51
|
Borrmann L, Schwanbeck R, Heyduk T, Seebeck B, Rogalla P, Bullerdiek J, Wisniewski JR. High mobility group A2 protein and its derivatives bind a specific region of the promoter of DNA repair gene ERCC1 and modulate its activity. Nucleic Acids Res 2003; 31:6841-51. [PMID: 14627817 PMCID: PMC290254 DOI: 10.1093/nar/gkg884] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Revised: 10/07/2003] [Accepted: 10/07/2003] [Indexed: 12/13/2022] Open
Abstract
High mobility group A2 (HMGA2) chromosomal non-histone protein and its derivatives play an important role in development and progression of benign and malignant tumors, obesity and arteriosclerosis, although the underlying mechanisms of these conditions are poorly understood. Therefore, we tried to identify target genes for this transcriptional regulator and to provide insights in the mechanism of interaction to its target. Multiple genes have been identified by microarray experiments as being transcriptionally regulated by HMGA2. Among these we chose the ERCC1 gene, encoding a DNA repair protein, for this study. DNA-binding studies were performed using HMGA2 and C-terminally truncated DeltaHMGA2, a derivative that is frequently observed in a variety of tumors. A unique high affinity HMGA2 binding site was mapped to a specific AT-rich region located -323 to -298 upstream of the ERCC1 transcription start site, distinguishing it from other potential AT-rich binding sites. The observed 1:1 stoichiometry for the binding of wild-type HMGA2 to this region was altered to 1:2 upon binding of truncated DeltaHMGA2, causing DNA bending. Furthermore, the regulatory effect of HMGA2 was confirmed by luciferase promoter assays showing that ERCC1 promoter activity is down-regulated by all investigated HMGA2 forms, with the most striking effect exerted by DeltaHMGA2. Our results provide the first insights into how HMGA2 and its aberrant forms bind and regulate the ERCC1 promoter.
Collapse
Affiliation(s)
- Lars Borrmann
- Center for Human Genetics, University of Bremen, Leobenerstr. ZHG, D-28359 Bremen, Germany
| | | | | | | | | | | | | |
Collapse
|
52
|
Bosma PT, van Eert SJ, Jaspers NGJ, Stoter G, Nooter K. Functional cloning of drug resistance genes from retroviral cDNA libraries. Biochem Biophys Res Commun 2003; 309:605-11. [PMID: 12963033 DOI: 10.1016/j.bbrc.2003.08.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To improve the curative success of chemotherapy, it will be essential to understand the molecular basis of drug resistance (DR) and sensitivity. We have developed a cell culture system that enables the functional cloning of mammalian DR genes based on phenotypic selection after overexpression of mammalian retroviral cDNA libraries and validated our system using the anticancer drug cisplatin. ERCC1-deficient and therefore cisplatin-hypersensitive mouse embryonic fibroblast target cells were transduced with a human placenta retroviral cDNA library. Subsequent cisplatin selection yielded 20 DR clones, each containing a recurring human ERCC1 gene. Surprisingly, nine of these clones contained 5'-truncated ERCC1 sequences that required alternative splicing of the vector sequence to encode a functional ERCC1 protein. The usage of cryptic splice sites in the vector sequence should be taken into consideration when interpreting results from retroviral gene expression applications, and might have consequences for the safe application of retroviral constructs in gene therapy.
Collapse
Affiliation(s)
- Peter T Bosma
- Department of Medical Oncology, Josephine Nefkens Institute, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
53
|
Affiliation(s)
- David Murray
- Department of Oncology, University of Alberta, Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| |
Collapse
|
54
|
Héron-Milhavet L, LeRoith D. Insulin-like growth factor I induces MDM2-dependent degradation of p53 via the p38 MAPK pathway in response to DNA damage. J Biol Chem 2002; 277:15600-6. [PMID: 11877395 DOI: 10.1074/jbc.m111142200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In many tissues, the insulin-like growth factor I (IGF-I) receptor (IGF-IR) is known to functionally oppose apoptosis. Recently, we demonstrated a direct role for the IGF-IR in the rescue of DNA-damaged fibroblasts by activating a DNA repair pathway (Héron-Milhavet, L., Karas, M., Goldsmith, C. M., Baum, B. J., and LeRoith, D. (2001) J. Biol. Chem. 276, 18185-18192). p53 is a nuclear transcription factor that can block progression of the cell cycle, modulate DNA repair, and trigger apoptosis. In this work, we tested the effect of IGF-I on the regulation of the p53 signaling cascade. The DNA-damaging agent 4-nitroquinoline 1-oxide was applied to NIH-3T3 cells overexpressing normal IGF-IRs (NWTb3 cells). We showed that after 4-nitroquinoline 1-oxide-induced DNA damage, IGF-I induced exclusion of the p53 protein from the nucleus and led to its degradation in the cytoplasm, whereas p53 mRNA was unaffected. Degradation of the p53 protein was associated with an increase in MDM2, an upstream modulator of the half-life and activity of the p53 protein. p53 degradation was also associated with down-regulation of p21. We further showed that the effects of IGF-I on mdm2 transcription and on MDM2/p19 ARF association were mediated by the p38 MAPK pathway. In conclusion, we describe a novel role for IGF-I in the regulation of the MDM2/p53/p21 signaling pathway during DNA damage.
Collapse
Affiliation(s)
- Lisa Héron-Milhavet
- Section on Cellular and Molecular Physiology, Clinical Endocrinology Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1758, USA
| | | |
Collapse
|
55
|
Shirota Y, Stoehlmacher J, Brabender J, Xiong YP, Uetake H, Danenberg KD, Groshen S, Tsao-Wei DD, Danenberg PV, Lenz HJ. ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy. J Clin Oncol 2001; 19:4298-304. [PMID: 11731512 DOI: 10.1200/jco.2001.19.23.4298] [Citation(s) in RCA: 476] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To test the hypotheses of whether the relative mRNA expression of the thymidylate synthase (TS) gene and the excision cross-complementing (ERCC1) gene are associated with response to and survival of fluorouracil (5-FU)/oxaliplatin chemotherapy in metastatic colorectal cancer. PATIENTS AND METHODS Patients had progressive stage IV disease after unsuccessful 5-FU and irinotecan chemotherapy. All patients were evaluated for eligibility for a compassionate 5-FU/oxaliplatin protocol. cDNA was derived from paraffin-embedded tumor specimens to determine TS and ERCC1 mRNA expression relative to the internal reference gene beta-actin using fluorescence-based, real-time reverse transcriptase polymerase chain reaction. RESULTS The median TS gene expression level from 50 metastasized tumors was 3.4 x 10(-3) (minimum expression, 0.18 x 10(-3);maximum expression, 11.5 x 10(-3)), and the median ERCC1 gene expression level was 2.53 x 10(-3) (minimum, 0.0; maximum, 14.61 x 10(-3)). The gene expression cutoff values for chemotherapy nonresponse were 7.5 x 10(-3) for TS and 4.9 x 10(-3) for ERCC1. The median survival time for patients with TS <or= 7.5 x 10(-3) (43 of 50 patients) was 10.2 months, compared with 1.5 months for patients with TS greater than 7.5 x 10(-3) (P < .001). Patients with ERCC1 expression <or= 4.9 x 10(-3) (40 of 50 patients) had a median survival time of 10.2 months, compared with 1.9 months for patients with ERCC1 expression greater than 4.9 x 10(-3) (P < .001). A TS of 7.5 x 10(-3) segregated significantly into response, stable disease, and progression (P = .02), whereas the association between ERCC1 and response did not reach statistical significance (P = .29). CONCLUSION These data suggest that intratumoral ERCC1 mRNA and TS mRNA expression levels are independent predictive markers of survival for 5-FU and oxaliplatin combination chemotherapy in 5-FU-resistant metastatic colorectal cancer. Precise definition of the best TS cut point will require further analysis in a large, prospective study.
Collapse
Affiliation(s)
- Y Shirota
- University of Southern California/Norris Comprehensive Cancer Center and Response Genetics Inc, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Yu JJ, Thornton K, Guo Y, Kotz H, Reed E. An ERCC1 splicing variant involving the 5'-UTR of the mRNA may have a transcriptional modulatory function. Oncogene 2001; 20:7694-8. [PMID: 11753647 DOI: 10.1038/sj.onc.1204977] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2000] [Revised: 08/22/2001] [Accepted: 09/18/2001] [Indexed: 11/09/2022]
Abstract
Human ovarian cancer cells and tissues were examined for the presence or absence of a 42-bp splicing variant of ERCC1 gene, and for a possible functional role of this 42-bp sequence. This specific sequence exists in exon I, the 5'-UTR of the gene. Loss of this 42-bp sequence was associated with increased ERCC1 mRNA expression, in an assessment of 121 ovarian cancer specimens (p2<10(-6)). In cells in tissue culture, the absence of the 42-bp segment was associated with a twofold increased ability to drive transcription in a Luciferase reporter system. Protein can be demonstrated in ovarian cancer cells based on EMSA analysis. Computer analysis shows that this 42-bp sequence contains several binding sites, including a core-binding domain for protein RFX1, transcriptional repressor. These preliminary results lay the groundwork in determination of potential roles for a negative regulatory element in NER repair pathway.
