51
|
Simon JN, Duglan D, Casadei B, Carnicer R. Nitric oxide synthase regulation of cardiac excitation-contraction coupling in health and disease. J Mol Cell Cardiol 2014; 73:80-91. [PMID: 24631761 DOI: 10.1016/j.yjmcc.2014.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 02/07/2023]
Abstract
Significant advances in our understanding of the ability of nitric oxide synthases (NOS) to modulate cardiac function have provided key insights into the role NOS play in the regulation of excitation-contraction (EC) coupling in health and disease. Through both cGMP-dependent and cGMP-independent (e.g. S-nitrosylation) mechanisms, NOS have the ability to alter intracellular Ca(2+) handling and the myofilament response to Ca(2+), thereby impacting the systolic and diastolic performance of the myocardium. Findings from experiments using nitric oxide (NO) donors and NOS inhibition or gene deletion clearly implicate dysfunctional NOS as a critical contributor to many cardiovascular disease states. However, studies to date have only partially addressed NOS isoform-specific effects and, more importantly, how subcellular localization of NOS influences ion channels involved in myocardial EC coupling and excitability. In this review, we focus on the contribution of each NOS isoform to cardiac dysfunction and on the role of uncoupled NOS activity in common cardiac disease states, including heart failure, diabetic cardiomyopathy, ischemia/reperfusion injury and atrial fibrillation. We also review evidence that clearly indicates the importance of NO in cardioprotection. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System".
Collapse
Affiliation(s)
- Jillian N Simon
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Drew Duglan
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Barbara Casadei
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Ricardo Carnicer
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
52
|
Abstract
INTRODUCTION Cardiovascular gene therapy is the third most popular application for gene therapy, representing 8.4% of all gene therapy trials as reported in 2012 estimates. Gene therapy in cardiovascular disease is aiming to treat heart failure from ischemic and non-ischemic causes, peripheral artery disease, venous ulcer, pulmonary hypertension, atherosclerosis and monogenic diseases, such as Fabry disease. AREAS COVERED In this review, we will focus on elucidating current molecular targets for the treatment of ventricular dysfunction following myocardial infarction (MI). In particular, we will focus on the treatment of i) the clinical consequences of it, such as heart failure and residual myocardial ischemia and ii) etiological causes of MI (coronary vessels atherosclerosis, bypass venous graft disease, in-stent restenosis). EXPERT OPINION We summarise the scheme of the review and the molecular targets either already at the gene therapy clinical trial phase or in the pipeline. These targets will be discussed below. Following this, we will focus on what we believe are the 4 prerequisites of success of any gene target therapy: safety, expression, specificity and efficacy (SESE).
Collapse
Affiliation(s)
- Maria C Scimia
- Temple University, Translational Medicine/Pharmacology , 3500 N. Broad Street, Philadelphia, 19140 , USA
| | | | | |
Collapse
|
53
|
Bathgate-Siryk A, Dabul S, Pandya K, Walklett K, Rengo G, Cannavo A, De Lucia C, Liccardo D, Gao E, Leosco D, Koch WJ, Lymperopoulos A. Negative impact of β-arrestin-1 on post-myocardial infarction heart failure via cardiac and adrenal-dependent neurohormonal mechanisms. Hypertension 2013; 63:404-12. [PMID: 24218435 DOI: 10.1161/hypertensionaha.113.02043] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
β-Arrestin (βarr)-1 and β-arrestin-2 (βarrs) are universal G-protein-coupled receptor adapter proteins that negatively regulate cardiac β-adrenergic receptor (βAR) function via βAR desensitization and downregulation. In addition, they mediate G-protein-independent βAR signaling, which might be beneficial, for example, antiapoptotic, for the heart. However, the specific role(s) of each βarr isoform in cardiac βAR dysfunction, the molecular hallmark of chronic heart failure (HF), remains unknown. Furthermore, adrenal βarr1 exacerbates HF by chronically enhancing adrenal production and hence circulating levels of aldosterone and catecholamines. Herein, we sought to delineate specific roles of βarr1 in post-myocardial infarction (MI) HF by testing the effects of βarr1 genetic deletion on normal and post-MI cardiac function and morphology. We studied βarr1 knockout (βarr1KO) mice alongside wild-type controls under normal conditions and after surgical MI. Normal (sham-operated) βarr1KO mice display enhanced βAR-dependent contractility and post-MI βarr1KO mice enhanced overall cardiac function (and βAR-dependent contractility) compared with wild type. Post-MI βarr1KO mice also show increased survival and decreased cardiac infarct size, apoptosis, and adverse remodeling, as well as circulating catecholamines and aldosterone, compared with post-MI wild type. The underlying mechanisms, on one hand, improved cardiac βAR signaling and function, as evidenced by increased βAR density and procontractile signaling, via reduced cardiac βAR desensitization because of cardiac βarr1 absence, and, on the other hand, decreased production leading to lower circulating levels of catecholamines and aldosterone because of adrenal βarr1 absence. Thus, βarr1, via both cardiac and adrenal effects, is detrimental for cardiac structure and function and significantly exacerbates post-MI HF.
Collapse
Affiliation(s)
- Ashley Bathgate-Siryk
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, 3200 S University Dr, HPD Bldg/Room 1338, Fort Lauderdale, FL 33328.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Heart failure (HF), the leading cause of death in the western world, develops when a cardiac injury or insult impairs the ability of the heart to pump blood and maintain tissue perfusion. It is characterized by a complex interplay of several neurohormonal mechanisms that become activated in the syndrome to try and sustain cardiac output in the face of decompensating function. Perhaps the most prominent among these neurohormonal mechanisms is the adrenergic (or sympathetic) nervous system (ANS), whose activity and outflow are enormously elevated in HF. Acutely, and if the heart works properly, this activation of the ANS will promptly restore cardiac function. However, if the cardiac insult persists over time, chances are the ANS will not be able to maintain cardiac function, the heart will progress into a state of chronic decompensated HF, and the hyperactive ANS will continue to push the heart to work at a level much higher than the cardiac muscle can handle. From that point on, ANS hyperactivity becomes a major problem in HF, conferring significant toxicity to the failing heart and markedly increasing its morbidity and mortality. The present review discusses the role of the ANS in cardiac physiology and in HF pathophysiology, the mechanisms of regulation of ANS activity and how they go awry in chronic HF, methods of measuring ANS activity in HF, the molecular alterations in heart physiology that occur in HF, along with their pharmacological and therapeutic implications, and, finally, drugs and other therapeutic modalities used in HF treatment that target or affect the ANS and its effects on the failing heart.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft. Lauderdale, FL 33328-2018, USA.
| | | | | |
Collapse
|
55
|
Lymperopoulos A. Physiology and pharmacology of the cardiovascular adrenergic system. Front Physiol 2013; 4:240. [PMID: 24027534 PMCID: PMC3761154 DOI: 10.3389/fphys.2013.00240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 12/25/2022] Open
Abstract
Heart failure (HF), the leading cause of death in the western world, ensues in response to cardiac injury or insult and represents the inability of the heart to adequately pump blood and maintain tissue perfusion. It is characterized by complex interactions of several neurohormonal mechanisms that get activated in the syndrome in order to try and sustain cardiac output in the face of decompensating function. The most prominent among these neurohormonal mechanisms is the adrenergic (or sympathetic) nervous system (ANS), whose activity and outflow are greatly elevated in HF. Acutely, provided that the heart still works properly, this activation of the ANS will promptly restore cardiac function according to the fundamental Frank-Starling law of cardiac function. However, if the cardiac insult persists over time, this law no longer applies and ANS will not be able to sustain cardiac function. This is called decompensated HF, and the hyperactive ANS will continue to "push" the heart to work at a level much higher than the cardiac muscle can handle. From that point on, ANS hyperactivity becomes a major problem in HF, conferring significant toxicity to the failing heart and markedly increasing its morbidity and mortality. The present review discusses the role of the ANS in cardiac physiology and in HF pathophysiology, the mechanisms of regulation of ANS activity and how they go awry in chronic HF, and, finally, the molecular alterations in heart physiology that occur in HF along with their pharmacological and therapeutic implications for the failing heart.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy Fort Lauderdale, FL, USA
| |
Collapse
|
56
|
Gravning J, Ahmed MS, Qvigstad E, Krobert K, Edvardsen T, Moe IT, Hagelin EMV, Sagave J, Valen G, Levy FO, Osnes JB, Skomedal T, Attramadal H. Connective tissue growth factor/CCN2 attenuates β-adrenergic receptor responsiveness and cardiotoxicity by induction of G protein-coupled receptor kinase-5 in cardiomyocytes. Mol Pharmacol 2013; 84:372-83. [PMID: 23778361 DOI: 10.1124/mol.113.087312] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Myocardial connective tissue growth factor (CTGF/CCN2) is induced in heart failure, a condition associated with diminution of β-adrenergic receptor (β-AR) responsiveness. Accordingly, we aimed to investigate whether CTGF could play a mechanistic role in regulation of β-AR responsiveness. Concentration-response curves of isoproterenol-stimulated cAMP generation in cardiomyocytes from transgenic mice with cardiac-restricted overexpression of CTGF (Tg-CTGF) or cardiomyocytes pretreated with recombinant human CTGF (rec-hCTGF) revealed marked reduction of both β₁-AR and β₂-AR responsiveness. Consistently, ventricular muscle strips from Tg-CTGF mice stimulated with isoproterenol displayed attenuation of maximal inotropic responses. However, no differences of maximal inotropic responses of myocardial fibers from Tg-CTGF mice and nontransgenic littermate control (NLC) mice were discerned when stimulated with supramaximal concentrations of dibutyryl-cAMP, indicating preserved downstream responsiveness to cAMP. Congruent with a mechanism of desensitization of β-ARs, mRNA and protein levels of G protein-coupled receptor kinase 5 (GRK5) were found isoform-selective upregulated in both cardiomyocytes from Tg-CTGF mice and cardiomyocytes exposed to rec-hCTGF. Corroborating a mechanism of GRK5 in CTGF-mediated control of β-AR sensitivity, Chinese hamster ovary cells pretreated with rec-hCTGF displayed increased agonist- and biased ligand-stimulated β-arrestin binding to β-ARs. Despite increased sensitivity of cardiomyocytes from GRK5-knockout (KO) mice to β-adrenergic agonists, pretreatment of GRK5-KO cardiomyocytes with rec-hCTGF, as opposed to cardiomyocytes from wild-type mice, did not alter β-AR responsiveness. Finally, Tg-CTGF mice subjected to chronic exposure (14 days) to isoproterenol revealed blunted myocardial hypertrophy and preserved cardiac function versus NLC mice. In conclusion, this study uncovers a novel mechanism controlling β-AR responsiveness in cardiomyocytes involving CTGF-mediated regulation of GRK5.
