51
|
Fleta-Soriano E, Martinez JP, Hinkelmann B, Gerth K, Washausen P, Diez J, Frank R, Sasse F, Meyerhans A. The myxobacterial metabolite ratjadone A inhibits HIV infection by blocking the Rev/CRM1-mediated nuclear export pathway. Microb Cell Fact 2014; 13:17. [PMID: 24475978 PMCID: PMC3910686 DOI: 10.1186/1475-2859-13-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nuclear export of unspliced and partially spliced HIV-1 mRNA is mediated by the recognition of a leucine-rich nuclear export signal (NES) in the HIV Rev protein by the host protein CRM1/Exportin1. This makes the CRM1-Rev complex an attractive target for the development of new antiviral drugs. Here we tested the anti-HIV efficacy of ratjadone A, a CRM1 inhibitor derived from myxobacteria. RESULTS Ratjadone A inhibits HIV infection in vitro in a dose-dependent manner with EC₅₀ values at the nanomolar range. The inhibitory effect of ratjadone A occurs around 12 hours post-infection and is specific for the Rev/CRM1-mediated nuclear export pathway. By using a drug affinity responsive target stability (DARTS) assay we could demonstrate that ratjadone A interferes with the formation of the CRM1-Rev-NES complex by binding to CRM1 but not to Rev. CONCLUSION Ratjadone A exhibits strong anti-HIV activity but low selectivity due to toxic effects. Although this limits its potential use as a therapeutic drug, further studies with derivatives of ratjadones might help to overcome these difficulties in the future.
Collapse
Affiliation(s)
- Eric Fleta-Soriano
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88 08003, Barcelona, Spain
| | - Javier P Martinez
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88 08003, Barcelona, Spain
| | - Bettina Hinkelmann
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Gerth
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Washausen
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Juana Diez
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ronald Frank
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Florenz Sasse
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Meyerhans
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88 08003, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
52
|
Raina S, Chande AG, Baba M, Mukhopadhyaya R. A reporter based single step assay for evaluation of inhibitors targeting HIV-1 Rev-RRE interaction. Virusdisease 2014; 25:101-6. [PMID: 24426316 DOI: 10.1007/s13337-013-0166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 09/17/2013] [Indexed: 11/26/2022] Open
Abstract
Human immunodeficiency virus regulatory protein Rev (regulator of viral expression) is translated from a monocistronic transcript produced early in the viral replication cycle. Rev binds to the cis-acting, highly structured viral RNA sequence Rev response element (RRE) and the Rev-RRE complex primarily controls nucleocytoplasmic transport of viral RNAs. Inhibition of Rev-RRE interaction therefore is an attractive target to block viral transport. We have developed a stable cell line carrying a lentiviral vector harboring a rev gene and a co-linear Rev-dependent GFP/luciferase reporter gene cassette and thus constitutively expressing the reporter proteins. Dose-dependent luciferase activity inhibition in the indicator cell line by known small molecule inhibitors Proflavin and K37 established the specificity of the assay. This novel single step assay, that involves use of very small amount of reagents/cells and addition of test material as the only manipulation, can therefore be useful for screening therapeutically potential Rev-RRE interaction inhibitors.
Collapse
Affiliation(s)
- Sumeer Raina
- Virology Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410 210 India
| | - Ajit G Chande
- Virology Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410 210 India ; Immunology Group, ICGEB, New Delhi, India
| | - Masanori Baba
- Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Robin Mukhopadhyaya
- Virology Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410 210 India
| |
Collapse
|
53
|
Mehta A, Sonam S, Gouri I, Loharch S, Sharma DK, Parkesh R. SMMRNA: a database of small molecule modulators of RNA. Nucleic Acids Res 2014; 42:D132-41. [PMID: 24163098 PMCID: PMC3965028 DOI: 10.1093/nar/gkt976] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/13/2013] [Accepted: 10/01/2013] [Indexed: 02/05/2023] Open
Abstract
We have developed SMMRNA, an interactive database, available at http://www.smmrna.org, with special focus on small molecule ligands targeting RNA. Currently, SMMRNA consists of ∼770 unique ligands along with structural images of RNA molecules. Each ligand in the SMMRNA contains information such as Kd, Ki, IC50, ΔTm, molecular weight (MW), hydrogen donor and acceptor count, XlogP, number of rotatable bonds, number of aromatic rings and 2D and 3D structures. These parameters can be explored using text search, advanced search, substructure and similarity-based analysis tools that are embedded in SMMRNA. A structure editor is provided for 3D visualization of ligands. Advance analysis can be performed using substructure and OpenBabel-based chemical similarity fingerprints. Upload facility for both RNA and ligands is also provided. The physicochemical properties of the ligands were further examined using OpenBabel descriptors, hierarchical clustering, binning partition and multidimensional scaling. We have also generated a 3D conformation database of ligands to support the structure and ligand-based screening. SMMRNA provides comprehensive resource for further design, development and refinement of small molecule modulators for selective targeting of RNA molecules.
Collapse
Affiliation(s)
- Ankita Mehta
- Department of Advanced Protein Science, Institute of Microbial Technology, Chandigarh-160036, India
| | - Surabhi Sonam
- Department of Advanced Protein Science, Institute of Microbial Technology, Chandigarh-160036, India
| | - Isha Gouri
- Department of Advanced Protein Science, Institute of Microbial Technology, Chandigarh-160036, India
| | - Saurabh Loharch
- Department of Advanced Protein Science, Institute of Microbial Technology, Chandigarh-160036, India
| | - Deepak K. Sharma
- Department of Advanced Protein Science, Institute of Microbial Technology, Chandigarh-160036, India
| | - Raman Parkesh
- Department of Advanced Protein Science, Institute of Microbial Technology, Chandigarh-160036, India
| |
Collapse
|
54
|
Shalev M, Baasov T. When Proteins Start to Make Sense: Fine-tuning Aminoglycosides for PTC Suppression Therapy. MEDCHEMCOMM 2014; 5:1092-1105. [PMID: 25147726 DOI: 10.1039/c4md00081a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aminoglycosides (AGs) are highly potent antibacterial agents, which are known to exert their deleterious effects on bacterial cells by interfering with the translation process, leading to aberrant protein synthesis that usually results in cell death. Nearly 45 years ago, AGs were shown to induce read-through activity in prokaryotic systems by selectively encoding tRNA molecules at premature termination codon (PTC) positions; resulting in the generation of full length functional proteins. However, only in the last 20 years this ability has been demonstrated in eukaryotic systems, highlighting their potential as therapeutic agents to treat PTC induced genetic disorders. Despite the great potential, AGs use in these manners is quite restricted due to relatively high toxicity values observed upon their administration. Over the last few years several synthetic derivatives were developed to overcome some of the enhanced toxicity issues, while in parallel showed significantly improved PTC suppression activity in various in-vitro, ex-vivo and in-vivo models of a variety of different diseases models underling by PTC mutations. Although these derivatives hold great promise to serve as therapeutic candidates they also demonstrate the necessity to further understand the molecular mechanisms of which AGs confer their biological activity in eukaryotic cells for further rational drug design. Recent achievements in structural research shed light on AGs mechanism of action and opened a new avenue in the development of new and improved therapeutic derivatives. The following manuscript highlights these accomplishments and summarizes their contributions to the state of art rational drug design.