Collapse
Affiliation(s)
- J J Yu
- West Virginia University, Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, 1801 Health Sciences South, P.O. Box 9300, Morgantown, WV 26506-9300, USA
| | | | | | | | | |
Collapse
|
57
|
Niedernhofer LJ, Essers J, Weeda G, Beverloo B, de Wit J, Muijtjens M, Odijk H, Hoeijmakers JH, Kanaar R. The structure-specific endonuclease Ercc1-Xpf is required for targeted gene replacement in embryonic stem cells. EMBO J 2001; 20:6540-9. [PMID: 11707424 PMCID: PMC125716 DOI: 10.1093/emboj/20.22.6540] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Ercc1-Xpf heterodimer, a highly conserved structure-specific endonuclease, functions in multiple DNA repair pathways that are pivotal for maintaining genome stability, including nucleotide excision repair, interstrand crosslink repair and homologous recombination. Ercc1-Xpf incises double-stranded DNA at double-strand/single-strand junctions, making it an ideal enzyme for processing DNA structures that contain partially unwound strands. Here we demonstrate that although Ercc1 is dispensable for recombination between sister chromatids, it is essential for targeted gene replacement in mouse embryonic stem cells. Surprisingly, the role of Ercc1-Xpf in gene targeting is distinct from its previously identified role in removing nonhomologous termini from recombination intermediates because it was required irrespective of whether the ends of the DNA targeting constructs were heterologous or homologous to the genomic locus. Our observations have implications for the mechanism of gene targeting in mammalian cells and define a new role for Ercc1-Xpf in mammalian homologous recombination. We propose a model for the mechanism of targeted gene replacement that invokes a role for Ercc1-Xpf in making the recipient genomic locus receptive for gene replacement.
Collapse
Affiliation(s)
- Laura J. Niedernhofer
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Jeroen Essers
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Geert Weeda
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Berna Beverloo
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Jan de Wit
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Manja Muijtjens
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Hanny Odijk
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Jan H.J. Hoeijmakers
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Roland Kanaar
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| |
Collapse
|
58
|
Hoeijmakers JH. From xeroderma pigmentosum to the biological clock contributions of Dirk Bootsma to human genetics. Mutat Res 2001; 485:43-59. [PMID: 11341993 DOI: 10.1016/s0921-8777(00)00079-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This paper commemorates the multiple contributions of Dirk Bootsma to human genetics. During a scientific 'Bootsma' cruise on his sailing-boat 'de Losbol', we visit a variety of scenery locations along the lakes and canals in Friesland, passing the highlights of Dirk Bootsma's scientific oeuvre. Departing from 'de Fluessen', his homeport, with his PhD work on the effect of X-rays and UV on cell cycle progression, we head for the pioneering endeavours of his team on mapping genes on human chromosomes by cell hybridization. Next we explore the use of cell hybrids by the Bootsma team culminating in the molecular cloning of one of the first chromosomal breakpoints involved in oncogenesis: the bcr-abl fusion gene responsible for chronic myelocytic leukemia. This seminal achievement enabled later development of new methods for early detection and very promising therapeutic intervention. A series of highlights at the horizon constitute the contributions of his team to the field of DNA repair, beginning with the discovery of genetic heterogeneity in the repair syndrome xeroderma pigmentosum (XP) followed later by the cloning of a large number of human repair genes. This led to the discovery that DNA repair is strongly conserved in evolution rendering knowledge from yeast relevant for mammals and vice versa. In addition, it resolved the molecular basis of several repair syndromes and permitted functional analysis of the encoded proteins. Another milestone is the discovery of the surprising connection between DNA repair and transcription initiation via the dual functional TFIIH complex in collaboration with Jean-Marc Egly et al. in Strasbourg. This provided an explanation for many puzzling clinical features and triggered a novel concept in human genetics: the existence of repair/transcription syndromes. The generation of many mouse mutants carrying defects in repair pathways yielded valuable models for assessing the clinical relevance of DNA repair including carcinogenesis and the identification of a link between DNA damage and premature aging. His team also opened a fascinating area of cell biology with the analysis of repair and transcription in living cells. A final surprising evolutionary twist was the discovery that photolyases designed for the light-dependent repair of UV-induced DNA lesions appeared to be adopted for driving the mammalian biological clock. The latter indicates that it is time to return to 'de Fluessen', where we will consider briefly the merits of Dirk Bootsma for Dutch science in general.
Collapse
Affiliation(s)
- J H Hoeijmakers
- MGC, Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus University, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands.
| |
Collapse
|
59
|
Wilson MD, Ruttan CC, Koop BF, Glickman BW. ERCC1: a comparative genomic perspective. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 38:209-215. [PMID: 11746756 DOI: 10.1002/em.1073] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
ERCC1 plays an essential role in the nucleotide excision repair (NER) of DNA. We compare 37 kb of sequence from the ERCC1 region on human chromosome 19q13.3 to the orthologous region on mouse chromosome 7. In addition to showing the conserved gene structure between ERCC1, ASE-1, and their murine counterparts, this genomic comparison reveals a highly conserved 497 bp segment found 5 kb upstream of ERCC1 exon 1 that contains a CpG island and previously unidentified "classical" promoter elements. Additional putative regulatory elements are also found within a conserved LINE-1 (long interspersed nuclear element) sequence 800 bp upstream of exon 1 in both human and mouse. Expressed sequence tag (EST) assemblies for human ERCC1 identified numerous splice variants involving exons 1, 2, 3, 7, 8, and 9 that could affect DNA repair efficiencies of ERCC1. A previously undescribed transcript that reads through exon 9 and utilizes the polyadenylation signal of a neighboring Alu element accounts for nearly half of the total splice variants identified in the human EST database. This transcript would theoretically translate to a larger ERCC1 protein product containing a novel C-terminal end. Overall, approximately 18% of publicly available ERCC1 cDNA sequences were determined to be splice variants, while no variants were found in the mouse. The ability to assess novel transcripts and identify candidate regulatory regions demonstrates the potential utility for a catalogue archiving comparative analyses for all genes involved in DNA repair. Our comparative genomic analysis of ERCC1 can be viewed at http://web.uvic.ca/-bioweb/laj.html.
Collapse
Affiliation(s)
- M D Wilson
- Centre for Environmental Health, Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | |
Collapse
|
60
|
De Silva IU, McHugh PJ, Clingen PH, Hartley JA. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol Cell Biol 2000; 20:7980-90. [PMID: 11027268 PMCID: PMC86408 DOI: 10.1128/mcb.20.21.7980-7990.2000] [Citation(s) in RCA: 336] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The mechanisms by which DNA interstrand cross-links (ICLs) are repaired in mammalian cells are unclear. Studies in bacteria and yeasts indicate that both nucleotide excision repair (NER) and recombination are required for their removal and that double-strand breaks are produced as repair intermediates in yeast cells. The role of NER and recombination in the repair of ICLs induced by nitrogen mustard (HN2) was investigated using Chinese hamster ovary mutant cell lines. XPF and ERCC1 mutants (defective in genes required for NER and some types of recombination) and XRCC2 and XRCC3 mutants (defective in RAD51-related homologous recombination genes) were highly sensitive to HN2. Cell lines defective in other genes involved in NER (XPB, XPD, and XPG), together with a mutant defective in nonhomologous end joining (XRCC5), showed only mild sensitivity. In agreement with their extreme sensitivity, the XPF and ERCC1 mutants were defective in the incision or "unhooking" step of ICL repair. In contrast, the other mutants defective in NER activities, the XRCC2 and XRCC3 mutants, and the XRCC5 mutant all showed normal unhooking kinetics. Using pulsed-field gel electrophoresis, DNA double-strand breaks (DSBs) were found to be induced following nitrogen mustard treatment. DSB induction and repair were normal in all the NER mutants, including XPF and ERCC1. The XRCC2, XRCC3, and XRCC5 mutants also showed normal induction kinetics. The XRCC2 and XRCC3 homologous recombination mutants were, however, severely impaired in the repair of DSBs. These results define a role for XPF and ERCC1 in the excision of ICLs, but not in the recombinational components of cross-link repair. In addition, homologous recombination but not nonhomologous end joining appears to play an important role in the repair of DSBs resulting from nitrogen mustard treatment.