Collapse
Affiliation(s)
- Jørgen Gravning
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Fridolfsson HN, Patel HH. Caveolin and caveolae in age associated cardiovascular disease. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2013; 10:66-74. [PMID: 23610576 PMCID: PMC3627709 DOI: 10.3969/j.issn.1671-5411.2013.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/15/2012] [Accepted: 12/18/2012] [Indexed: 12/13/2022]
Abstract
It is estimated that the elderly (> 65 years of age) will increase from 13%−14% to 25% by 2035. If this trend continues, > 50% of the United States population and more than two billion people worldwide will be “aged” in the next 50 years. Aged individuals face formidable challenges to their health, as aging is associated with a myriad of diseases. Cardiovascular disease is the leading cause of morbidity and mortality in the United States with > 50% of mortality attributed to coronary artery disease and > 80% of these deaths occurring in those age 65 and older. Therefore, age is an important predictor of cardiovascular disease. The efficiency of youth is built upon cellular signaling scaffolds that provide tight and coordinated signaling. Lipid rafts are one such scaffold of which caveolae are a subset. In this review, we consider the importance of caveolae in common cardiovascular diseases of the aged and as potential therapeutic targets. We specifically address the role of caveolin in heart failure, myocardial ischemia, and pulmonary hypertension.
Collapse
Affiliation(s)
- Heidi N Fridolfsson
- Departments of Anesthesiology, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
58
|
Petersen M, Andersen JT, Jimenez-Solem E, Broedbaek K, Hjelvang BR, Henriksen T, Frandsen E, Forman JL, Torp-Pedersen C, Køber L, Poulsen HE. Effect of the Arg389Gly β₁-adrenoceptor polymorphism on plasma renin activity and heart rate, and the genotype-dependent response to metoprolol treatment. Clin Exp Pharmacol Physiol 2013; 39:779-85. [PMID: 22703382 DOI: 10.1111/j.1440-1681.2012.05736.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. A gene-drug interaction has been indicated between β₁-adrenoceptor-selective beta-blockers and the Arg389Gly polymorphism (rs1801253) in the adrenergic beta-1 receptor gene (ADRB1). In the present study, we investigated the effect of the ADRB1 Arg389Gly polymorphism on plasma renin activity (PRA) and heart rate (HR), as well as genotype-dependent responses to metoprolol and exercise. 2. Twenty-nine healthy male subjects participated in two treatment periods (placebo and 200 mg/day metoprolol). A 15 min submaximal exercise test was performed after each treatment period and PRA and HR were measured before and after exercise. 3. Before exercise, median PRA was lower in Gly/Gly subjects than in Arg/Arg subjects after both placebo (P = 0.030) and metoprolol (P = 0.020) treatment. After placebo, the exercise-induced increase in PRA was greater in Gly/Gly than Arg/Gly and Arg/Arg subjects (P = 0.033). The linear association between log(PRA) and log(metoprolol concentration) varied significantly between genotypes (P = 0.024). In Gly/Gly subjects, PRA decreased significantly with metoprolol concentration before (P = 0.025) and after exercise (P < 0.001), whereas in Arg/Gly and Arg/Arg subjects metoprolol concentration had no effect on PRA. The effect of metoprolol concentration on PRA in Gly/Gly subjects was enhanced by exercise (P = 0.044). No significant differences in HR were seen between genotype groups. 4. Resting PRA was lower in Gly/Gly than Arg/Arg subjects and the effect of exercise and metoprolol concentration on PRA was stronger in Gly/Gly subjects than with the other two genotypes. Thus, Gly/Gly heart failure patients may require lower doses of metoprolol than other patients to block neurohumoral hyperactivity.
Collapse
Affiliation(s)
- Morten Petersen
- Laboratory of Clinical Pharmacology, Rigshospitalet-Copenhagen University Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Ageing is the main determinant of haemodynamics and autonomic cardiac changes observed in post-menopausal female rats. Auton Neurosci 2013; 174:36-41. [PMID: 23291358 DOI: 10.1016/j.autneu.2012.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/04/2012] [Accepted: 12/06/2012] [Indexed: 01/05/2023]
Abstract
The aim of this study was to evaluate and compare the effects of early and physiological menopause on cardiac autonomic parameters in aged female rats. To this end, female Wistar rats (22 and 82 weeks old, N=96) were divided into 4 groups: Young Sham-operated Rats, Aged Sham-operated Rats, Young Ovariectomised (OVX) Rats, and Aged OVX Rats. Young Sham-operated and OVX rats were used as controls. The cardiac autonomic parameters were investigated using different approaches: 1) pharmacological evaluation of the autonomic tonus with methylatropine and propranolol; 2) isolated cardiac contractility with β-adrenergic agonists; and 3) quantification of the mRNA and protein level expression of cardiac β-adrenergic receptors. Among the groups of aged female rats, both the Sham-operated and OVX rats showed higher basal mean arterial pressure and heart rate (HR) values compared to their respective young counterparts. The aged groups also showed a predominance of the sympathetic autonomic component in the determination of HR, whereas the young rats showed a vagal predominance. An assessment of cardiac contractility showed that aged Sham-operated and OVX rats had lower contractile responses following the administration of dobutamine compared to their respective young counterparts. In addition, the aged groups showed higher mRNA and protein expression levels of the β1-adrenergic receptors. In conclusion, our results show that haemodynamic alterations and impairment of the autonomic parameters were similar between the groups of rats subjected to early and physiological menopause. Moreover, these results seem to be due to the ageing process and not ovarian hormone deprivation.
Collapse
|
60
|
Arrestins in the cardiovascular system. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:297-334. [PMID: 23764059 DOI: 10.1016/b978-0-12-394440-5.00012-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Of the four mammalian arrestins, only the β-arrestins (βarrs; Arrestin2 and -3) are expressed throughout the cardiovascular system, where they regulate, as either desensitizers/internalizers or signal transducers, several G-protein-coupled receptors (GPCRs) critical for cardiovascular homeostasis. The cardiovascular roles of βarrs have been delineated at an accelerated pace via a variety of techniques and tools, such as knockout mice, siRNA knockdown, artificial or naturally occurring polymorphic GPCRs, and availability of new βarr "biased" GPCR ligands. This chapter summarizes the current knowledge of cardiovascular arrestin physiology and pharmacology, addressing the individual cardiovascular receptors affected by βarrs in vivo, as well as the individual cell types, tissues, and organs of the cardiovascular system in which βarr effects are exerted; for example, cardiac myocyte or fibroblast, vascular smooth muscle, adrenal gland and platelet. In the broader scope of cardiovascular βarr pharmacology, a discussion of the βarr "bias" of certain cardiovascular GPCR ligands is also included.
Collapse
|
61
|
Abstract
Myocardial contraction occurs when calcium (Ca(2+)) is released from the sarcoplasmic reticulum, binding troponin C and allowing actin and myosin to cross link. Ca(2+) release and uptake is closely regulated by G protein-coupled β-adrenergic receptors through the action of the second messenger cAMP. An increase in cAMP level leads to phosphorylation of key regulatory proteins affecting intracellular Ca(2+) homeostasis. The β-adrenergic receptors themselves are regulated by a set of specific kinases, termed the G-protein-coupled receptor kinases (GRKs). The study of this complex system in vivo has recently been advanced by the development of transgenic and gene-targeted (knockout) mouse models. Combining transgenic technology with sophisticated physiological measurements of cardiac hemodynamics is an extremely powerful approach to the study of myocardial contractility and its regulation. This review focuses on several recent transgenic mouse models that have increased our understanding of the regulation of cardiac contractility.
