51
|
Sexual dimorphisms in swimming behavior, cerebral metabolic activity and adrenoceptors in adult zebrafish (Danio rerio). Behav Brain Res 2016; 312:385-93. [PMID: 27363927 DOI: 10.1016/j.bbr.2016.06.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 06/13/2016] [Accepted: 06/26/2016] [Indexed: 02/06/2023]
Abstract
Sexually dimorphic behaviors and brain sex differences, not only restricted to reproduction, are considered to be evolutionary preserved. Specifically, anxiety related behavioral repertoire is suggested to exhibit sex-specific characteristics in rodents and primates. The present study investigated whether behavioral responses to novelty, have sex-specific characteristics in the neurogenetic model organism zebrafish (Danio rerio), lacking chromosomal sex determination. For this, aspects of anxiety-like behavior (including reduced exploration, increased freezing behavior and erratic movement) of male and female adult zebrafish were tested in a novel tank paradigm and after habituation. Male and female zebrafish showed significant differences in their swimming activity in response to novelty, with females showing less anxiety spending more time in the upper tank level. When fish have habituated, regional cerebral glucose uptake, an index of neuronal activity, and brain adrenoceptors' (ARs) expression (α2-ARs and β-ARs) were determined using in vivo 2-[(14)C]-deoxyglucose methodology and in vitro neurotransmitter receptors quantitative autoradiography, respectively. Intriguingly, females exhibited higher glucose utilization than males in hypothalamic brain areas. Adrenoceptor's expression pattern was dimorphic in zebrafish telencephalic, preoptic, hypothalamic nuclei, central gray, and cerebellum, similarly to birds and mammals. Specifically, the lateral zone of dorsal telencephalon (Dl), an area related to spatial cognition, homologous to the mammalian hippocampus, showed higher α2-AR densities in females. In contrast, male cerebellum included higher densities of β-ARs in comparison to female. Taken together, our data demonstrate a well-defined sex discriminant cerebral metabolic activity and ARs' pattern in zebrafish, possibly contributing to male-female differences in the swimming behavior.
Collapse
|
52
|
Blessing W, McAllen R, McKinley M. Control of the Cutaneous Circulation by the Central Nervous System. Compr Physiol 2016; 6:1161-97. [PMID: 27347889 DOI: 10.1002/cphy.c150034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The central nervous system (CNS), via its control of sympathetic outflow, regulates blood flow to the acral cutaneous beds (containing arteriovenous anastomoses) as part of the homeostatic thermoregulatory process, as part of the febrile response, and as part of cognitive-emotional processes associated with purposeful interactions with the external environment, including those initiated by salient or threatening events (we go pale with fright). Inputs to the CNS for the thermoregulatory process include cutaneous sensory neurons, and neurons in the preoptic area sensitive to the temperature of the blood in the internal carotid artery. Inputs for cognitive-emotional control from the exteroceptive sense organs (touch, vision, sound, smell, etc.) are integrated in forebrain centers including the amygdala. Psychoactive drugs have major effects on the acral cutaneous circulation. Interoceptors, chemoreceptors more than baroreceptors, also influence cutaneous sympathetic outflow. A major advance has been the discovery of a lower brainstem control center in the rostral medullary raphé, regulating outflow to both brown adipose tissue (BAT) and to the acral cutaneous beds. Neurons in the medullary raphé, via their descending axonal projections, increase the discharge of spinal sympathetic preganglionic neurons controlling the cutaneous vasculature, utilizing glutamate, and serotonin as neurotransmitters. Present evidence suggests that both thermoregulatory and cognitive-emotional control of the cutaneous beds from preoptic, hypothalamic, and forebrain centers is channeled via the medullary raphé. Future studies will no doubt further unravel the details of neurotransmitter pathways connecting these rostral control centers with the medullary raphé, and those operative within the raphé itself. © 2016 American Physiological Society. Compr Physiol 6:1161-1197, 2016.
Collapse
Affiliation(s)
- William Blessing
- Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, S.A., Australia
| | - Robin McAllen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Vic., Australia
| | - Michael McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Vic., Australia
| |
Collapse
|
53
|
Noradrenergic Locus Coeruleus pathways in pain modulation. Neuroscience 2016; 338:93-113. [PMID: 27267247 DOI: 10.1016/j.neuroscience.2016.05.057] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/20/2016] [Accepted: 05/27/2016] [Indexed: 12/30/2022]
Abstract
The noradrenergic system is crucial for several activities in the body, including the modulation of pain. As the major producer of noradrenaline (NA) in the central nervous system (CNS), the Locus Coeruleus (LC) is a nucleus that has been studied in several pain conditions, mostly due to its strategic location. Indeed, apart from a well-known descending LC-spinal pathway that is important for pain control, an ascending pathway passing through this nucleus may be responsible for the noradrenergic inputs to higher centers of the pain processing, such as the limbic system and frontal cortices. Thus, the noradrenergic system appears to modulate different components of the pain experience and accordingly, its manipulation has distinct behavioral outcomes. The main goal of this review is to bring together the data available regarding the noradrenergic system in relation to pain, particularly focusing on the ascending and descending LC projections in different conditions. How such findings influence our understanding of these conditions is also discussed.
Collapse
|
54
|
Fragkos KC, Zárate-Lopez N, Frangos CC. What about clonidine for diarrhoea? A systematic review and meta-analysis of its effect in humans. Therap Adv Gastroenterol 2016; 9:282-301. [PMID: 27134659 PMCID: PMC4830099 DOI: 10.1177/1756283x15625586] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Clonidine is considered an alternative treatment for refractory diarrhoea. The evidence in the literature is scarce and not conclusive. The present paper's purpose is to gather available evidence and provide a systematic answer regarding the effectiveness of clonidine for diarrhoea. METHOD We performed a systematic review of clonidine and its effect on diarrhoea. Meta-analysis was performed with a random effects model of the standardized mean difference (SMD) or the weighted mean difference and heterogeneity was quantified with I (2) and publication bias was assessed with Egger's and Begg's test. Subgroup analyses and meta-regression were performed to investigate sources of heterogeneity. Any empirical study describing use of clonidine for diarrhoea in humans independent of age was included. For the meta-analysis, papers had to provide sufficient data to produce an effect measure, while case reports were not included in the meta-analysis and are discussed narratively only. RESULTS A total of 24 trials and seven case reports were identified. Clonidine (median dose 300 μg/day) has been used for treatment of diarrhoea in irritable bowel syndrome, faecal incontinence, diabetes, withdrawal-associated diarrhoea, intestinal failure, neuroendocrine tumours and cholera; studies were also performed on healthy volunteers. Results indicate a strong effect of clonidine on diarrhoea (SMD = -1.02, 95% confidence interval [CI] -1.46 to -0.58) with a decrease of stool volume by 0.97 l/day, stool frequency by 0.4 times/day and increase in transit time by 31 minutes. In a sensitivity analysis of studies with functional diarrhoea and sample size over 10 subjects, the effect was similar -0.99 (95% CI -1.54 to -0.43). There is however significant heterogeneity and publication bias. Heterogeneity decreased in subgroup analyses by condition but not with other factors examined. A limitation of the present study includes small study effects. CONCLUSION Clonidine is effective for treatment of diarrhoea and should be considered as an alternative when all other medications have failed.
Collapse
Affiliation(s)
| | - Natalia Zárate-Lopez
- GI Physiology Unit, Department of Gastroenterology, University College London Hospitals, London, UK
| | - Christos C. Frangos
- Department of Business Administration, Technological Educational Institute of Athens, Athens, Greece
| |
Collapse
|
55
|
Mohammed M, Kulasekara K, Ootsuka Y, Blessing WW. Locus coeruleus noradrenergic innervation of the amygdala facilitates alerting-induced constriction of the rat tail artery. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1109-19. [PMID: 27101292 DOI: 10.1152/ajpregu.00058.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/11/2016] [Indexed: 02/08/2023]
Abstract
The amygdala, innervated by the noradrenergic locus coeruleus, processes salient environmental events. α2-adrenoceptor-stimulating drugs (clonidine-like agents) suppress the behavioral and physiological components of the response to salient events. Activation of sympathetic outflow to the cutaneous vascular bed is part of the physiological response to salience-mediated activation of the amygdala. We have determined whether acute systemic and intra-amygdala administration of clonidine, and chronic immunotoxin-mediated destruction of the noradrenergic innervation of the amygdala, impairs salience-related vasoconstrictor episodes in the tail artery of conscious freely moving Sprague-Dawley rats. After acute intraperitoneal injection of clonidine (10, 50, and 100 μg/kg), there was a dose-related decrease in the reduction in tail blood flow elicited by alerting stimuli, an effect prevented by prior administration of the α2-adrenergic blocking drug idazoxan (1 mg/kg ip or 75 nmol bilateral intra-amygdala). A dose-related decrease in alerting-induced tail artery vasoconstriction was also observed after bilateral intra-amygdala injection of clonidine (5, 10, and 20 nmol in 200 nl), an effect substantially prevented by prior bilateral intra-amygdala injection of idazoxan. Intra-amygdala injection of idazoxan by itself did not alter tail artery vasoconstriction elicited by alerting stimuli. Intra-amygdala injection of saporin coupled to antibodies to dopamine-β-hydroxylase (immunotoxin) destroyed the noradrenergic innervation of the amygdala and the parent noradrenergic neurons in the locus coeruleus. The reduction in tail blood flow elicited by standardized alerting stimuli was substantially reduced in immunotoxin-treated rats. Thus, inhibiting the release of noradrenaline within the amygdala reduces activation of the sympathetic outflow to the vascular beds elicited by salient events.