Collapse
Affiliation(s)
- I U De Silva
- CRC Drug-DNA Interactions Research Group, Department of Oncology, Royal Free and University College Medical School, University College London, London W1P 8BT, United Kingdom
| | | | | | | |
Collapse
|
61
|
Adair GM, Rolig RL, Moore-Faver D, Zabelshansky M, Wilson JH, Nairn RS. Role of ERCC1 in removal of long non-homologous tails during targeted homologous recombination. EMBO J 2000; 19:5552-61. [PMID: 11032822 PMCID: PMC313999 DOI: 10.1093/emboj/19.20.5552] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The XpF/Ercc1 structure-specific endonuclease performs the 5' incision in nucleotide excision repair and is the apparent mammalian counterpart of the Rad1/Rad10 endonuclease from Saccharomyces cerevisiae. In yeast, Rad1/Rad10 endonuclease also functions in mitotic recombination. To determine whether XpF/Ercc1 endonuclease has a similar role in mitotic recombination, we targeted the APRT locus in Chinese hamster ovary ERCC1(+) and ERCC1(-) cell lines with insertion vectors having long or short terminal non-homologies flanking each side of a double-strand break. No substantial differences were evident in overall recombination frequencies, in contrast to results from targeting experiments in yeast. However, profound differences were observed in types of APRT(+) recombinants recovered from ERCC1(-) cells using targeting vectors with long terminal non-homologies-almost complete ablation of gap repair and single-reciprocal exchange events, and generation of a new class of aberrant insertion/deletion recombinants absent in ERCC1(+) cells. These results represent the first demonstration of a requirement for ERCC1 in targeted homologous recombination in mammalian cells, specifically in removal of long non-homologous tails from invading homologous strands.
Collapse
Affiliation(s)
- G M Adair
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA
| | | | | | | | | | | |
Collapse
|
62
|
Núñez F, Chipchase MD, Clarke AR, Melton DW. Nucleotide excision repair gene (ERCC1) deficiency causes G(2) arrest in hepatocytes and a reduction in liver binucleation: the role of p53 and p21. FASEB J 2000; 14:1073-82. [PMID: 10834928 DOI: 10.1096/fasebj.14.9.1073] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A wide range of DNA lesions, both UV and chemically induced, are dealt with by the nucleotide excision repair (NER) pathway. Defects in NER result in human syndromes such as xeroderma pigmentosum (XP), where there is a 1000-fold increased incidence of skin cancer. The ERCC1 protein is essential for NER, but ERCC1 knockout mice are not a model for XP. In the absence of exogenous DNA-damaging agents, these mice are runted and die before weaning, with dramatically accelerated liver polyploidy and elevated levels of p53. Here we present a morphological, immunological, and molecular study to understand the mechanism for the unusual liver pathology in ERCC1-deficient mice. We show that the enlarged ERCC1-deficient hepatocytes are arrested in G(2) and that DNA replication and the normal process of binucleation are both reduced. This is associated with a p53-independent increase in expression of the cyclin-dependent kinase inhibitor p21. The most dramatic feature of the ERCC1-deficient liver phenotype, the accelerated polyploidy, is not rescued by p53 deficiency, but we show that p53 is responsible for the reduced DNA replication and binucleation. We consider that the liver phenotype is a response to unrepaired endogenous DNA damage, which may reflect an additional non-NER-related function for the ERCC1 protein.
Collapse
Affiliation(s)
- F Núñez
- Institute of Cell and Molecular Biology, Edinburgh University, King's Buildings, Edinburgh, Scotland, U.K
| | | | | | | |
Collapse
|
63
|
Shannon M, Lamerdin JE, Richardson L, McCutchen-Maloney SL, Hwang MH, Handel MA, Stubbs L, Thelen MP. Characterization of the mouse Xpf DNA repair gene and differential expression during spermatogenesis. Genomics 1999; 62:427-35. [PMID: 10644440 DOI: 10.1006/geno.1999.6016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human XPF protein, an endonuclease subunit essential for DNA excision repair, may also function in homologous recombination. To investigate a possible link between mammalian XPF and recombination that occurs during meiosis, we isolated, characterized, and determined an expression profile for the mouse Xpf gene. The predicted mouse XPF protein, encoded by a 3.4-kb cDNA, contains 917 amino acids and is 86% identical to human XPF. Appreciable similarity also exists between mouse XPF and homologous proteins in budding yeast (Rad1), fission yeast (Rad16), and fruit fly (Mei-9), all of which have dual functions in excision repair and recombination. Sequence analysis of the 38.3-kb Xpf gene, localized to a region in proximal mouse chromosome 16, revealed greater than 72% identity to human XPF in 16 regions. Of these conserved elements, 11 were exons and 5 were noncoding sequence within introns. Xpf transcript and protein levels were specifically elevated in adult mouse testis. Moreover, increased levels of Xpf and Ercc1 mRNAs correlated with meiotic and early postmeiotic spermatogenic cells. These results support a distinct role for the XPF/ERCC1 junction-specific endonuclease during meiosis, most likely in the resolution of heteroduplex intermediates that arise during recombination.
Collapse
Affiliation(s)
- M Shannon
- Molecular and Structural Biology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
de Boer J, Hoeijmakers JH. Cancer from the outside, aging from the inside: mouse models to study the consequences of defective nucleotide excision repair. Biochimie 1999; 81:127-37. [PMID: 10214917 DOI: 10.1016/s0300-9084(99)80045-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In recent years, mouse models have been generated to study the syndromes associated with a defect in nucleotide excision repair (NER). Thus, via conventional knockout gene targeting or by mimicking patient-specific alleles, mouse models for xeroderma pigmentosum (XP), Cockayne syndrome (CS) and photosensitive trichothiodystrophy (TTD) have been obtained. The generation of this series of mouse mutants allows in vivo investigation of some intriguing questions that have puzzled the field, such as the paradoxical absence of cancer development in TTD and CS despite their NER deficiencies, and the role of the ERCC1 gene in mitotic recombination and cross-link repair. Other interesting issues include the pathophysiology of the non-NER related clinical symptoms in TTD and CS patients and the proposed involvement of NER and transcription in the process of aging. This review will focus on data obtained thus far and discuss further utilization of the mouse mutants for unraveling some of the fascinating and medically relevant aspects associated with defects in NER and related processes.
Collapse
Affiliation(s)
- J de Boer
- MGC-Department of Cell Biology and Genetics, Rotterdam, The Netherlands
| | | |
Collapse
|
65
|
Lin YW, Kubota M, Koishi S, Sawada M, Usami I, Watanabe K, Akiyama Y. Analysis of mutations at the DNA repair genes in acute childhood leukaemia. Br J Haematol 1998; 103:462-6. [PMID: 9827920 DOI: 10.1046/j.1365-2141.1998.00973.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Deficiency in DNA repair capability is considered to be responsible for oncogenesis. Hereditary and sporadic cancers in various tissues have been reported to have mutations at the DNA repair genes. In this study we analysed two excision repair genes (ERCC1 and XPCC) and two mismatch repair genes (hMSH2 and hMTH1) in the leukaemic blasts of newly diagnosed paediatric patients by use of reverse transcriptase (RT)-polymerase chain reaction (PCR). Analysis of the leukaemic blasts from 15 patients demonstrated no alterations at the XPCC, hMSH2 or hMTH1 genes. Blasts from one patient with acute mixed lineage leukaemia revealed an abnormally migrated product of the ERCC1 gene by RT-PCR. His leukaemic blasts showed a reduced expression of ERCC1 protein by Western blotting. Since bone marrow cells at remission showed only normally migrated product, the ERCC1 gene mutation was considered to be specific for the leukaemic blasts. This is the first report describing a mutation at the ERCC1 gene in acute childhood leukaemia.
Collapse
Affiliation(s)
- Y W Lin
- Department of Paediatrics, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
In the present study, we describe the genomic structure of the KIAA0086 gene and the 5'-flanking sequence. The analysis is based on the alignment of the KIAA0086 cDNA and a corresponding genomic BAC sequence which was identified in a basic BLAST similarity search using the cDNA sequence as a template. The gene contains nine exons spanning approximately 20 kb. All splice sites conform to the GT-AG rule. Analysis of the upstream untranscribed region identified one GC box but no TATA box, suggesting that the KIAA0086 gene is a housekeeping gene. The promoter region contains putative recognition sites for several transcription factors, e.g., AP1, Sp1 and NFkappaB. The homology of the KIAA0086 gene to the yeast SNM1 gene, which is involved in the cellular response to DNA-interstrand crosslinks, is discussed with respect to a possible role of the KIAA0086 gene in the human disorder, Fanconi anemia.
Collapse
Affiliation(s)
- I Demuth
- Institute of Human Genetics, Charité, Campus Virchow Klinikum, Humboldt University, Berlin, Germany
| | | |
Collapse
|
67
|
Reed E. Platinum-DNA adduct, nucleotide excision repair and platinum based anti-cancer chemotherapy. Cancer Treat Rev 1998; 24:331-44. [PMID: 9861196 DOI: 10.1016/s0305-7372(98)90056-1] [Citation(s) in RCA: 293] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clinical studies performed by several groups suggest that platinum-DNA adduct--measured in malignant or non-malignant cells from cancer patients--may be an important marker for clinical biological effect of platinum-based chemotherapy. DNA repair is clearly an important effector of resistance to platinum-based DNA-damaging agents in tissue culture, although its role in effecting clinical resistance to these agents is not completely clear. In recent years, it has become apparent that DNA repair is an extremely complex process. Processes within DNA repair that may contribute to one or more drug resistance phenotypes include 0-6-alkytransferase activity, base excision repair, mismatch repair, nucleotide excision repair (NER), and gene specific repair. Clearly, several of these processes may concurrently show increased activity within any single cell, or tumor, at any one time. For platinum compounds, in vitro data clearly show that NER is the DNA repair pathway responsible for the repair of cisplatin-DNA damage. One critical gene within NER is ERCC1. Data exist in human ovarian cancer and in human gastric cancer that ERCC1 may be a useful marker for clinical drug resistance when platinum-based systemic chemotherapy is utilized. Although the data suggest that the relative ERCC1 mRNA level may be a good marker for NER activity in human ovarian cancer, it is unclear whether expression of this gene has any relationship to other pathways of DNA repair.