Collapse
Affiliation(s)
- O Ben-Yehuda
- Ori Ben-Yehuda and Howard A. Rockman are at the Division of Cardiology, Department of Medicine, University of California at San Diego, School of Medicine, La Jolla, CA 92093-01613, USA
| | | |
Collapse
|
62
|
Nakaya M, Chikura S, Watari K, Mizuno N, Mochinaga K, Mangmool S, Koyanagi S, Ohdo S, Sato Y, Ide T, Nishida M, Kurose H. Induction of cardiac fibrosis by β-blocker in G protein-independent and G protein-coupled receptor kinase 5/β-arrestin2-dependent Signaling pathways. J Biol Chem 2012; 287:35669-35677. [PMID: 22888001 DOI: 10.1074/jbc.m112.357871] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
G-protein coupled receptors (GPCRs) have long been known as receptors that activate G protein-dependent cellular signaling pathways. In addition to the G protein-dependent pathways, recent reports have revealed that several ligands called "biased ligands" elicit G protein-independent and β-arrestin-dependent signaling through GPCRs (biased agonism). Several β-blockers are known as biased ligands. All β-blockers inhibit the binding of agonists to the β-adrenergic receptors. In addition to β-blocking action, some β-blockers are reported to induce cellular responses through G protein-independent and β-arrestin-dependent signaling pathways. However, the physiological significance induced by the β-arrestin-dependent pathway remains much to be clarified in vivo. Here, we demonstrate that metoprolol, a β(1)-adrenergic receptor-selective blocker, could induce cardiac fibrosis through a G protein-independent and β-arrestin2-dependent pathway. Metoprolol, a β-blocker, increased the expression of fibrotic genes responsible for cardiac fibrosis in cardiomyocytes. Furthermore, metoprolol induced the interaction between β(1)-adrenergic receptor and β-arrestin2, but not β-arrestin1. The interaction between β(1)-adrenergic receptor and β-arrestin2 by metoprolol was impaired in the G protein-coupled receptor kinase 5 (GRK5)-knockdown cells. Metoprolol-induced cardiac fibrosis led to cardiac dysfunction. However, the metoprolol-induced fibrosis and cardiac dysfunction were not evoked in β-arrestin2- or GRK5-knock-out mice. Thus, metoprolol is a biased ligand that selectively activates a G protein-independent and GRK5/β-arrestin2-dependent pathway, and induces cardiac fibrosis. This study demonstrates the physiological importance of biased agonism, and suggests that G protein-independent and β-arrestin-dependent signaling is a reason for the diversity of the effectiveness of β-blockers.
Collapse
Affiliation(s)
- Michio Nakaya
- Department of Pharmacology and Toxicology, Kyushu University, Fukuoka 812-8582
| | - Satsuki Chikura
- Department of Pharmacology and Toxicology, Kyushu University, Fukuoka 812-8582
| | - Kenji Watari
- Department of Pharmacology and Toxicology, Kyushu University, Fukuoka 812-8582
| | - Natsumi Mizuno
- Department of Pharmacology and Toxicology, Kyushu University, Fukuoka 812-8582
| | - Koji Mochinaga
- Department of Pharmacology and Toxicology, Kyushu University, Fukuoka 812-8582
| | - Supachoke Mangmool
- Department of Pharmacology and Toxicology, Kyushu University, Fukuoka 812-8582
| | - Satoru Koyanagi
- Department of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582
| | - Shigehiro Ohdo
- Department of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582
| | - Yoji Sato
- Division of Cellular and Gene Therapy Products, National Institute of Health Sciences, Setagaya, Tokyo 158-8501, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582
| | - Motohiro Nishida
- Department of Pharmacology and Toxicology, Kyushu University, Fukuoka 812-8582
| | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Kyushu University, Fukuoka 812-8582.
| |
Collapse
|
63
|
Belmonte SL, Blaxall BC. Conducting the G-protein Coupled Receptor (GPCR) Signaling Symphony in Cardiovascular Diseases: New Therapeutic Approaches. ACTA ACUST UNITED AC 2012; 9:e85-e90. [PMID: 23162605 DOI: 10.1016/j.ddmod.2012.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are a virtually ubiquitous class of membrane-bound receptors, which functionally couple hormone or neurotransmitter signals to physiological responses. Dysregulation of GPCR signaling contributes to the pathophysiology of a host of cardiovascular disorders. Pharmacological agents targeting GPCRs have been established as therapeutic options for decades. Nevertheless, the persistent burden of cardiovascular diseases necessitates improved treatments. To that end, exciting drug development efforts have begun to focus on novel compounds that discriminately activate particular GPCR signaling pathways.
Collapse
Affiliation(s)
- Stephen L Belmonte
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
64
|
Chan SW, Hu M, Tomlinson B. The pharmacogenetics of β-adrenergic receptor antagonists in the treatment of hypertension and heart failure. Expert Opin Drug Metab Toxicol 2012; 8:767-90. [DOI: 10.1517/17425255.2012.685157] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
65
|
Somvanshi RK, Kumar U. Pathophysiology of GPCR Homo- and Heterodimerization: Special Emphasis on Somatostatin Receptors. Pharmaceuticals (Basel) 2012; 5:417-46. [PMID: 24281555 PMCID: PMC3763651 DOI: 10.3390/ph5050417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 12/19/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are cell surface proteins responsible for translating >80% of extracellular reception to intracellular signals. The extracellular information in the form of neurotransmitters, peptides, ions, odorants etc is converted to intracellular signals via a wide variety of effector molecules activating distinct downstream signaling pathways. All GPCRs share common structural features including an extracellular N-terminal, seven-transmembrane domains (TMs) linked by extracellular/intracellular loops and the C-terminal tail. Recent studies have shown that most GPCRs function as dimers (homo- and/or heterodimers) or even higher order of oligomers. Protein-protein interaction among GPCRs and other receptor proteins play a critical role in the modulation of receptor pharmacology and functions. Although ~50% of the current drugs available in the market target GPCRs, still many GPCRs remain unexplored as potential therapeutic targets, opening immense possibility to discover the role of GPCRs in pathophysiological conditions. This review explores the existing information and future possibilities of GPCRs as tools in clinical pharmacology and is specifically focused for the role of somatostatin receptors (SSTRs) in pathophysiology of diseases and as the potential candidate for drug discovery.
Collapse
Affiliation(s)
- Rishi K Somvanshi
- Faculty of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | | |
Collapse
|
66
|
Abstract
OBJECTIVE Several stress-related states and conditions that are considered to involve sympathetic overactivation are accompanied by increased circulating levels of inflammatory immune markers. Prolonged sympathetic overactivity involves increased stimulation of the β-adrenergic receptor (β-AR). Although prior research suggests that one mechanism by which sympathetic stimulation may facilitate inflammation is via β-AR activation, little work has focused on the relationship between circulating inflammatory immune markers and β-AR function within the human body (in vivo). We examined whether decreased β-AR sensitivity, an indicator of prolonged β-adrenergic overactivation and a physiological component of chronic stress, is related to elevated levels of inflammatory immune markers. METHODS Ninety-three healthy participants aged 19 to 51 years underwent the chronotropic 25 dose isoproterenol test to determine in vivo β-AR function. Circulating levels of C-reactive protein, interleukin 6, and soluble tumor necrosis factor receptor 1 were determined. RESULTS β-AR sensitivity was lower in people with higher C-reactive protein concentrations (r = 0.326, p = .003). That relationship remained significant after controlling for sociodemographic and health variables such as age, sex, ethnicity, body mass index, mean arterial blood pressure, heart rate, leisure-time exercise, and smoking status. No significant relationship was found between chronotropic 25 dose and interleukin 6 or soluble tumor necrosis factor receptor 1. CONCLUSIONS This study demonstrates a link between in vivo β-adrenergic receptor function and selected circulating inflammatory markers (CRP) in humans. Future studies in specific disease states may be promising.
Collapse
|
67
|
Katz MG, Fargnoli AS, Tomasulo CE, Pritchette LA, Bridges CR. Model-specific selection of molecular targets for heart failure gene therapy. J Gene Med 2012; 13:573-86. [PMID: 21954055 DOI: 10.1002/jgm.1610] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Heart failure (HF) is a complex multifaceted problem of abnormal ventricular function and structure. In recent years, new information has been accumulated allowing for a more detailed understanding of the cellular and molecular alterations that are the underpinnings of diverse causes of HF, including myocardial ischemia, pressure-overload, volume-overload or intrinsic cardiomyopathy. Modern pharmacological approaches to treat HF have had a significant impact on the course of the disease, although they do not reverse the underlying pathological state of the heart. Therefore gene-based therapy holds a great potential as a targeted treatment for cardiovascular diseases. Here, we survey the relative therapeutic efficacy of genetic modulation of β-adrenergic receptor signaling, Ca(2+) handling proteins and angiogenesis in the most common extrinsic models of HF.
Collapse
Affiliation(s)
- Michael G Katz
- Department of Surgery, Division of Cardiovascular Surgery, The University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
68
|
Schumacher-Bass SM, Traynham CJ, Koch WJ. G protein-coupled Receptor Kinase 2 as a Therapeutic Target for Heart Failure. ACTA ACUST UNITED AC 2012; 9:e155-e162. [PMID: 24839449 DOI: 10.1016/j.ddstr.2014.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An ever-increasing number of people world-wide are developing and suffering from heart failure, and existing therapies, although improved are not ideal. Therefore, innovative treatment strategies are urgently needed. As our understanding of the underlying dysfunction of the myocardium increases, so does our ability to target the mechanisms responsible for heart failure progression. In this review we discuss novel molecular therapies and approaches for the treatment of heart failure. We will focus on the G protein-coupled receptor kinase GRK2, an increasing target for heart failure therapy, based on its important role in disease progression and the therapeutic potential of GRK2 inhibitors.
