permanganate sensitivity, indicating alternative chromatin configurations of active and silent genes. The melting of specific cis elements of active c-myc genes in vivo suggested that transcriptionally associated torsional strain might assist strand separation and facilitate factor binding. Therefore, the interaction of FUSE-binding protein and heterogeneous nuclear ribonucleoprotein K with supercoiled DNA was studied. Remarkably, both proteins recognize their respective elements torsionally strained but not as liner duplexes. Single-strand- or supercoil-dependent gene regulatory proteins may directly link alterations in DNA conformation and topology with changes in gene expression.
Collapse
Affiliation(s)
- G A Michelotti
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
89
|
Abstract
The myc family of proto-oncogenes is believed to be involved in the establishment of many types of human malignancy. The members of this family have been shown to function as transcription factors, and through a designated target sequence bring about continued cell-cycle progression, cellular immortalization and blockages to differentiation in many lineages. However, while much of the recent work focusing on the c-myc oncogene has provided some very important advances, it has also brought to light a large amount of conflicting data as to the mechanism of action of the gene product. In this regard, it has now been shown that c-myc is effective in transcriptional repression as well as transcriptional activation and, perhaps more paradoxically, that it has a role in programmed cell death (apoptosis) as well as in processes of cell-cycle progression. In addition, particular interest has surrounded the distinct roles of the two alternative translation products of the c-myc gene, c-Myc 1 and c-Myc 2. The intriguing observation that the ratio of c-Myc 1 to c-Myc 2 increases markedly upon cellular quiescence led to the discovery that the enforced expression of the two proteins individually showed that c-Myc 2 stimulates cell growth, whereas c-Myc 1 appears to be growth suppressing. Clearly, the disparities in the activities of c-Myc, together with the consistent occurrence of mutations of c-myc in human malignancies, means that, although reaching an understanding of the functions of the myc gene family might not be simple, it remains well worthy of pursuit.
Collapse
Affiliation(s)
- K M Ryan
- The Beatson Institute for Cancer Research, Glasgow, Scotland, U.K
| | | |
Collapse
|
90
|
Smith-Sørensen B, Hijmans EM, Beijersbergen RL, Bernards R. Functional analysis of Burkitt's lymphoma mutant c-Myc proteins. J Biol Chem 1996; 271:5513-8. [PMID: 8621409 DOI: 10.1074/jbc.271.10.5513] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The c-myc gene encodes a sequence-specific DNA binding protein that activates transcription of cellular genes. Transcription activation by Myc proteins is regulated by phosphorylation of serine and threonine residues within the transactivation domain and by complex formation with the retinoblastoma-related protein p107. In Burkitt's lymphoma, missense mutations within the c-Myc transactivation domain have been found with high frequency. It has been reported that mutant c-Myc proteins derived from Burkitt's lymphoma cell lines are resistant to inhibition by p107, thus providing a rationale for the increased oncogenic activity of these mutant c-Myc proteins. It has been suggested that these mutant c-Myc proteins resist down-modulation by p107 because they lack cyclin A-cdk2-dependent phosphorylation. Here, we have examined three different Burkitt's lymphoma mutant c-Myc proteins found in primary Burkitt's lymphomas and one mutant c-Myc protein detected in a Burkitt's lymphoma cell line. All four have an unaltered ability to activate transcription and are sensitive to inhibition of transactivation by p107. Furthermore, we provide evidence that down-modulation of c-Myc transactivation by p107 does not require phosphorylation of the c-Myc transactivation domain by cyclin A-cdk2. Our data indicate that escape from p107-induced suppression is not a general consequence of all Burkitt's lymphoma-associated c-Myc mutations, suggesting that other mechanisms exist to deregulate c-Myc function.