Collapse
Affiliation(s)
- E Reed
- Medical Ovarian Cancer Section, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
68
|
Li Q, Gardner K, Zhang L, Tsang B, Bostick-Bruton F, Reed E. Cisplatin induction of ERCC-1 mRNA expression in A2780/CP70 human ovarian cancer cells. J Biol Chem 1998; 273:23419-25. [PMID: 9722577 DOI: 10.1074/jbc.273.36.23419] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERCC-1 is a critical gene within the nucleotide excision repair pathway, and cells without a functional ERCC-1 do not perform cisplatin-DNA adduct repair. We therefore investigated the cisplatin effect on ERCC-1 mRNA expression in vitro. In response to a 1-h cisplatin exposure, A2780/CP70 human ovarian cancer cells showed a 6-fold increase in steady-state level of ERCC-1 mRNA. This rise was attributable to increased transcription as measured by nuclear run-on assays and a 60% increase in ERCC-1 mRNA half-life. The increase in ERCC-1 mRNA was preceded by a 4-5-fold rise in mRNA expressions of c-fos and c-jun, a 14-fold increase in c-Jun protein phosphorylation, and an increase in in vitro nuclear extract binding activity to the AP-1-like site of ERCC-1. These data suggest that the induction of ERCC-1 expression in A2780/CP70 cells exposed to cisplatin results from two major factors: (a) an increase in the expression of transactivating factors that bind the AP-1-like site in the 5'-flanking region of ERCC-1 and (b) an increase in the level of c-Jun phosphorylation that enhances its transactivation property.
Collapse
Affiliation(s)
- Q Li
- Medical Ovarian Cancer Section, Department of Developmental Therapeutics, Medicine Branch, Division of Clinical Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
69
|
Abstract
For many years it has been evident that mammalian cells differ dramatically from yeast and rejoin the majority of their DNA DSBs by a nonhomologous mechanism, recently termed NHEJ. In the last few years a number of genes and proteins have been identified that operate in the pathway providing insights into the mechanism. These proteins include the three components of DNA-PK, DNA ligase IV, and XRCC4. In yeast Sir2, -3, and -4 proteins are also involved in the process and therefore are likely to play a role in higher organisms. Studies with yeast suggest that NHEJ is an error-free mechanism. Although the process is far from understood, it is likely that the DNA-PK complex or Ku alone acts in a complex with the Sir proteins possibly protecting the ends and preventing random rejoining. Further work is required to establish the details of this mechanism and to determine whether this represents an accurate rejoining process for a complex break induced by ionizing radiation. It will be intriguing to discover how the cell achieves efficient and accurate rejoining without the use of homology. Interactions between the components of DNA-PK and other proteins playing a central role in damage response mechanisms are beginning to emerge. Interestingly, there is evidence that DNA repair and damage response mechanisms overlap in lower organisms. The overlapping defects of the yeast Ku mutants, tell mutants, and AT cell lines in telomere maintenance further suggest overlapping functions or interacting mechanisms. A challenge for the future will be to establish how these different damage response mechanisms overlap and interact.
Collapse
Affiliation(s)
- P A Jeggo
- MRC Cell Mutation Unit, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
70
|
Hayashi T, Takao M, Tanaka K, Yasui A. ERCC1 mutations in UV-sensitive Chinese hamster ovary (CHO) cell lines. Mutat Res 1998; 407:269-76. [PMID: 9653453 DOI: 10.1016/s0921-8777(98)00013-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In mammalian nucleotide excision repair (NER), the ERCC1 protein is known to act as a complex with ERCC4 (XPF) protein, which is necessary for stability of ERCC1, and this complex introduces an incision on the 5' side of a damaged site in DNA. ERCC1 also binds to XPA protein to make a large protein complex at the site of DNA damage. Since no human disease associated with ERCC1 has been identified, Chinese hamster ovary (CHO) cell lines defective in ERCC1 are a unique source for characterization of ERCC1 deficiency in mammalian cells. We have isolated the full length ERCC1 cDNA from a wild-type CHO cell line and analyzed mutations in two CHO cell lines which fall into complementation group 1 of UV-sensitive rodent cell lines. One cell line, 43-3B, has a missense mutation at the 98th residue (V98E). The in vitro translated mutant protein of 43-3B is unable to bind to XPA protein. Although the mutant protein is able to bind to XPF protein in vitro, the mutant protein is highly unstable in vivo. These defects presumably cause the NER deficiency of this cell line. Another mutant, UV-4, has an insertion mutation in the middle of the coding sequence, resulting in a truncated protein due to a nonsense codon arising from the frameshift. Thus, these two mutant cell lines are deficient in the function of the ERCC1 gene for NER.
Collapse
Affiliation(s)
- T Hayashi
- Department of Molecular Genetics, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
71
|
Xu H, Swoboda I, Bhalla PL, Sijbers AM, Zhao C, Ong EK, Hoeijmakers JH, Singh MB. Plant homologue of human excision repair gene ERCC1 points to conservation of DNA repair mechanisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 13:823-9. [PMID: 9681020 DOI: 10.1046/j.1365-313x.1998.00081.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nucleotide excision repair (NER), a highly versatile DNA repair mechanism, is capable of removing various types of DNA damage including those induced by UV radiation and chemical mutagens. NER has been well characterized in yeast and mammalian systems but its presence in plants has not been reported. Here it is reported that a plant gene isolated from male germline cells of lily (Lilium longiflorum) shows a striking amino acid sequence similarity to the DNA excision repair proteins human ERCC1 and yeast RAD10. Homologous genes are also shown to be present in a number of taxonomically diverse plant genera tested, suggesting that this gene may have a conserved function in plants. The protein encoded by this gene is able to correct significantly the sensitivity to the cross-linking agent mitomycin C in ERCC1-deficient Chinese hamster ovary (CHO) cells. These findings suggest that the NER mechanism is conserved in yeast, animals and higher plants.
Collapse
Affiliation(s)
- H Xu
- Plant Molecular Biology and Biotechnology Laboratory, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
The use of synthetic antisense oligonucleotides as specific inhibitors of gene expression exploits the susceptibility of mRNA to functional blockade at several levels, including mRNA processing, transport, translation and degradation. It is becoming increasingly apparent that the actions of these synthetic oligomers are analogous to those of endogenous RNA molecules involved in the regulation of gene expression in both prokaryotes and eukaryotes. A growing number of eukaryotic genes are now thought to be regulated at least in part by natural antisense RNA transcribed from the presumptive non-coding DNA strand. This possibility is supported by the presence of a complex system of double-stranded (ds) RNA-specific proteins and dsRNA-induced signal transduction pathways in eukaryotic cells. The presence of functional open reading frames in a number of recognized natural antisense RNA transcripts indicates that, in addition to regulating gene function at the RNA level, the antisense strand of many genes may code for as yet unidentified proteins. In the present study we review the current literature on the role(s) played by natural antisense RNA in eukaryotic cells, with an emphasis on genes for which clear evidence of regulation, or potential regulation by natural antisense RNA is available.
Collapse
Affiliation(s)
- R Knee
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
73
|
Yu JJ, Mu C, Lee KB, Okamoto A, Reed EL, Bostick-Bruton F, Mitchell KC, Reed E. A nucleotide polymorphism in ERCC1 in human ovarian cancer cell lines and tumor tissues. Mutat Res 1997; 382:13-20. [PMID: 9360634 DOI: 10.1016/s1383-5726(97)00004-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We studied the DNA sequence of the entire coding region of ERCC1 gene, in five cell lines established from human ovarian cancer (A2780, A2780/CP70, MCAS, OVCAR-3, SK-OV-3), 29 human ovarian cancer tumor tissue specimens, one human T-lymphocyte cell line (H9), and non-malignant human ovary tissue (NHO). Samples were assayed by PCR-SSCP and DNA sequence analyses. A silent mutation at codon 118 (site for restriction endonuclease MaeII) in exon 4 of the gene was detected in MCAS, OVCAR-3 and SK-OV-3 cells, and NHO. This mutation was a C-->T transition, that codes for the same amino acid: asparagine. This transition converts a common codon usage (AAC) to an infrequent codon usage (AAT), whereas frequency of use is reduced two-fold. This base change was associated with a detectable band shift on SSCP analysis. For the 29 ovarian cancer specimens, the same base change was observed in 15 tumor samples and was associated with the same band shift in exon 4. Cells and tumor tissue specimens that did not contain the C-->T transition, did not show the band shift in exon 4. Our data suggest that this alteration at codon 118 within the ERCC1 gene, may exist in platinum-sensitive and platinum-resistant ovarian cancer tissues.