Collapse
Affiliation(s)
- Sarah M Schumacher-Bass
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine, Medical Education Research Building, 3500 North Broad Street, MERB 940, Philadelphia, PA 19140, USA
| | - Christopher J Traynham
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine, Medical Education Research Building, 3500 North Broad Street, MERB 940, Philadelphia, PA 19140, USA
| | - Walter J Koch
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine, Medical Education Research Building, 3500 North Broad Street, MERB 940, Philadelphia, PA 19140, USA
| |
Collapse
|
69
|
von Homeyer P, Schwinn DA. Pharmacogenomics of β-adrenergic receptor physiology and response to β-blockade. Anesth Analg 2011; 113:1305-18. [PMID: 21965354 DOI: 10.1213/ane.0b013e31822b887e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Myocardial β-adrenergic receptors (βARs) are important in altering heart rate, inotropic state, and myocardial relaxation (lusitropy). The β1AR and β2AR stimulation increases cyclic adenosine monophosphate concentration with the net result of myocyte contraction, whereas β3AR stimulation results in decreased inotropy. Downregulation of β1ARs in heart failure, as well as an increased β3AR activity and density, lead to decreased cyclic adenosine monophosphate production and reduced inotropy. The βAR antagonists are commonly used in patients with coronary artery disease and heart failure; however, perioperative use of βAR antagonists is controversial. Individual patient's response to beta-blocker therapy is an area of intensive research, and apart from pharmacokinetics, pharmacodynamics, and ethnic differences, genetic alterations have become more important in the last 20 years. The most common genetic variants in humans are single nucleotide polymorphisms (SNPs). There are 2 clinically relevant SNPs for the β1AR (Ser49Gly, Arg389Gly), 3 for the β2AR (Arg16Gly, Gln27Glu, Thr164Ile), and 1 for the β3AR (Trp64Arg). Although results are somewhat controversial, generally large datasets have the potential to show a relationship between βAR SNPs and outcomes such as development and progression of heart failure, coronary artery disease, vascular reactivity, hypertension, asthma, obesity, and diabetes. Although βAR SNPs may not directly cause disease, they appear to be risk factors for, and modifiers of, disease and the response to stress and drugs. In the perioperative setting, this has specifically been demonstrated for the Arg389Gly β1AR polymorphism with which patients with the Gly variant had a higher incidence of adverse perioperative events. Knowing that genetic variants play an important role, perioperative medicine will likely change from simple therapeutic intervention to a more personalized way of adrenergic receptor modulation.
Collapse
Affiliation(s)
- Peter von Homeyer
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195-6540, USA.
| | | |
Collapse
|
70
|
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of membrane receptors and are responsible for regulating a wide variety of physiological processes. This is accomplished via ligand binding to GPCRs, activating associated heterotrimeric G proteins and intracellular signaling pathways. G protein-coupled receptor kinases (GRKs), in concert with β-arrestins, classically desensitize receptor signal transduction, thus preventing hyperactivation of GPCR second-messenger cascades. As changes in GRK expression have featured prominently in many cardiovascular pathologies, including heart failure, myocardial infarction, hypertension, and cardiac hypertrophy, GRKs have been intensively studied as potential diagnostic or therapeutic targets. Herein, we review our evolving understanding of the role of GRKs in cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Stephen L Belmonte
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | |
Collapse
|
71
|
Reduced CGP12177 binding to cardiac β-adrenoceptors in hyperglycemic high-fat-diet-fed, streptozotocin-induced diabetic rats. Nucl Med Biol 2011; 38:1059-66. [PMID: 21831645 DOI: 10.1016/j.nucmedbio.2011.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/31/2011] [Accepted: 04/13/2011] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Abnormal sympathetic nervous system and β-adrenoceptor (β-AR) signaling is associated with diabetes. [(3)H]CGP12177 is a nonselective β-AR antagonist that can be labeled with carbon-11 for positron emission tomography. The aim of this study was to examine the suitability of this tracer for evaluation of altered β-AR expression in diabetic rat hearts. METHODS Ex vivo biodistribution with [(3)H]CGP12177 was carried out in normal Sprague-Dawley rats for evaluation of specific binding and response to continuous β-AR stimulation by isoproterenol. In a separate group, high-fat-diet feeding imparted insulin resistance and a single intraperitoneal injection of streptozotocin (STZ) or vehicle evoked hyperglycemia (blood glucose >11 mM). [(3)H]CGP12177 biodistribution was assessed at 2 and 8 weeks post-STZ to measure β-AR binding in heart, 30 min following tracer injection. Western blotting of β-AR subtypes was completed in parallel. RESULTS Infusion of isoproterenol over 14 days did not affect cardiac binding of [(3)H]CGP12177. Approximately half of rats treated with STZ exhibited sustained hyperglycemia and progressive hypoinsulinemia. Myocardial [(3)H]CGP12177 specific binding was unchanged at 2 weeks post-STZ but significantly reduced by 30%-40% at 8 weeks in hyperglycemic but not euglycemic STZ-treated rats compared with vehicle-treated controls. Western blots supported a significant decrease in β(1)-AR in hyperglycemic rats. CONCLUSIONS Reduced cardiac [(3)H]CGP12177 specific binding in the presence of sustained hyperglycemia corresponds to a decrease in relative β(1)-AR expression. These data indirectly support the use of [(11)C]CGP12177 for assessment of cardiac dysfunction in diabetes.
Collapse
|
72
|
Abstract
Pharmacological and molecular approaches have shown that an atypical β-adrenoceptor (AR), called β(3)-AR, that is distinct from β(1)-ARs and β(2)-ARs, exists in some tissues in heterogeneous populations such as β(3a)-ARs and β(3b)-ARs. β(3)-ARs belong to a superfamily of receptors linked to guanine nucleotide binding proteins (G proteins). The β(3)-AR gene contains two introns whereas the β(1)-AR and β(2)-AR genes are intronless, leading to splice variants. β(3)-ARs can couple to G(i) and G(s) and they are reported to be present in brown adipose tissue, vasculature, the heart, among other tissues. β(3)-ARs cause vasodilation of microvessels in the islets of Langerhans and may participate in the pathogenesis of cardiac failure, during which modification of β(1)-AR and β(2)-AR expression occurs. The development of β(3)-AR agonists has led to the elaboration of promising new drugs, including antiobesity and antidiabetic drugs. This article reviews the various pharmacological actions of β(3)-ARs and their clinical implications for diabetes and cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Anita A. Mehta
- Department of Pharmacology, LM College of Pharmacy, Ahmedabad, Gujarat, India
| | | |
Collapse
|
73
|
Somvanshi RK, War SA, Chaudhari N, Qiu X, Kumar U. Receptor specific crosstalk and modulation of signaling upon heterodimerization between β1-adrenergic receptor and somatostatin receptor-5. Cell Signal 2011; 23:794-811. [PMID: 21238583 DOI: 10.1016/j.cellsig.2011.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/21/2010] [Accepted: 01/05/2011] [Indexed: 01/08/2023]
Abstract
In the present study we describe heterodimerization, trafficking, coupling to adenylyl cyclase and signaling in HEK-293 cells cotransfected with human-somatostatin receptor 5 (hSSTR5) and β(1)-adrenergic receptor (β(1)AR). hSSTR5/β(1)AR exists as heterodimers in basal conditions which was further enhanced upon synergistic activation of both receptors. Activation of either β(1)AR or hSSTR5 displayed dissociation of heterodimerization. In cotransfectants, β(1)AR effect on cAMP was predominant; however, blocking β(1)AR with antagonist resulted in 60% inhibition of forskolin-stimulated cAMP in the presence of hSSTR5 agonists. cAMP/PKA pathway in cotransfected cells was regulated in receptor-specific manner, in contrast, the status of pERK1/2 and pPI3K/AKT was predominantly regulated by hSSTR5. The expression levels of phosphorylated NFAT remained unchanged indicating blockade of calcineurin-mediated dephosphorylation and nuclear translocation of NFAT, the process predominantly regulated by pJNK in SSTR5 dependent manner. Taken together, the functional consequences of results described here might have relevance in the cardiovascular system where SSTR and AR subtypes play important roles.
Collapse
Affiliation(s)
- Rishi K Somvanshi
- Faculty of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, The University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
74
|
Kraeutler MJ, Soltis AR, Saucerman JJ. Modeling cardiac β-adrenergic signaling with normalized-Hill differential equations: comparison with a biochemical model. BMC SYSTEMS BIOLOGY 2010; 4:157. [PMID: 21087478 PMCID: PMC2993667 DOI: 10.1186/1752-0509-4-157] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/18/2010] [Indexed: 12/11/2022]
Abstract
Background New approaches are needed for large-scale predictive modeling of cellular signaling networks. While mass action and enzyme kinetic approaches require extensive biochemical data, current logic-based approaches are used primarily for qualitative predictions and have lacked direct quantitative comparison with biochemical models. Results We developed a logic-based differential equation modeling approach for cell signaling networks based on normalized Hill activation/inhibition functions controlled by logical AND and OR operators to characterize signaling crosstalk. Using this approach, we modeled the cardiac β1-adrenergic signaling network, including 36 reactions and 25 species. Direct comparison of this model to an extensively characterized and validated biochemical model of the same network revealed that the new model gave reasonably accurate predictions of key network properties, even with default parameters. Normalized Hill functions improved quantitative predictions of global functional relationships compared with prior logic-based approaches. Comprehensive sensitivity analysis revealed the significant role of PKA negative feedback on upstream signaling and the importance of phosphodiesterases as key negative regulators of the network. The model was then extended to incorporate recently identified protein interaction data involving integrin-mediated mechanotransduction. Conclusions The normalized-Hill differential equation modeling approach allows quantitative prediction of network functional relationships and dynamics, even in systems with limited biochemical data.