Collapse
Affiliation(s)
- Moran Shalev
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Timor Baasov
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
55
|
Ennifar E, Aslam MW, Strasser P, Hoffmann G, Dumas P, van Delft FL. Structure-guided discovery of a novel aminoglycoside conjugate targeting HIV-1 RNA viral genome. ACS Chem Biol 2013; 8:2509-17. [PMID: 24015986 DOI: 10.1021/cb400498n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The dimerization initiation site (DIS) of the HIV-1 genomic RNA is a conserved stem-loop that promotes viral genome dimerization by forming a loop-loop complex. The DIS constitutes a potentially interesting target because it is crucial for several key steps of the viral replication. In this work we describe the synthesis of a rationally designed aminoglycoside conjugate that binds the HIV-1 DIS viral RNA with high specificity, as shown by an extensive in vitro binding characterization. We propose a three-dimensional model of the drug-RNA interaction that perfectly fits with binding data. Our results show the feasibility of targeting the HIV DIS viral RNA dimer and open the way to the rationale design of a new class of antiviral drugs. In addition, due to similarities between the HIV-1 DIS RNA and the bacterial aminoacyl decoding site (A site) RNA, we show that this novel aminoglycoside conjugate also binds the bacterial A site with a similar affinity as natural aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Eric Ennifar
- Architecture et Réactivité
de l’ARN, Institut de Biologie Moléculaire et Cellulaire, CNRS, Université Louis Pasteur, 15 rue René Descartes, 67084 Strasbourg, France
| | - Muhammad Waqar Aslam
- Institute for Molecules and Materials, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Perrine Strasser
- Architecture et Réactivité
de l’ARN, Institut de Biologie Moléculaire et Cellulaire, CNRS, Université Louis Pasteur, 15 rue René Descartes, 67084 Strasbourg, France
| | - Guillaume Hoffmann
- Architecture et Réactivité
de l’ARN, Institut de Biologie Moléculaire et Cellulaire, CNRS, Université Louis Pasteur, 15 rue René Descartes, 67084 Strasbourg, France
| | - Philippe Dumas
- Architecture et Réactivité
de l’ARN, Institut de Biologie Moléculaire et Cellulaire, CNRS, Université Louis Pasteur, 15 rue René Descartes, 67084 Strasbourg, France
| | - Floris L. van Delft
- Institute for Molecules and Materials, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
56
|
González-Bulnes L, Ibáñez I, Bedoya LM, Beltrán M, Catalán S, Alcamí J, Fustero S, Gallego J. Structure-based design of an RNA-binding p-terphenylene scaffold that inhibits HIV-1 Rev protein function. Angew Chem Int Ed Engl 2013; 52:13405-9. [PMID: 24214163 DOI: 10.1002/anie.201306665] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/25/2013] [Indexed: 12/29/2022]
|
57
|
González-Bulnes L, Ibáñez I, Bedoya LM, Beltrán M, Catalán S, Alcamí J, Fustero S, Gallego J. Structure-Based Design of an RNA-Bindingp-Terphenylene Scaffold that Inhibits HIV-1 Rev Protein Function. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
58
|
Ranjan N, Kumar S, Watkins D, Wang D, Appella DH, Arya DP. Recognition of HIV-TAR RNA using neomycin-benzimidazole conjugates. Bioorg Med Chem Lett 2013; 23:5689-93. [PMID: 24012122 PMCID: PMC4048829 DOI: 10.1016/j.bmcl.2013.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
Synthesis of a novel class of compounds and their biophysical studies with TAR-RNA are presented. The synthesis of these compounds was achieved by conjugating neomycin, an aminoglycoside, with benzimidazoles modeled from a B-DNA minor groove binder, Hoechst 33258. The neomycin-benzimidazole conjugates have varying linkers that connect the benzimidazole and neomycin units. The linkers of varying length (5-23 atoms) in these conjugates contain one to three triazole units. The UV thermal denaturation experiments showed that the conjugates resulted in greater stabilization of the TAR-RNA than either neomycin or benzimidazole used in the synthesis of conjugates. These results were corroborated by the FID displacement and tat-TAR inhibition assays. The binding of ligands to the TAR-RNA is affected by the length and composition of the linker. Our results show that increasing the number of triazole groups and the linker length in these compounds have diminishing effect on the binding to TAR-RNA. Compounds that have shorter linker length and fewer triazole units in the linker displayed increased affinity towards the TAR RNA.
Collapse
Affiliation(s)
- Nihar Ranjan
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina , United States 29634
| | - Sunil Kumar
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina , United States 29634
| | - Derrick Watkins
- NUBAD LLC, 900 B West Faris Road, Greenville, SC 29630, United States
| | - Deyun Wang
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health,Bethesda, Maryland 20892, United States
| | - Daniel H. Appella
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health,Bethesda, Maryland 20892, United States
| | - Dev P. Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina , United States 29634
- NUBAD LLC, 900 B West Faris Road, Greenville, SC 29630, United States
| |
Collapse
|
59
|
Lee J, Vogt CE, McBrairty M, Al-Hashimi HM. Influence of dimethylsulfoxide on RNA structure and ligand binding. Anal Chem 2013; 85:9692-8. [PMID: 23987474 DOI: 10.1021/ac402038t] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dimethyl sulfoxide (DMSO) is widely used as a cosolvent to solubilize hydrophobic compounds in RNA-ligand binding assays. Although it is known that high concentrations of DMSO (>75%) can significantly affect RNA structure and folding energetics, a thorough analysis of how lower concentrations (<10%) of DMSO typically used in binding assays affects RNA structure and ligand binding has not been undertaken. Here, we use NMR and 2-aminopurine fluorescence spectroscopy to examine how DMSO affects the structure, dynamics, and ligand binding properties of two flexible hairpin RNAs: the transactivation response element from HIV-1 and bacterial ribosomal A-site. In both cases, 5-10% DMSO decreased stacking interactions and increased local disorder in noncanonical residues within bulges and loops and resulted in 0.3-4-fold reduction in the measured binding affinities for different small molecules, with the greatest reduction observed for an intercalating compound that binds RNA nonspecifically. Our results suggest that, by competing for hydrophobic interactions, DMSO can have a small but significant effect on RNA structure and ligand binding. These effects should be considered when developing ligand binding assays and high throughput screens.
Collapse
Affiliation(s)
- Janghyun Lee
- Department of Chemistry and Biophysics, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | | | | | | |
Collapse
|
60
|
Kulkarni SS, Chi FC, Hung SC. Biologically PotentL-Hexoses and 6-Deoxy-L-Hexoses: Their Syntheses and Applications. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200400175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
61
|
He W, Zhang X, Zhang J, Jia X, Zhang J, Sun W, Jiang H, Chen D, Murchie AIH. Riboswitch control of induction of aminoglycoside resistance acetyl and adenyl-transferases. RNA Biol 2013; 10:1266-73. [PMID: 23880830 DOI: 10.4161/rna.25757] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The acquisition of antibiotic resistance by human pathogens poses a significant threat to public health. The mechanisms that control the proliferation and expression of antibiotic resistance genes are not yet completely understood. The aminoglycosides are a historically important class of antibiotics that were introduced in the 1940s. Aminoglycoside resistance is conferred most commonly through enzymatic modification of the drug or enzymatic modification of the target rRNA through methylation or through the overexpression of efflux pumps. In our recent paper, we reported that expression of the aminoglycoside resistance genes encoding the aminoglycoside acetyl transferase (AAC) and aminoglycoside adenyl transferase (AAD) enzymes was controlled by an aminoglycoside-sensing riboswitch RNA. This riboswitch is embedded in the leader RNA of the aac/aad genes and is associated with the integron cassette system. The leader RNA can sense and bind specific aminoglycosides such that the binding causes a structural transition in the leader RNA, which leads to the induction of aminoglycoside antibiotic resistance. Specific aminoglycosides induce reporter gene expression mediated by the leader RNA. Aminoglycoside RNA binding was measured directly and, aminoglycoside-induced changes in RNA structure monitored by chemical probing. UV cross-linking and mutational analysis identified potential aminoglycoside binding sites on the RNA.