Collapse
Affiliation(s)
- J J Yu
- Developmental Therapeutics Department, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Rödel C, Jupitz T, Schmidt H. Complementation of the DNA repair-deficient swi10 mutant of fission yeast by the human ERCC1 gene. Nucleic Acids Res 1997; 25:2823-7. [PMID: 9207030 PMCID: PMC146808 DOI: 10.1093/nar/25.14.2823] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In human cells DNA damage caused by UV light is mainly repaired by the nucleotide excision repair pathway. This mechanism involves dual incisions on both sides of the damage catalyzed by two nucleases. In mammalian cells XPG cleaves 3' of the DNA lesion while the ERCC1-XPF complex makes the 5' incision. The amino acid sequence of the human excision repair protein ERCC1 is homologous with the fission yeast Swi10 protein. In order to test whether these proteins are functional homologues, we overexpressed the human gene in a Schizosaccharomyces pombe swi10 mutant. A swi10 mutation has a pleiotropic effect: it reduces the frequency of mating type switching (a mitotic transposition event from a silent cassette into the expression site) and causes increased UV sensitivity. We found that the full-length ERCC1 gene only complements the transposition defect of the fission yeast mutant, while a C-terminal truncated ERCC1 protein also restores the DNA repair capacity of the yeast cells. Using the two-hybrid system of Saccharomyces cerevisiae we show that only the truncated human ERCC1 protein is able to interact with the S . pombe Rad16 protein, which is the fission yeast homologue of human XPF. This is the first example yet known that a human gene can correct a yeast mutation in nucleotide excision repair.
Collapse
Affiliation(s)
- C Rödel
- Institute of Genetics, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | | | | |
Collapse
|
75
|
Affiliation(s)
- P A Jeggo
- MRC Cell Mutation Unit, University of Sussex, Brighton, UK.
| |
Collapse
|
76
|
Weeda G, Donker I, de Wit J, Morreau H, Janssens R, Vissers CJ, Nigg A, van Steeg H, Bootsma D, Hoeijmakers JH. Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence. Curr Biol 1997; 7:427-39. [PMID: 9197240 DOI: 10.1016/s0960-9822(06)00190-4] [Citation(s) in RCA: 288] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The structure-specific ERCC1/XPF endonuclease complex that contains the ERCC1 and XPF subunits is implicated in the repair of two distinct types of lesions in DNA: nucleotide excision repair (NER) for ultraviolet-induced lesions and bulky chemical adducts; and recombination repair of the very genotoxic interstrand cross-links. RESULTS Here, we present a detailed analysis of two types of mice with mutations in ERCC1, one in which the gene is 'knocked out', and one in which the encoded protein contains a seven amino-acid carboxy-terminal truncation. In addition to the previously reported symptoms of severe runting, abnormalities of liver nuclei and greatly reduced lifespan (which appeared less severe in the truncation mutant), both types of ERCC1-mutant mouse exhibited an absence of subcutaneous fat, early onset of ferritin deposition in the spleen, kidney malfunction, gross abnormalities of ploidy and cytoplasmic invaginations in nuclei of liver and kidney, and compromised NER and cross-link repair. We also found that heterozygosity for ERCC1 mutations did not appear to provide a selective advantage for chemically induced tumorigenesis. An important clue to the cause of the very severe ERCC1-mutant phenotypes is our finding that ERCC1-mutant cells undergo premature replicative senescence, unlike cells from mice with a defect only in NER. CONCLUSIONS Our results strongly suggest that the accumulation in ERCC1-mutant mice of endogenously generated DNA interstrand cross-links, which are normally repaired by ERCC1-dependent recombination repair, underlies both the early onset of cell cycle arrest and polyploidy in the liver and kidney. Thus, our work provides an insight into the molecular basis of ageing and highlights the role of ERCC1 and interstrand DNA cross-links.
Collapse
Affiliation(s)
- G Weeda
- Department of Cell Biology and Genetics, Medical Genetics Center, Erasmus University, Rotterdam P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Lesca C, Vispé S, Defais M. Characterization of the sensitivity to various genotoxic agents of the UVU1-CHO cell line, a double mutant from UV complementation group 1. Biochimie 1997; 79:261-3. [PMID: 9258434 DOI: 10.1016/s0300-9084(97)83513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The UVU1 CHO cell line, a double mutant of the excision repair complementation group 1 UV4 cell line was characterized by a higher UV sensitivity than its parent (Busch et al (1989) Mutagenesis 4, 349-354). We show here that this mutant is not affected in a UV mutagenic pathway. In addition, the UVU1 cell line is about two-fold more sensitive to N-methyl-N'-nitro-N-nitrosoguanidine treatment than its parent without being more sensitive to cross-linking agents or ionizing radiations.
Collapse
Affiliation(s)
- C Lesca
- Institut de Pharmacologie et Biologie Structurale, CNRS, UPR 8221, Toulouse, France
| | | | | |
Collapse
|
78
|
Brookman KW, Lamerdin JE, Thelen MP, Hwang M, Reardon JT, Sancar A, Zhou ZQ, Walter CA, Parris CN, Thompson LH. ERCC4 (XPF) encodes a human nucleotide excision repair protein with eukaryotic recombination homologs. Mol Cell Biol 1996; 16:6553-62. [PMID: 8887684 PMCID: PMC231657 DOI: 10.1128/mcb.16.11.6553] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
ERCC4 is an essential human gene in the nucleotide excision repair (NER) pathway, which is responsible for removing UV-C photoproducts and bulky adducts from DNA. Among the NER genes, ERCC4 and ERCC1 are also uniquely involved in removing DNA interstrand cross-linking damage. The ERCC1-ERCC4 heterodimer, like the homologous Rad10-Rad1 complex, was recently found to possess an endonucleolytic activity that incises on the 5' side of damage. The ERCC4 gene, assigned to chromosome 16p13.1-p13.2, was previously isolated by using a chromosome 16 cosmid library. It corrects the defect in Chinese hamster ovary (CHO) mutants of NER complementation group 4 and is implicated in complementation group F of the human disorder xeroderma pigmentosum. We describe the ERCC4 gene structure and functional cDNA sequence encoding a 916-amino-acid protein (104 kDa), which has substantial homology with the eukaryotic DNA repair and recombination proteins MEI-9 (Drosophila melanogaster), Rad16 (Schizosaccharomyces pombe), and Rad1 (Saccharomyces cerevisiae). ERCC4 cDNA efficiently corrected mutants in rodent NER complementation groups 4 and 11, showing the equivalence of these groups, and ERCC4 protein levels were reduced in mutants of both groups. In cells of an XP-F patient, the ERCC4 protein level was reduced to less than 5%, consistent with XPF being the ERCC4 gene. The considerable identity (40%) between ERCC4 and MEI-9 suggests a possible involvement of ERCC4 in meiosis. In baboon tissues, ERCC4 was expressed weakly and was not significantly higher in testis than in nonmeiotic tissues.
Collapse
Affiliation(s)
- K W Brookman
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, California 94551-0808, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Bang DD, Ketting R, de Ruijter M, Brandsma JA, Verhage RA, van de Putte P, Brouwer J. Cloning of Schizosaccharomyces pombe rph16+, a gene homologous to the Saccharomyces cerevisiae RAD16 gene. Mutat Res 1996; 364:57-71. [PMID: 8879272 DOI: 10.1016/0921-8777(96)00010-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The RAD16 gene is involved in the nucleotide excision repair of UV damage in the transcriptional silenced mating type loci (Terleth et al., 1990 and Bang et al., 1992) and in non-transcribed stands of active genes in Saccharomyces cerevisiae (Verhage et al., 1994). Using touchdown-PCR with primers derived from various domains of the S. cerevisiae Rad 16 protein, a specific Schizosaccharomyces pombe probe was isolated. This probe was used to obtain the complete RAD16 homologous gene from a S. pombe chromosomal bank. DNA sequence analysis of the rph16+ gene revealed an open reading frame of 854 amino acids. Comparison of the amino acid sequences of the Rhp16 and Rad16 proteins showed a high level of conservation: 68% similarity. The Rhp16 protein sequence contains the two Zn-finger motifs and the putative helicase domains as found in the Rad16 protein. Like the RAD16, the rph16+ gene is UV-inducible (Bang et al., 1995). In analogy with the rad16 mutant, the rhp16 disruption mutant is viable and grows normally, indicating that the gene does not have an essential function. The rhp16 disruption mutant is not sensitive for UV but is sensitive for cisplatin. The rhp16+ gene cloned behind the GAI 1 promoter partially complements the UV sensitivity and the defect in the non-transcribed strand DNA repair of a S. cerevisiae rad16 mutant, indicating functional homology between the rhp16+ and RAD16 genes. The structural and functional homology between the two genes suggests that the RAD16 dependent subpathway of NER for the repair of non-transcribed DNA is evolutionary conserved.