Collapse
Affiliation(s)
- B Smith-Sørensen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 121 Plesmanlaan, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
91
|
Postel EH. NM23/Nucleoside diphosphate kinase as a transcriptional activator of c-myc. Curr Top Microbiol Immunol 1996; 213 ( Pt 2):233-52. [PMID: 9053293 DOI: 10.1007/978-3-642-61109-4_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- E H Postel
- Department of Molecular Biology, Princeton University, NJ 08646-1014, USA
| |
Collapse
|
92
|
Krause MO. Chromatin structure and function: the heretical path to an RNA transcription factor. Biochem Cell Biol 1996; 74:623-32. [PMID: 9018369 DOI: 10.1139/o96-067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This review represents a synthesis of the work of the author and her collaborators through 40 years of research aimed at an understanding of chromatin composition and functional arrangement. It describes the progressive experimental stages, starting with autoradiography and protein analysis and continuing on to a more functional approach testing the template properties of intact nuclei, as well as nuclei depleted of, or reconstituted with, defined fractions extracted from the chromatin of other cell lines or tissues. As new questions were raised at each phase of these studies, the investigation was shifted from chromosomal proteins to the role of a small RNA that coextracted with one protein fraction and whose properties suggested a transcription-activating function. The active RNA was identified as a class III RNA, designated as 7SK. Its properties suggested a role in the activation of two oncogenes, the SV40 T-antigen and the mammalian C-myc gene. A detailed analysis of the c-myc gene expression during transformation induction in temperature-sensitive mammalian cells finally culminated in in vivo evidence for a role of 7SK in c-myc deregulation, using cells transfected with antisense oligonucleotides to block 7SK activity. This was followed by an investigation of promoter targeting by 7SK RNP using electrophoretic mobility shift assays with whole or 7SK-depleted cell extracts. Taken together, these studies indicate that 7SK RNP participates in transformation-dependent deregulation of the c-myc gene by activation of two c-myc minor promoters. The implications of these findings are discussed.
Collapse
Affiliation(s)
- M O Krause
- Department of Biology, University of New Brunswick, Federicton, Canada.
| |
Collapse
|
93
|
McWhinney C, Waltz SE, Leffak M. Cis-acting effects of sequences within 2.4-kb upstream of the human c-myc gene on autonomous plasmid replication in HeLa cells. DNA Cell Biol 1995; 14:565-79. [PMID: 7626216 DOI: 10.1089/dna.1995.14.565] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have used density shift analysis to monitor the autonomous replicating sequence (ARS) activity of plasmids containing various DNA fragments from the 5'-flanking region of the human c-myc gene. The ARS activity of certain of these plasmids implied that structures in the c-myc DNA could be recognized for the initiation of replication in the absence of chromosomal integration. The plasmid pNeo.Myc-2.4 contains 2.4 contains 2.4 kb of c-myc 5'-flanking DNA, and replicated semiconservatively as a circular extrachromosomal element. Deletion derivatives of pNeo.Myc-2.4 containing either of two nonoverlapping regions of c-myc DNA semiconservatively incorporated bromodeoxyuridine into discrete populations of heavy-light supercoiled molecules to roughly the same extent as the chromosomal DNA in the same cultures. Some constructs displayed lower ARS activity, implying that distinct cis-acting sequences in the c-myc 5'-flanking DNA may independently affect DNA replication. The ARS activity of two separate c-myc sequences suggests that replication initiation signals are redundant in the c-myc origin. The smallest c-myc insert that displayed substantial ARS activity was 930 bp long and contained three 10/11 matches to the yeast ARS consensus and several additional features found in eukaryotic replication origins.
Collapse
Affiliation(s)
- C McWhinney
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA
| | | | | |
Collapse
|
94
|
Ji L, Arcinas M, Boxer LM. The transcription factor, Nm23H2, binds to and activates the translocated c-myc allele in Burkitt's lymphoma. J Biol Chem 1995; 270:13392-8. [PMID: 7768941 DOI: 10.1074/jbc.270.22.13392] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have identified an in vivo footprint over the PuF site on the translocated c-myc allele in Burkitt's lymphoma cells. The PuF site on the silent normal c-myc allele was unoccupied. We demonstrated by electrophoretic mobility shift assay, electrophoretic mobility shift assay with antibody, UV cross-linking followed by SDS-gel electrophoresis, and Western analysis that Nm23H2 in B cell nuclear extracts bound to the c-myc PuF site. Transfection experiments with c-myc promoter constructs in both DHL-9 and Raji cells revealed that the PuF site functioned as a positive regulatory element in B cells with a drop in activity with mutation of this site. Access to this site is blocked in the normal silent c-myc allele; these data suggest that the Nm23H2 protein is involved in deregulation of the translocated c-myc allele in Burkitt's lymphoma cells.
