51
|
McLoughlin MJ, Stegner AJ, Cook DB. The relationship between physical activity and brain responses to pain in fibromyalgia. THE JOURNAL OF PAIN 2011; 12:640-51. [PMID: 21330218 DOI: 10.1016/j.jpain.2010.12.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 11/03/2010] [Accepted: 12/01/2010] [Indexed: 12/23/2022]
Abstract
UNLABELLED The relationship between physical activity and central nervous system mechanisms of pain in fibromyalgia (FM) is unknown. This study determined whether physical activity was predictive of brain responses to experimental pain in FM using functional magnetic resonance imaging (fMRI). Thirty-four participants (n = 16 FM; n = 18 Control) completed self-report and accelerometer measures of physical activity and underwent fMRI of painful heat stimuli. In FM patients, positive relationships (P < .005) between physical activity and brain responses to pain were observed in the dorsolateral prefrontal cortex, posterior cingulate cortex, and the posterior insula, regions implicated in pain regulation. Negative relationships (P < .005) were found for the primary sensory and superior parietal cortices, regions implicated in the sensory aspects of pain. Greater physical activity was significantly (P < .05) associated with decreased pain ratings to repeated heat stimuli for FM patients. A similar nonsignificant trend was observed in controls. In addition, brain responses to pain were significantly (P < .005) different between FM patients categorized as low active and those categorized as high active. In controls, positive relationships (P < .005) were observed in the lateral prefrontal, anterior cingulate, and superior temporal cortices and the posterior insula. Our results suggest an association between measures of physical activity and central nervous system processing of pain. PERSPECTIVE Our data suggest that brain responses to pain represent a dynamic process where perception and modulation co-occur and that physical activity plays a role in balancing these processes. Physically active FM patients appear to maintain their ability to modulate pain while those who are less active do not.
Collapse
Affiliation(s)
- Michael J McLoughlin
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
52
|
Sprenger C, Bingel U, Büchel C. Treating pain with pain: supraspinal mechanisms of endogenous analgesia elicited by heterotopic noxious conditioning stimulation. Pain 2010; 152:428-439. [PMID: 21196078 DOI: 10.1016/j.pain.2010.11.018] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 11/03/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
Abstract
While being exposed to an intensive tonic pain stimulus at one area of the body, another phasic pain stimulus applied to a remote site is perceived as less painful. The neurophysiological basis for this "pain inhibits pain" phenomenon has been presumed to be an activation of the spino-bulbo-spinal mechanism termed "diffuse noxious inhibitory controls." However, several additional mechanisms such as an activation of the descending pain control system may contribute to this observation. Here we investigated the underlying supraspinal mechanisms of "heterotopic noxious conditioning stimulations" (HNCS), representing this specific experimental constellation. We used functional magnetic resonance imaging and behavioral recordings in combination with a modified cold-pressor task and phasic painful stimuli, and investigated the contribution of endogenous opioids to this mechanism using the opioid antagonist naloxone in a double-blind crossover design. HNCS led to marked endogenous analgesia and this effect correlated positively with the perceived intensity of the tonic painful stimulus. Furthermore, HNCS was paralleled by reduced blood oxygen level dependent (BOLD) responses in classical pain-responsive regions. Conversely, HNCS led to tonic BOLD increases in subregions of the anterior cingulate cortex. The strength of functional coupling between the subgenual anterior cingulate cortex and key structures of the descending pain control system was enhanced during HNCS, which correlated positively with the individual endogenous analgesia during HNCS. These effects were in part reversed by naloxone, speaking for the contribution of endogenous opioid neurotransmission to this mechanism. Taken together, these results demonstrate a substantial contribution of higher-order brain regions to the phenomenon of hypoalgesia during HNCS. Functional magnetic resonance imaging shows how the human brain is involved in heterotopic noxious conditioning and reveals active supraspinal pain modulatory mechanisms during dual pain stimulation.