Collapse
Affiliation(s)
- Matthew J Kraeutler
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
75
|
Rengo G, Lymperopoulos A, Leosco D, Koch WJ. GRK2 as a novel gene therapy target in heart failure. J Mol Cell Cardiol 2010; 50:785-92. [PMID: 20800067 DOI: 10.1016/j.yjmcc.2010.08.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 12/13/2022]
Abstract
Despite significant advances in pharmacological and clinical treatment, heart failure (HF) remains a leading cause of morbidity and mortality worldwide. HF is a chronic and progressive clinical syndrome characterized by a reduction in left ventricular (LV) ejection fraction and adverse remodeling of the myocardium. The past several years have seen remarkable progress using animal models in unraveling the cellular and molecular mechanisms underlying HF pathogenesis and progression. These studies have revealed potentially novel therapeutic targets/strategies. The application of cardiac gene transfer, which allows for the manipulation of targets in cardiomyocytes, appears to be a promising therapeutic tool in HF. β-adrenergic receptor (βAR) dysfunction represents a hallmark abnormality of chronic HF, and increased G protein-coupled receptor kinase 2 (GRK2) levels/activity in failing myocardium is among these alterations. In the past 15years, several animal studies have shown that expression of a peptide inhibitor of GRK2 (βARKct) can improve the contractile function of failing myocardium including promoting reverse remodeling of the LV. Therefore, data support the use of the βARKct as a promising candidate for therapeutic application in human HF. Importantly, recent studies in cardiac-specific GRK2 knockout mice have corroborated GRK2 being pathological in failing myocytes. The purpose of this review is to discuss: 1) the alterations of βAR signaling that occur in HF, 2) the evidence from transgenic mouse studies investigating the impact of GRK2 manipulation in failing myocardium, 3) the therapeutic efficacy of in vivo βARKct gene therapy in HF, and 4) the intriguing possibility of lowering HF-related sympathetic nervous system hyperactivity by inhibiting GRK2 activity in the adrenal gland. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy".
Collapse
Affiliation(s)
- Giuseppe Rengo
- Center for Translational Medicine and George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
76
|
Malhotra R, D'Souza KM, Staron ML, Birukov KG, Bodi I, Akhter SA. G alpha(q)-mediated activation of GRK2 by mechanical stretch in cardiac myocytes: the role of protein kinase C. J Biol Chem 2010; 285:13748-60. [PMID: 20194499 PMCID: PMC2859538 DOI: 10.1074/jbc.m110.109272] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 02/25/2010] [Indexed: 01/08/2023] Open
Abstract
G protein-coupled receptor kinase-2 (GRK2) is a critical regulator of beta-adrenergic receptor (beta-AR) signaling and cardiac function. We studied the effects of mechanical stretch, a potent stimulus for cardiac myocyte hypertrophy, on GRK2 activity and beta-AR signaling. To eliminate neurohormonal influences, neonatal rat ventricular myocytes were subjected to cyclical equi-biaxial stretch. A hypertrophic response was confirmed by "fetal" gene up-regulation. GRK2 activity in cardiac myocytes was increased 4.2-fold at 48 h of stretch versus unstretched controls. Adenylyl cyclase activity was blunted in sarcolemmal membranes after stretch, demonstrating beta-AR desensitization. The hypertrophic response to mechanical stretch is mediated primarily through the G alpha(q)-coupled angiotensin II AT(1) receptor leading to activation of protein kinase C (PKC). PKC is known to phosphorylate GRK2 at the N-terminal serine 29 residue, leading to kinase activation. Overexpression of a mini-gene that inhibits receptor-G alpha(q) coupling blunted stretch-induced hypertrophy and GRK2 activation. Short hairpin RNA-mediated knockdown of PKC alpha also significantly attenuated stretch-induced GRK2 activation. Overexpression of a GRK2 mutant (S29A) in cardiac myocytes inhibited phosphorylation of GRK2 by PKC, abolished stretch-induced GRK2 activation, and restored adenylyl cyclase activity. Cardiac-specific activation of PKC alpha in transgenic mice led to impaired beta-agonist-stimulated ventricular function, blunted cyclase activity, and increased GRK2 phosphorylation and activity. Phosphorylation of GRK2 by PKC appears to be the primary mechanism of increased GRK2 activity and impaired beta-AR signaling after mechanical stretch. Cross-talk between hypertrophic signaling at the level of PKC and beta-AR signaling regulated by GRK2 may be an important mechanism in the transition from compensatory ventricular hypertrophy to heart failure.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Enzyme Activation/genetics
- G-Protein-Coupled Receptor Kinase 2/genetics
- G-Protein-Coupled Receptor Kinase 2/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Gene Knockdown Techniques
- Heart Ventricles/enzymology
- Mice
- Mice, Knockout
- Myocytes, Cardiac/enzymology
- Phosphorylation/genetics
- Protein Kinase C-alpha/genetics
- Protein Kinase C-alpha/metabolism
- Rats
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Signal Transduction
- Stress, Physiological
- Time Factors
Collapse
Affiliation(s)
- Ricky Malhotra
- From the Department of Surgery, Section of Cardiac and Thoracic Surgery, and
| | - Karen M. D'Souza
- From the Department of Surgery, Section of Cardiac and Thoracic Surgery, and
| | - Michelle L. Staron
- From the Department of Surgery, Section of Cardiac and Thoracic Surgery, and
| | - Konstantin G. Birukov
- Department of Medicine, Section of Pulmonary/Critical Care, University of Chicago Medical Center, Chicago, Illinois 60637 and
| | - Ilona Bodi
- the Institute for Molecular Pharmacology and Biophysics, University of Cincinnati, Cincinnati, Ohio 45267
| | - Shahab A. Akhter
- From the Department of Surgery, Section of Cardiac and Thoracic Surgery, and
| |
Collapse
|
77
|
Akhter SA, D'Souza KM, Malhotra R, Staron ML, Valeroso TB, Fedson SE, Anderson AS, Raman J, Jeevanandam V. Reversal of impaired myocardial beta-adrenergic receptor signaling by continuous-flow left ventricular assist device support. J Heart Lung Transplant 2010; 29:603-9. [PMID: 20202864 DOI: 10.1016/j.healun.2010.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/07/2010] [Accepted: 01/17/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Myocardial beta-adrenergic receptor (beta-AR) signaling is severely impaired in chronic heart failure (HF). This study was conducted to determine if left ventricular (LV) beta-AR signaling could be restored after continuous-flow LV assist device (LVAD) support. METHODS Twelve patients received LVADs as a bridge to transplant. Paired LV biopsy specimens were obtained at the time of LVAD implant (HF group) and transplant (LVAD group). The mean duration of LVAD support was 152 +/- 34 days. Myocardial beta-AR signaling was assessed by measuring adenylyl cyclase (AC) activity, total beta-AR density (B(max)), and G protein-coupled receptor kinase-2 (GRK2) expression and activity. LV specimens from 8 non-failing hearts (NF) were used as controls. RESULTS Basal and isoproterenol-stimulated AC activity was significantly lower in HF vs NF, indicative of beta-AR uncoupling. Continuous-flow LVAD support restored basal and isoproterenol-stimulated AC activity to levels similar to NF. B(max) was decreased in HF vs NF and increased to nearly normal in the LVAD group. GRK2 expression was increased 2.6-fold in HF vs NF and was similar to NF after LVAD support. GRK2 activity was 3.2-fold greater in HF vs NF and decreased to NF levels in the LVAD group. CONCLUSIONS Myocardial beta-AR signaling can be restored to nearly normal after continuous-flow LVAD support. This is similar to previous data for volume-displacement pulsatile LVADs. Decreased GRK2 activity is an important mechanism and indicates that normalization of the neurohormonal milieu associated with HF is similar between continuous-flow and pulsatile LVADs. This may have important implications for myocardial recovery.
Collapse
Affiliation(s)
- Shahab A Akhter
- Department of Surgery, Section of Cardiac and Thoracic Surgery, University of Chicago Medical Center, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Matera MG, Martuscelli E, Cazzola M. Pharmacological modulation of β-adrenoceptor function in patients with coexisting chronic obstructive pulmonary disease and chronic heart failure. Pulm Pharmacol Ther 2010; 23:1-8. [DOI: 10.1016/j.pupt.2009.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 09/28/2009] [Accepted: 10/08/2009] [Indexed: 02/01/2023]
|
79
|
Tsang S, Woo AYH, Zhu W, Xiao RP. Deregulation of RGS2 in cardiovascular diseases. Front Biosci (Schol Ed) 2010; 2:547-57. [PMID: 20036967 DOI: 10.2741/s84] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Alteration of G protein-coupled receptor (GPCR) signaling is a salient feature of hypertension and the associated heart diseases. Recent studies have revealed a large family of Regulators of G-protein Signaling (RGS) proteins as important endogenous regulators of GPCR signaling. RGS2 selectively regulates Galphaq/11 signaling, an essential cause of hypertension and cardiac hypertrophy. Both clinical and animal studies have shown that deregulation of RGS2 leads to exacerbated Galphaq/11 signaling. There is an inverse correlation between RGS2 expression and blood pressure, as well as a selective down-regulation of RGS2 in various models of cardiac hypertrophy. The causal relationship has been established in animal studies. RGS2 knockout mice exhibit not only hypertension phenotype but also accelerated cardiac hypertrophy and heart failure in response to pressure-overload. Further in vitro studies have shown that RGS2 knockdown with RNA interference exacerbates, whilst RGS2 over-expression completely abolishes the Galphaq/11-induced hypertrophy. These findings indicate that deregulation of RGS2 plays a crucial role in the pathogenesis of cardiovascular diseases, marking RGS2 as a potential therapeutic target or biomarker of hypertension or hypertensive heart diseases.