Collapse
Affiliation(s)
- Mazher Mohammed
- Centre for Neuroscience, Department of Human Physiology, Flinders University, Adelaide, South Australia, Australia
| | - Keerthi Kulasekara
- Centre for Neuroscience, Department of Human Physiology, Flinders University, Adelaide, South Australia, Australia
| | - Youichirou Ootsuka
- Centre for Neuroscience, Department of Human Physiology, Flinders University, Adelaide, South Australia, Australia
| | - William W Blessing
- Centre for Neuroscience, Department of Human Physiology, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
56
|
Milic MS, Brkovic B, Krsljak E, Stojic D. Comparison of pulpal anesthesia and cardiovascular parameters with lidocaine with epinephrine and lidocaine with clonidine after maxillary infiltration in type 2 diabetic volunteers. Clin Oral Investig 2015; 20:1283-93. [PMID: 26427866 DOI: 10.1007/s00784-015-1610-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/21/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The pulpal anesthetic and cardiovascular parameters obtained by 2 % lidocaine with epinephrine (LE; 1:80,000) or clonidine (LC; 15 mcg/ml) were studied in diabetes mellitus (DM) type 2 and healthy volunteers (72), after maxillary infiltration anesthesia. MATERIALS AND METHODS Onset and duration of pulpal anesthesia were measured by electric pulp tester; vasoconstrictive effect of used local anesthetic mixtures by laser Doppler flowmetry (LDF) through pulpal blood flow (PBF); systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate (HR) were registered by electrocardiogram monitoring. RESULTS Onset of pulpal anesthesia was shorter for LC than for LE in healthy, while it was not different in diabetic participants; duration of pulpal anesthesia was significantly longer in type 2 diabetic participants, regardless of used anesthetic mixture. Significant reduction of PBF with LE was observed during 45 min in healthy and 60 min in diabetic participants, while with LC such reduction was observed during 45 min in both groups. LE caused a significant increase of SBP in the 5th and 15th minutes in diabetic versus healthy participants, while LC decreased SBP from the 10th to 60th minutes in healthy versus diabetic participants. CONCLUSIONS DM type 2 influences duration of maxillary infiltration anesthesia obtained with LE and LC, and systolic blood pressure during LE anesthesia. CLINICAL RELEVANCE The obtained results provide elements for future protocols concerning intraoral local anesthesia in DM type 2 patients.
Collapse
Affiliation(s)
- Marija S Milic
- Clinic of Oral Surgery, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Bozidar Brkovic
- Clinic of Oral Surgery, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Elena Krsljak
- Department of Physiology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragica Stojic
- Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
57
|
Komanski CB, Rauck RL, North JM, Hong KS, D'Angelo R, Hildebrand KR. Intrathecal Clonidine via Lumbar Puncture Decreases Blood Pressure in Patients With Poorly Controlled Hypertension. Neuromodulation 2015; 18:499-507; discussion 507. [PMID: 25944733 DOI: 10.1111/ner.12304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/28/2015] [Accepted: 02/17/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Oral clonidine is used to treat hypertension but often produces sedation and severe dry mouth; intrathecal clonidine is used to treat chronic pain but may produce hypotension. This clinical feasibility study was conducted to determine if intrathecal clonidine decreases blood pressure in patients with poorly controlled hypertension. MATERIALS AND METHODS This prospective, single-arm, open-label study was conducted in ten subjects who were taking at least three antihypertensive medications including a diuretic and had an in-office systolic blood pressure between 140 and 190 mm Hg. On the day of treatment, blood pressure was measured before and after a single lumbar intrathecal dose (150 mcg) of clonidine using an automatic oscillometric device every 10-15 min for four hours. Student's paired t-test was used for statistical comparisons. RESULTS Maximal reductions in systolic and diastolic blood pressures averaging 63 ± 20/29 ± 13 mm Hg were observed approximately two hours after clonidine administration. Decreases in systolic pressure were strongly correlated with baseline systolic pressure. Clonidine produced a significant decrease in heart rate of 11 ± 7 beats/min. No subject required intravenous fluids or vasopressor rescue therapy, or reported spinal headache. CONCLUSIONS This is the first clinical study in subjects with hypertension that demonstrates significant and profound acute reductions in blood pressure after a single dose of intrathecal clonidine. Future placebo-controlled, dose-escalating studies are warranted to assess the long-term effects of intrathecal clonidine infusion via an implantable drug pump in patients with treatment-resistant hypertension at risk of stroke or myocardial infarction.
Collapse
Affiliation(s)
- Chris B Komanski
- Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Richard L Rauck
- Carolinas Pain Institute and Center for Clinical Research, Winston-Salem, NC, USA
| | - James M North
- Carolinas Pain Institute and Center for Clinical Research, Winston-Salem, NC, USA
| | - Kyung S Hong
- Carolinas Pain Institute and Center for Clinical Research, Winston-Salem, NC, USA
| | - Robert D'Angelo
- Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, USA
| | | |
Collapse
|
58
|
Fasick V, Spengler RN, Samankan S, Nader ND, Ignatowski TA. The hippocampus and TNF: Common links between chronic pain and depression. Neurosci Biobehav Rev 2015; 53:139-59. [PMID: 25857253 DOI: 10.1016/j.neubiorev.2015.03.014] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 02/02/2015] [Accepted: 03/28/2015] [Indexed: 02/07/2023]
Abstract
Major depression and chronic pain are significant health problems that seriously impact the quality of life of affected individuals. These diseases that individually are difficult to treat often co-exist, thereby compounding the patient's disability and impairment as well as the challenge of successful treatment. The development of efficacious treatments for these comorbid disorders requires a more comprehensive understanding of their linked associations through common neuromodulators, such as tumor necrosis factor-α (TNFα), and various neurotransmitters, as well as common neuroanatomical pathways and structures, including the hippocampal brain region. This review discusses the interaction between depression and chronic pain, emphasizing the fundamental role of the hippocampus in the development and maintenance of both disorders. The focus of this review addresses the hypothesis that hippocampal expressed TNFα serves as a therapeutic target for management of chronic pain and major depressive disorder (MDD).
Collapse
Affiliation(s)
- Victoria Fasick
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | | | - Shabnam Samankan
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | - Nader D Nader
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States; Department of Anesthesiology, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | - Tracey A Ignatowski
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States; NanoAxis, LLC, Clarence, NY 14031, United States; Program for Neuroscience, School of Medicine and Biomedical Science, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States.
| |
Collapse
|
59
|
Ghanemi A, Hu X. Elements toward novel therapeutic targeting of the adrenergic system. Neuropeptides 2015; 49:25-35. [PMID: 25481798 DOI: 10.1016/j.npep.2014.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/30/2014] [Accepted: 11/19/2014] [Indexed: 01/14/2023]
Abstract
Adrenergic receptors belong to the family of the G protein coupled receptors that represent important targets in the modern pharmacotherapies. Studies on different physiological and pathophysiological properties of the adrenergic system have led to novel evidences and theories that suggest novel possible targeting of such system in a variety of pathologies and disorders, even beyond the classical known therapeutic possibilities. Herein, those advances have been illustrated with selected concepts and different examples. Furthermore, we illustrated the applications and the therapeutic implications that such findings and advances might have in the contexts of experimental pharmacology, therapeutics and clinic. We hope that the content of this work will guide researches devoted to the adrenergic aspects that combine neurosciences with pharmacology.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; University of Chinese Academy of Science, Beijing, China.
| | - Xintian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Key State Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Science, Beijing, China.
| |
Collapse
|
60
|
Achterberg EJM, van Kerkhof LWM, Damsteegt R, Trezza V, Vanderschuren LJMJ. Methylphenidate and atomoxetine inhibit social play behavior through prefrontal and subcortical limbic mechanisms in rats. J Neurosci 2015; 35:161-9. [PMID: 25568111 PMCID: PMC4287139 DOI: 10.1523/jneurosci.2945-14.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/24/2014] [Accepted: 11/05/2014] [Indexed: 11/21/2022] Open
Abstract
Positive social interactions during the juvenile and adolescent phases of life, in the form of social play behavior, are important for social and cognitive development. However, the neural mechanisms of social play behavior remain incompletely understood. We have previously shown that methylphenidate and atomoxetine, drugs widely used for the treatment of attention-deficit hyperactivity disorder (ADHD), suppress social play in rats through a noradrenergic mechanism of action. Here, we aimed to identify the neural substrates of the play-suppressant effects of these drugs. Methylphenidate is thought to exert its effects on cognition and emotion through limbic corticostriatal systems. Therefore, methylphenidate was infused into prefrontal and orbitofrontal cortical regions as well as into several subcortical limbic areas implicated in social play. Infusion of methylphenidate into the anterior cingulate cortex, infralimbic cortex, basolateral amygdala, and habenula inhibited social play, but not social exploratory behavior or locomotor activity. Consistent with a noradrenergic mechanism of action of methylphenidate, infusion of the noradrenaline reuptake inhibitor atomoxetine into these same regions also reduced social play. Methylphenidate administration into the prelimbic, medial/ventral orbitofrontal, and ventrolateral orbitofrontal cortex, mediodorsal thalamus, or nucleus accumbens shell was ineffective. Our data show that the inhibitory effects of methylphenidate and atomoxetine on social play are mediated through a distributed network of prefrontal and limbic subcortical regions implicated in cognitive control and emotional processes. These findings increase our understanding of the neural underpinnings of this developmentally important social behavior, as well as the mechanism of action of two widely used treatments for ADHD.
Collapse
Affiliation(s)
- E J Marijke Achterberg
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Linda W M van Kerkhof
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| | - Ruth Damsteegt
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre," 00146 Rome, Italy
| | - Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands, Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| |
Collapse
|
61
|
Ferry B, Parrot S, Marien M, Lazarus C, Cassel JC, McGaugh JL. Noradrenergic influences in the basolateral amygdala on inhibitory avoidance memory are mediated by an action on α2-adrenoceptors. Psychoneuroendocrinology 2015; 51:68-79. [PMID: 25286225 DOI: 10.1016/j.psyneuen.2014.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 11/26/2022]
Abstract
The role of norepinephrine (NE) in the consolidation of inhibitory avoidance learning (IA) in rats is known to involve α1- and β-adrenoceptor systems in the basolateral nucleus of the amygdala (BLA). However, the amygdala also contains α2-adrenoceptor subtypes, and local microinfusions of the selective α2-adrenoceptor antagonist idazoxan and agonist UK 14,304 respectively into the BLA enhance and inhibit IA performances when administered before acquisition. The present study investigated whether the effects of idazoxan and UK 14,304 on IA were associated with changes in NE release within the BLA before and after one-trial inhibitory avoidance training. Male Sprague-Dawley rats were unilaterally implanted with a microdialysis probe in the BLA and were administered idazoxan (0.1mM) or UK 14,304 (10 μM) by retrodialysis infusion 15 min before the acquisition of IA. Dialysates were collected every 15 min for analysis of NE. Retrodialysis of idazoxan potentiated the release of NE induced by footshock application, whereas UK 14,304 decreased NE release to the extent that the footshock failed to induce any measurable effect on NE levels. Idazoxan infusion enhanced IA retention tested 24h later and this effect was directly related to the level of NE release in the BLA measured during IA acquisition. In contrast, the infusion of UK 14,304 did not modify IA performances in comparison to control animals, possibly due to compensatory activity of the contralateral BLA. These results are consistent with previous evidence that amygdala NE is involved in modulating memory consolidation, and provide evidence for an involvement of presynaptic α2-autoceptors in the BLA in this process.