Collapse
Affiliation(s)
- Christian Sprenger
- Department of Systems Neuroscience, University-Medical-Center Hamburg-Eppendorf, Hamburg, Germany Department of Neurology, University-Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | |
Collapse
|
53
|
An investigation of the development of analgesic tolerance to TENS in humans. Pain 2010; 152:335-342. [PMID: 21144659 DOI: 10.1016/j.pain.2010.10.040] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 09/09/2010] [Accepted: 10/27/2010] [Indexed: 11/21/2022]
Abstract
Transcutaneous electrical nerve stimulation (TENS) is a noninvasive modality used to control pain. Animal models show that repeated TENS application produces analgesic tolerance and cross-tolerance at spinal opioid receptors. The aim of the present investigation was to examine whether repeated application of TENS produces analgesic tolerance in humans. One hundred healthy subjects were randomly assigned to 1 of 4 groups: control, placebo, low-frequency (4Hz) or high-frequency (100Hz) TENS. TENS was applied daily for 5days to the nondominant upper limb; pressure-pain threshold (PPT) measurements were recorded before and after TENS. Temporal summation to mechanical stimulation was recorded on days 1 and 5, before and after TENS. Diffuse noxious inhibitory control (DNIC) was tested on day 5 using the cold pressor test and PPT measurements. There was an initial increase in PPTs in both low- and high-frequency TENS groups when compared with placebo or control groups. However, by day 5 this TENS-induced increase in PPT did not occur, and there was no difference between active TENS and placebo or control groups. High-frequency TENS decreased temporal summation on day 1 when compared with day 5. DNIC increased the PPT similarly in all groups. These data suggest that repeated daily application of TENS results in a decrease in its hypoalgesic effect by the fifth day and that the tolerance-like effect to repeated TENS results from tolerance at centrally located opioid receptors. The lack of change in DNIC response suggests that TENS and DNIC utilize separate pathways to produce analgesia. Repeated high-frequency and low-frequency transcutaneous electrical nerve stimulation produce analgesic tolerance in humans by the fourth and fifth day of treatment, respectively.
Collapse
|
54
|
The interactions between spatial summation and DNIC: Effect of the distance between two painful stimuli and attentional factors on pain perception. Pain 2010; 151:489-495. [DOI: 10.1016/j.pain.2010.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/08/2010] [Accepted: 08/06/2010] [Indexed: 11/17/2022]
|
55
|
van Wijk G, Veldhuijzen DS. Perspective on Diffuse Noxious Inhibitory Controls as a Model of Endogenous Pain Modulation in Clinical Pain Syndromes. THE JOURNAL OF PAIN 2010; 11:408-19. [DOI: 10.1016/j.jpain.2009.10.009] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/28/2009] [Accepted: 10/26/2009] [Indexed: 11/16/2022]
|
56
|
Freezing of enkephalinergic functions by multiple noxious foci: a source of pain sensitization? PLoS One 2009; 4:e6874. [PMID: 19727441 PMCID: PMC2731161 DOI: 10.1371/journal.pone.0006874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/10/2009] [Indexed: 11/21/2022] Open
Abstract
Background The functional significance of proenkephalin systems in processing pain remains an open question and indeed is puzzling. For example, a noxious mechanical stimulus does not alter the release of Met-enkephalin-like material (MELM) from segments of the spinal cord related to the stimulated area of the body, but does increase its release from other segments. Methodology/Principal Findings Here we show that, in the rat, a noxious mechanical stimulus applied to either the right or the left hind paw elicits a marked increase of MELM release during perifusion of either the whole spinal cord or the cervico-trigeminal area. However, these stimulatory effects were not additive and indeed, disappeared completely when the right and left paws were stimulated simultaneously. Conclusion/Significance We have concluded that in addition to the concept of a diffuse control of the transmission of nociceptive signals through the dorsal horn, there is a diffuse control of the modulation of this transmission. The “freezing” of Met-enkephalinergic functions represents a potential source of central sensitization in the spinal cord, notably in clinical situations involving multiple painful foci, e.g. cancer with metastases, poly-traumatism or rheumatoid arthritis.