Collapse
Affiliation(s)
- Sharon Tsang
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
80
|
Hossain M, Rashid M, Bhuiyan MA, Nakamura T, Ozaki M, Nagatomo T. Mutagenesis of important amino acid reveals unconventional homologous internalization of beta(1)-adrenergic receptor. Life Sci 2009; 85:339-44. [PMID: 19580817 DOI: 10.1016/j.lfs.2009.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 11/17/2022]
Abstract
AIMS The study was designed to examine the internalization of Asp104Lys mutant of beta(1)-adrenergic receptor (beta(1)-AR) and compared to other mutant (Asp104Ala) and wild type receptors. Moreover, this study needs to perform the role of GRK2 (betaARK1) and beta-arrestin1 on this internalization of Asp104Lys mutant of beta(1)-AR. MAIN METHODS Binding affinity, functional potency of agonist and agonist-induced internalization were determined for wild type and both mutants of beta(1)-ARs stably expressed in HEK 293 cells as assessed by [(3)H] CGP12177 radioligand. We have performed GRK2 and beta-arrestin1 expression levels by western blot analysis and also performed internalization of this mutant receptor after over expression and deletion of beta-arrestin1 gene. KEY FINDINGS In the present study, the binding affinity of (-)-isoproterenol for both mutants were significantly decreased compared to wild type. Though the mutant Asp104Ala showed agonist-induced receptor activation, interestingly this mutant was not internalized. However, the mutant Asp104Lys, which showed uncoupling with G protein, was internalized 31.77+/-3.13% from cell surface. Asp104Lys mutant produced the same level of GRK2 expression in (-)-isoproterenol induced stimulation of wild type receptor and addition of (-)-isoproterenol further increased GRK2 expression in mutant receptors. In addition, overexpression of beta-arrestin1 in mutant Asp104Lys promoted (39.75+/-2.19%) and knockdown of beta-arrestin1 by siRNA decreased (3.55+/-1.75%) internalization compared to Asp104Lys mutant of beta(1)-ARs. SIGNIFICANCE The present studies suggest that Asp104Lys mutant beta(1)-ARs triggers unconventional homologous internalization induced by G protein independent signals, where GRK2 and beta-arrestin1 play an important role for beta(1)-AR internalization.
Collapse
Affiliation(s)
- Murad Hossain
- Department of Pharmacology, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | | | | | | | | | | |
Collapse
|
81
|
Bassiakou E, Xanthos T, Papadimitriou L. The potential beneficial effects of beta adrenergic blockade in the treatment of ventricular fibrillation. Eur J Pharmacol 2009; 616:1-6. [PMID: 19555681 DOI: 10.1016/j.ejphar.2009.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 05/28/2009] [Accepted: 06/09/2009] [Indexed: 01/30/2023]
Abstract
Cardiac arrest remains a major medical emergency in Western societies, with ventricular fibrillation being the initial rhythm in a significant proportion of cases. Adrenaline is generally accepted to improve the resuscitation outcome, since it improves coronary and cerebral blood flow during cardiopulmonary resuscitation, but several detrimental effects have been associated with its use, most of which are thought to be mediated by its beta adrenergic properties. Several animal studies suggest that beta adrenergic blockade during resuscitation, is associated with increased rates of resuscitation and improved post-resuscitation myocardial function. This article reviews the presence and function of beta-adrenoceptor subtypes in the intact and diseased human myocardium, as well as the differences observed in beta(1)- and beta(2) adrenoceptor subtypes in different species.
Collapse
Affiliation(s)
- Eleni Bassiakou
- Department of Experimental Surgery and Surgical Research N. S. Christeas, Athens School of Medicine, Athens, Greece
| | | | | |
Collapse
|
82
|
Frey UH, Adamzik M, Kottenberg-Assenmacher E, Jakob H, Manthey I, Broecker-Preuss M, Bergmann L, Heusch G, Siffert W, Peters J, Leineweber K. A novel functional haplotype in the human GNAS gene alters Gαs expression, responsiveness to β-adrenoceptor stimulation, and peri-operative cardiac performance. Eur Heart J 2009; 30:1402-1410. [DOI: 10.1093/eurheartj/ehn572] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
83
|
Davis J, Westfall MV, Townsend D, Blankinship M, Herron TJ, Guerrero-Serna G, Wang W, Devaney E, Metzger JM. Designing heart performance by gene transfer. Physiol Rev 2008; 88:1567-651. [PMID: 18923190 DOI: 10.1152/physrev.00039.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The birth of molecular cardiology can be traced to the development and implementation of high-fidelity genetic approaches for manipulating the heart. Recombinant viral vector-based technology offers a highly effective approach to genetically engineer cardiac muscle in vitro and in vivo. This review highlights discoveries made in cardiac muscle physiology through the use of targeted viral-mediated genetic modification. Here the history of cardiac gene transfer technology and the strengths and limitations of viral and nonviral vectors for gene delivery are reviewed. A comprehensive account is given of the application of gene transfer technology for studying key cardiac muscle targets including Ca(2+) handling, the sarcomere, the cytoskeleton, and signaling molecules and their posttranslational modifications. The primary objective of this review is to provide a thorough analysis of gene transfer studies for understanding cardiac physiology in health and disease. By comparing results obtained from gene transfer with those obtained from transgenesis and biophysical and biochemical methodologies, this review provides a global view of cardiac structure-function with an eye towards future areas of research. The data presented here serve as a basis for discovery of new therapeutic targets for remediation of acquired and inherited cardiac diseases.
Collapse
Affiliation(s)
- Jennifer Davis
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Azuma J, Nonen S. Chronic heart failure: β-blockers and pharmacogenetics. Eur J Clin Pharmacol 2008; 65:3-17. [DOI: 10.1007/s00228-008-0566-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 09/04/2008] [Indexed: 12/21/2022]
|
85
|
Siedlecka U, Arora M, Kolettis T, Soppa GKR, Lee J, Stagg MA, Harding SE, Yacoub MH, Terracciano CMN. Effects of clenbuterol on contractility and Ca2+ homeostasis of isolated rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2008; 295:H1917-26. [PMID: 18775853 DOI: 10.1152/ajpheart.00258.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clenbuterol, a compound classified as a beta2-adrenoceptor (AR) agonist, has been employed in combination with left ventricular assist devices (LVADs) to treat patients with severe heart failure. Previous studies have shown that chronic administration of clenbuterol affects cardiac excitation-contraction coupling. However, the acute effects of clenbuterol and the signaling pathway involved remain undefined. We investigated the acute effects of clenbuterol on isolated ventricular myocyte sarcomere shortening, Ca2+ transients, and L-type Ca2+ current and compared these effects to two other clinically used beta2-AR agonists: fenoterol and salbutamol. Clenbuterol (30 microM) produced a negative inotropic response, whereas fenoterol showed a positive inotropic response. Salbutamol had no significant effects. Clenbuterol reduced Ca2+ transient amplitude and L-type Ca2+ current. Selective beta1-AR blockade did not affect the action of clenbuterol on sarcomere shortening but significantly reduced contractility in the presence of fenoterol and salbutamol (P < 0.05). Incubation with 2 microg/ml pertussis toxin significantly reduced the negative inotropic effects of 30 microM clenbuterol. In addition, overexpression of inhibitory G protein (Gi) by adenoviral transfection induced a stronger clenbuterol-mediated negative inotropic effect, suggesting the involvement of the Gi protein. We conclude that clenbuterol does not increase and, at high concentrations, significantly depresses contractility of isolated ventricular myocytes, an effect not seen with fenoterol or salbutamol. In its negative inotropism, clenbuterol predominantly acts through Gi, and the consequent downstream signaling pathways activation may explain the beneficial effects observed during chronic administration of clenbuterol in patients treated with LVADs.
Collapse
Affiliation(s)
- U Siedlecka
- Heart Science Centre, National Heart & Lung Institute, Imperial College, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
PURPOSE OF REVIEW There is considerable increase in the use of left ventricular assist devices for the treatment of severe heart failure. Traditionally viewed as a bridge to transplantation and more recently as a destination therapy, left ventricular assist device support is now recognized to offer potential for myocardial recovery through reverse remodeling, a potential that is further enhanced by combination with pharmacologic therapy. In this study, we examine the molecular changes associated with left ventricular assist device support and how these may contribute to the recovery process. RECENT FINDINGS Studies in both patients and experimental models have demonstrated that improved function is associated with alterations in several key pathways including cell survival, cytokine signaling, calcium handling, adrenergic receptor signaling, cytoskeletal and contractile proteins, energy metabolism, extracellular matrix, and endothelial and microvascular functions. Moreover, the unique research opportunities offered by left ventricular assist device analysis are beginning to distinguish changes associated with recovery from those of mechanical unloading alone and identify potential predictors and novel therapeutic targets capable of enhancing myocardial repair. SUMMARY Significant progress has been made toward revealing molecular changes associated with myocardial recovery from heart failure. These studies also offer new insight into the pathogenesis of heart failure and point to novel therapeutic strategies.