Collapse
Affiliation(s)
- D D Bang
- Department of Biochemistry, Leiden Institute of Chemistry, Gorlaeus laboratories, Leiden University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
80
|
Sijbers AM, van der Spek PJ, Odijk H, van den Berg J, van Duin M, Westerveld A, Jaspers NG, Bootsma D, Hoeijmakers JH. Mutational analysis of the human nucleotide excision repair gene ERCC1. Nucleic Acids Res 1996; 24:3370-80. [PMID: 8811092 PMCID: PMC146110 DOI: 10.1093/nar/24.17.3370] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The human DNA repair protein ERCC1 resides in a complex together with the ERCC4, ERCC11 and XP-F correcting activities, thought to perform the 5' strand incision during nucleotide excision repair (NER). Its yeast counterpart, RAD1-RAD10, has an additional engagement in a mitotic recombination pathway, probably required for repair of DNA cross-links. Mutational analysis revealed that the poorly conserved N-terminal 91 amino acids of ERCC1 are dispensable for both repair functions, in contrast to a deletion of only four residues from the C-terminus. A database search revealed a strongly conserved motif in this C-terminus sharing sequence homology with many DNA break processing proteins, indicating that this part is primarily required for the presumed structure-specific endonuclease activity of ERCC1. Most missense mutations in the central region give rise to an unstable protein (complex). Accordingly, we found that free ERCC1 is very rapidly degraded, suggesting that protein-protein interactions provide stability. Survival experiments show that the removal of cross-links requires less ERCC1 than UV repair. This suggests that the ERCC1-dependent step in cross-link repair occurs outside the context of NER and provides an explanation for the phenotype of the human repair syndrome xeroderma pigmentosum group F.
Collapse
Affiliation(s)
- A M Sijbers
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Rodriguez K, Wang Z, Friedberg EC, Tomkinson AE. Identification of functional domains within the RAD1.RAD10 repair and recombination endonuclease of Saccharomyces cerevisiae. J Biol Chem 1996; 271:20551-8. [PMID: 8702799 DOI: 10.1074/jbc.271.34.20551] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Saccharomyces cerevisiae rad1 and rad10 mutants are unable to carry out nucleotide excision repair and are also defective in a mitotic intrachromosomal recombination pathway. The products of these genes are subunits of an endonuclease which recognizes DNA duplex/single-strand junctions and specifically cleaves the 3' single-strand extension at or near the junction. It has been suggested that such junctions arise as a consequence of DNA lesion processing during nucleotide excision repair and the processing of double-strand breaks during intrachromosomal recombination. In this study we show that the RAD1 RAD10 complex also cleaves a more complex junction structure consisting of a duplex with a protruding 3' single-strand branch that resembles putative recombination intermediates in the RAD1 RAD10-mediated single-strand annealing pathway of mitotic recombination. Using monoclonal antibodies, we have identified two regions of RAD1 that are required for the cleavage of duplex/single-strand junctions. These reagents also inhibit nucleotide excision repair in vitro, confirming the essential role of the RAD1 RAD10 endonuclease in this pathway.
Collapse
Affiliation(s)
- K Rodriguez
- Institute of Biotechnology/Center for Molecular Medicine, University of Texas Health Science Center at San Antonio, 78245, USA
| | | | | | | |
Collapse
|
82
|
Esaki T, Nakano S, Masumoto N, Fujishima H, Niho Y. Schedule-dependent reversion of acquired cisplatin resistance by 5-fluorouracil in a newly established cisplatin-resistant HST-1 human squamous carcinoma cell line. Int J Cancer 1996; 65:479-84. [PMID: 8621231 DOI: 10.1002/(sici)1097-0215(19960208)65:4<479::aid-ijc15>3.0.co;2-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In vitro continuous stepwise exposure of HST-1 human squamous carcinoma cell line to cisplatin (CDDP) for 12 months resulted in a 3.5-fold stably resistant subline designated HST-1/CP0.2. Compared with parental cells, this cell line showed a 1.8-fold increase in cellular glutathione (GSH) and a 50% reduction in initial numbers of DNA interstrand cross-links (ICLs), despite similar levels of intracellular platinum accumulation. Evaluation of the kinetics of DNA ICL removal at nearly equivalent levels of DNA ICL formation indicated that HST-1/CP0.2 cells appeared to remove DNA ICLs more rapidly than do HST-1 parental cells. Thus, both elevated cellular GSH and increased DNA repair capacity would be the major factors contributing to CDDP resistance. Pretreatment of HST-1/CP0.2 cells with 5-FU, with drug-free intervals of 24 to 48 hr before exposure to CDDP, completely reversed CDDP resistance, or even increased the sensitivity to a level greater than that of parental cells, whereas the opposite sequence had no effect on resistance. In parallel with augmentation of the cytotoxicity, the levels of cellular GSH were significantly reduced over 48 hr by 5-FU pretreatment. However, depletion of cellular GSH using buthionine sulfoximine resulted in partial reversal of CDDP resistance, indicating that reduction of cellular GSH alone is not sufficient for complete reversal of CDDP resistance. Our data, together with evidence that 5-FU modulates the repair of platinum-DNA cross-links, suggest that schedule-dependent, complete reversal of CDDP resistance by 5-FU might be attributed to its inhibitory effects on both GSH levels and the repair of platinum-DNA adducts. Thus, optimization for the drug administration schedule is important when aiming at therapeutic synergy and circumvention of acquired CDDP resistance.
Collapse
Affiliation(s)
- T Esaki
- First Department of Internal Medicine, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
83
|
Ma L, Hoeijmakers JH, van der Eb AJ. Mammalian nucleotide excision repair. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1242:137-63. [PMID: 7492568 DOI: 10.1016/0304-419x(95)00008-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- L Ma
- Department of Medical Biochemistry, Leiden University, The Netherlands
| | | | | |
Collapse
|
84
|
Yen L, Woo A, Christopoulopoulos G, Batist G, Panasci L, Roy R, Mitra S, Alaoui-Jamali MA. Enhanced host cell reactivation capacity and expression of DNA repair genes in human breast cancer cells resistant to bi-functional alkylating agents. Mutat Res 1995; 337:179-89. [PMID: 7491121 DOI: 10.1016/0921-8777(95)00022-c] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human breast carcinoma (MCF7-MLNr) cells resistant to the bifunctional drugs L-phenylalanine mustard (L-PAM, 5-fold resistance), mechlorethamine (9-fold), cisplatin (3-fold), and BCNU (3-fold) were used to investigate the role of DNA repair in the development of resistance to alkylating agents. We have previously shown that neither L-PAM transport and metabolism nor glutathione-associated enzymes were altered in MCF7-MLNr cells, compared to the sensitive cells MCF7-WT. This study shows that treatment of pRSV-CAT plasmid with L-PAM at concentrations up to 1 microM proportionally inhibit the expression of chloramphenicol acetyl transferase (CAT) activity, while higher concentrations abolished CAT activity. pRSV-CAT reactivation was significantly increased when plasmid was transfected into MCF7-MLNr cells, compared to MCF7-WT cells. This indicates that resistant cells have more efficient capacity to recognize and repair L-PAM induced DNA damage. The mRNA expression of DNA nucleotide excision repair genes ERCC1, XPD (ERCC2), XPB (ERCC3), and polymerase beta was found to be similar in both the MCF7-WT and MCF7-MLNr cells. Western blot analysis also reveals no difference in the expression of ERCC1, AP endonuclease, poly (ADP-ribose) polymerase, and alkyl-N-purine-DNA glycosylase proteins. The lack of correlation between enhanced host cell reactivation capacity in resistant cells, and the expression of these specific DNA repair genes suggests that proteins encoded by these genes are not rate limiting steps for resistance to bi-functional alkylating drugs in human breast cancer cells.
Collapse
Affiliation(s)
- L Yen
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Canada
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Davies AA, Friedberg EC, Tomkinson AE, Wood RD, West SC. Role of the Rad1 and Rad10 proteins in nucleotide excision repair and recombination. J Biol Chem 1995; 270:24638-41. [PMID: 7559571 DOI: 10.1074/jbc.270.42.24638] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In Saccharomyces cerevisiae, the RAD1 and RAD10 genes are involved in DNA nucleotide excision repair (NER) and in a pathway of mitotic recombination that occurs between direct repeat DNA sequences. In this paper, we show that purified Rad1 and Rad10 interact with a synthetic bubble structure and incise the DNA at the 5'-side of the centrally unpaired region. When Rad1-Rad10 and purified XPG protein (the human homolog of yeast Rad2 protein) were co-incubated with the DNA substrate, we observed incisions at both ends of the bubble. This reaction mimics the dual incision step in nucleotide excision repair in vivo. In addition, the recent suggestion that Rad1 can act to resolve Holliday junctions (Habraken, Y., Sung, P., Prakash, L., and Prakash, S. (1994) Nature 371, 531-534), explaining the recombination defect observed in rad1 mutants, has been further investigated. However, using proteins purified in two different laboratories we were unable to show any interaction between Rad1 and synthetic Holliday junctions. The role that Rad1-Rad10 plays in recombination is likely to resemble its activity in NER by acting upon partially unpaired DNA intermediates such as those formed by recombination mechanisms involving single-strand DNA annealing.