Collapse
Affiliation(s)
- Barbara Ferry
- INSERM, U1028; CNRS, UMR5292; Université Lyon 1; Lyon Neuroscience Research Center, 50 avenue Tony Garnier, F-69366 Lyon France.
| | - Sandrine Parrot
- INSERM, U1028; CNRS, UMR5292; Université Lyon 1; Lyon Neuroscience Research Center, 50 avenue Tony Garnier, F-69366 Lyon France; INSERM, U1028; Université Lyon 1; UMR 5292 CNRS; Lyon Neuroscience Research Center, NeuroDialyTics, 8 Avenue Rockefeller, F-69373 Lyon Cedex 08 France
| | - Marc Marien
- Institut de Recherche Pierre Fabre, Castres 81106, France
| | - Christine Lazarus
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364 Université de Strasbourg-CNRS, Faculté de Psychologie, Neuropôle de Strasbourg, 12 rue Goethe, F-67000 Strasbourg, France
| | - Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364 Université de Strasbourg-CNRS, Faculté de Psychologie, Neuropôle de Strasbourg, 12 rue Goethe, F-67000 Strasbourg, France
| | - James L McGaugh
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California Irvine, CA 92697-3800, USA
| |
Collapse
|
62
|
Rønnekleiv OK, Fang Y, Zhang C, Nestor CC, Mao P, Kelly MJ. Research resource: Gene profiling of G protein-coupled receptors in the arcuate nucleus of the female. Mol Endocrinol 2014; 28:1362-80. [PMID: 24933249 PMCID: PMC4116592 DOI: 10.1210/me.2014-1103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The hypothalamic arcuate nucleus controls many critical homeostatic functions including energy homeostasis, reproduction, and motivated behavior. Although G protein-coupled receptors (GPCRs) are involved in the regulation of these functions, relatively few of the GPCRs have been identified specifically within the arcuate nucleus. Here, using TaqMan low-density arrays we quantified the mRNA expression of nonolfactory GPCRs in mouse arcuate nucleus. An unprecedented number of GPCRs (total of 292) were found to be expressed, of which 183 were known and 109 were orphan GPCRs. The known GPCR genes expressed were classified into several functional clusters including hormone/neurotransmitter, growth factor, angiogenesis and vasoactivity, inflammation and immune system, and lipid messenger receptors. The plethora of orphan genes expressed in the arcuate nucleus were classified into 5 structure-related classes including class A (rhodopsin-like), class B (adhesion), class C (other GPCRs), nonsignaling 7-transmembrane chemokine-binding proteins, and other 7-transmembrane proteins. Therefore, for the first time, we provide a quantitative estimate of the numerous GPCRs expressed in the hypothalamic arcuate nucleus. Finally, as proof of principle, we documented the expression and function of one of these receptor genes, the glucagon-like peptide 1 receptor (Glp1r), which was highly expressed in the arcuate nucleus. Single-cell RT-PCR revealed that Glp1r mRNA was localized in proopiomelanocortin neurons, and using whole-cell recording we found that the glucagon-like peptide 1-selective agonist exendin-4 robustly excited proopiomelanocortin neurons. Thus, the quantitative GPCR data emphasize the complexity of the hypothalamic arcuate nucleus and furthermore provide a valuable resource for future neuroendocrine/endocrine-related experiments.
Collapse
Affiliation(s)
- Oline K Rønnekleiv
- Department of Physiology and Pharmacology (O.K.R., Y.F., C.Z., C.CN., P.M., M.J.K.), Oregon Health and Science University, Portland, Oregon 97239; and Division of Neuroscience (O.K.R., P.M., M.J.K.), Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006
| | | | | | | | | | | |
Collapse
|
63
|
Liu HJ, Gao XZ, Liu XM, Xia M, Li WY, Jin Y. Effect of Intrathecal Dexmedetomidine on Spinal Morphine Analgesia in Patients with Refractory Cancer Pain. J Palliat Med 2014; 17:837-40. [PMID: 24702571 DOI: 10.1089/jpm.2013.0544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hong-jun Liu
- Department of Anesthesiology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, Peoples Republic of China
| | - Xian-zhong Gao
- Department of Anesthesiology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, Peoples Republic of China
| | - Xiao-ming Liu
- Department of Anesthesiology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, Peoples Republic of China
| | - Ming Xia
- Department of Anesthesiology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, Peoples Republic of China
| | - Wei-yan Li
- Department of Anesthesiology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, Peoples Republic of China
| | - Yi Jin
- Department of Anesthesiology, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, Peoples Republic of China
| |
Collapse
|
64
|
Effects of clonidine in women with fecal incontinence. Clin Gastroenterol Hepatol 2014; 12:843-851.e2; quiz e44. [PMID: 23891925 PMCID: PMC3900592 DOI: 10.1016/j.cgh.2013.06.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/14/2013] [Accepted: 06/29/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Some women with urge-predominant fecal incontinence (FI) have diarrhea-predominant irritable bowel syndrome and a stiffer and hypersensitive rectum. We evaluated the effects of the α2-adrenergic agonist clonidine on symptoms and anorectal functions in women with FI in a prospective, placebo-controlled trial. METHODS We assessed bowel symptoms and anorectal functions (anal pressures, rectal compliance, and sensation) in 43 women (age, 58 ± 2 y) with urge-predominant FI, randomly assigned to groups given oral clonidine (0.1 mg, twice daily) or placebo for 4 weeks. Before and after administration of the medication, anal pressures were evaluated by manometry, and rectal compliance and sensation were measured using a barostat. Anal sphincter injury was evaluated by endoanal magnetic resonance imaging. Bowel symptoms were recorded in daily and weekly diaries. The primary end point was the FI and Constipation Assessment symptom severity score. RESULTS FI scores decreased from 9.1 ± 0.3 to 7.6 ± 0.5 among subjects given placebo and from 8.1 ± 0.4 to 6.5 ± 0.6 among patients given clonidine. Clonidine did not affect FI symptom severity, bowel symptoms (stool consistency or frequency), anal pressures, rectal compliance, or sensation compared with placebo. However, when baseline data were used to categorize subjects as those with or without diarrhea, clonidine reduced the proportion of loose stools in patients with diarrhea only (P = .018). Clonidine also reduced the proportion of days with FI in patients with diarrhea (P = .0825). CONCLUSIONS Overall, clonidine did not affect bowel symptoms, fecal continence, or anorectal functions, compared with placebo, in women with urge-predominant FI. Among patients with diarrhea, clonidine increased stool consistency, with a borderline significant improvement in fecal continence. ClinicalTrials.gov, Number NCT00884832.
Collapse
|
65
|
Hormigo S, Gómez-Nieto R, Castellano O, Herrero-Turrión MJ, López DE, de Anchieta de Castro E Horta-Júnior J. The noradrenergic projection from the locus coeruleus to the cochlear root neurons in rats. Brain Struct Funct 2014; 220:1477-96. [PMID: 24623157 DOI: 10.1007/s00429-014-0739-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/17/2014] [Indexed: 12/18/2022]
Abstract
The cochlear root neurons (CRNs) are key components of the primary acoustic startle circuit; mediating auditory alert and escape behaviors in rats. They receive a great variety of inputs which serve to elicit and modulate the acoustic startle reflex (ASR). Recently, our group has suggested that CRNs receive inputs from the locus coeruleus (LC), a noradrenergic nucleus which participates in attention and alertness. Here, we map the efferent projection patterns of LC neurons and confirm the existence of the LC-CRN projection using both anterograde and retrograde tract tracers. Our results show that each LC projects to the CRNs of both sides with a clear ipsilateral predominance. The LC axons terminate as small endings distributed preferentially on the cell body and primary dendrites of CRNs. Using light and confocal microscopy, we show a strong immunoreactivity for tyrosine hydroxylase and dopamine β-hydroxylase in these terminals, indicating noradrenaline release. We further studied the noradrenergic system using gene expression analysis (RT-qPCR) and immunohistochemistry to detect specific noradrenergic receptor subunits in the cochlear nerve root. Our results indicate that CRNs contain a noradrenergic receptor profile sufficient to modulate the ASR, and also show important gender-specific differences in their gene expression. 3D reconstruction analysis confirms the presence of sexual dimorphism in the density and distribution of LC neurons. Our study describes a coerulean noradrenergic projection to the CRNs that might contribute to neural processes underlying sensory gating of the ASR, and also provides an explanation for the gender differences observed in the behavioral paradigm.
Collapse
Affiliation(s)
- Sebastián Hormigo
- Neuroscience Institute of Castilla y León, University of Salamanca, 37007, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
66
|
Nag S, Mokha SS. Activation of a Gq-coupled membrane estrogen receptor rapidly attenuates α2-adrenoceptor-induced antinociception via an ERK I/II-dependent, non-genomic mechanism in the female rat. Neuroscience 2014; 267:122-34. [PMID: 24613724 DOI: 10.1016/j.neuroscience.2014.02.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/24/2014] [Accepted: 02/24/2014] [Indexed: 01/04/2023]
Abstract
Though sex differences in pain and analgesia are known, underlying mechanisms remain elusive. This study addresses the selective contribution of membrane estrogen receptors (mERs) and mER-initiated non-genomic signaling mechanisms in our previously reported estrogen-induced attenuation of α2-adrenoceptor-mediated antinociception. By selectively targeting spinal mERs in ovariectomized female rats using β-estradiol 6-(O-carboxy-methyl)oxime bovine serum albumin (E2BSA) (membrane impermeant estradiol analog), and ERα selective agonist 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT), ERβ selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), G-protein-coupled estrogen receptor 30 (GPR30) agonist G1 and Gq-coupled mER (Gq-mER) agonist STX, we provide strong evidence that Gq-mER activation may solely contribute to suppressing clonidine (an α2-adrenoceptor agonist)-induced antinociception, using the nociceptive tail-flick test. Increased tail-flick latencies (TFLs) by intrathecal (i.t.) clonidine were not significantly altered by i.t. PPT, DPN, or G1. In contrast, E2BSA or STX rapidly and dose-dependently attenuated clonidine-induced increase in TFL. ICI 182,780, the ER antagonist, blocked this effect. Consistent with findings with the lack of effect of ERα and ERβ agonists that modulate receptor-regulated transcription, inhibition of de novo protein synthesis using anisomycin also failed to alter the effect of E2BSA or STX, arguing against a contribution of genomic mechanisms. Immunoblotting of spinal tissue revealed that mER activation increased levels of phosphorylated extracellular signal-regulated kinase (ERK) but not of protein kinase A (PKA) or C (PKC). In vivo inhibition of ERK with U0126 blocked the effect of STX and restored clonidine antinociception. Although estrogen-induced delayed genomic mechanisms may still exist, data presented here indicate that Gq-mER may solely mediate estradiol-induced attenuation of clonidine antinociception via a rapid, reversible, and ERK-dependent, non-genomic mechanism, suggesting that Gq-mER blockade might provide improved analgesia in females.