Collapse
|
87
|
|
88
|
Endomyocardial Upregulation of β1 Adrenoreceptor Gene Expression and Myocardial Contractile Reserve Following Cardiac Resynchronization Therapy. J Card Fail 2008; 14:172-8. [DOI: 10.1016/j.cardfail.2007.10.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 10/09/2007] [Accepted: 10/18/2007] [Indexed: 11/22/2022]
|
89
|
Differential expression of cardiac neurotrophic factors and sympathetic nerve ending abnormalities within the failing heart. J Mol Cell Cardiol 2008; 44:380-7. [DOI: 10.1016/j.yjmcc.2007.10.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 09/27/2007] [Accepted: 10/18/2007] [Indexed: 01/19/2023]
|
90
|
Burstein B, Maguy A, Clément R, Gosselin H, Poulin F, Ethier N, Tardif JC, Hébert TE, Calderone A, Nattel S. Effects of resveratrol (trans-3,5,4'-trihydroxystilbene) treatment on cardiac remodeling following myocardial infarction. J Pharmacol Exp Ther 2007; 323:916-23. [PMID: 17875610 DOI: 10.1124/jpet.107.127548] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Resveratrol (RES; trans-3,5,4'-trihydroxystilbene) has been shown to improve health and slow the progression of disease in various models. Several cardioprotective mechanisms have been identified including antioxidant, anti-inflammatory, and antifibrotic actions. Each of these actions is thought to have the ability to attenuate the pathophysiology underlying the deleterious cardiac structural remodeling that results from acute myocardial infarction (MI). Therefore, we evaluated the effect of resveratrol treatment on the progression of cardiac remodeling after MI. Four groups of rats (sham, n = 6; sham + RES, n = 21; MI, n = 26; MI + RES, n = 24) were treated for 13 weeks, starting 7 days before ligation of the left anterior descending coronary artery. Serial transthoracic echocardiography revealed that resveratrol had no effect on MI-induced left-ventricular and left-atrial dilatation or reduction in left-ventricular fractional shortening. Consistent with these findings, resveratrol did not improve the deterioration of hemodynamic function or reduce infarct size at 12 weeks post-MI. Resveratrol-treated animals did, however, show preserved cardiac contractile reserve in response to dobutamine administration. Radioligand binding revealed that MI reduced beta-adrenergic receptor density. Resveratrol administration increased beta-adrenoceptor density, so that resveratrol-treated MI rats had beta-adrenoceptor densities similar to normal rats. Real-time reverse transcription-polymerase chain reaction revealed that MI-induced changes in sarcoplasmic reticulum Ca2+-ATPase 2 and transforming growth factor beta-1 expression were unaltered by resveratrol, whereas MI-induced increases in atrial natriuretic factor (ANF) and connective tissue growth factor (CTGF) expression were attenuated. Resveratrol treatment does not improve cardiac remodeling and global hemodynamic function post-MI but does preserve contractile reserve and attenuate ANF and CTGF up-regulation.
Collapse
Affiliation(s)
- Brett Burstein
- Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Magocsi M, Vizi ES, Selmeczy Z, Brózik A, Szelenyi J. Multiple G-protein-coupling specificity of beta-adrenoceptor in macrophages. Immunology 2007; 122:503-13. [PMID: 17949419 DOI: 10.1111/j.1365-2567.2007.02658.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adrenergic signalling of the immune system is one of the important modulator pathways of the inflammatory immune response realized via G protein-mediated pathways. The resulted signal depends on the type of the receptor-coupled G-protein (GPCR) that, according to the classical paradigm in the case of beta-adrenergic receptor (beta-AR), is Gs-type. Recently, alternate and/or multiple G protein coupling specificity of GPCRs have been demonstrated including a switch from Gs to Gi binding. The possibility of a Gs/Gi switch and its role in the immune response of macrophages has not been investigated yet. In this study, we demonstrate that beta-adrenergic stimulation itself is able to induce a transient mitogen-activated protein kinase phosphorylation in murine peritoneal macrophages in a pertussis toxin-sensitive manner, suggesting that the Gs/Gi switch also occurs in the immune system. Although this process is very rapid, it can influence different signalling pathways and can reprogramme effector functions suggesting that sympathetic modulation of the defence mechanism of the innate immune system has an additional, Gs/Gi switch-dependent component.
Collapse
Affiliation(s)
- Maria Magocsi
- Institute of Haematology and Immunology, National Medical Centre, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
92
|
Leosco D, Rengo G, Iaccarino G, Filippelli A, Lymperopoulos A, Zincarelli C, Fortunato F, Golino L, Marchese M, Esposito G, Rapacciuolo A, Rinaldi B, Ferrara N, Koch WJ, Rengo F. Exercise training and β-blocker treatment ameliorate age-dependent impairment of β-adrenergic receptor signaling and enhance cardiac responsiveness to adrenergic stimulation. Am J Physiol Heart Circ Physiol 2007; 293:H1596-603. [PMID: 17557919 DOI: 10.1152/ajpheart.00308.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cardiac β-adrenergic receptor (β-AR) signaling and left ventricular (LV) responses to β-AR stimulation are impaired with aging. It is shown that exercise and β-AR blockade have a favorable effect on cardiac and vascular β-AR signaling in several cardiovascular diseases. In the present study, we examined the effects of these two different strategies on β-AR dysregulation and LV inotropic reserve in the aging heart. Forty male Wistar-Kyoto aged rats were randomized to sedentary, exercise (12 wk treadmill training), metoprolol (250 mg·kg−1·day−1 for 4 wk), and exercise plus metoprolol treatment protocols. Ten male Wistar-Kyoto sedentary young rats were also used as a control group. Old trained, old metoprolol-treated, and old trained plus metoprolol-treated rats showed significantly improved LV maximal and minimal first derivative of the pressure rise responses to β-AR stimulation (isoproterenol) compared with old untrained animals. We found a significant reduction in cardiac sarcolemmal membrane β-AR density and adenylyl cyclase activity in old untrained animals compared with young controls. Exercise training and metoprolol, alone or combined, restored cardiac β-AR density and G-protein-dependent adenylyl cyclase activation in old rats. Although cardiac membrane G-protein-receptor kinase 2 levels were not upregulated in untrained old compared with young control rats, both exercise and metoprolol treatment resulted in a dramatic reduction of G-protein-receptor kinase 2 protein levels, which is a further indication of β-AR signaling amelioration in the aged heart induced by these treatment modalities. In conclusion, we demonstrate for the first time that exercise and β-AR blockade can similarly ameliorate β-AR signaling in the aged heart, leading to improved β-AR responsiveness and corresponding LV inotropic reserve.
Collapse
Affiliation(s)
- Dario Leosco
- Department of Internal Medicine, Cardiovascular Sciences and Immunology, University Federico II, Via Pansini 5, Edificio 2, 80131 Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Zaccolo M, Movsesian MA. cAMP and cGMP signaling cross-talk: role of phosphodiesterases and implications for cardiac pathophysiology. Circ Res 2007; 100:1569-78. [PMID: 17556670 DOI: 10.1161/circresaha.106.144501] [Citation(s) in RCA: 276] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cyclic nucleotide phosphodiesterases regulate cAMP-mediated signaling by controlling intracellular cAMP content. The cAMP-hydrolyzing activity of several families of cyclic nucleotide phosphodiesterases found in human heart is regulated by cGMP. In the case of PDE2, this regulation primarily involves the allosteric stimulation of cAMP hydrolysis by cGMP. For PDE3, cGMP acts as a competitive inhibitor of cAMP hydrolysis. Several cGMP-mediated responses in cardiac cells, including a potentiation of Ca(2+) currents and a diminution of the responsiveness to beta-adrenergic receptor agonists, have been shown to result from the effects of cGMP on cAMP hydrolysis. These effects appear to be dependent on the specific spatial distribution of the cGMP-generating and cAMP-hydrolyzing proteins, as well as on the intracellular concentrations of the two cyclic nucleotides. Gaining a more precise understanding of how these cross-talk mechanisms are individually regulated and coordinated is an important direction for future research.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Dulbecco Telethon Institute, Venetian Institute for Molecular Medicine, Padova, Italy.
| | | |
Collapse
|
94
|
Drakos SG, Terrovitis JV, Anastasiou-Nana MI, Nanas JN. Reverse remodeling during long-term mechanical unloading of the left ventricle. J Mol Cell Cardiol 2007; 43:231-42. [PMID: 17651751 DOI: 10.1016/j.yjmcc.2007.05.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Revised: 05/09/2007] [Accepted: 05/29/2007] [Indexed: 01/08/2023]
Abstract
A significant proportion of patients placed on long-term mechanical circulatory support for end-stage heart failure can be weaned from mechanical assistance after functional recovery of their native heart ("bridge to recovery"). The pathophysiological mechanisms implicated in reverse remodeling that cause a sustained functional myocardial recovery have recently become the subject of intensive research, expected to provide information with a view to accurately identify reliable prognostic indicators of recovery. In addition, this kind of information will enable changes in the strategy of myocardial recovery by modifying the duration and scale of the unloading regimen or by combining it with other treatments that promote reverse remodeling.
Collapse
Affiliation(s)
- Stavros G Drakos
- 3rd Cardiology Department, University of Athens School of Medicine, 24 Makedonias, 104 33, Athens, Greece
| | | | | | | |
Collapse
|
95
|
Abstract
It was only approximately 15 years ago that methodologies evolved to the point where we began to manipulate the genetic apparatus of the mouse such that proteins of the investigator's choice could be expressed in a 4-chambered, mammalian heart. Our abilities to express both normal and mutated proteins in the heart or to create genetic nulls in which the protein is not expressed at all continue to evolve. With the tools now available, one can target protein expression to the different cell types present in the heart, often at a particular time, and, in some cases, turn off the protein as development progresses or the animal ages. These abilities have enabled us to model many of the genetic mutations identified as causative for pediatric and/or adult cardiovascular disease and heart failure. Identifying the primary genetic cause is, more often than not, insufficient for designing effective therapeutics or interventions. Therefore, it is critical to be able to develop animal models that accurately recapitulate the pathogenic processes that ensue as a result of mutant gene expression or loss of protein expression. In this review, we discuss the nature, strengths, and weaknesses of the current set of tools for developing genetically manipulated mouse models, as well as the relevance of these models for understanding cardiovascular disease and illuminating potential therapeutic avenues.