Collapse
Affiliation(s)
- Weizhi He
- Key Laboratory of Molecular Medicine; the Ministry of Education; Department of Biochemistry and Molecular Biology; Fudan University Shanghai Medical College; Shanghai, PR China; Institutes of Biomedical Sciences; Fudan University Shanghai Medical College; Shanghai, PR China; School of Pharmacy; Fudan University; Pudong, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
|
63
|
Jia X, Zhang J, Sun W, He W, Jiang H, Chen D, Murchie AIH. Riboswitch control of aminoglycoside antibiotic resistance. Cell 2013; 152:68-81. [PMID: 23332747 DOI: 10.1016/j.cell.2012.12.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 06/04/2012] [Accepted: 12/13/2012] [Indexed: 12/23/2022]
Abstract
The majority of riboswitches are regulatory RNAs that regulate gene expression by binding small-molecule metabolites. Here we report the discovery of an aminoglycoside-binding riboswitch that is widely distributed among antibiotic-resistant bacterial pathogens. This riboswitch is present in the leader RNA of the resistance genes that encode the aminoglycoside acetyl transferase (AAC) and aminoglycoside adenyl transferase (AAD) enzymes that confer resistance to aminoglycoside antibiotics through modification of the drugs. We show that expression of the AAC and AAD resistance genes is regulated by aminoglycoside binding to a secondary structure in their 5' leader RNA. Reporter gene expression, direct measurements of drug RNA binding, chemical probing, and UV crosslinking combined with mutational analysis demonstrate that the leader RNA functions as an aminoglycoside-sensing riboswitch in which drug binding to the leader RNA leads to the induction of aminoglycosides antibiotic resistance.
Collapse
Affiliation(s)
- Xu Jia
- Key Laboratory of Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
64
|
Frolov L, Dix A, Tor Y, Tesler AB, Chaikin Y, Vaskevich A, Rubinstein I. Direct observation of aminoglycoside-RNA binding by localized surface plasmon resonance spectroscopy. Anal Chem 2013; 85:2200-7. [PMID: 23368968 DOI: 10.1021/ac3029079] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
RNA is involved in fundamental biological functions when bacterial pathogens replicate. Identifying and studying small molecules that can interact with bacterial RNA and interrupt cellular activities is a promising path for drug design. Aminoglycoside (AMG) antibiotics, prominent natural products that recognize RNA specifically, exert their biological functions by binding to prokaryotic ribosomal RNA and interfering with protein translation, ultimately resulting in bacterial cell death. The decoding site, a small internal loop within the 16S rRNA, is the molecular target for the AMG antibiotics. The specificity of neomycin B, a highly potent AMG antibiotic, to the ribosomal decoding RNA site, was previously studied by observing AMG-RNA complexes in solution. Here, we study this interaction using localized surface plasmon resonance (LSPR) transducers comprising gold island films prepared by evaporation on glass and annealing. Small molecule AMG receptors were immobilized on the Au islands via polyethylene glycol (PEG)-thiol linkers, and the interaction with target RNA in solution was studied by monitoring the change in the LSPR optical response upon binding. The results show high-affinity binding of neomycin to 27-nucleotide model A-site RNA sequence in the nanomolar range, while no specific binding is observed for synthetic RNA oligomers (e.g., poly-U). The impact of specific base substitutions in the A-site RNA constructs on binding affinity and selectivity is determined quantitatively. It is concluded that LSPR is a powerful tool for providing molecular insight into small molecule-RNA interactions and for the design and screening of selective antimicrobial drugs.
Collapse
Affiliation(s)
- Ludmila Frolov
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
65
|
Kim H, Lee MK, Ko J, Park CJ, Kim M, Jeong Y, Hong S, Varani G, Choi BS. Aminoglycoside antibiotics bind to the influenza A virus RNA promoter. MOLECULAR BIOSYSTEMS 2012; 8:2857-9. [PMID: 22990985 DOI: 10.1039/c2mb25333j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aminoglycosides bind to the influenza A virus promoter (vRNA) at submicromolar concentration. The complex structure between the vRNA and neomycin illustrates that binding of neomycin causes a conformational change which would affect further transcription processes. Thus, aminoglycosides represent lead compounds for the discovery of antiviral therapeutics against influenza A virus.
Collapse
Affiliation(s)
- Henna Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Das I, Désiré J, Manvar D, Baussanne I, Pandey VN, Décout JL. A peptide nucleic acid-aminosugar conjugate targeting transactivation response element of HIV-1 RNA genome shows a high bioavailability in human cells and strongly inhibits tat-mediated transactivation of HIV-1 transcription. J Med Chem 2012; 55:6021-32. [PMID: 22698070 PMCID: PMC3400927 DOI: 10.1021/jm300253q] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The 6-aminoglucosamine ring of the aminoglycoside antibiotic neomycin B (ring II) was conjugated to a 16-mer peptide nucleic acid (PNA) targeting HIV-1 TAR RNA. For this purpose, we prepared the aminoglucosamine monomer 15 and attached it to the protected PNA prior to its cleavage from the solid support. We found that the resulting PNA-aminoglucosamine conjugate is stable under acidic conditions, efficiently taken up by the human cells and fairly distributed in both cytosol and nucleus without endosomal entrapment because cotreatment with endosome-disrupting agent had no effect on its cellular distribution. The conjugate displayed very high target specificity in vitro and strongly inhibited Tat mediated transactivation of HIV-1 LTR transcription in a cell culture system. The unique properties of this new class of PNA conjugate suggest it to be a potential candidate for therapeutic application.
Collapse
Affiliation(s)
- Indrajit Das
- Université de Grenoble I/CNRS, UMR 5063, Département de Pharmacochimie Moléculaire, ICMG FR 2607, 470 rue de la Chimie BP 53 F-38041 Grenoble, France
| | - Jérôme Désiré
- Université de Grenoble I/CNRS, UMR 5063, Département de Pharmacochimie Moléculaire, ICMG FR 2607, 470 rue de la Chimie BP 53 F-38041 Grenoble, France
| | - Dinesh Manvar
- Center for the Study of Emerging and Re-emerging Pathogens, UMDNJ-New Jersey Medical School, Department of Biochemistry and Molecular Biology, 185 South Orange Avenue, Newark, New Jersey 07103, USA
| | - Isabelle Baussanne
- Université de Grenoble I/CNRS, UMR 5063, Département de Pharmacochimie Moléculaire, ICMG FR 2607, 470 rue de la Chimie BP 53 F-38041 Grenoble, France
| | - Virendra N. Pandey
- Center for the Study of Emerging and Re-emerging Pathogens, UMDNJ-New Jersey Medical School, Department of Biochemistry and Molecular Biology, 185 South Orange Avenue, Newark, New Jersey 07103, USA
| | - Jean-Luc Décout
- Université de Grenoble I/CNRS, UMR 5063, Département de Pharmacochimie Moléculaire, ICMG FR 2607, 470 rue de la Chimie BP 53 F-38041 Grenoble, France
| |
Collapse
|
67
|
Charles I, Davis E, Arya DP. Efficient stabilization of phosphodiester (PO), phosphorothioate (PS), and 2'-O-methoxy (2'-OMe) DNA·RNA hybrid duplexes by amino sugars. Biochemistry 2012; 51:5496-505. [PMID: 22639785 DOI: 10.1021/bi3004507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Antisense strategies that target DNA·RNA hybrid structures offer potential for the development of new therapeutic drugs. The α-sarcin loop region of the 23S [corrected] rRNA domain has been shown to be a high value target for such strategies. Herein, aminoglycoside interaction with three RNA·DNA α-sarcin targeted duplexes (rR·dY, rR·S-dY, and rR·2'OMe-rY) have been investigated to determine the overall effect of aminoglycoside interaction on the stability, affinity, and conformation of these hybrid duplexes. To this end, UV thermal denaturation, circular dichroism spectroscopy, fluorescence intercalator displacement, and ITC as well as DSC calorimetry experiments were carried out. The results suggest the following. (1) Of all the aminoglycosides studied, neomycin confers the highest thermal stability on all three hybrid duplexes studied. (2) There is no appreciable difference in aminoglycoside-induced thermal stability between the unmodified rR·dY and phophorothioate modified rR·S-dY duplexes. (3) The rR·2'OMe-rY duplexes thermal stability is slightly less than the other two hybrids. (4) In all three duplexes, aminoglycoside-induced thermal stability decreased as the number of amino groups decreased. (5) CD scans revealed similar spectra for the rR·dY and rR·S-dY duplexes as well as a more pronounced A-form signal for the rR·2'OMe-rY duplex. (6) FID assays paralleled the CD results, yielding similar affinity values between the rR·dY and rR·S-dY duplexes and higher affinities with the rR·2'OMe-rY duplex. (7) The overall affinity trend between aminoglycosides and the three duplexes was determined to be neomycin > paromomycin > neamine > ribostamycin. (8) ITC K(a) values revealed similar binding constants for the rR·dY and rR·S-dY duplexes with rR·dY having a K(1) of (1.03 ± 0.58) × 10(7) M(-1) and K(2) of (1.13 ± 0.07) × 10(5) M(-1) while rR·S-dY produced a K(1) of (1.17 ± 0.54) × 10(7) M(-1) and K(2) of (1.27 ± 0.69) × 10(5) M(-1). (8) The rR·2'OMe-rY produced a slightly higher binding constant values with a K(1) of (1.25 ± 0.24) × 10(7) M(-1) and K(2) of (3.62 ± 0.18) × 10(5) M(-1). (9) The ΔT(m)-derived K(Tm) of 3.81 × 10(7) M(-1) for rR·S-dY was in relative agreement with the corresponding K(1) of 1.17 × 10(7) M(-1) derived constant from the fitted ITC. These results illustrate that the increased DNA·RNA hybrid duplex stability in the presence of aminoglycosides can help extend the roles of aminoglycosides in designing modified ODNs for targeting RNA.