Collapse
Affiliation(s)
- L Ji
- Center for Molecular Biology in Medicine, VAMC, Palo Alto, California 94304, USA
| | | | | |
Collapse
|
95
|
Michelotti EF, Tomonaga T, Krutzsch H, Levens D. Cellular nucleic acid binding protein regulates the CT element of the human c-myc protooncogene. J Biol Chem 1995; 270:9494-9. [PMID: 7721877 DOI: 10.1074/jbc.270.16.9494] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The CT element of the c-myc gene is required for promoter P1 usage and can drive expression of a heterologous promoter. Both double strand (Sp1) and single strand (hnRNP K) CT-binding proteins have been implicated as mediators of CT action. Although significant levels of CT activity persisted following Sp1 immunodepletion, EGTA totally abolished transactivation, thus implicating another metal requiring factor in CT element activity. As hnRNP K binds to one strand of the CT element, but has no metal requirement, the opposite (purine-rich strand) was examined as a target for a metal-dependent protein. A zinc-requiring purine strand binding activity was identified as cellular nucleic acid binding protein (CNBP), a protein previously implicated in the regulation of sterol responsive genes. Two forms of CNBP differed in their relative binding to the CT- or sterol-response elements. CNBP was shown to be a bona fide regulator of the CT element by cotransfection of a CNBP expression vector that stimulated expression of a CT-driven but not an AP1-dependent reporter. These data suggest that hnRNP K and CNBP bind to opposite strands and co-regulate the CT element.
Collapse
Affiliation(s)
- E F Michelotti
- Department of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
96
|
He J, Furmanski P. Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA. Nature 1995; 373:721-4. [PMID: 7854459 DOI: 10.1038/373721a0] [Citation(s) in RCA: 262] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lactoferrin, an iron-binding glycoprotein found in high concentrations in human milk and other epithelial secretions and in the secondary (specific) granules of neutrophils, is thought to be responsible for primary defence against microbial infection, mainly as a result of lactoferrin sequestration of iron required for microbial growth. Many other functions have been attributed to lactoferrin, including immunomodulation and cell growth regulation (reviewed in ref. 4). Some of these functions appear to be at least in part independent of the iron-binding activity of lactoferrin. It also has been consistently observed that lactoferrin interacts avidly with nucleic acids. Lactoferrin enhancement of the activity of natural killer and lymphokine-activated killer cells in vitro is inhibited by RNA and DNA. Lactoferrin taken up by K562 human myelogenous leukaemia cells appears in the nucleus where it is bound to DNA. We report here that binding of lactoferrin to DNA occurs under stringent conditions with distinct sequence specificity, and that interaction between lactoferrin and these sequences intracellularly leads to transcriptional activation.
Collapse
Affiliation(s)
- J He
- Department of Biology, New York University, Washington Square, New York, New York 10003
| | | |
Collapse
|
97
|
Mautner J, Joos S, Werner T, Eick D, Bornkamm GW, Polack A. Identification of two enhancer elements downstream of the human c-myc gene. Nucleic Acids Res 1995; 23:72-80. [PMID: 7870592 PMCID: PMC306632 DOI: 10.1093/nar/23.1.72] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Expression of the proto-oncogene c-myc is tightly regulated in vivo. Transcription of c-myc is assumed to be controlled by a number of positive and negative cis-acting control elements located upstream or within exon 1 and intron 1. However, these regulatory elements are not sufficient for c-myc expression after stable transfection or in transgenic mice. Transcription of c-myc in vivo thus requires additional control elements located outside the tested HindIII-EcoRI gene fragment. In order to identify these putative additional control elements, we mapped DNase I hypersensitive sites around the human c-myc gene in nine different tumor cell lines and in primary lymphocytes. Within the coding and 5' region of the gene, an almost identical pattern of DNase I hypersensitive sites was detected in the various cells. In contrast, chromatin analysis of the c-myc 3' region revealed a complex pattern of constitutive and tissue-specific DNase I hypersensitive sites. In enhancer trap experiments we identified two cis-acting control elements, both co-localizing with DNase I hypersensitive sites, that stimulated c-myc transcription after transient transfection in Raji or HeLa cells. Both regulatory elements exerted their enhancer activity in either orientation and regardless of their location within the plasmids. Both elements also conferred activation on a heterologous promoter. The association of these enhancers with DNase I hypersensitive sites, indicating their functional activity in vivo, make them potential candidates for the postulated regulatory control element(s) required for c-myc expression in vivo.