Collapse
|
57
|
Villanueva L. Diffuse Noxious Inhibitory Control (DNIC) as a tool for exploring dysfunction of endogenous pain modulatory systems. Pain 2009; 143:161-162. [PMID: 19339115 DOI: 10.1016/j.pain.2009.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 03/05/2009] [Indexed: 11/16/2022]
Affiliation(s)
- Luis Villanueva
- INSERM/CPN, U.894, UPMC, Site Pitié Salpêtrière, 91 Boulevard de l'Hôpital, 75634 Paris Cedex 13, France
| |
Collapse
|
58
|
Nociceptive behavior in animal models for peripheral neuropathy: spinal and supraspinal mechanisms. Prog Neurobiol 2008; 86:22-47. [PMID: 18602968 DOI: 10.1016/j.pneurobio.2008.06.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 04/08/2008] [Accepted: 06/11/2008] [Indexed: 02/01/2023]
Abstract
Since the initial description by Wall [Wall, P.D., 1967. The laminar organization of dorsal horn and effects of descending impulses. J. Neurophysiol. 188, 403-423] of tonic descending inhibitory control of dorsal horn neurons, several studies have aimed to characterize the role of various brain centers in the control of nociceptive input to the spinal cord. The role of brainstem centers in pain inhibition has been well documented over the past four decades. Lesion to peripheral nerves results in hypersensitivity to mild tactile or cold stimuli (allodynia) and exaggerated response to nociceptive stimuli (hyperalgesia), both considered as cardinal signs of neuropathic pain. The increased interest in animal models for peripheral neuropathy has raised several questions concerning the rostral conduction of the neuropathic manifestations and the role of supraspinal centers, especially brainstem, in the inhibitory control or in the abnormal contribution to the maintenance and facilitation of neuropathic-like behavior. This review aims to summarize the data on the ascending and descending modulation of neuropathic manifestations and discusses the recent experimental data on the role of supraspinal centers in the control of neuropathic pain. In particular, the review emphasizes the importance of the reciprocal interconnections between the analgesic areas of the brainstem and the pain-related areas of the forebrain. The latter includes the cerebral limbic areas, the prefrontal cortex, the intralaminar thalamus and the hypothalamus and play a critical role in the control of pain considered as part of an integrated behavior related to emotions and various homeostatic regulations. We finally speculate that neuropathic pain, like extrapyramidal motor syndromes, reflects a disorder in the processing of somatosensory information.
Collapse
|
59
|
Sotgiu ML, Valente M, Storchi R, Caramenti G, Mario Biella GE. Contribution by DRt descending facilitatory pathways to maintenance of spinal neuron sensitization in rats. Brain Res 2008; 1188:69-75. [DOI: 10.1016/j.brainres.2007.10.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 09/18/2007] [Accepted: 10/10/2007] [Indexed: 11/25/2022]
|
60
|
Plasticità del dolore: ruolo dei controlli inibitori diffusi. Neurologia 2008. [DOI: 10.1016/s1634-7072(08)70530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
61
|
Peyron R, Kupers R, Jehl J, Garcia-Larrea L, Convers P, Barral F, Laurent B. Central representation of the RIII flexion reflex associated with overt motor reaction: An fMRI study. Neurophysiol Clin 2007; 37:249-59. [DOI: 10.1016/j.neucli.2007.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 06/21/2007] [Accepted: 07/09/2007] [Indexed: 11/29/2022] Open
|
62
|
Mørch CD, Hu JW, Arendt-Nielsen L, Sessle BJ. Convergence of cutaneous, musculoskeletal, dural and visceral afferents onto nociceptive neurons in the first cervical dorsal horn. Eur J Neurosci 2007; 26:142-54. [PMID: 17614945 DOI: 10.1111/j.1460-9568.2007.05608.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The convergence of cutaneous, musculoskeletal, dural and visceral afferents onto nociceptive neurons in the first cervical dorsal horn was investigated in urethane/chloralose-anesthetized rats. Electrical stimulation was applied to facial, neck, shoulder and forepaw skin, cornea (COR), dura, second cervical (C2) nerve, hypoglossal nerve, temporomandibular joint, masseter (MAS) muscle and superior laryngeal nerve. In addition, acetic acid was injected intraperitoneally and microinjection of glutamate was applied to the tongue, MAS muscle, splenius cervicis muscle, dura and intrapericardial area. A total of 52 nociceptive neurons classified as wide dynamic range (n = 28) or nociceptive-specific (n = 24) was studied. All nociceptive neurons received afferent input from the skin and at least one COR, musculoskeletal, dural or visceral afferent source in the trigeminal (V) or cervical area but input from afferent sources caudal to the C2 innervation territory was sparse. The proportion of neurons responding to COR, dural, C2 nerve, hypoglossal nerve, temporomandibular joint, MAS muscle and superior laryngeal nerve stimulations was 87, 54, 85, 52, 73, 64 and 31%, respectively. Electrical stimulation of all tested sites showed a double logarithmic stimulus-response relation, and cluster analysis of the excitability to COR, musculoskeletal, dural and visceral stimulations revealed two groups of neurons, one mainly containing wide dynamic range neurons and one mainly containing nociceptive-specific neurons. These findings indicate that afferent convergence in first cervical dorsal horn nociceptive neurons may be limited to the craniofacial area and that they may play an important role in the integration of craniofacial and upper cervical nociceptive inputs.