Collapse
Affiliation(s)
- I Charles
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, South Carolina 29634, United States
| | | | | |
Collapse
|
68
|
Chen CZ, Sobczak K, Hoskins J, Southall N, Marugan JJ, Zheng W, Thornton CA, Austin CP. Two high-throughput screening assays for aberrant RNA-protein interactions in myotonic dystrophy type 1. Anal Bioanal Chem 2012; 402:1889-98. [PMID: 22218462 PMCID: PMC3280409 DOI: 10.1007/s00216-011-5604-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 12/22/2022]
Abstract
Myotonic dystrophy type 1 (DM1), the most prevalent form of adult muscular dystrophy, is caused by expansion of a CTG repeat in the 3' untranslated region of the DM protein kinase (DMPK) gene. The pathogenic effects of the CTG expansion arise from the deleterious effects of the mutant transcript. RNA with expanded CUG tracts alters the activities of several RNA binding proteins, including muscleblind-like 1 (MBNL1). MBNL1 becomes sequestered in nuclear foci in complex with the expanded CUG-repeat RNA. The resulting loss of MBNL1 activity causes misregulated alternative splicing of multiple genes, leading to symptoms of DM1. The binding interaction between MBNL1 and mutant RNA could be a key step in the pathogenesis of DM1 and serves as a potential target for therapeutic intervention. We have developed two high-throughput screens suitable assays using both homogenous time-resolved fluorescence energy transfer and AlphaScreen technologies to detect the binding of a C-terminally His-tagged MBNL1 and a biotinylated (CUG)(12) RNA. These assays are homogenous and successfully miniaturized to 1,536-well plate format. Both assays were validated and show robust signal-to-basal ratios and Z' factors.
Collapse
Affiliation(s)
- Catherine Z. Chen
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Krzysztof Sobczak
- Department of Neurology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61 251 Poznan, Poland
| | - Jason Hoskins
- Department of Neurology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
| | - Noel Southall
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Juan J. Marugan
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Wei Zheng
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Charles A. Thornton
- Department of Neurology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
| | - Christopher P. Austin
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
69
|
Jackowski O, Bussière A, Vanhaverbeke C, Baussanne I, Peyrin E, Mingeot-Leclercq MP, Décout JL. Major increases of the reactivity and selectivity in aminoglycoside O-alkylation due to the presence of fluoride ions. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.10.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
70
|
Kumar S, Arya DP. Recognition of HIV TAR RNA by triazole linked neomycin dimers. Bioorg Med Chem Lett 2011; 21:4788-92. [PMID: 21757341 PMCID: PMC3673547 DOI: 10.1016/j.bmcl.2011.06.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
Abstract
A series of neomycin dimers have been synthesized using 'click chemistry' with varying linker functionality and length to target the TAR RNA region of HIV virus. TAR (trans activation response) RNA region, a 59 base pair stem loop structure located at 5'-end of all nascent HIV-1 transcripts interacts with a key regulatory protein, Tat, and necessitates the replication of HIV-1 virus. Neomycin, an aminosugar, has been shown to exhibit more than one binding site with HIV TAR RNA. Multiple TAR binding sites of neomycin prompted us to design and synthesize a small library of neomycin dimers using click chemistry. The binding between neomycin dimers and HIV TAR RNA was characterized using spectroscopic techniques including FID (Fluorescent Intercalator Displacement) titration and UV-thermal denaturation. UV thermal denaturation studies demonstrate that neomycin dimer binding increase the melting temperature (T(m)) of the HIV TAR RNA up to 10°C. Ethidium bromide displacement titrations revealed nanomolar IC(50) between neomycin dimers and HIV TAR RNA, whereas with neomycin, a much higher IC(50) in the micromolar range is observed.
Collapse
Affiliation(s)
- Sunil Kumar
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, United States
| | | |
Collapse
|
71
|
Kiviniemi A, Virta P. Synthesis of aminoglycoside-3'-conjugates of 2'-O-methyl oligoribonucleotides and their invasion to a 19F labeled HIV-1 TAR model. Bioconjug Chem 2011; 22:1559-66. [PMID: 21688836 DOI: 10.1021/bc200101r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The potential of aminoglycosides to induce RNA-invasion has been demonstrated. For this purpose, aminoglycoside-3'-conjugates of 2'-O-methyl oligoribonucleotides have been synthesized entirely on a solid phase. The synthesis includes an automated oligonucleotide chain elongation to solid-supported neomycin, ribostamycin, and methyl neobiosamine, and a two-step deprotection/release of the solid-supported conjugate, which allows exploitation of a simple protecting group scheme. Conjugates have been targeted to a (19)F labeled HIV-1 TAR RNA model (Trans Activation Response element of HIV), which allows monitoring of the invasion by (19)F NMR spectroscopy. A remarkably enhanced invasion, compared to that resulting from the corresponding unmodified 2'-O-methyl oligoribonucleotide (5'-CAGGCUCA-3'), has been obtained by the neomycin conjugate. The increased affinity results from a cooperative binding of the neomycin moiety and hybridization, though the invasion may also follow a mechanism, in which the first molar equivalent of the conjugate induces hybridization of the second.
Collapse
Affiliation(s)
- Anu Kiviniemi
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | |
Collapse
|
72
|
Iwata R, Sudo M, Nagafuji K, Wada T. Synthesis of oligodiaminosaccharides having α-glycoside bonds and their interactions with oligonucleotide duplexes. J Org Chem 2011; 76:5895-906. [PMID: 21688799 DOI: 10.1021/jo200951p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Syntheses of the novel oligodiaminosaccharides, α-(1→4)-linked-2,6-diamino-2,6-dideoxy-D-glucopyranose oligomers, and their interactions with nucleic acid duplexes DNA-DNA, RNA-RNA, and DNA-RNA are described. Monomers to tetramers of oligodiaminoglucose derivatives having α-glycosyl bonds were successfully synthesized using a chain elongation cycle including glycosylation reactions of a 6-phthalimide glycosyl donor. UV melting experiments for a variety of nucleic acid duplexes in the absence and presence of the oligodiaminosaccharides were performed. The synthesized oligodiaminosaccharides exhibited notable thermodynamic stabilization effects on A-type RNA-RNA and DNA-RNA duplexes, whereas B-type DNA-DNA duplexes were not stabilized by the synthesized oligodiaminosaccharides. Among the oligodiaminosaccharides, the tetramer exhibited the highest ability to stabilize A-type duplexes, and the increase in T(m) values induced by the tetramer were higher than those induced by neomycin B and tobramycin, which are known aminoglycosides having ability to bind and stabilize a variety of RNA molecules. CD spectrometry experiments revealed that the oligodiaminosaccharides caused small structural changes in RNA-RNA duplexes, whereas no appreciable changes were observed in the structure of DNA-DNA duplexes. ITC (isothermal titration calorimetry) experiments demonstrated that the amount of heat generated by the interaction between RNA-RNA duplexes and the tetradiaminosaccharides was approximately double that generated by that between DNA-DNA duplexes and the tetradiaminosaccharides. These results strongly suggested the existence of an A-type nucleic acid specific-binding mode of the oligodiaminosaccharides, which bind to these duplexes and cause small structural changes.