Collapse
Affiliation(s)
- A A Davies
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire, United Kingdom
| | | | | | | | | |
Collapse
|
86
|
Liang BC, Ross DA, Reed E. Genomic copy number changes of DNA repair genes ERCC1 and ERCC2 in human gliomas. J Neurooncol 1995; 26:17-23. [PMID: 8583241 DOI: 10.1007/bf01054765] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abnormalities of the genomic region of chromosome 19q13.2-13.4 are a common occurrence in brain malignancies and contain a possible tumor suppressor gene involved in gliomas. Since abnormalities of DNA repair are associated with malignancy, we assessed DNA status of the nucleotide excision repair genes located in this area, viz. ERCC1 and ERCC2. Radiodensitometry was used to assess gene copy number in samples obtained from brain tumor specimens from 24 patients. Nine tumors were of lower grade histology (3 pilocytic astrocytomas, 2 gangliogliomas, 4 astrocytomas); 15 tumors were pathologically higher grade (4 anaplastic astrocytomas, 11 glioblastomas). Tumor samples were obtained prior to radiation or chemotherapy. Abnormalities of gene copy number of ERCC1 and ERCC2 were observed in 11/24 specimens (46%). Whereas increased and decreased copy numbers were observed for ERCC1, only decreases in copy number of ERCC2 were seen. Three tumors (all lower grade) showed concurrent allelic loss of ERCC1 and ERCC2. Abnormalities of copy number for these genes were not associated with response to subsequent therapy nor survival. However, allelic loss of ERCC2 was associated with younger age at diagnosis when compared to those specimens which did not show loss. There were no significant differences between lower grade and higher grade tumors with respect to these investigations. Abnormalities in copy number of ERCC1 and ERCC2 are common in glial tumors. Further study of this genomic region is necessary to define the importance of these observations in tumor pathophysiology and treatment.
Collapse
Affiliation(s)
- B C Liang
- Clinical Pharmacology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
87
|
Park CH, Bessho T, Matsunaga T, Sancar A. Purification and characterization of the XPF-ERCC1 complex of human DNA repair excision nuclease. J Biol Chem 1995; 270:22657-60. [PMID: 7559382 DOI: 10.1074/jbc.270.39.22657] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A complex, which consists of ERCC1 (38 kDa) and a 112-kDa protein, was purified from HeLa cells to homogeneity. This complex complemented the nucleotide excision repair defects of rodent ERCC-1, ERCC-4, and human XP-F mutant cell-free extracts, indicating that the 112-kDa protein is XPF/ERCC4 and providing direct biochemical evidence that XPF and ERCC4 are identical. The XPF/ERCC4-ERCC1 complex has an endonuclease activity with preference for single-stranded DNA and a single-stranded region of duplex DNA with a "bubble" structure. This complex also nicks supercoiled DNA weakly, and this nicking activity is stimulated by human replication protein A when the DNA contains UV damage.
Collapse
Affiliation(s)
- C H Park
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | | | | | |
Collapse
|
88
|
Shimamoto T, Tanimura T, Yoneda Y, Kobayakawa Y, Sugasawa K, Hanaoka F, Oka M, Okada Y, Tanaka K, Kohno K. Expression and functional analyses of the Dxpa gene, the Drosophila homolog of the human excision repair gene XPA. J Biol Chem 1995; 270:22452-9. [PMID: 7673233 DOI: 10.1074/jbc.270.38.22452] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Xeroderma pigmentosum (XP) is a human hereditary disease characterized by a defect in DNA repair after exposure to ultraviolet light. Among the seven groups of XP, group A (XP-A) patients show the most severe deficiency in excision repair and a wide variety of cutaneous and neurological disorders. We have cloned homologs of the human XPA gene from chicken, Xenopus, and Drosophila, and sequence analysis revealed that these genes are highly conserved throughout evolution. Here, we report characterization of the Drosophila homolog of the human XPA gene (Dxpa). The Dxpa gene product shows DNA repair activities in an in vitro repair system, and Dxpa cDNA has been shown to complement a mutant allele of human XP-A cells by transfection. Polytene chromosome in situ hybridization mapped Dxpa to 3F6-8 on the X chromosome, where no mutant defective in excision repair was reported. Northern blot analysis showed that the gene is continuously expressed in all stages of fly development. Interestingly, the Dxpa protein is strongly expressed in the central nervous system and muscles as revealed by immunohistochemical analysis using anti-Dxpa antibodies, consistent with the results obtained in transgenic flies expressing a Dxpa-beta-galactosidase fusion gene driven by the Dxpa promoter.
Collapse
Affiliation(s)
- T Shimamoto
- Institute for Molecular and Cellular Biology, Osaka University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Tebbs RS, Zhao Y, Tucker JD, Scheerer JB, Siciliano MJ, Hwang M, Liu N, Legerski RJ, Thompson LH. Correction of chromosomal instability and sensitivity to diverse mutagens by a cloned cDNA of the XRCC3 DNA repair gene. Proc Natl Acad Sci U S A 1995; 92:6354-8. [PMID: 7603995 PMCID: PMC41516 DOI: 10.1073/pnas.92.14.6354] [Citation(s) in RCA: 203] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The mutagen-sensitive CHO line irs1SF was previously isolated on the basis of hypersensitivity to ionizing radiation and was found to be chromosomally unstable as well as cross-sensitive to diverse kinds of DNA-damaging agents. The analysis of somatic cell hybrids formed between irs1SF and human lymphocytes implicated a human gene (defined as XRCC3; x-ray repair cross-complementing), which partially restored mitomycin C resistance to the mutant. A functional cDNA that confers mitomycin C resistance was transferred to irs1SF cells by transforming them with an expression cDNA library and obtaining primary and secondary transformants. Functional cDNA clones were recovered from a cosmid library prepared from a secondary transformant. Transformants also showed partial correction of sensitivity to cisplatin and gamma-rays, efficient correction of chromosomal instability, and substantially improved plating efficiency and growth rate. The XRCC3 cDNA insert is approximately 2.5 kb and detects an approximately 3.0-kb mRNA on Northern blots. The cDNA was mapped by fluorescence in situ hybridization to human chromosome 14q32.3, which was consistent with the chromosome concordance data of two independent hybrid clone panels.
Collapse
Affiliation(s)
- R S Tebbs
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, CA 94551-0808, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
van Vuuren AJ, Appeldoorn E, Odijk H, Humbert S, Moncollin V, Eker AP, Jaspers NG, Egly JM, Hoeijmakers JH. Partial characterization of the DNA repair protein complex, containing the ERCC1, ERCC4, ERCC11 and XPF correcting activities. Mutat Res 1995; 337:25-39. [PMID: 7596355 DOI: 10.1016/0921-8777(95)00009-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The nucleotide excision repair (NER) protein ERCC1 is part of a functional complex, which harbors in addition the repair correcting activities of ERCC4, ERCC11 and human XPF. ERCC1 is not associated with a defect in any of the known human NER disorders: xeroderma pigmentosum, Cockayne's syndrome or trichothiodystrophy. Here we report the partial purification and characterization of the ERCC1 complex. Immunoprecipitation studies tentatively identified a subunit in the complex with an apparent MW of approximately 120 kDa. The complex has affinity for DNA, but no clear preference for ss, ds or UV-damaged DNA substrates. The size of the entire complex determined by non-denaturing gradient gels (approximately 280 kDa) is considerably larger than previously found using size separation on glycerol gradients (approximately 120 kDa). Stable associations of the ERCC1 complex with other known repair factors (XPA, XPC, XPG and TFIIH complex) could not be detected.
Collapse
Affiliation(s)
- A J van Vuuren
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Bramson J, McQuillan A, Panasci LC. DNA repair enzyme expression in chronic lymphocytic leukemia vis-à-vis nitrogen mustard drug resistance. Cancer Lett 1995; 90:139-48. [PMID: 7736449 DOI: 10.1016/0304-3835(95)03696-t] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nitrogen mustard resistance in B-cell chronic lymphocytic leukemia (B-CLL) has been associated with enhanced DNA repair and increased expression of DNA repair enzymes. Lymphocytes from patients with nitrogen mustard resistant B-CLL displayed a fivefold increase in resistance to melphalan in vitro as compared to those from untreated patients concordant with our definition of clinical resistance. We have performed Northern analysis using a cohort consisting of 11 untreated and 12 treated-resistant patients. Increased expression of ERCC-1 was not found to be associated with nitrogen mustard resistance, nor did we find altered expression of the DNA repair enzymes: ERCC-2, DNA polymerase beta, or topoisomerase I. There was also no difference in the levels of ERCC-1 protein between melphalan sensitive and resistant B-CLL lymphocytes. Analysis of genes involved in nitrogen mustard detoxification revealed that metallothionein was weakly expressed, while transcripts encoding glutathione-S-transferase alpha were undetectable. Thus, it is unlikely either of these proteins plays a role in the resistance. The results of the cytotoxicity assay validate the use of B-CLL as a model to study nitrogen mustard resistance. This model allows us to perform in vitro studies using a tumor which develops resistance in vivo. The results of this study suggest that nucleotide excision repair, as represented by ERCC-1 and ERCC-2, is not the limiting step in B-CLL nitrogen mustard resistance.