Collapse
Affiliation(s)
- S Nag
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, United States.
| | - S S Mokha
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, United States
| |
Collapse
|
67
|
Abela AR, Chudasama Y. Noradrenergic α2A-receptor stimulation in the ventral hippocampus reduces impulsive decision-making. Psychopharmacology (Berl) 2014; 231:521-31. [PMID: 24062084 DOI: 10.1007/s00213-013-3262-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Guanfacine, an α2A-adrenergic receptor agonist, is currently in use for treatment of a variety of psychiatric disorders that are associated with impulsive decision-making (e.g., attention-deficit hyperactivity disorder; ADHD). In animals and humans, the behavioral effects of adrenergic agents are presumed to involve neuromodulation of the prefrontal cortex, consistent with the demonstrated actions of dopaminergic agents. However, recent experimental work has shown that the ventral hippocampus (vHC) contributes to decision-making and impulse control, raising the possibility that the hippocampus may be an important site of action for these drugs. OBJECTIVE The purpose of this study was to examine the effect of local vHC infusions of guanfacine and other neuropharmacological agents on behavioral decisions that involve a trade-off between reward size and delay. METHODS Different cohorts of rats were implanted with bilateral guide cannulae targeting the vHC. We examined the animals' behavior in a touchscreen version of a delay discounting task following intra-vHC infusions of: (a) guanfacine (α2A-adrenergic receptor agonist), (b) SCH 23390 (dopamine D1 receptor antagonist), and (c) muscimol/baclofen (GABAA/B agonists). RESULTS Guanfacine led to a dose-dependent reduction in impulsive decision-making, increasing the animals' tolerance for delay in exchange for a larger reward. By contrast, infusion of SCH 23390 had no behavioral effects. Consistent with previous lesion studies, reversible pharmacological inactivation with muscimol/baclofen increased impulsive decision-making. CONCLUSIONS These data provide the first evidence that guanfacine, a commonly used treatment for ADHD, may derive its clinical benefits through hippocampal stimulation, via α2A-adrenergic receptors.
Collapse
Affiliation(s)
- Andrew R Abela
- Department of Psychology, McGill University, Montreal, QC, H3A 1B1, Canada
| | | |
Collapse
|
68
|
Lee HG, Choi JI, Kim YO, Yoon MH. The role of alpha-2 adrenoceptor subtype in the antiallodynic effect of intraplantar dexmedetomidine in a rat spinal nerve ligation model. Neurosci Lett 2013; 557 Pt B:118-22. [PMID: 24161890 DOI: 10.1016/j.neulet.2013.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/24/2013] [Accepted: 10/01/2013] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to examine the effects of intraplantar dexmedetomidine to relieve neuropathic pain and determine the role of peripheral α2-adrenoceptors. Neuropathic pain was induced by ligating the L5 and L6 spinal nerves in male Sprague-Dawley rats, and mechanical allodynia was assessed using von Frey filaments. Several antagonists were injected into the hindpaws to evaluate the mechanisms of action of dexmedetomidine, a nonselective α2-adrenoceptor antagonist yohimbine, an α2A-adrenoceptor antagonist BRL 44408, an α2B-adrenoceptor antagonist ARC 239, and a α2C-adrenoceptor antagonist JP 1302. The expression of α2A-adrenoceptor, α2B-adrenoceptor, and α2C-adrenoceptor genes in the lumbar segment of the spinal cord and the plantar skin of the nerve-injured leg was detected by reverse transcription-polymerase chain reaction. Ipsilateral intraplantar injection of dexmedetomidine produced dose-dependent antiallodynia. Ipsilateral, but not contraleral, intraplantar injection of yohimbine reversed the antinociception of dexmedetomidine. Intraplantar BRL 44408, ARC 239, and JP 1302 reversed the antinociception of dexmedetomidine. The expression levels of α2-adrenoceptor genes in the lumbar spinal cord did not differ between rats with neuropathic pain and naïve rats. The expression levels of α2B-adrenoceptor and α2C-adrenoceptor genes of plantar skin were upregulated significantly in the model group, whereas α2A-adrenoceptor expression was unchanged. These results suggest that intraplantar injection of dexmedetomidine produced an antiallodynic effect in spinal nerve ligation-induced neuropathic pain. All three types of peripheral α2A, α2B, and α2C-adrenoceptors were involved in the antiallodynic mechanism of dexmedetomidine.
Collapse
Affiliation(s)
- Hyung Gon Lee
- Department of Anesthesiology and Pain Medicine, Chonnam National University, Medical School, Gwangju, Republic of Korea
| | | | | | | |
Collapse
|
69
|
Long-term modulation of learning following locus coeruleus stimulation: Behavioral and neurochemical data. ACTA ACUST UNITED AC 2013. [DOI: 10.3758/bf03326516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
70
|
Abstract
The central noradrenergic neurone, like the peripheral sympathetic neurone, is characterized by a diffusely arborizing terminal axonal network. The central neurones aggregate in distinct brainstem nuclei, of which the locus coeruleus (LC) is the most prominent. LC neurones project widely to most areas of the neuraxis, where they mediate dual effects: neuronal excitation by α₁-adrenoceptors and inhibition by α₂-adrenoceptors. The LC plays an important role in physiological regulatory networks. In the sleep/arousal network the LC promotes wakefulness, via excitatory projections to the cerebral cortex and other wakefulness-promoting nuclei, and inhibitory projections to sleep-promoting nuclei. The LC, together with other pontine noradrenergic nuclei, modulates autonomic functions by excitatory projections to preganglionic sympathetic, and inhibitory projections to preganglionic parasympathetic neurones. The LC also modulates the acute effects of light on physiological functions ('photomodulation'): stimulation of arousal and sympathetic activity by light via the LC opposes the inhibitory effects of light mediated by the ventrolateral preoptic nucleus on arousal and by the paraventricular nucleus on sympathetic activity. Photostimulation of arousal by light via the LC may enable diurnal animals to function during daytime. LC neurones degenerate early and progressively in Parkinson's disease and Alzheimer's disease, leading to cognitive impairment, depression and sleep disturbance.
Collapse
Affiliation(s)
- Elemer Szabadi
- Division of Psychiatry, University of Nottingham, Nottingham, UK.
| |
Collapse
|
71
|
Zhu JX, Xu FY, Xu WJ, Zhao Y, Qu CL, Tang JS, Barry DM, Du JQ, Huo FQ. The role of α₂ adrenoceptor in mediating noradrenaline action in the ventrolateral orbital cortex on allodynia following spared nerve injury. Exp Neurol 2013; 248:381-6. [PMID: 23872512 DOI: 10.1016/j.expneurol.2013.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
Abstract
The present study examined the role of α₂ adrenoceptor in mediating noradrenaline action in the ventrolateral orbital cortex (VLO) on allodynia induced by spared nerve injury (SNI) in the rat. The mechanical paw withdrawal threshold (PWT) was measured using von-Frey filaments. Microinjection of noradrenaline (1, 2, 4 μg in 0.5 μl) into the VLO, contralateral to the site of nerve injury, reduced allodynia; PWT increased in a dose-dependent manner. Similar to noradrenaline, microinjection of selective α₂ adrenoceptor agonist clonidine into the same VLO site also reduced allodynia, and was blocked by selective α₂ adrenoceptor antagonist yohimbine. Furthermore, administration of γ-aminobutyric acid A (GABAA) receptor antagonist bicuculline or picrotoxin to the VLO significantly enhanced clonidine-induced inhibition of allodynia, while GABAA receptor agonist muscimol or THIP (2,5,6,7-retrahydroisoxazolo(5,4-c)pyridine-3-ol hydrochloride) attenuated clonidine-induced inhibition. These results suggest that noradrenaline acting in the VLO can potentially reduce allodynia induced by SNI, and this effect is mediated by α₂ adrenoceptor. Moreover, GABAergic disinhibition may participate in α₂ receptor mediating effects in neuropathic pain in the central nervous system.
Collapse
Affiliation(s)
- Juan-Xia Zhu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University College of Medicine, Yanta Road W. 76#, Xi'an, Shaanxi 710061, PR China; Department of Physiology, Xi'an Medical University, Xinwang Road 1#, Xi'an, Shaanxi 710021, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Cilz NI, Kurada L, Hu B, Lei S. Dopaminergic modulation of GABAergic transmission in the entorhinal cortex: concerted roles of α1 adrenoreceptors, inward rectifier K⁺, and T-type Ca²⁺ channels. Cereb Cortex 2013; 24:3195-208. [PMID: 23843440 DOI: 10.1093/cercor/bht177] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Whereas the entorhinal cortex (EC) receives profuse dopaminergic innervations from the midbrain, the effects of dopamine (DA) on γ-Aminobutyric acid (GABA)ergic interneurons in this brain region have not been determined. We probed the actions of DA on GABAA receptor-mediated synaptic transmission in the EC. Application of DA increased the frequency, not the amplitude, of spontaneous IPSCs (sIPSCs) and miniature IPSCs (mIPSCs) recorded from entorhinal principal neurons, but slightly reduced the amplitude of the evoked IPSCs. The effects of DA were unexpectedly found to be mediated by α1 adrenoreceptors, but not by DA receptors. DA endogenously released by the application of amphetamine also increased the frequency of sIPSCs. Ca(2+) influx via T-type Ca(2+) channels was required for DA-induced facilitation of sIPSCs and mIPSCs. DA depolarized and enhanced the firing frequency of action potentials of interneurons. DA-induced depolarization was independent of extracellular Na(+) and Ca(2+) and did not require the functions of hyperpolarization-activated (Ih) channels and T-type Ca(2+) channels. DA-generated currents showed a reversal potential close to the K(+) reversal potential and inward rectification, suggesting that DA inhibits the inward rectifier K(+) channels (Kirs). Our results demonstrate that DA facilitates GABA release by activating α1 adrenoreceptors to inhibit Kirs, which further depolarize interneurons resulting in secondary Ca(2+) influx via T-type Ca(+) channels.