Collapse
Affiliation(s)
- Rintaro Iwata
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Building 702, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | |
Collapse
|
73
|
Kumar S, Xue L, Arya DP. Neomycin-neomycin dimer: an all-carbohydrate scaffold with high affinity for AT-rich DNA duplexes. J Am Chem Soc 2011; 133:7361-75. [PMID: 21524066 PMCID: PMC3641821 DOI: 10.1021/ja108118v] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A dimeric neomycin-neomycin conjugate 3 with a flexible linker, 2,2'-(ethylenedioxy)bis(ethylamine), has been synthesized and characterized. Dimer 3 can selectively bind to AT-rich DNA duplexes with high affinity. Biophysical studies have been performed between 3 and different nucleic acids with varying base composition and conformation by using ITC (isothermal calorimetry), CD (circular dichroism), FID (fluorescent intercalator displacement), and UV (ultraviolet) thermal denaturation experiments. A few conclusions can be drawn from this study: (1) FID assay with 3 and polynucleotides demonstrates the preference of 3 toward AT-rich sequences over GC-rich sequences. (2) FID assay and UV thermal denaturation experiments show that 3 has a higher affinity for the poly(dA)·poly(dT) DNA duplex than for the poly(dA)·2poly(dT) DNA triplex. Contrary to neomycin, 3 destabilizes poly(dA)·2poly(dT) triplex but stabilizes poly(dA)·poly(dT) duplex, suggesting the major groove as the binding site. (3) UV thermal denaturation studies and ITC experiments show that 3 stabilizes continuous AT-tract DNA better than DNA duplexes with alternating AT bases. (4) CD and FID titration studies show a DNA binding site size of 10-12 base pairs/drug, depending upon the structure/sequence of the duplex for AT-rich DNA duplexes. (5) FID and ITC titration between 3 and an intramolecular DNA duplex [d(5'-A(12)-x-T(12)-3'), x = hexaethylene glycol linker] results in a binding stoichiometry of 1:1 with a binding constant ∼10(8) M(-1) at 100 mM KCl. (6) FID assay using 3 and 512 hairpin DNA sequences that vary in their AT base content and placement also show a higher binding selectivity of 3 toward continuous AT-rich than toward DNA duplexes with alternate AT base pairs. (7) Salt-dependent studies indicate the formation of three ion pairs during binding of the DNA duplex d[5'-A(12)-x-T(12)-3'] and 3. (8) ITC-derived binding constants between 3 and DNA duplexes have the following order: AT continuous, d[5'-G(3)A(5)T(5)C(3)-3'] > AT alternate, d[5'-G(3)(AT)(5)C(3)-3'] > GC-rich d[5'-A(3)G(5)C(5)T(3)-3']. (9) 3 binds to the AT-tract-containing DNA duplex (B* DNA, d[5'-G(3)A(5)T(5)C(3)-3']) with 1 order of magnitude higher affinity than to a DNA duplex with alternating AT base pairs (B DNA, d[5'-G(3)(AT)(5)C(3)-3']) and with almost 3 orders of magnitude higher affinity than a GC-rich DNA (A-form, d[5'-A(3)G(5)C(5)T(3)-3']).
Collapse
Affiliation(s)
- Sunil Kumar
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634
| | | | - Dev P. Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634
| |
Collapse
|
74
|
Chemical and structural biology of nucleic acids and protein-nucleic acid complexes for novel drug discovery. Sci China Chem 2011. [DOI: 10.1007/s11426-010-4174-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
75
|
Palde PB, Ofori LO, Gareiss PC, Lerea J, Miller BL. Strategies for recognition of stem-loop RNA structures by synthetic ligands: application to the HIV-1 frameshift stimulatory sequence. J Med Chem 2010; 53:6018-27. [PMID: 20672840 DOI: 10.1021/jm100231t] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Production of the Gag-Pol polyprotein in human immunodeficiency virus (HIV) requires a -1 ribosomal frameshift, which is directed by a highly conserved RNA stem-loop. Building on our discovery of a set of disulfide-containing peptides that bind this RNA, we describe medicinal chemistry efforts designed to begin to understand the structure-activity relationships and RNA sequence-selectivity relationships associated with these compounds. Additionally, we have prepared analogues incorporating an olefin or saturated hydrocarbon bioisostere of the disulfide moiety, as a first step toward enhancing biostability. The olefin-containing compounds exhibit affinity comparable to the lead disulfide and, importantly, have no discernible toxicity when incubated with human fibroblasts at concentrations up to 1 mM.
Collapse
Affiliation(s)
- Prakash B Palde
- Department of Dermatology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
76
|
Ellington AD. The RNA world. Empirical explorations of sequence space: Host-guest chemistry in the RNA world. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19940980907] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
77
|
Krstić I, Frolow O, Sezer D, Endeward B, Weigand JE, Suess B, Engels JW, Prisner TF. PELDOR spectroscopy reveals preorganization of the neomycin-responsive riboswitch tertiary structure. J Am Chem Soc 2010; 132:1454-5. [PMID: 20078041 DOI: 10.1021/ja9077914] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pulsed electron double resonance (PELDOR) spectroscopy reveals a prearranged tertiary structure of the 27 nucleotides long engineered neomycin-responsive riboswitch. Measured distances between spin labels at positions U4-U14, U4-U15, U14-U26, and U15-U26 were unchanged upon neomycin binding which implies that the global stem-loop architecture is preserved in the absence and presence of the ligand. On the basis of our results, we infer that low-temperature PELDOR data unambiguously demonstrate the existence of an enthalpically favorable set of RNA conformations ready to bind the ligand without major global rearrangement.
Collapse
Affiliation(s)
- Ivan Krstić
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Goldschmidt V, Miller Jenkins LM, de Rocquigny H, Darlix JL, Mély Y. The nucleocapsid protein of HIV-1 as a promising therapeutic target for antiviral drugs. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/hiv.10.3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The nucleocapsid protein (NCp7) is a major HIV-1 structural protein that plays key roles in viral replication, mainly through its conserved zinc fingers that direct specific interactions with the viral nucleic acids. Owing to its high degree of conservation and critical functions, NCp7 represents a target of choice for drugs that can potentially complement HAART, thus possibly impairing the circulation of drug-resistant HIV-1 strains. Zinc ejectors showing potent antiretroviral activity were developed, but early generations suffered from limited selectively and significant toxicity. Compounds with improved selectivity have been developed and are being explored as topical microbicide candidates. Several classes of molecules inhibiting the interaction of NCp7 with the viral nucleic acids have also been developed. Although small molecules would be more suited for drug development, most molecules selected by screening showed limited antiretroviral activity. Peptides and RNA aptamers appear to be more promising, but the mechanism of their antiretroviral activity remains elusive. Substantial and more concerted efforts are needed to further develop anti-HIV drugs targeting NCp7 and bring them to the clinic.
Collapse
Affiliation(s)
- Valérie Goldschmidt
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hugues de Rocquigny
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| | - Jean-Luc Darlix
- LaboRetro, Unité de Virologie Humaine INSERM 758, Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| |
Collapse
|
79
|
Tamura S, Shimizu N, Fujiwara K, Kaneko M, Kimura T, Murakami N. Bioisostere of valtrate, anti-HIV principle by inhibition for nuclear export of Rev. Bioorg Med Chem Lett 2010; 20:2159-62. [PMID: 20207540 DOI: 10.1016/j.bmcl.2010.02.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 02/01/2010] [Accepted: 02/09/2010] [Indexed: 11/28/2022]
Abstract
Rational design by the MO calculation disclosed 5,6-dihydrovaltrate (2) as the bioisostere of valtrate (1), the Rev-export inhibitor with anti-HIV activity. The synthesis of 2 was accomplished by ingenious use of asymmetric Diels-Alder reaction and stereoselective epoxidation associated with the adjacent hydroxyl group. Because of similar biological potency to 1, the analog 2 should be recognized as a promising scaffold for new anti-HIV agents with an unprecedented mechanism of action, inhibition for nuclear export of Rev protein, in the conventional remedy.