Collapse
Affiliation(s)
- J Mautner
- GSF-Institut für Klinische Molekularbiologie und Tumorgenetik, München, Germany
| | | | | | | | | | | |
Collapse
|
98
|
Hörtnagel K, Polack A, Mautner J, Feederle R, Bornkamm GW. Regulatory elements in the immunoglobulin kappa locus induce c-myc activation in Burkitt's lymphoma cells. Curr Top Microbiol Immunol 1995; 194:415-22. [PMID: 7895517 DOI: 10.1007/978-3-642-79275-5_48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
MESH Headings
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/pathology
- Chromosomes, Human, Pair 14/ultrastructure
- Chromosomes, Human, Pair 2/ultrastructure
- Chromosomes, Human, Pair 8/ultrastructure
- Enhancer Elements, Genetic
- Gene Expression Regulation, Neoplastic
- Genes, Immunoglobulin
- Genes, myc
- Genetic Vectors
- Humans
- Immunoglobulin kappa-Chains/genetics
- Plasmids
- Promoter Regions, Genetic
- Regulatory Sequences, Nucleic Acid
- Transfection
- Translocation, Genetic
Collapse
Affiliation(s)
- K Hörtnagel
- Institut für Klinische Molekularbiologie und Tumorgenetik, GSF, München
| | | | | | | | | |
Collapse
|
99
|
NF-kappa B sites function as positive regulators of expression of the translocated c-myc allele in Burkitt's lymphoma. Mol Cell Biol 1994. [PMID: 7969136 DOI: 10.1128/mcb.14.12.7967] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An in vivo footprint over a potential NF-kappa B site in the first exon of the c-myc gene has been identified on the translocated allele in the Ramos Burkitt's lymphoma cell line. The potential NF-kappa B site in the 5' flanking sequence of c-myc was found to be occupied on the translocated allele in the Raji Burkitt's cell line. Electrophoretic mobility shift assays with each of these sequences demonstrated complexes with mobilities identical to those of the NF-kappa B site from the kappa light-chain gene. A supershift was obtained with anti-p50 antibody with the exon site. The upstream-site shift complex disappeared with the addition of anti-p50 antibody. Binding of NF-kappa B proteins to the c-myc exon and upstream sites was demonstrated by induction of binding upon differentiation of pre-B 70Z/3 cells to B cells. UV cross-linking experiments revealed that a protein with a molecular mass of 50 kDa bound to the exon and upstream sites. Transfection experiments with Raji cells demonstrated that both sites functioned as positive regulatory regions, with a drop in activity level when either site was mutated. Access to these sites is blocked in the silent normal c-myc allele in Burkitt's lymphoma cells, while Rel family proteins bind to these sites in the translocated allele. We conclude that the two NF-kappa B sites function as positive regulatory regions for the translocated c-myc gene in Burkitt's lymphoma.
Collapse
|
100
|
Ji L, Arcinas M, Boxer LM. NF-kappa B sites function as positive regulators of expression of the translocated c-myc allele in Burkitt's lymphoma. Mol Cell Biol 1994; 14:7967-74. [PMID: 7969136 PMCID: PMC359335 DOI: 10.1128/mcb.14.12.7967-7974.1994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
An in vivo footprint over a potential NF-kappa B site in the first exon of the c-myc gene has been identified on the translocated allele in the Ramos Burkitt's lymphoma cell line. The potential NF-kappa B site in the 5' flanking sequence of c-myc was found to be occupied on the translocated allele in the Raji Burkitt's cell line. Electrophoretic mobility shift assays with each of these sequences demonstrated complexes with mobilities identical to those of the NF-kappa B site from the kappa light-chain gene. A supershift was obtained with anti-p50 antibody with the exon site. The upstream-site shift complex disappeared with the addition of anti-p50 antibody. Binding of NF-kappa B proteins to the c-myc exon and upstream sites was demonstrated by induction of binding upon differentiation of pre-B 70Z/3 cells to B cells. UV cross-linking experiments revealed that a protein with a molecular mass of 50 kDa bound to the exon and upstream sites. Transfection experiments with Raji cells demonstrated that both sites functioned as positive regulatory regions, with a drop in activity level when either site was mutated. Access to these sites is blocked in the silent normal c-myc allele in Burkitt's lymphoma cells, while Rel family proteins bind to these sites in the translocated allele. We conclude that the two NF-kappa B sites function as positive regulatory regions for the translocated c-myc gene in Burkitt's lymphoma.
Collapse
Affiliation(s)
- L Ji
- Center for Molecular Biology in Medicine, Palo Alto Veterans Administration Hospital, California
| | | | | |
Collapse
|