Collapse
Affiliation(s)
- Nicholas I Cilz
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Lalitha Kurada
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Binqi Hu
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Saobo Lei
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
73
|
De Pinto M, Cahana A. Medical management of acute pain in patients with chronic pain. Expert Rev Neurother 2013; 12:1325-38. [PMID: 23234394 DOI: 10.1586/ern.12.123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The number of patients with chronic pain has increased over the years, as well as the number of patients who manage chronic pain with opioids. As prescribed opioid use has increased, so has its abuse and misuse. It has also been estimated that the number of people using opioids illicitly has doubled worldwide over the last 20 years. Management of chronic pain with opioids is associated with pathophysiological phenomena such as tolerance, dependence and hyperalgesia. They can become a problem when chronic pain patients present for a surgical procedure. Furthermore, patients who are on opioids on a regular basis require higher amounts during the perioperative period. The perioperative management of the chronic pain patient is difficult and complex. Developing an appropriate plan that can fulfill patients' and surgical team's needs requires skills and experience. The aim of this review is to describe the options available for the optimal perioperative management of acute pain in patients with a history of chronic pain.
Collapse
Affiliation(s)
- Mario De Pinto
- Department of Anesthesiology and Pain Medicine, University of Washington, Pain Relief Service, Harborview Medical Center, 325 9th Avenue, Seattle, WA 98104, Box 359724, USA.
| | | |
Collapse
|
74
|
Carroll I, Hah J, Mackey S, Ottestad E, Kong JT, Lahidji S, Tawfik V, Younger J, Curtin C. Perioperative interventions to reduce chronic postsurgical pain. J Reconstr Microsurg 2013; 29:213-22. [PMID: 23463498 DOI: 10.1055/s-0032-1329921] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Approximately 10% of patients following a variety of surgeries develop chronic postsurgical pain. Reducing chronic postoperative pain is especially important to reconstructive surgeons because common operations such as breast and limb reconstruction have even higher risk for developing chronic postsurgical pain. Animal studies of posttraumatic nerve injury pain demonstrate that there is a critical time frame before and immediately after nerve injury in which specific interventions can reduce the incidence and intensity of chronic neuropathic pain behaviors-so called "preventative analgesia." In animal models, perineural local anesthetic, systemic intravenous local anesthetic, perineural clonidine, systemic gabapentin, systemic tricyclic antidepressants, and minocycline have each been shown to reduce pain behaviors days to weeks after treatment. The translation of this work to humans also suggests that brief perioperative interventions may protect patients from developing new chronic postsurgical pain. Recent clinical trial data show that there is an opportunity during the perioperative period to dramatically reduce the incidence and severity of chronic postsurgical pain. The surgeon, working with the anesthesiologist, has the ability to modify both early and chronic postoperative pain by implementing an evidence-based preventative analgesia plan.
Collapse
Affiliation(s)
- Ian Carroll
- Department of Anesthesiology, Division of Pain Management, Stanford School of Medicine, Palo Alto, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Park HJ, Kim YH, Koh HJ, Park CS, Kang SH, Choi JH, Moon DE. Analgesic effects of dexmedetomidine in vincristine-evoked painful neuropathic rats. J Korean Med Sci 2012; 27:1411-7. [PMID: 23166426 PMCID: PMC3492679 DOI: 10.3346/jkms.2012.27.11.1411] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 09/12/2012] [Indexed: 11/20/2022] Open
Abstract
Dexmedetomidine, which is a selective α2-adrenoceptor agonist, was recently introduced into clinical practice for its analgesic properties. The purpose of this study was to evaluate the effects of dexmedetomidine in a vincristine-evoked neuropathic rat models. Sprague-Dawley rats were injected intraperitoneally with vincristine or saline (0.1 mg/kg/day) using a 5-day-on, 2-day-off schedule for 2 weeks. Saline and dexmedetomidine (12.5, 25, 50, and 100 µg/kg) were injected to rats developed allodynia 14 days after vincristine injection, respectively. We evaluated allodynia at before, 15, 30, 60, 90, 120, 180, and 240 min, and 24 hr after intraperitoneal drug (normal saline or dexmedetomidine) injection. Saline treatment did not show any differences for all the allodynia. Maximal paw withdrawal thresholds to mechanical stimuli were 3.0 ± 0.4, 9.1 ± 1.9, 13.0 ± 3.6, 16.6 ± 2.4, and 24.4 ± 1.6 g at saline, 12.5, 25, 50, and 100 µg/kg dexmedetomidine injection, respectively. Minimal withdrawal frequency to cold stimuli were 73.3 ± 4.2, 57.1 ± 6.8, 34.3 ± 5.7, 20.0 ± 6.2, and 14.3 ± 9.5 g at saline, 12.5, 25, 50, and 100 µg/kg dexmedetomidine injection, respectively. Dexmedetomidine shows a dose-dependent antiallodynic effect on mechanical and cold stimuli in vincristine-evoked neuropathic rat models (P < 0.05).
Collapse
Affiliation(s)
- Hue Jung Park
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Young Hoon Kim
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Hyun Jung Koh
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Chul-Soo Park
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Seung-hee Kang
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Jong-Ho Choi
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Dong Eon Moon
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
76
|
Wei H, Pertovaara A. Regulation of Neuropathic Hypersensitivity by α2-Adrenoceptors in the Pontine A7 Cell Group. Basic Clin Pharmacol Toxicol 2012; 112:90-5. [DOI: 10.1111/j.1742-7843.2012.00930.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 08/08/2012] [Indexed: 01/06/2023]
Affiliation(s)
- Hong Wei
- Biomedicum Helsinki; Institute of Biomedicine/Physiology; University of Helsinki; Helsinki; Finland
| | - Antti Pertovaara
- Biomedicum Helsinki; Institute of Biomedicine/Physiology; University of Helsinki; Helsinki; Finland
| |
Collapse
|
77
|
Bell MT, Puskas F, Smith PD, Agoston VA, Fullerton DA, Meng X, Weyant MJ, Reece TB. Attenuation of spinal cord ischemia-reperfusion injury by specific α-2a receptor activation with dexmedetomidine. J Vasc Surg 2012; 56:1398-402. [PMID: 22832266 DOI: 10.1016/j.jvs.2012.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/29/2012] [Accepted: 04/05/2012] [Indexed: 01/12/2023]
Abstract
BACKGROUND Despite surgical adjuncts, paralysis remains a devastating complication after thoracoabdominal aortic interventions. Dexmedetomidine, a selective α-2a agonist commonly used for sedation in the critical care setting, has been shown to have protective effects against ischemia-reperfusion injuries in multiple organ systems. We hypothesized that treatment with dexmedetomidine would attenuate spinal cord ischemia-reperfusion injury via α-2a receptor activation. METHODS Adult C57BL/6 mice underwent sternotomy, followed by occlusion of the aortic arch for 4 minutes. Eight experimental mice received pretreatment with intraperitoneal dexmedetomidine (25 μg/kg) and at 12-hour intervals after reperfusion. Eight control mice received an equivalent amount of 0.9% normal saline. Five mice underwent the same procedure with dexmedetomidine (25 μg/kg) and atipamezole (250 μg/kg), an α-2a receptor antagonist. Functional analysis of the mice was obtained at 12-hour intervals and scored using the Basso Mouse Scale for Locomotion until 60 hours. All mice were euthanized at 60 hours. Their spinal cords were removed en bloc and were stained with hematoxylin and eosin to assess cytoarchitecture and neuronal viability. RESULTS Mice treated with the α-2a agonist demonstrated preserved motor function compared with ischemic controls and with mice treated with the α-2a antagonist in addition to the agonist. Functional differences in the dexmedetomidine group were statistically significant from 24 hours through the remainder of the experiment (P < .05). In addition, the treated mice had preserved cytoarchitecture, decreased vacuolization, and improved neuronal viability compared with ischemic control mice and mice concurrently treated with atipamezole, the dexmedetomidine α-2a antagonist. CONCLUSIONS Treatment of mice with the α-2a agonist dexmedetomidine preserves motor function and neuronal viability after aortic cross-clamping. In addition, mice exhibited almost complete reversal of the protective effect with the administration of the α-2a receptor antagonist atipamezole. Dexmedetomidine appears to attenuate spinal cord ischemia-reperfusion injury via α-2a receptor-mediated agonism. CLINICAL RELEVANCE There remains a significant risk of paraplegia after thoracoabdominal aortic interventions. This complication is devastating to the patient and the health care system. Pharmacologic adjuncts to further decrease this complication have been studied; however, few viable options exist. The α-2a agonists have been shown to improve outcomes after strokes but have not been studied in spinal cord ischemia. We show that dexmedetomidine, a commonly used α-2a agonist in the operating room, can preserve neurologic function in mice after aortic cross-clamping. Although the protective mechanism of dexmedetomidine remains unknown, it might prove to be beneficial in reducing the incidence of paraplegia after aortic interventions.
Collapse
Affiliation(s)
- Marshall T Bell
- Department of Cardiothoracic Surgery, University of Colorado, Aurora, Colo, USA.
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Gilsbach R, Hein L. Are the pharmacology and physiology of α₂ adrenoceptors determined by α₂-heteroreceptors and autoreceptors respectively? Br J Pharmacol 2012; 165:90-102. [PMID: 21658028 DOI: 10.1111/j.1476-5381.2011.01533.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
α(2)-Adrenoceptors are important mediators of physiological responses to the endogenous catecholamines noradrenaline and adrenaline. In addition, α(2)-adrenoceptors are pharmacological targets for the treatment of hypertension, sympathetic overactivity and glaucoma. α(2)-Adrenoceptors are also targeted to induce sedation and analgesia in anaesthesia and intensive care. α(2)-Adrenoceptors were first described as presynaptic receptors inhibiting the release of various transmitters from neurons in the central and peripheral nervous systems. In addition to these presynaptic neuronal receptors, α(2)-adrenoceptors were also identified in many non-neuronal cell types of the body. Gene-targeting in mice provided a comprehensive assignment of the physiological and pharmacological functions of these receptors to specific α(2A)-, α(2B) - and α(2C)-adrenoceptor subtypes. However, the specific cell types and signalling pathways involved in these subtype-specific α(2)-adrenoceptor functions were largely unexplored until recently. This review summarizes recent findings from transgenic mouse models, which were generated to define the role of α(2)-adrenoceptors in adrenergic neurons, that is, α(2)-autoreceptors, versus α(2)-adrenoceptors in non-adrenergic neurons, termed α(2)-heteroreceptors. α(2)-Autoreceptors are primarily required to limit release of noradrenaline from sympathetic nerves and adrenaline from adrenal chromaffin cells at rest. These receptors are desensitized upon chronic activation as it may for instance occur due to enhanced sympathetic activity during chronic heart failure. In contrast, pharmacological effects of acutely administered α(2)-adrenoceptor agonist drugs essentially require α(2)-heteroreceptors in non-adrenergic neurons, including analgesia, sedation, hypothermia and anaesthetic-sparing as well as bradycardia and hypotension. Thus a clear picture has emerged of the significance of auto- versus heteroreceptors in mediating the physiological functions of α(2)-adrenoceptors and the pharmacological functions of α(2)-adrenoceptor agonist drugs respectively.