Collapse
Affiliation(s)
- J Bramson
- Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
92
|
Ivanov EL, Haber JE. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol 1995; 15:2245-51. [PMID: 7891718 PMCID: PMC230452 DOI: 10.1128/mcb.15.4.2245] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
HO endonuclease-induced double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae can be repaired by the process of gap repair or, alternatively, by single-strand annealing if the site of the break is flanked by directly repeated homologous sequences. We have shown previously (J. Fishman-Lobell and J. E. Haber, Science 258:480-484, 1992) that during the repair of an HO-induced DSB, the excision repair gene RAD1 is needed to remove regions of nonhomology from the DSB ends. In this report, we present evidence that among nine genes involved in nucleotide excision repair, only RAD1 and RAD10 are required for removal of nonhomologous sequences from the DSB ends. rad1 delta and rad10 delta mutants displayed a 20-fold reduction in the ability to execute both gap repair and single-strand annealing pathways of HO-induced recombination. Mutations in RAD2, RAD3, and RAD14 reduced HO-induced recombination by about twofold. We also show that RAD7 and RAD16, which are required to remove UV photodamage from the silent HML, locus, are not required for MAT switching with HML or HMR as a donor. Our results provide a molecular basis for understanding the role of yeast nucleotide excision repair gene and their human homologs in DSB-induced recombination and repair.
Collapse
Affiliation(s)
- E L Ivanov
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254-9110
| | | |
Collapse
|
93
|
Li L, Peterson CA, Lu X, Legerski RJ. Mutations in XPA that prevent association with ERCC1 are defective in nucleotide excision repair. Mol Cell Biol 1995; 15:1993-8. [PMID: 7891694 PMCID: PMC230426 DOI: 10.1128/mcb.15.4.1993] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The human repair proteins XPA and ERCC1 have been shown to be absolutely required for the incision step of nucleotide excision repair, and recently we identified an interaction between these two proteins both in vivo and in vitro (L. Li, S. J. Elledge, C. A. Peterson, E. S. Bales, and R. J. Legerski, Proc. Natl. Acad. Sci. USA 91:5012-5016, 1994). In this report, we demonstrate the functional relevance of this interaction. The ERCC1-binding domain on XPA was previously mapped to a region containing two highly conserved XPA sequences, Gly-72 to Phe-75 and Glu-78 to Glu-84, which are termed the G and E motifs, respectively. Site-specific mutagenesis was used to independently delete these motifs and create two XPA mutants referred to as delta G and delta E. In vitro, the binding of ERCC1 to delta E was reduced by approximately 70%, and binding to delta G was undetectable; furthermore, both mutants failed to complement XPA cell extracts in an in vitro DNA repair synthesis assay. In vivo, the delta E mutant exhibited an intermediate level of complementation of XPA cells and the delta G mutant exhibited little or no complementation. In addition, the delta G mutant inhibited repair synthesis in wild-type cell extracts, indicating that it is a dominant negative mutant. The delta E and delta G mutations, however, did not affect preferential binding of XPA to damaged DNA. These results suggest that the association between XPA and ERCC1 is a required step in the nucleotide excision repair pathway and that the probable role of the interaction is to recruit the ERCC1 incision complex to the damage site. Finally, the affinity of the XPA-ERCC1 complex was found to increase as a function of salt concentration, indicating a hydrophobic interaction; the half-life of the complex was determined to be approximately 90 min.
Collapse
Affiliation(s)
- L Li
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston 77030
| | | | | | | |
Collapse
|
94
|
|
95
|
|
96
|
Affiliation(s)
- K S Sweder
- Department of Biological Sciences, Stanford University, CA 94305-5020, USA
| |
Collapse
|
97
|
Abstract
The nitrogen mustards are bifunctional alkylating agents which, although used extensively in cancer chemotherapy, are themselves highly carcinogenic. All nitrogen mustards induce monofunctional guanine-N7 adducts, as well as interstrand N7-N7 crosslinks involving the two guanines in GNC.GNC (5'-->3'/5'-->3') sequences. In addition, the aromatic mustards melphalan and chlorambucil also induce substantial alkylation at adenine N3, while cyclophosphamide forms phosphotriesters with relatively high frequency. Nitrogen mustards are genotoxic in virtually every assay, and produce a wide array of mutations, including base substitutions at both G.C and A.T base pairs, intragenic as well as multilocus deletions, and chromosomal rearrangements. Mutational spectra generated by these agents in various model systems vary widely, and no single lesion has been implicated as being primarily responsible for mustard-induced mutagenesis. On the contrary, adducts of both adenine and guanine, and monofunctional as well as bifunctional adducts, appear to be involved. Further, it is still not known which types of mutation are responsible for mustard-induced cancers, since no genes have yet been identified which are consistently altered in these malignancies.
Collapse
Affiliation(s)
- L F Povirk
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298
| | | |
Collapse
|
98
|
Hall EJ. Molecular biology in radiation therapy: the potential impact of recombinant technology on clinical practice. Int J Radiat Oncol Biol Phys 1994; 30:1019-28. [PMID: 7961007 DOI: 10.1016/0360-3016(94)90305-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
There is good evidence to believe that the most important lesion induced in deoxyribonucleic acid (DNA) by ionizing radiation is a double strand break. Two double strand breaks may interact and rejoin in three different ways. (a) To form a dicentric, which is a lethal event, and will lead to the death of the cell. (b) To form a symmetrical translocation, which may activate an oncogene, and result in, for example, a leukemia or lymphoma. (c) To result in a deletion, which may remove or inactivate a suppressor gene and result in, for example, a solid tumor. Genes identified in mammalian cells may be conveniently grouped into four families. Genes involved in the repair of radiation damage can greatly influence radiosensitivity. Molecular checkpoint genes hold damaged cells in G2 to check for the integrity of their chromosomes before allowing them to proceed into mitosis; consequently, an inactivated checkpoint gene can also result in increased radiosensitivity. Activated oncogenes are associated with only a small proportion of human cancers, and tend to be found more commonly in leukemias and lymphomas and less frequently with solid tumors. A reciprocal translocation is the most likely mechanism by which radiation may activate an oncogene. An inactivated or deleted suppressor gene is commonly associated with a wide range of human cancers. It is becoming increasingly evident that many common cancers do not arise randomly in the population, but that subgroups of individuals are particularly susceptible. The challenge of recombinant technology is that in the near future it may well be possible to determine at birth the susceptibilities of a given individual by identifying mutations in key genes. This is the revolution and challenge we face in the treatment of cancer.
Collapse
Affiliation(s)
- E J Hall
- Center for Radiological Research, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| |
Collapse
|
99
|
McCready S. Repair of 6-4 photoproducts and cyclobutane pyrimidine dimers in rad mutants of Saccharomyces cerevisiae. Mutat Res 1994; 315:261-73. [PMID: 7526203 DOI: 10.1016/0921-8777(94)90037-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Repair rates of both pyrimidine-pyrimidone (6-4) photoproducts and cyclobutane pyrimidine dimers have been measured in the UV-sensitive mutants of Saccharomyces cerevisiae: rad1 to rad12 and rad14 to rad24. A dot blot immunoassay for UV photoproducts was used which measures lesions in the genome as a whole and which distinguishes 6-4 photoproducts from cyclobutane dimers. The principal findings are: (1) Wild-type yeast cells, like normal mammalian cells, repair 6-4 photoproducts more rapidly than cyclobutane dimers. (2) All mutants that are defective in repair are defective in repair of both lesions. (3) The most sensitive alleles of rad1, rad2, rad3, rad4 and rad10 show no repair of either lesion. (4) Leaky alleles of rad1, rad3 and rad14 show a very marked difference in repair rates of the two lesions, rather like the human XPA revertant cell line XP129 and the Chinese hamster mutants UV61 and V-H1. (5) No mutant repairs cyclobutane dimers more rapidly than 6-4 photoproducts.
Collapse
Affiliation(s)
- S McCready
- Department of Biochemistry, University of Oxford, UK
| |
Collapse
|
100
|
Walter CA, Lu J, Bhakta M, Zhou ZQ, Thompson LH, McCarrey JR. Testis and somatic Xrcc-1 DNA repair gene expression. SOMATIC CELL AND MOLECULAR GENETICS 1994; 20:451-61. [PMID: 7892645 DOI: 10.1007/bf02255837] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The human XRCC1 gene has been shown to be involved in DNA strand-break repair using the Chinese hamster ovary cell mutant EM9. The purpose of this study was to characterize the expression of Xrcc-1 to determine if there is tissue-specific expression and to provide a baseline of information for future studies that may involve altering Xrcc-1 expression in mice. Normal young adult male testis and enriched populations of pachytene spermatocytes and round spermatids displayed significantly higher levels of Xrcc-1 expression than other mouse tissues, although Xrcc-1 transcripts were found in low abundance in all tested tissues. Cultured mouse cell lines displayed levels of expression similar to male germ cells, which is a striking contrast to the levels of expression obtained in somatic tissues from the mouse. The relatively high levels of expression identified in male germ cells indicate Xrcc-1 may have an important role in male germ cell physiology.
Collapse
Affiliation(s)
- C A Walter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio 78284-7762
| | | | | | | | | | | |
Collapse
|