Collapse
Affiliation(s)
- C D Mørch
- Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark
| | | | | | | |
Collapse
|
63
|
de Tommaso M, Sardaro M, Pecoraro C, Di Fruscolo O, Serpino C, Lamberti P, Livrea P. Effects of the remote C fibres stimulation induced by capsaicin on the blink reflex in chronic migraine. Cephalalgia 2007; 27:881-90. [PMID: 17593297 DOI: 10.1111/j.1468-2982.2007.01357.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was to test the function of the diffuse noxious inhibitory control system (DNIC) in chronic and episodic migraine, exploring the blink reflex (BR) modifications induced by topical application of capsaicin on the hand. We evaluated 11 migraine without aura (MA) and nine chronic migraine (CM) patients during the not symptomatic phase; they were compared with 14 non-headache subjects (N). The BR was elicited by weak electrical stimuli delivered to the right supraorbital nerve; it was obtained 10 min and 20 min after the application of 1 ml of 3% capsaicin in a cream base (Teofarma) on the skin of the dorsum of the right hand, and 60 min after capsaicin removal. The subjective pain sensation induced by capsaicin was significantly increased in CM with respect to both MA patients and normal subjects; the R2 area was increased in CM patients during capsaicin application, with respect to controls and MA patients, who did not exhibit any reflex alterations. These results may suggest a failure of DNIC and a disturbed control of the trigeminal reflex at the central level, linked with migraine frequency.
Collapse
Affiliation(s)
- M de Tommaso
- TIRES (Centre of Innnovative Technologies for Signal Detection and Processing), Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
64
|
Mersich T, Szelke E, Erdos B, Lacza Z, Komjáti K, Sándor P. Somatosensory pain does not affect total cerebral blood volume. Neuroreport 2007; 18:649-52. [PMID: 17426592 DOI: 10.1097/wnr.0b013e3280ba49c3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The effect of somatosensory pain on the total cerebral blood volume was investigated in anesthetized rats. Our results show for the first time that total cerebral blood volume remains unaltered in both brain hemispheres during 2.5 min noxious stimulation of the sensory C-fibres of the sciatic nerve. Regional cerebral blood flow was increased by 97% in the thalamus and by 47% in the hypothalamus at the same time. Blockade of the L-arginine-nitric oxide system reduced significantly the steady-state control level of total cerebral blood volume (i.l.: from 5.7+/-1.3 to 4.58+/-1.6 vol%, c.l.: from 5.0+/-0.6 to 4.24+/-0.9 vol%). Nitric oxide synthase blockade, however, did not affect either the stimulation induced increase of regional cerebral blood flow or the steadiness of total cerebral blood volume during the stimulation.