Collapse
Affiliation(s)
- Satoru Tamura
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
80
|
Abstract
PURPOSE OF REVIEW One of the major problems in HIV chemotherapy is appearance of drug-resistant virus strains. Novel HIV intervention strategies are required and new targets must be considered. The nuclear export of intron-containing HIV-1 mRNA is an essential step in the viral replication cycle and is a prospective antiviral target. This nucleocytoplasmic transport is mediated by the viral protein Rev. Rev binds as a multimeric complex to the viral mRNA and exports it to the cytoplasm exploiting the CRM1-mediated cellular machinery. Inhibitors acting on the interface between virus and cell could overcome the problems of drug resistance against virus-specific treatments. These drugs have an added value in combination therapy as they are expected to be less prone to virus-drug resistance selection, but they are likely to be more cytotoxic. RECENT FINDINGS We will discuss the therapeutic approaches aimed at interfering with Rev function, both now and likely in the future, and the recent attempts that have been undertaken to design small molecules against this target. SUMMARY Recent approaches provide leads for development of new compounds. A better understanding of the mechanism of Rev action and its interaction with the cellular transport pathway is required to identify and rationally design novel strategies that may have potential for future antiretroviral intervention.
Collapse
|
81
|
Pandey VN, Upadhyay A, Chaubey B. Prospects for antisense peptide nucleic acid (PNA) therapies for HIV. Expert Opin Biol Ther 2009; 9:975-89. [PMID: 19534584 DOI: 10.1517/14712590903052877] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Since the discovery and synthesis of a novel DNA mimic, peptide nucleic acid (PNA) in 1991, PNAs have attracted tremendous interest and have shown great promise as potential antisense drugs. They have been used extensively as tools for specific modulation of gene expression by targeting translation or transcription processes. This review discusses the present and future therapeutic potential of this class of compound as anti-HIV-1 drugs.
Collapse
Affiliation(s)
- Virendra N Pandey
- University of Medicine and Dentistry, New Jersey-New Jersey Medical School, Department of Biochemistry and Molecular Biology, Newark, NJ 07103, USA.
| | | | | |
Collapse
|
82
|
Aukema KG, Chohan KK, Plourde GL, Reimer KB, Rader SD. Small molecule inhibitors of yeast pre-mRNA splicing. ACS Chem Biol 2009; 4:759-68. [PMID: 19634919 DOI: 10.1021/cb900090z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spliceosome catalyzes pre-messenger RNA (pre-mRNA) splicing, an essential process in eukaryotic gene expression in which non-protein-coding sequences are removed from pre-mRNA. The spliceosome is a large, molecular complex composed of five small nuclear RNAs (snRNAs) and over 100 proteins. Large-scale rearrangements of the snRNAs and their associated proteins, including changes in base-pairing partners, are required to properly identify the intron-containing pre-mRNA, position it within the spliceosome, and complete the cleavage and ligation reactions of splicing. Despite detailed knowledge of the composition of the spliceosome at various stages of assembly, the critical signals and conformational changes that drive the dynamic rearrangements required for pre-mRNA splicing remain largely unknown. Just as ribosome-binding antibiotics facilitated mechanistic studies of the ribosome, study of the catalytic mechanisms of the spliceosome could be enhanced by the availability of small molecule inhibitors that block spliceosome assembly and splicing at defined stages. We sought to identify inhibitors of Saccharomyces cerevisiae splicing by screening for small molecules that block yeast splicing in vitro. We identified 10 small molecule inhibitors of yeast splicing, including four antibiotics, one kinase inhibitor, and five oxaspiro compounds. We also report that a subset of the oxaspiro derivatives permitted assembly of spliceosomal complexes onto pre-mRNA but blocked splicing prior to the first cleavage reaction.
Collapse
Affiliation(s)
- Kelly G. Aukema
- Department of Chemistry, University of Northern British Columbia, 3333 University Way, Prince George BC V2N 4Z9, Canada
| | - Kamalprit K. Chohan
- Department of Chemistry, University of Northern British Columbia, 3333 University Way, Prince George BC V2N 4Z9, Canada
| | - Guy L. Plourde
- Department of Chemistry, University of Northern British Columbia, 3333 University Way, Prince George BC V2N 4Z9, Canada
| | - Kerry B. Reimer
- Department of Chemistry, University of Northern British Columbia, 3333 University Way, Prince George BC V2N 4Z9, Canada
| | - Stephen D. Rader
- Department of Chemistry, University of Northern British Columbia, 3333 University Way, Prince George BC V2N 4Z9, Canada
| |
Collapse
|
83
|
Sortase-mediated protein ligation: an emerging biotechnology tool for protein modification and immobilisation. Biotechnol Lett 2009; 32:1-10. [PMID: 19728105 DOI: 10.1007/s10529-009-0116-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 01/15/2023]
Abstract
Sortases are transpeptidases produced by Gram-positive bacteria to anchor cell surface proteins covalently to the cell wall. The Staphylococcus aureus sortase A (SrtA) cleaves a short C-terminal recognition motif (LPXTG) on the target protein followed by the formation of an amide bond with the pentaglycine cross-bridge in the cell wall. Over recent years, several researchers have exploited this specific reaction for a range of biotechnology applications, including the incorporation of non-native peptides and non-peptidic molecules into proteins, the generation of nucleic acid-peptide conjugates and neoglycoconjugates, protein circularisation, and labelling of cell surface proteins on living cells.
Collapse
|
84
|
Zhang XG, Mason PW, Dubovi EJ, Xu X, Bourne N, Renshaw RW, Block TM, Birk AV. Antiviral activity of geneticin against dengue virus. Antiviral Res 2009; 83:21-7. [PMID: 19501253 PMCID: PMC2694137 DOI: 10.1016/j.antiviral.2009.02.204] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 02/23/2009] [Accepted: 02/27/2009] [Indexed: 10/21/2022]
Abstract
The aminoglycoside, geneticin (G418), was recently shown to have antiviral activity against bovine viral diarrhea virus (BVDV). Since BVDV, dengue virus (DENV) and yellow fever virus (YFV) all belong to the Flaviviridae family, it seemed possible that a common step in their life cycle might be affected by this aminoglycoside. Here it is shown that geneticin prevented the cytopathic effect (CPE) resulting from DENV-2 infection of BHK cells, in a dose-dependent manner with an 50% effective concentration (EC(50)) value of 3+/-0.4microg/ml. Geneticin had no detectable effect on CPE caused by YFV in BHK cells. Geneticin also inhibited DENV-2 viral yield with an EC(50) value of 2+/-0.1microg/ml and an EC(90) value of 20+/-2microg/ml. With a CC(50) value of 165+/-5microg/ml, the selectivity index of anti-DENV activity of geneticin in BHK cells was established to be 66. Furthermore, 25microg/ml of geneticin nearly completely blocked plaque formation induced by DENV-2, but not YFV. In addition, geneticin, inhibited DENV-2 viral RNA replication and viral translation. Gentamicin, kanamycin, and the guanidinylated geneticin showed no anti-DENV activity. Neomycin and paromomycin demonstrated weak antiviral activity at high concentrations. Finally, aminoglycoside-3'-phosphotransferase activity of neomycin-resistant gene abolished antiviral activity of geneticin.