Collapse
Affiliation(s)
- Ralf Gilsbach
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany.
| | | |
Collapse
|
79
|
Fortaleza EAT, Scopinho AA, de Aguiar Corrêa FM. α1 and α2-adrenoceptors in the medial amygdaloid nucleus modulate differently the cardiovascular responses to restraint stress in rats. Pharmacol Res 2012; 66:154-62. [PMID: 22538252 DOI: 10.1016/j.phrs.2012.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/28/2012] [Accepted: 04/09/2012] [Indexed: 11/17/2022]
Abstract
Medial amygdaloid nucleus (MeA) neurotransmission has an inhibitory influence on cardiovascular responses in rats submitted to restraint, which are characterized by both elevated blood pressure (BP) and intense heart rate (HR) increase. In the present study, we investigated the involvement of MeA adrenoceptors in the modulation of cardiovascular responses that are observed during an acute restraint. Male Wistar rats received bilateral microinjections of the selective α1-adrenoceptor antagonist WB4101 (10, 15, and 20 nmol/100 nL) or the selective α2-adrenoceptor antagonist RX821002 (10, 15, and 20 nmol/nL) into the MeA, before the exposure to acute restraint. The injection of WB4101 reduced the restraint-evoked tachycardia. In contrast, the injection of RX821002 increased the tachycardia. Both drugs had no influence on BP increases observed during the acute restraint. Our findings indicate that α1 and α2-adrenoceptors in the MeA play different roles in the modulation of the HR increase evoked by restraint stress in rats. Results suggest that α1-adrenoceptors and α2-adrenoceptors mediate the MeA-related facilitatory and inhibitory influences on restraint-related HR responses, respectively.
Collapse
|
80
|
Lervik A, Haga HA, Ranheim B, Spadavecchia C. The influence of a continuous rate infusion of dexmedetomidine on the nociceptive withdrawal reflex and temporal summation during isoflurane anaesthesia in dogs. Vet Anaesth Analg 2012; 39:414-25. [PMID: 22413770 DOI: 10.1111/j.1467-2995.2012.00713.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To examine the influence of a low dose dexmedetomidine infusion on the nociceptive withdrawal reflex and temporal summation in dogs during isoflurane anaesthesia. STUDY DESIGN Prospective experimental blinded cross-over study. ANIMALS Eight healthy mixed breed dogs, body weight Mean ± SD 26.5 ± 8.4 kg and age 25 ± 16 months. METHODS Anaesthesia was induced with propofol and maintained with isoflurane (Fe'ISO 1.3%) delivered in oxygen and air. After stabilization, baseline recordings (time 0) were obtained, then a dexmedetomidine bolus (1 μg kg(-1) IV) followed by a continuous rate infusion (1 μg kg(-1) hour(-1)) or saline placebo were administered. At times 10, 30 and 60 minutes after the initial bolus, electrical stimulations of increasing intensity were applied over the lateral plantar digital nerve, and administered both as single and as repeated stimuli. The resulting reflex responses were recorded using electromyography. Data were analysed using a multivariable linear regression model and a Kruskal Wallis test for single stimulation data, and repeated measures anova and paired t-test for repeated stimulation data. RESULTS The AUC for the stimulus-response curves after single stimulation were similar for both treatments at time 0. At times 10, 30 and 60 the AUCs for the stimulus-response curves were significantly lower with dexmedetomidine treatment than with placebo. Temporal summation was evident in both treatments at times 0, 10, 30 and 60 starting from a stimulation intensity of 10 mA. The magnitude of temporal summation was smaller in dexmedetomidine than in placebo treated dogs at time 10, 30 and 60, but not at time 0. CONCLUSIONS During isoflurane anaesthesia, low dose dexmedetomidine suppresses the nociceptive reflex responses after single and repeated electrical stimulation. CLINICAL RELEVANCE This experimental study confirms previous reports on its peri-operative efficacy under clinical conditions, and further indicates that dexmedetomidine might reduce the risk of post-operative chronic pain development.
Collapse
Affiliation(s)
- Andreas Lervik
- Department of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo, Norway.
| | | | | | | |
Collapse
|
81
|
Ehara T, Ogawa Y, Kato J, Aoki K, Ogawa S, Iwasaki KI. The effect of dexmedetomidine on arterial-cardiac baroreflex function assessed by spectral and transfer function analysis. J Anesth 2012; 26:483-9. [DOI: 10.1007/s00540-012-1363-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 02/14/2012] [Indexed: 08/30/2023]
|
82
|
Tonner PH, Paris A. [α2-Agonists in anesthesia and intensive care]. ACTA ACUST UNITED AC 2012; 40:474-9. [PMID: 22028131 DOI: 10.1002/pauz.201100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peter H Tonner
- Klinikum Links der Weser gGmbH, Klinik für Anästhesie, Operative und Allgemeine Intensivmedizin, Notfallmedizin, Bremen.
| | | |
Collapse
|
83
|
Patil PM, Patil SP. Is Clonidine an Adequate Alternative to Epinephrine as a Vasoconstrictor in Patients With Hypertension? J Oral Maxillofac Surg 2012; 70:257-62. [DOI: 10.1016/j.joms.2011.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 07/09/2011] [Accepted: 07/11/2011] [Indexed: 11/15/2022]
|
84
|
Sanders JD, Happe HK, Bylund DB, Murrin LC. Changes in postnatal norepinephrine alter alpha-2 adrenergic receptor development. Neuroscience 2011; 192:761-72. [PMID: 21742019 PMCID: PMC3166411 DOI: 10.1016/j.neuroscience.2011.06.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 05/25/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
Abstract
Alpha-2 adrenergic receptors (A2AR) regulate multiple brain functions and are enriched in developing brain. Studies demonstrate norepinephrine (NE) plays a role in regulating brain maturation, suggesting it is important in A2AR development. To investigate this we employed models of NE absence and excess during brain development. For decreases in NE we used N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP4), a specific noradrenergic neurotoxin. Increased noradrenergic terminal density was produced by methylazoxymethanol acetate (MAM) treatment. A2AR density was assayed with [(3)H]RX821002 autoradiography. DSP4 lesions on postnatal day (PND) 3 produce A2AR decreases in many regions by PND 5. A2AR recover to control levels by PND 15 and 25 and there is no further change in total receptor density. We also assayed A2AR in brains lesioned with DSP4 on PND 13, 23, 33 and 43 and harvested 22 days post-lesion. A2AR levels remain similar to control at each of these time points. We examined A2AR functionality and high affinity state with epinephrine-stimulated [(35)S]GTPγS and [(125)I]p-iodoclonidine autoradiography, respectively. On PND 25, control animals and animals lesioned with DSP4 on PND 3 have similar levels of [(35)S]GTPγS incorporation and no change in high affinity state. This is in contrast to increases in A2AR high affinity state produced by DSP4 lesions of mature brain. We next investigated A2AR response to increases in norepinephrine levels produced by MAM. In contrast to DSP4 lesions, increasing NE results in a large increase in A2AR. Animals treated with MAM on gestational day 14 had cortical [(3)H]RX821002 binding 100-200% greater than controls on PND 25, 35, 45, 55 and 65. These data indicate that NE regulation of A2AR differs in developing and mature brain and support the idea that NE regulates A2AR development and this has long term effects on A2AR function.
Collapse
Affiliation(s)
- Jeff D. Sanders
- Department of Pharmacology and Experimental Neuroscience, 985800 Nebraska Medical Center, Omaha, NE 68198-5800
| | - H. Kevin Happe
- Department of Psychiatry, Creighton University School of Medicine, Omaha, NE 68131
| | - David B. Bylund
- Department of Pharmacology and Experimental Neuroscience, 985800 Nebraska Medical Center, Omaha, NE 68198-5800
| | - L. Charles Murrin
- Department of Pharmacology and Experimental Neuroscience, 985800 Nebraska Medical Center, Omaha, NE 68198-5800
- Department of Neurological Sciences, 982045 Nebraska Medical Center, Omaha, NE 68198-2045
| |
Collapse
|
85
|
Kerfoot EC, Williams CL. Interactions between brainstem noradrenergic neurons and the nucleus accumbens shell in modulating memory for emotionally arousing events. Learn Mem 2011; 18:405-13. [PMID: 21602321 PMCID: PMC3101775 DOI: 10.1101/lm.2108911] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/31/2011] [Indexed: 01/13/2023]
Abstract
The nucleus accumbens shell (NAC) receives axons containing dopamine-β-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these mnemonic effects are mediated by norepinephrine (NE) release from NTS terminals onto NAC neurons. The present studies approached this question by examining the contribution of NAC α-noradrenergic receptors in mediating this effect and assessed whether glutamatergic activation of the NTS alters NE concentrations in the NAC. Rats were trained for 6 d to drink from a water spout located at the end of an inhibitory avoidance chamber. On day 7, a 0.35-mA footshock was initiated once the rat approached the spout and remained active until it escaped into the neutral compartment. Blockade of α-noradrenergic receptors in the NAC with phentolamine (0.5 µg/0.5 µL) attenuated memory enhancement produced by glutamatergic (50 ng/0.5 µL) infusion on NTS neurons (P < 0.01). Experiment 2 used in vivo microdialysis to assess whether glutamate activation of NTS alters NAC NE concentrations. NE levels were unchanged by NTS infusion of phosphate-buffered saline (PBS) or low dose glutamate (50 ng/0.5 µL) but elevated significantly (P < 0.05) by combining the same dose with the footshock (0.35 mA, 2 sec) given in Study 1 or infusion of (100 ng/0.5 µL) glutamate alone. Findings demonstrate that NE released from NTS terminals enhances representations in memory by acting on α-noradrenergic receptors within the NAC.