Collapse
Affiliation(s)
- Tamás Mersich
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University Faculty of Medicine, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
65
|
Medullary control of nociceptive transmission: Reciprocal dual communication with the spinal cord. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.ddmec.2006.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
66
|
Porro CA, Lui F. Functional activity mapping of brainstem nociceptive networks in animals. ACTA ACUST UNITED AC 2006; 58:38-51. [PMID: 16623321 DOI: 10.1016/s1567-424x(09)70058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Carlo Adolfo Porro
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | |
Collapse
|
67
|
Leite-Almeida H, Valle-Fernandes A, Almeida A. Brain projections from the medullary dorsal reticular nucleus: an anterograde and retrograde tracing study in the rat. Neuroscience 2006; 140:577-95. [PMID: 16563637 DOI: 10.1016/j.neuroscience.2006.02.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 02/06/2006] [Accepted: 02/10/2006] [Indexed: 11/28/2022]
Abstract
In the last 15 years a role has been ascribed for the medullary dorsal reticular nucleus as a supraspinal pain modulating area. The medullary dorsal reticular nucleus is reciprocally connected with the spinal dorsal horn, is populated mainly by nociceptive neurons and regulates spinal nociceptive processing. Here we analyze the distribution of brain projections from the medullary dorsal reticular nucleus using the iontophoretic administration of the anterograde tracer biotinylated-dextran amine and the retrograde tracer cholera toxin subunit B. Fibers and terminal boutons labeled from the medullary dorsal reticular nucleus were located predominately in the brainstem, although extending also to the forebrain. In the medulla oblongata, anterograde labeling was observed in the orofacial motor nuclei, inferior olive, caudal ventrolateral medulla, rostral ventromedial medulla, nucleus tractus solitarius and most of the reticular formation. Labeling at the pons-cerebellum level was present in the locus coeruleus, A5 and A7 noradrenergic cell groups, parabrachial and deep cerebellar nuclei, whereas in the mesencephalon it was located in the periaqueductal gray matter, deep mesencephalic, oculomotor and anterior pretectal nuclei, and substantia nigra. In the diencephalon, fibers and terminal boutons were found mainly in the parafascicular, ventromedial, and posterior thalamic nuclei and in the arcuate, lateral, posterior, peri- and paraventricular hypothalamic areas. Telencephalic labeling was consistent but less intense and concentrated in the septal nuclei, globus pallidus and amygdala. The well-known role of the medullary dorsal reticular nucleus in nociception and its pattern of brain projections in rats suggests that the nucleus is possibly implicated in the modulation of: (i) the ascending nociceptive transmission involved in the motivational-affective dimension of pain; (ii) the endogenous supraspinal pain control system centered in the periaqueductal gray matter-rostral ventromedial medulla-spinal cord circuitry; (iii) the motor reactions associated with pain.
Collapse
Affiliation(s)
- H Leite-Almeida
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, CP-II, Piso 3, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | |
Collapse
|
68
|
Villanueva L, Lopez-Avila A, Monconduit L. Chapter 8 Ascending nociceptive pathways. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:93-102. [PMID: 18808830 DOI: 10.1016/s0072-9752(06)80012-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
69
|
Monconduit L, Villanueva L. The lateral ventromedial thalamic nucleus spreads nociceptive signals from the whole body surface to layer I of the frontal cortex. Eur J Neurosci 2005; 21:3395-402. [PMID: 16026477 DOI: 10.1111/j.1460-9568.2005.04160.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurons within the lateral ventromedial thalamic nucleus (VMl) convey selectively nociceptive information from all parts of the body. The present experiments were performed in rats and were designed to determine the organization of cortical projections from VMl neurons. In a first series of experiments, these cells were characterized electrophysiologically and individually labelled in a Golgi-like manner following juxtacellular electrophoresis of biotin-dextran. In a second experimental series, topical applications of the tracers fluorogold and tetramethylrhodamine-labelled dextran were placed into both the rostral-most and caudal areas of layer I of the dorsolateral frontal cortex, respectively. All VMl nociceptive neurons were fusiform and their full dendritic arborizations were bipolar, extending in the lateromedial axis. VMl cells are thus particularly well located to receive widespread nociceptive inputs via a brainstem link, viz. the medullary subnucleus reticularis dorsalis. VMl neurons driven by 'whole body' nociceptive receptive fields project to the rostral part of the layer I of the dorsolateral frontal cortex. These projections are widespread because double-labelling data showed a great number of VMl neurons labelled from both rostral and caudal dorsolateral cortices. The VMl comprises a homogeneous, organized subset of thalamic neurons that allow any signals of pain to modify cortical activity in a widespread manner, by interacting with the entire layer I of the dorsolateral neocortex.