Collapse
Affiliation(s)
- Xianchao G. Zhang
- Institute of Hepatitis and Viral Research, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA
| | - Peter W. Mason
- Department of Pathology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX
| | - Edward J. Dubovi
- Department of Population Medicine and Diagnostic Science, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Xiaodong Xu
- Institute of Hepatitis and Viral Research, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA
| | - Nigel Bourne
- Department of Pathology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX
| | - Randall W. Renshaw
- Department of Population Medicine and Diagnostic Science, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Timothy M. Block
- Institute of Hepatitis and Viral Research, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA
| | - Alexander V. Birk
- Institute of Hepatitis and Viral Research, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA
| |
Collapse
|
85
|
|
86
|
An L, Liu L, Wang S, Bazan G. An Optical Approach for Drug Screening Based on Light-Harvesting Conjugated Polyelectrolytes. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200900758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
87
|
An L, Liu L, Wang S, Bazan G. An Optical Approach for Drug Screening Based on Light-Harvesting Conjugated Polyelectrolytes. Angew Chem Int Ed Engl 2009; 48:4372-5. [DOI: 10.1002/anie.200900758] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
88
|
Klemm CM, Berthelmann A, Neubacher S, Arenz C. Short and Efficient Synthesis of Alkyne-Modified Amino Glycoside Building Blocks. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900076] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
89
|
Aminova O, Paul DJ, Childs-Disney JL, Disney MD. Two-dimensional combinatorial screening identifies specific 6'-acylated kanamycin A- and 6'-acylated neamine-RNA hairpin interactions. Biochemistry 2009; 47:12670-9. [PMID: 18991404 DOI: 10.1021/bi8012615] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Herein, we report the RNA hairpin loops from a six-nucleotide hairpin library that bind 6'-acylated kanamycin A (1) and 6'-acylated neamine (2) identified by two-dimensional combinatorial screening (2DCS). Hairpins selected to bind 1 have K(d)'s ranging from 235 to 1035 nM, with an average K(d) of 618 nM. For 2, the selected hairpins bind with K(d)'s ranging from 135 to 2300 nM, with an average K(d) of 1010 nM. The selected RNA hairpin-ligand interactions are also specific for the ligand that they were selected to bind compared with the other arrayed ligand. For example, the mixture of hairpins selected for 1 on average bind 33-fold more tightly to 1 than to 2, while the mixtures of hairpins selected for 2 on average bind 11-fold more tightly to 2 than to 1. Secondary structure prediction of the selected sequences was completed to determine the motifs that each ligand binds, and the hairpin loop preferences for 1 and 2 were computed. For 1, the preferred hairpin loops contain an adenine separated by at least two nucleotides from a cytosine, for example, ANNCNN (two-tailed p-value = 0.0010) and ANNNCN (two-tailed p-value <0.0001). For 2, the preferred hairpin loops contain both 5'GC and 5'CG steps (two-tailed p-value <0.0001). These results expand the information available on the RNA hairpin loops that bind small molecules and could prove useful for targeting RNA.
Collapse
Affiliation(s)
- Olga Aminova
- Department of Chemistry, University at Buffalo, The State University of New York, and the NYS Center of Excellence in Bioinformatics & Life Sciences, 657 Natural Sciences Complex, Buffalo, New York 14260, USA
| | | | | | | |
Collapse
|
90
|
Abstract
RNA molecules play essential roles in biological processes and are evolving as important targets for therapeutic intervention. Small molecules that specifically bind unique RNA sites and prevent the formation of functional RNA folds or RNA-protein complexes can modulate cell functions and can become of therapeutic potential. To explore such recognition events and to fabricate discovery assays, effective biophysical tools need to be advanced. When carefully designed, new fluorescent nucleosides can serve an unparalleled role in such studies. Our criteria for "ideal" fluorescent nucleoside analogs include: (a) high structural similarity to the native nucleobases to faithfully mimic their size and shape, as well as hybridization and recognition properties; (b) red-shifted absorption bands; (c) red-shifted emission band (preferably in the visible); (d) a reasonable emission quantum efficiency; and, importantly, (e) sensitivity of their photophysical parameters to changes in the microenvironment. Our program, aimed at the development of new emissive isomorphic nucleoside analogs, has yielded several useful nucleobases. Selected analogs were implemented in fluorescence-based assays. This overview presents the motivation for this work by introducing RNA-ligand interactions and discusses the design and synthesis of fluorescent isosteric nucleobase analogs and their utilization for the fabrication of "real-time" fluorescence-based biophysical assays.
Collapse
|
91
|
Kumar C, Himabindu M, Jetty A. Microbial Biosynthesis and Applications of Gentamicin: A Critical Appraisal. Crit Rev Biotechnol 2008; 28:173-212. [DOI: 10.1080/07388550802262197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
92
|
de la Torre JC. Reverse genetics approaches to combat pathogenic arenaviruses. Antiviral Res 2008; 80:239-50. [PMID: 18782590 PMCID: PMC2628465 DOI: 10.1016/j.antiviral.2008.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 08/11/2008] [Accepted: 08/13/2008] [Indexed: 11/18/2022]
Abstract
Several arenaviruses cause hemorrhagic fever (HF) in humans, and evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen of clinical significance. Moreover, arenaviruses pose a biodefense threat. No licensed anti-arenavirus vaccines are available, and current anti-arenavirus therapy is limited to the use of ribavirin, which is only partially effective and is associated with anemia and other side effects. Therefore, it is important to develop effective vaccines and better antiviral drugs to combat the dual threats of naturally occurring and intentionally introduced arenavirus infections. The development of arenavirus reverse genetic systems is allowing investigators to conduct a detailed molecular characterization of the viral cis-acting signals and trans-acting factors that control each of the steps of the arenavirus life cycle, including RNA synthesis, packaging and budding. Knowledge derived from these studies is uncovering potential novel targets for therapeutic intervention, as well as facilitating the establishment of assays to identify and characterize candidate antiviral drugs capable of interfering with specific steps of the virus life cycle. Likewise, the ability to generate predetermined specific mutations within the arenavirus genome and analyze their phenotypic expression would significantly contribute to the elucidation of arenavirus-host interactions, including the basis of their ability to cause severe HF. This, in turn, could lead to the development of novel, potent and safe arenavirus vaccines.
Collapse
Affiliation(s)
- Juan C de la Torre
- Immunology and Microbial Science, IMM-6, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
93
|
Belousoff MJ, Graham B, Spiccia L, Tor Y. Cleavage of RNA oligonucleotides by aminoglycosides. Org Biomol Chem 2008; 7:30-3. [PMID: 19081939 DOI: 10.1039/b813252f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A number of aminoglycoside antibiotics, and in particular neomycin B, are demonstrated to promote strand cleavage of RNA oligonucleotides (minimised HIV-1 TAR element and prokaryotic ribosomal A-site), by binding and causing sufficient distortion to the RNA backbone to render it more susceptible to intramolecular transesterification.
Collapse
|
94
|
Lapidot A, Berchanski A, Borkow G. Insight into the mechanisms of aminoglycoside derivatives interaction with HIV-1 entry steps and viral gene transcription. FEBS J 2008; 275:5236-57. [PMID: 18803669 DOI: 10.1111/j.1742-4658.2008.06657.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In recent years, based on peptide models of HIV-1 RNA binding, NMR structures of Tat-responsive element-ligand complexes and aminoglycoside-RNA interactions, and HIV-1 Tat structure, we have designed and synthesized aminoglycoside-arginine conjugates (AACs) and aminoglycoside poly-arginine conjugates (APACs), to serve as Tat mimetics. These novel molecules inhibit HIV-1 infectivity with 50% effective concentration values in the low micromolar range, the most potent compounds being the hexa-arginine-neomycin B and nona-D-arginine-neomycin conjugates. Importantly, these compounds, in addition to acting as Tat antagonists, inhibit HIV-1 infectivity by blocking several steps in HIV-1 cell entry. The AACs and APACs inhibit HIV-1 cell entry by interacting with gp120 at the CD4-binding site, by interacting with CXCR4 at the binding site of the CXCR4 mAb 12G5, and apparently by interacting with transient structures of the ectodomain of gp41. In the current review, we discuss the mechanisms of anti-HIV-1 activities of these AACs, APACs and other aminoglycoside derivatives in detail. Targeting several key processes in the viral life cycle by the same compound not only may increase its antiviral efficacy, but more importantly, may reduce the capacity of the virus to develop resistance to the compound. AACs and APACs may thus serve as leading compounds for the development of multitargeting novel HIV-1 inhibitors.