Collapse
Affiliation(s)
- Erin C Kerfoot
- Department of Psychology, Graduate Program in Neuroscience, University of Virginia, Charlottesville, Virginia 22904, USA.
| | | |
Collapse
|
86
|
Dexmedetomidine and clonidine inhibit the function of Na(v)1.7 independent of α(2)-adrenoceptor in adrenal chromaffin cells. J Anesth 2011; 25:549-57. [PMID: 21607767 DOI: 10.1007/s00540-011-1168-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 04/28/2011] [Indexed: 12/19/2022]
Abstract
PURPOSE Besides being administered systemically for sedation and analgesia, α(2)-agonists such as dexmedetomidine and clonidine have been administered with intrathecal, epidural, or perineural injections, leading to an antinociceptive effect at the spinal cord or peripheral nerve level. However, the mechanism for this remains unclear. In the present study, we examined whether dexmedetomidine and clonidine could inhibit the function of tetrodotoxin-sensitive Na(+) channels, which play important roles in the generation of pain. METHODS Cultured bovine adrenal chromaffin cells expressing the tetrodotoxin-sensitive Na(v)1.7 Na(+) channel isoform were incubated in KRP buffer containing 2 μCi (22)NaCl for 5 min without or with dexmedetomidine or clonidine in the absence or presence of veratridine, α-scorpion venom, β-scorpion venom, Ptychodiscus brevis toxin-3 or ouabain. Cells were then washed and counted radioactively. RESULTS Dexmedetomidine and clonidine reduced veratridine-induced (22)Na(+) influx via Na(v)1.7 in a concentration-dependent manner (EC(50) = 50 μM and 530 μM), even in the presence of ouabain, an inhibitor of Na(+), K(+)-ATPase. Dexmedetomidine and clonidine shifted the concentration-response curve of veratridine for (22)Na(+) influx downward without altering the EC(50) of veratridine. Atipamezole and yohimbine, α(2)-antagonists, did not prevent the inhibition of veratridine-induced (22)Na(+) influx by dexmedetomidine. Dexmedetomidine and clonidine combined with lidocaine induced more inhibition of veratridine-induced (22)Na(+) influx than each drug did individually. Atipamezole and yohimbine did not prevent the lidocaine-enhancing effect of dexmedetomidine and clonidine. CONCLUSION Dexmedetomidine and clonidine inhibit the function of Na(v)1.7 independent of α(2)-adrenoceptor. These results may lead to a deeper understanding of the peripheral antinociceptive effects of α (2)-agonists.
Collapse
|
87
|
Weant KA, Martin JE, Humphries RL, Cook AM. Pharmacologic options for reducing the shivering response to therapeutic hypothermia. Pharmacotherapy 2011; 30:830-41. [PMID: 20653360 DOI: 10.1592/phco.30.8.830] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent literature has demonstrated significant improvements in neurologic outcomes in patients who have received induced hypothermia in the setting of out-of-hospital cardiac arrest. Through multiple metabolic mechanisms, the induction of hypothermia slows the progression and devastation of transient cerebral hypoxia. Despite these benefits, the desired reduction in core temperature is often a challenging venture as the body attempts to maintain homeostasis through the induction of thermoregulatory processes aimed at elevating body temperature. Shivering is an involuntary muscular activity that enhances heat production in an attempt to restore homeostasis. For successful induction and maintenance of induced hypothermia, shivering, as well as other thermoregulatory responses, must be overcome. Several pharmacologic options are available, either used alone or in combination, that safely and effectively prevent or treat shivering after the induction of hypothermia. We conducted a PubMed search (1966-March 2009) to identify all human investigations published in English that discussed pharmacologic mechanisms for the control of shivering. Among these options, clonidine, dexmedetomidine, and meperidine have demonstrated the greatest and most clinically relevant impact on depression of the shivering threshold. More research in this area is needed, however, and the role of the clinical pharmacist in the development and implementation of this therapy needs to be defined.
Collapse
Affiliation(s)
- Kyle A Weant
- Pharmacy Services, University of Kentucky HealthCare, University of Kentucky, Lexington, KY 40536-0293, USA.
| | | | | | | |
Collapse
|
88
|
Alachkar A, Brotchie JM, Jones OT. Changes in the mRNA Levels of α2A and α2C Adrenergic Receptors in Rat Models of Parkinson’s Disease and l-DOPA-Induced Dyskinesia. J Mol Neurosci 2011; 46:145-52. [DOI: 10.1007/s12031-011-9539-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 04/28/2011] [Indexed: 12/21/2022]
|
89
|
Fortaleza EAT, Scopinho AA, Corrêa FMDA. Cardiovascular responses to microinjection of noradrenaline into the medial amygdaloid nucleus of conscious rats result from α₂-receptor activation and vasopressin release. Eur J Neurosci 2011; 33:1677-84. [PMID: 21535246 DOI: 10.1111/j.1460-9568.2011.07655.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The medial amygdaloid nucleus (MeA) is involved in the modulation of physiological and behavioral processes, as well as regulation of the autonomic nervous system. Moreover, MeA electrical stimulation evokes cardiovascular responses. Thus, as noradrenergic receptors are present in this structure, the present study tested the effects of local noradrenaline (NA) microinjection into the MeA on cardiovascular responses in conscious rats. Moreover, we describe the types of adrenoceptor involved and the peripheral mechanisms involved in the cardiovascular responses. Increasing doses of NA (3, 9, 27 or 45 nmol/100 nL) microinjected into the MeA of conscious rats caused dose-related pressor and bradycardic responses. The NA cardiovascular effects were abolished by local pretreatment of the MeA with 10 nmol/100 nL of the specific α₂-receptor antagonist RX821002, but were not affected by local pretreatment with 10 nmol/100 nL of the specific α₁-receptor antagonist WB4101. The magnitude of pressor response evoked by NA microinjected into the MeA was potentiated by intravenous pretreatment with the ganglion blocker pentolinium (5 mg/kg), and blocked by intravenous pretreatment with the selective V₁-vasopressin antagonist dTyr(CH₂)₅ (Me)AVP (50 μg/kg). In conclusion, our results show that microinjection of NA into the MeA of conscious rats activates local α₂-adrenoceptors, evoking pressor and bradycardic responses, which are mediated by vasopressin release.
Collapse
Affiliation(s)
- Eduardo Albino Trindade Fortaleza
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue 3900, Ribeirão Preto, SP 14049-900, Brazil
| | | | | |
Collapse
|
90
|
Cividjian A, Toader E, Wesseling KH, Karemaker JM, McAllen R, Quintin L. Effect of clonidine on cardiac baroreflex delay in humans and rats. Am J Physiol Regul Integr Comp Physiol 2011; 300:R949-57. [PMID: 21270345 DOI: 10.1152/ajpregu.00438.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The delay τ between rising systolic blood pressure (SBP) and baroreflex bradycardia has been found to increase when vagal tone is low. The α(2)-agonist clonidine increases cardiac vagal tone, and this study tested how it affects τ. In eight conscious supine human volunteers clonidine (6 μg/kg po) reduced τ, assessed both by cross correlation baroreflex sensitivity and sequence methods (both P < 0.05). Experiments on urethane-anaesthetized rats reproduced the phenomenon and investigated the underlying mechanism. Heart rate (HR) responses to increasing SBP produced with an arterial balloon catheter showed reduced τ (P < 0.05) after clonidine (100 μg/kg iv). The central latency of the reflex was unaltered, however, as shown by the unchanged timing with which antidromically identified cardiac vagal motoneurons (CVM) responded to the arterial pulse. Testing the latency of the HR response to brief electrical stimuli to the right vagus showed that this was also unchanged by clonidine. Nevertheless, vagal stimuli delivered at a fixed time in the cardiac cycle (triggered from the ECG R-wave) slowed HR with a 1-beat delay in the baseline state but a 0-beat delay after clonidine (n = 5, P < 0.05). This was because clonidine lengthened the diastolic period, allowing the vagal volleys to arrive at the heart just in time to postpone the next beat. Calculations indicate that naturally generated CVM volleys in both humans and rats arrive around this critical time. Clonidine thus reduces τ not by changing central or efferent latencies but simply by slowing the heart.
Collapse
|
91
|
XIIth international symposium on radiopharmaceutical chemistry: Abstracts and programme. J Labelled Comp Radiopharm 2010. [DOI: 10.1002/jlcr.2580400901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
92
|
Kawaai H, Satoh J, Watanabe M, Kan K, Ganzberg S, Yamazaki S. A comparison of intravenous sedation with two doses of dexmedetomidine: 0.2 µg/kg/hr Versus 0.4 µg/kg/hr. Anesth Prog 2010; 57:96-103. [PMID: 20843224 DOI: 10.2344/0003-3006-57.3.96] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The present study investigated the physiologic and sedative effects between two different continuous infusion doses of dexmedetomidine (DEX). Thirteen subjects were separately sedated with DEX at a continuous infusion dose of 0.2 µg/kg/hr for 25 minutes after a loading dose of 6 µg/kg/hr for 5 minutes (0.2 group) and a continuous infusion dose of 0.4 µg/kg/hr for 25 minutes after a loading dose of 6 µg/kg/hr for 5 minutes (0.4 group). The recovery process was then observed for 60 minutes post infusion. The tidal volume, mean arterial pressure, and heart rate in both groups decreased significantly during infusion, but they were within a clinically acceptable level. A Trieger dot test plot error ratio in the 0.4 group was significantly higher than that in the 0.2 group until 15 minutes post infusion. Sedation appears to be safe at the infusion doses of DEX studied. However, increasing maintenance infusion doses of DEX from 0.2 µg/kg/hr to 0.4 µg/kg/hr delays some recovery parameters.
Collapse
Affiliation(s)
- Hiroyoshi Kawaai
- Department of Dental Anesthesiology, Ohu University School of Dentistry, Fukushima, Japan.
| | | | | | | | | | | |
Collapse
|
93
|
Tank J, Heusser K, Diedrich A, Luft FC, Jordan J. A Novel Pharmacological Approach to Determining Parasympathetic Heart Rate Reserve in Human Subjects. Clin Pharmacol Ther 2010; 88:630-3. [DOI: 10.1038/clpt.2010.177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
94
|
Extended infusion of dexmedetomidine to an infant at sixty times the intended rate. Int J Pediatr 2010; 2010. [PMID: 20885920 PMCID: PMC2946583 DOI: 10.1155/2010/825079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/06/2010] [Indexed: 11/17/2022] Open
Abstract
Dexmedetomidine is an α2 adrenergic agonist which has recently been approved in the United States for procedural sedation in adults. This report describes an infant who inadvertently received an intravenous infusion of dexmedetomidine at a rate which was 60 times greater than intended. We describe the hemodynamic, respiratory, and sedative effects of this overdose.