Collapse
Affiliation(s)
- Katherine E Yutzey
- Division of Molecular Cardiovascular Biology, Department of Pediatrics, Children's Hospital Research Foundation, Cincinnati, OH 45229-3039, USA
| | | |
Collapse
|
96
|
Salinas C, Muzic RF, Ernsberger P, Saidel GM. Robust experiment design for estimating myocardial beta adrenergic receptor concentration using PET. Med Phys 2007; 34:151-65. [PMID: 17278500 DOI: 10.1118/1.2402585] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Myocardial beta adrenergic receptor (beta-AR) concentration can substantially decrease in congestive heart failure and significantly increase in chronic volume overload, such as in severe aortic valve regurgitation. Positron emission tomography (PET) with an appropriate ligand-receptor model can be used for noninvasive estimation of myocardial beta-AR concentration in vivo. An optimal design of the experiment protocol, however, is needed for sufficiently precise estimates of beta-AR concentration in a heterogeneous population. Standard methods of optimal design do not account for a heterogeneous population with a wide range of beta-AR concentrations and other physiological parameters and consequently are inadequate. To address this, we have developed a methodology to design a robust two-injection protocol that provides reliable estimates of myocardial beta-AR concentration in normal and pathologic states. A two-injection protocol of the high affinity beta-AR antagonist [18F]-(S)-fluorocarazolol was designed based on a computer-generated (or synthetic) population incorporating a wide range of beta-AR concentrations. Timing and dosage of the ligand injections were optimally designed with minimax criterion to provide the least bad beta-AR estimates for the worst case in the synthetic population. This robust experiment design for PET was applied to experiments with pigs before and after beta-AR upregulation by chemical sympathectomy. Estimates of beta-AR concentration were found by minimizing the difference between the model-predicted and experimental PET data. With this robust protocol, estimates of beta-AR concentration showed high precision in both normal and pathologic states. The increase in beta-AR concentration after sympathectomy predicted noninvasively with PET is consistent with the increase shown by in vitro assays in pig myocardium. A robust experiment protocol was designed for PET that yields reliable estimates of beta-AR concentration in a population with normal and pathologic states. This methodology is applicable in general to optimal estimation of parameters in heterogeneous populations.
Collapse
Affiliation(s)
- Cristian Salinas
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
97
|
Brodde OE. β-adrenoceptor blocker treatment and the cardiac β-adrenoceptor-G-protein(s)-adenylyl cyclase system in chronic heart failure. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2007; 374:361-72. [PMID: 17216434 DOI: 10.1007/s00210-006-0125-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 11/17/2006] [Indexed: 11/29/2022]
Abstract
Recent studies showed that chronic beta-adrenoceptor (AR) blocker treatment exerts beneficial effects in patients with chronic heart failure (CHF). In CHF, sympathetic drive to the heart is increased, and this causes pathological changes in cardiac beta-AR-G-protein(s)-adenylyl cyclase system: Cardiac beta-1 AR are decreased, and amount and activity of cardiac G(i)-protein and G-protein-coupled receptor kinase (GRK) are increased resulting in diminished cardiac beta-AR functional responsiveness. One possible mechanism of beneficial effects of beta-AR blockers could be that they prevent adverse effects of increased sympathetic activity and up-regulate cardiac (and vascular) beta-AR density, and by this, enhance beta-AR-mediated effects. Another possibility could be that chronic beta-AR blocker treatment normalizes activity of G(i)-protein and may thereby restore beta-AR functional responsiveness. Moreover, failing human heart exhibits an inverse force-frequency relationship. beta-AR blockers reduce heart rate; this may, therefore, improve force of contraction. One of the strongest stimuli to activate GRK is increased sympathetic activity (as in CHF) via beta-AR stimulation. beta-AR blockers, by blocking beta-AR, can prevent GRK activation and/or can reduce the (previously enhanced) GRK activity, and this might-at least partly-contribute to beneficial effects of beta-AR blockers in CHF treatment. Finally, the "loss-of-function" Arg389Gly beta-1 AR polymorphism seems to determine heart rate and blood pressure responses to beta-1 AR blocker administration: Arg389Arg beta-1 AR subjects exhibit stronger effects than subjects with one or two Gly389 alleles. Thus, it might be predicted that patients homozygous Arg389 beta-1 AR should be good responders, whereas patients homozygous Gly389 beta-1 AR polymorphism should be poor or non-responders.
Collapse
Affiliation(s)
- Otto-Erich Brodde
- Department of Nephrology and Pathophysiology, University of Essen School of Medicine, IG I., 9.OG, Hufelandstr. 55, 45147 Essen, Germany.
| |
Collapse
|
98
|
Madden KM, Levy WC, Stratton JR. Normal Aging Impairs Upregulation of the Beta-adrenergic but not the Alpha-Adrenergic Response: Aging and Adrenergic Upregulation. J Cardiovasc Pharmacol 2006; 48:153-9. [PMID: 17086093 DOI: 10.1097/01.fjc.0000246405.89380.48] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To determine if centrally reducing sympathetic tone with clonidine will reverse the downregulation in the alpha-adrenergic (alphaAR) and beta-adrenergic (betaAR) responses seen with normal aging. METHODS Twelve rigorously screened young adult (mean age, 26 years) and 15 older adult (mean age, 69 years) subjects were studied before and after using the clonidine patch (TTS-2) for 2 weeks. betaAR (isoproterenol at 35 ng/kg/min) and alphaAR (phenylephrine at 1.0 microg/kg/min) were assessed using radionuclide measures of end diastolic, end systolic, and stroke volume indices, cardiac index, and ejection fraction. RESULTS Clonidine reduced resting plasma norepinephrine and this reduction was greater in older subjects (-47 +/- 3 versus -26 +/- 6%, P = 0.001). After 2 weeks of clonidine patch, upregulation of the betaAR was significantly higher in young subjects for heart rate (+10.7 +/- 1.5 versus +4.6 +/- 1.5 bpm; P = 0.01). There was no significant age-associated difference in the upregulation of the alphaAR with clonidine for systolic, diastolic, and mean blood pressure or systemic vascular resistance. CONCLUSIONS With aging, there is an impaired resensitization of the chronotropic betaAR response with central sympathetic downregulation that is not seen with the alphaAR.
Collapse
Affiliation(s)
- Kenneth M Madden
- Division of Geriatric Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
99
|
Cazzola M, Matera MG, Donner CF. Inhaled beta2-adrenoceptor agonists: cardiovascular safety in patients with obstructive lung disease. Drugs 2006; 65:1595-610. [PMID: 16060696 DOI: 10.2165/00003495-200565120-00001] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although large surveys have documented the favourable safety profile of beta(2)-adrenoceptor agonists (beta(2)-agonists) and, above all, that of the long-acting agents, the presence in the literature of reports of adverse cardiovascular events in patients with obstructive airway disease must induce physicians to consider this eventuality. The coexistence of beta(1)- and beta(2)-adrenoceptors in the heart clearly indicates that beta(2)-agonists do have some effect on the heart, even when they are highly selective. It should also be taken into account that the beta(2)-agonists utilised in clinical practice have differing selectivities and potencies. beta(2)-agonist use has, in effect, been associated with an increased risk of myocardial infarction, congestive heart failure, cardiac arrest and sudden cardiac death. Moreover, patients who have either asthma or chronic obstructive pulmonary disease may be at increased risk of cardiovascular complications because these diseases amplify the impact of these agents on the heart and, unfortunately, are a confounding factor when the impact of beta(2)-agonists on the heart is evaluated. Whatever the case may be, this effect is of particular concern for those patients with underlying cardiac conditions. Therefore, beta(2)-agonists must always be used with caution in patients with cardiopathies because these agents may precipitate the concomitant cardiac disease.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Pneumology and Allergology, Department of Respiratory Medicine, Cardarelli Hospital, Naples, Italy
| | | | | |
Collapse
|
100
|
Fernandez-Twinn DS, Ekizoglou S, Wayman A, Petry CJ, Ozanne SE. Maternal low-protein diet programs cardiac beta-adrenergic response and signaling in 3-mo-old male offspring. Am J Physiol Regul Integr Comp Physiol 2006; 291:R429-36. [PMID: 16914429 DOI: 10.1152/ajpregu.00608.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Low birth weight in humans is associated with an increased risk of cardiovascular disease. Humans with heart failure have a reduced beta-adrenergic response. The aim of this study was to investigate the hemodynamic response to the beta-adrenergic agonist isoproterenol and to identify molecular deficiencies that may be predictive of cardiac failure in a low-birth weight rodent model that develops insulin resistance and type 2 diabetes in adulthood. Wistar rats were fed a control or a low-protein (LP) diet throughout pregnancy and lactation. The resting heart rate and blood pressure of the 3-mo-old male offspring of these dams, termed "control" and "LP" groups, respectively, and their responses to isoproterenol (ISO) infusion were monitored by radiotelemetry. The protein expression of beta-adrenergic signaling components was also measured by Western blot analysis. Basal heart rate was increased in LP offspring (P<0.04), although mean arterial pressure was comparable with controls. Chronotropic effects of ISO were blunted in LP offspring with significant delays to maximal response (P=0.01), a shorter duration of response (P=0.03), and a delayed return to baseline (P=0.01) at the lower dose (0.1 microg.kg-1.min-1). At the higher dose (1.0 microg.kg-1.min-1 ISO), inotropic response was blunted (P=0.03) but quicker (P=0.001). In heart tissue of LP offspring, beta1-adrenergic receptor expression was reduced (P<0.03). beta1-Adrenergic receptor kinase and both stimulatory and inhibitory G protein levels remained unchanged, whereas beta-arrestin levels were higher (P<0.03). Finally, insulin receptor-beta expression was reduced in LP offspring (P<0.012). LP offspring have reduced beta-adrenergic responsiveness and attenuated adrenergic and insulin signaling, suggesting that intrauterine undernutrition alters heart failure risk.
Collapse
Affiliation(s)
- Denise S Fernandez-Twinn
- Department of Clinical Biochemistry, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, UK.
| | | | | | | | | |
Collapse
|