Collapse
Affiliation(s)
- Aviva Lapidot
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | |
Collapse
|
95
|
Berchanski A, Lapidot A. Bacterial RNase P RNA is a drug target for aminoglycoside-arginine conjugates. Bioconjug Chem 2008; 19:1896-906. [PMID: 18712898 DOI: 10.1021/bc800191u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ribonuclease P (RNase P) holoenzymes are RNPs composed of RNase P RNA (PRNA) and a variable number of P protein subunits. Primary differences in structure and function between bacterial and eukaryotic RNase P and its indispensability for cell viability make the bacterial enzyme an attractive drug target. On the basis of our previous studies, aminoglycoside-arginine conjugates (AACs) bind to HIV-1 TAR and Rev responsive element (RRE) RNAs significantly more efficiently than neomycin B. Their specific inhibition of bacterial rRNA as well as the findings that the hexa-arginine neomycin derivative (NeoR6) is 500-fold more potent than neomycin B in inhibiting bacterial RNase P, led us to explore the structure-function relationships of AACs in comparison to a new set of aminoglycoside-polyarginine conjugates (APACs). We here present predicted binding modes of AACs and APACs to PRNA. We used a multistep docking approach comprising rigid docking full scans and final refinement of the obtained complexes. Our docking results suggest three possible mechanisms of RNase P inhibition by AACs and APACs: competition with the P protein and pre-tRNA on binding to P1-P4 multihelix junction and to J19/4 region (probably including displacement of Mg2+ ions from the P4 helix) of PRNA; competition with Mg2+ ions near the P15 loop; and competition with the P protein and/or pre-tRNA near the P15 helix and interfering with interactions between the P protein and pre-tRNA at this region. The APACs revealed about 10-fold lower intermolecular energy than AACs, indicating stronger interactions of APACs than AACs with PRNA.
Collapse
Affiliation(s)
- Alexander Berchanski
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
96
|
Disney MD, Labuda LP, Paul DJ, Poplawski SG, Pushechnikov A, Tran T, Velagapudi SP, Wu M, Childs-Disney JL. Two-dimensional combinatorial screening identifies specific aminoglycoside-RNA internal loop partners. J Am Chem Soc 2008; 130:11185-94. [PMID: 18652457 DOI: 10.1021/ja803234t] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein is described the identification of RNA internal loops that bind to derivatives of neomycin B, neamine, tobramycin, and kanamycin A. RNA loop-ligand partners were identified by a two-dimensional combinatorial screening (2DCS) platform that probes RNA and chemical spaces simultaneously. In 2DCS, an aminoglycoside library immobilized onto an agarose microarray was probed for binding to a 3 x 3 nucleotide RNA internal loop library (81,920 interactions probed in duplicate in a single experiment). RNAs that bound aminoglycosides were harvested from the array via gel excision. RNA internal loop preferences for three aminoglycosides were identified from statistical analysis of selected structures. This provides consensus RNA internal loops that bind these structures and include: loops with potential GA pairs for the neomycin derivative, loops with potential GG pairs for the tobramycin derivative, and pyrimidine-rich loops for the kanamycin A derivative. Results with the neamine derivative show that it binds a variety of loops, including loops that contain potential GA pairs that also recognize the neomycin B derivative. All studied selected internal loops are specific for the aminoglycoside that they were selected to bind. Specificity was quantified for 16 selected internal loops by studying their binding to each of the arrayed aminoglycosides. Specificities ranged from 2- to 80-fold with an average specificity of 20-fold. These studies show that 2DCS is a unique platform to probe RNA and chemical space simultaneously to identify specific RNA motif-ligand interactions.
Collapse
Affiliation(s)
- Matthew D Disney
- Department of Chemistry, University at Buffalo, The State University of New York, and the New York State Center of Excellence in Bioinformatics and Life Sciences, 657 Natural Sciences Complex, Buffalo, New York 14260, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Birk AV, Dubovi EJ, Zhang X, Szeto HH. Antiviral activity of geneticin against bovine viral diarrhoea virus. Antivir Chem Chemother 2008; 19:33-40. [PMID: 18610556 DOI: 10.1177/095632020801900105] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Aminoglycoside G418 is commonly used to generate stable replicons for RNA viruses, such as hepatitis C virus, West Nile virus, and bovine viral diarrhoea virus (BVDV). This precludes testing 6418's own antiviral activities against those viruses. Here, we report antiviral activity of 6418 against BVDV. METHODS Cell viability and virus yield reduction assays were used to investigate antiviral effects of G418 against BVDV. The expression of viral proteins and RNA were determined by western blot and real-time quantitive PCR, respectively. RESULTS We demonstrated that G418 (50% cytotoxicity concentration of 400 microg/ml) improved cell viability of Madin-Darby bovine kidney cells infected with a cytopathic strain of BVDV (NADL) in a dose-dependent manner with 50% effective concentration of 4 microg/ml. Interestingly, close structural analogues with known properties as translation inhibitors similar to G418 - kanamycin and gentamicin - had no antiviral activity against BVDV. In addition, 6418 inhibits virus yield of two different strains of BVDV (NADL and NY-1) without affecting viral RNA replication and translation or viral NS3 protein processing. CONCLUSION Our data indicate that antiviral activity of G418 could result from interference with either the assembly or release of active virus, rather than the regulation of viral translation and replication. Thus, we propose the use of chemical analogues of G418 as antiviral therapeutics for treatment of viral diseases associated with the Flaviviridae family, such as hepatitis C virus, dengue virus, yellow fever virus, West Nile virus and others.
Collapse
Affiliation(s)
- Alexander V Birk
- Institute of Hepatitis and Viral Research, Doylestown, PA 18902, USA.
| | | | | | | |
Collapse
|
98
|
Freisz S, Lang K, Micura R, Dumas P, Ennifar E. Binding of aminoglycoside antibiotics to the duplex form of the HIV-1 genomic RNA dimerization initiation site. Angew Chem Int Ed Engl 2008; 47:4110-3. [PMID: 18435520 DOI: 10.1002/anie.200800726] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Séverine Freisz
- Architecture et Réactivité de l'ARN, Université Louis Pasteur/CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | |
Collapse
|
99
|
Heterocyclic compounds that inhibit Rev-RRE function and human immunodeficiency virus type 1 replication. Antimicrob Agents Chemother 2008; 52:3169-79. [PMID: 18625767 DOI: 10.1128/aac.00274-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A cell-based screening assay was performed to identify compounds that inhibited the postintegration stage of the human immunodeficiency virus (HIV) life cycle. This assay utilized a cell line that contains the HIV gag and pol genes expressed in a Rev-dependent fashion. The cell line produces about 10 to 15 ng of p24 per milliliter of medium over a 24-h period in the form of viruslike particles. Any compound that inhibits a postintegration step in the HIV life cycle scores in this assay by decreasing particle production. Forty thousand compounds were screened, and 192 compounds were selected from the original screen because they showed more than 50% inhibition at a 10 muM concentration. The cumulative evidence presented in this study strongly suggests that 2 of the 192 compounds work as inhibitors of HIV Rev function. This was determined by a variety of cell-based assays, although the compounds do not interfere with Rev-RRE (Rev response element) binding in vitro. Both compounds inhibit replication of the lab isolate NL4-3 as well as an HIV primary isolate from Brazil (93BR021) and thus are promising leads as therapeutic candidates that target HIV replication through inhibition of Rev function.
Collapse
|
100
|
Aslam MW, Busscher GF, Weiner DP, Gelder RD, Rutjes FPJT, Delft FLV. Fully Orthogonally Protected 2-Deoxystreptamine from Kanamycin. J Org Chem 2008; 73:5131-4. [DOI: 10.1021/jo8004414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Waqar Aslam
- Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, and Verenium Corporation, 4955 Directors Place, San Diego, California 92121
| | - Guuske F. Busscher
- Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, and Verenium Corporation, 4955 Directors Place, San Diego, California 92121
| | - David P. Weiner
- Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, and Verenium Corporation, 4955 Directors Place, San Diego, California 92121
| | - René de Gelder
- Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, and Verenium Corporation, 4955 Directors Place, San Diego, California 92121
| | - Floris P. J. T. Rutjes
- Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, and Verenium Corporation, 4955 Directors Place, San Diego, California 92121
| | - Floris L. van Delft
- Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, and Verenium Corporation, 4955 Directors Place, San Diego, California 92121
| |
Collapse
|