Collapse
|
95
|
Bharucha AE, Seide BM, Zinsmeister AR. The effects of clonidine on symptoms and anorectal sensorimotor function in women with faecal incontinence. Aliment Pharmacol Ther 2010; 32:681-8. [PMID: 20629973 PMCID: PMC2932810 DOI: 10.1111/j.1365-2036.2010.04391.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Women with faecal incontinence and rectal urgency have increased rectal stiffness and sensation. AIM To evaluate the effects of clonidine, an alpha(2) -adrenergic agonist, in faecal incontinence. METHODS In this open-label uncontrolled study, bowel symptoms and anorectal functions (anal pressures, rectal compliance, and sensation) were assessed before and during treatment with transdermal clonidine (0.2 mg daily, 4 weeks) in 12 women with urge-predominant faecal incontinence. RESULTS Clonidine reduced the frequency (17.8 +/- 3.1 before vs. 8.8 +/- 3.9 after, P = 0.03) and number of days with faecal incontinence (11.8 +/- 1.6 before vs. 6.1 +/- 1.8 after, P = 0.02), faecal incontinence symptom severity score (max = 13, 8.3 +/- 0.7 vs. 5.6 +/- 0.9, P < 0.01), and allowed patients to defer defecation for a longer duration (P = 0.03). Although overall effects on anorectal functions were not significant, the treatment-associated reduction in faecal incontinence episodes was associated with increased rectal compliance (r = -0.58, P < 0.05) and reduced rectal sensation. (r = -0.73, P = 0.007 vs. desire to defecate pressure threshold). CONCLUSIONS Clonidine improves symptoms in women with faecal incontinence; this improvement is associated with increased rectal compliance and reduced rectal sensitivity. A controlled study is necessary to confirm these observations.
Collapse
Affiliation(s)
- A. E. Bharucha
- Division of Gastroenterology and Hepatology, Department of Medicine
| | - B. M. Seide
- Division of Gastroenterology and Hepatology, Department of Medicine
| | - A. R. Zinsmeister
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research
| |
Collapse
|
96
|
Xu B, Zhang WS, Yang JL, Lû N, Deng XM, Xu H, Zhang YQ. Evidence for suppression of spinal glial activation by dexmedetomidine in a rat model of monoarthritis. Clin Exp Pharmacol Physiol 2010; 37:e158-66. [DOI: 10.1111/j.1440-1681.2010.05426.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
97
|
Park CH, Yong A, Lee SH. Involvement of selective alpha-2 adrenoreceptor in sympathetically maintained pain. J Korean Neurosurg Soc 2010; 47:420-3. [PMID: 20617085 DOI: 10.3340/jkns.2010.47.6.420] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/28/2010] [Accepted: 05/23/2010] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Peripheral nerve injury often leads to neuropathic pain, which is characterized by burning pain, allodynia, and hyperalgesia. The role of the sympathetic nervous system in neuropathic pain is a complex and controversial issue. It is generally accepted that the alpha adrenoreceptor (AR) in sympathetic nerve system plays a significant role in the maintenance of pain. Among alpha adrenoreceptor, alpha-1 receptors play a major role in the sympathetic mediated pain. The primary goal of this study is to test the hypothesis that sympathetically maintained pain involves peripheral alpha-2 receptors in human. METHODS The study was a randomized, prospective, double-blinded, crossover study involving twenty patients. The treatments were : Yohimbine (30 mg mixed in 500 mL normal saline), and Phentolamine (1 mg/kg in 500 mL normal saline) in 500 mL normal saline at 70 mL/hr initially then titrated. The patients underwent infusions on three different appointments, at least one month apart. Thus, all patients received all 2 treatments. Pain measurement was by visual analogue scale, neuropathic pain questionnaire, and McGill pain questionnaire. RESULTS There were significant decreases in the visual analogue scale, neuropathic score, McGill pain score of yohimnine, and phentolamine. CONCLUSION We conclude that alpha-2 adrenoreceptor, along with alpha-2 adrenoreceptor, may be play role in sympathetically maintained pain in human.
Collapse
Affiliation(s)
- Chan Hong Park
- Department of Anesthesiology and Pain Medicine, Daegu Wooridul Hospital, Daegu, Korea
| | | | | |
Collapse
|
98
|
Mirbagheri MM, Chen D, Rymer WZ. Quantification of the effects of an alpha-2 adrenergic agonist on reflex properties in spinal cord injury using a system identification technique. J Neuroeng Rehabil 2010; 7:29. [PMID: 20573252 PMCID: PMC2904341 DOI: 10.1186/1743-0003-7-29] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Accepted: 06/23/2010] [Indexed: 12/13/2022] Open
Abstract
Background Despite numerous investigations, the impact of tizanidine, an anti-spastic medication, on changes in reflex and muscle mechanical properties in spasticity remains unclear. This study was designed to help us understand the mechanisms of action of tizanidine on spasticity in spinal cord injured subjects with incomplete injury, by quantifying the effects of a single dose of tizanidine on ankle muscle intrinsic and reflex components. Methods A series of perturbations was applied to the spastic ankle joint of twenty-one spinal cord injured subjects, and the resulting torques were recorded. A parallel-cascade system identification method was used to separate intrinsic and reflex torques, and to identify the contribution of these components to dynamic ankle stiffness at different ankle positions, while subjects remained relaxed. Results Following administration of a single oral dose of Tizanidine, stretch evoked joint torque at the ankle decreased significantly (p < 0.001) The peak-torque was reduced between 15% and 60% among the spinal cord injured subjects, and the average reduction was 25%. Using systems identification techniques, we found that this reduced torque could be attributed largely to a reduced reflex response, without measurable change in the muscle contribution. Reflex stiffness decreased significantly across a range of joint angles (p < 0.001) after using tizanidine. In contrast, there were no significant changes in intrinsic muscle stiffness after the administration of tizanidine. Conclusions Our findings demonstrate that tizanidine acts to reduce reflex mechanical responses substantially, without inducing comparable changes in intrinsic muscle properties in individuals with spinal cord injury. Thus, the pre-post difference in joint mechanical properties can be attributed to reflex changes alone. From a practical standpoint, use of a single "test" dose of Tizanidine may help clinicians decide whether the drug can helpful in controlling symptoms in particular subjects.
Collapse
Affiliation(s)
- Mehdi M Mirbagheri
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA.
| | | | | |
Collapse
|
99
|
Samuels ER, Szabadi E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr Neuropharmacol 2010; 6:235-53. [PMID: 19506723 PMCID: PMC2687936 DOI: 10.2174/157015908785777229] [Citation(s) in RCA: 499] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 02/25/2008] [Accepted: 06/06/2008] [Indexed: 01/09/2023] Open
Abstract
The locus coeruleus (LC) is the major noradrenergic nucleus of the brain, giving rise to fibres innervating extensive areas throughout the neuraxis. Recent advances in neuroscience have resulted in the unravelling of the neuronal circuits controlling a number of physiological functions in which the LC plays a central role. Two such functions are the regulation of arousal and autonomic activity, which are inseparably linked largely via the involvement of the LC. The LC is a major wakefulness-promoting nucleus, resulting from dense excitatory projections to the majority of the cerebral cortex, cholinergic neurones of the basal forebrain, cortically-projecting neurones of the thalamus, serotoninergic neurones of the dorsal raphe and cholinergic neurones of the pedunculopontine and laterodorsal tegmental nucleus, and substantial inhibitory projections to sleep-promoting GABAergic neurones of the basal forebrain and ventrolateral preoptic area. Activation of the LC thus results in the enhancement of alertness through the innervation of these varied nuclei. The importance of the LC in controlling autonomic function results from both direct projections to the spinal cord and projections to autonomic nuclei including the dorsal motor nucleus of the vagus, the nucleus ambiguus, the rostroventrolateral medulla, the Edinger-Westphal nucleus, the caudal raphe, the salivatory nuclei, the paraventricular nucleus, and the amygdala. LC activation produces an increase in sympathetic activity and a decrease in parasympathetic activity via these projections. Alterations in LC activity therefore result in complex patterns of neuronal activity throughout the brain, observed as changes in measures of arousal and autonomic function.
Collapse
Affiliation(s)
- E R Samuels
- Psychopharmacology Section, University of Nottingham, Division of Psychiatry, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | |
Collapse
|
100
|
Devoto P, Flore G. On the origin of cortical dopamine: is it a co-transmitter in noradrenergic neurons? Curr Neuropharmacol 2010; 4:115-25. [PMID: 18615131 DOI: 10.2174/157015906776359559] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 10/04/2005] [Accepted: 12/30/2005] [Indexed: 11/22/2022] Open
Abstract
Dopamine (DA) and noradrenaline (NA) in the prefrontal cortex (PFC) modulate superior cognitive functions, and are involved in the aetiology of depressive and psychotic symptoms. Moreover, microdialysis studies in rats have shown how pharmacological treatments that induce modifications of extracellular NA in the medial PFC (mPFC), also produce parallel changes in extracellular DA.To explain the coupling of NA and DA changes, this article reviews the evidence supporting the hypothesis that extracellular DA in the cerebral cortex originates not only from dopaminergic terminals but also from noradrenergic ones, where it acts both as precursor for NA and as a co-transmitter.Accordingly, extracellular DA concentration in the occipital, parietal and cerebellar cortex was found to be much higher than expected in view of the scarce dopaminergic innervation in these areas.Systemic administration or intra-cortical perfusion of alpha(2)-adrenoceptor agonists and antagonists, consistent with their action on noradrenergic neuronal activity, produced concomitant changes not only in extracellular NA but also in DA in the mPFC, occipital and parietal cortex.Chemical modulation of the locus coeruleus by locally applied carbachol, kainate, NMDA or clonidine modified both NA and DA in the mPFC.Electrical stimulation of the locus coeruleus led to an increased efflux of both NA and DA in mPFC, parietal and occipital cortex, while in the striatum, NA efflux alone was enhanced.Atypical antipsychotics, such as clozapine and olanzapine, or antidepressants, including mirtazapine and mianserine, have been found to increase both NA and DA throughout the cerebral cortex, likely through blockade of alpha(2)-adrenoceptors. On the other hand, drugs selectively acting on dopaminergic transmission produced modest changes in extracellular DA in mPFC, and had no effect on the occipital or parietal cortex.Acute administration of morphine did not increase DA levels in the PFC (where NA is diminished), in contrast with augmented dopaminergic neuronal activity; moreover, during morphine withdrawal both DA and NA levels increased, in spite of a diminished dopaminergic activity, both increases being antagonised by clonidine but not quinpirole administration.Extensive 6-hydroxy dopamine lesion of the ventral tegmental area (VTA) decreases below 95% of control both intra- and extracellular DA and DOPAC in the nucleus accumbens, but only partially or not significantly in the mPFC and parietal cortex.The above evidence points to a common origin for NA and DA in the cerebral cortex and suggests the possible utility of noradrenergic system modulation as a target for drugs with potential clinical efficacy on cognitive functions.
Collapse
Affiliation(s)
- Paola Devoto
- "B.B. Brodie" Department of Neuroscience, University of Cagliari, Cagliari, Italy.
| | | |
Collapse
|