Collapse
Affiliation(s)
- Lénaïc Monconduit
- INSERM E-216, Neurobiologie de la Douleur Trigéminale, Faculté de Chirurgie Dentaire, 11 Boulevard Charles de Gaulle, 63000, Clermont-Ferrand, France
| | | |
Collapse
|
70
|
Travers JB, Yoo JE, Chandran R, Herman K, Travers SP. Neurotransmitter phenotypes of intermediate zone reticular formation projections to the motor trigeminal and hypoglossal nuclei in the rat. J Comp Neurol 2005; 488:28-47. [PMID: 15912497 DOI: 10.1002/cne.20604] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Numerous studies suggest an essential role for the intermediate (IRt) and parvocellular (PCRt) reticular formation (RF) in consummatory ingestive responses. Although the IRt and PCRt contain a large proportion of neurons with projections to the oromotor nuclei, these areas of the RF are heterogeneous with respect to neurotransmitter phenotypes. Glutamatergic, GABAergic, cholinergic, and nitrergic neurons are all found in the PCRt and IRt, but the projections of neurons with these phenotypes to the motor trigeminal (mV) and hypoglossal nucleus (mXII) has not been fully evaluated. In the present study, after small injections of Fluorogold (FG) into mV and mXII, sections were processed immunohistochemically to detect retrogradely labeled FG neurons in combination with the synthetic enzymes for nitric oxide (nitric oxide synthase) or acetylcholine (choline acetyltransferase) or in situ hybridization for the synthetic enzyme for GABA (GAD65/67) or the brainstem vesicular transporter for glutamate (VGLUT2). In three additional cases, FG injections were made into one motor nucleus and cholera toxin (subunit b) injected in the other to determine the presence of dual projection neurons. Premotor neurons to mXII (pre-mXII) were highly concentrated in the IRt. In contrast, there were nearly equal proportions of premotor-trigeminal neurons (pre-mV) in the IRt and PCRt. A high proportion of pre-oromotor neurons were positive for VGLUT2 (pre-mXII: 68%; pre-mV: 53%) but GABAergic projections were differentially distributed with a greater projection to mV (25%) compared to mXII (8%). Significant populations of cholinergic and nitrergic neurons overlapped pre-oromotor neurons, but there was sparse double-labeling (<10%). The IRt also contained a high proportion of neurons that projected to both mV and MXII. These different classes of premotor neurons in the IRt and PCRt provide a substrate for the rhythmic activation of lingual and masticatory muscles.
Collapse
Affiliation(s)
- Joseph B Travers
- College of Dentistry, Ohio State University, Section of Oral Biology, Columbus, 43210, USA.
| | | | | | | | | |
Collapse
|
71
|
Hu JW, Sun KQ, Vernon H, Sessle BJ. Craniofacial inputs to upper cervical dorsal horn: implications for somatosensory information processing. Brain Res 2005; 1044:93-106. [PMID: 15862794 DOI: 10.1016/j.brainres.2005.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 02/25/2005] [Accepted: 03/01/2005] [Indexed: 01/04/2023]
Abstract
The aim of this study was to characterize the properties of somatosensory neurons in the first 2 cervical spinal dorsal horns (C1 and C2 DHs) and compare them with those previously described for the rostral subnucleus caudalis (rVc). A total of 74 nociceptive neurons classified as wide-dynamic-range (WDR) or nociceptive-specific (NS), as well as 72 low-threshold mechanoreceptive (LTM) neurons, was studied in urethane/chloralose-anesthetized rats. The majority of LTM neurons were located in laminae III/IV and had a small mechanoreceptive field (RF) that included the posterior face and cervical tissues. In contrast, the nociceptive neurons were located in laminae I/II or V/VI, and the RF of each C1 and C2 DH nociceptive neuron included a part of the face and in 47% of them the RF included a region supplied by upper cervical afferents. There was a gradual caudal shift in the neuronal RF from nasal/intraoral tissues towards the neck as recording sites progressed from rVc to C1 and C2 DHs. In contrast to LTM neurons, many C1 and C2 DH nociceptive neurons received mechanosensitive convergent afferent inputs from cervical and craniofacial deep tissues (e.g., tongue muscles or temporomandibular joint), and over 50% could be activated by hypoglossal (XII) nerve electrical stimulation. We propose that C1 and C2 DHs represent part of the caudal extension of the Vc, and that Vc and C1 and C2 DHs may act together as one functional unit to process nociceptive information from craniofacial and cervical tissues, including that from deep craniofacial tissues.
Collapse
Affiliation(s)
- J W Hu
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario, M5G 1G6, Canada.
| | | | | | | |
Collapse
|
72
|
|
73
|
Porro CA, Cavazzuti M, Giuliani D, Vellani V, Lui F, Baraldi P. Effects of ketamine anesthesia on central nociceptive processing in the rat: a 2-deoxyglucose study. Neuroscience 2004; 125:485-94. [PMID: 15062990 DOI: 10.1016/j.neuroscience.2004.01.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2004] [Indexed: 02/03/2023]
Abstract
Ketamine is a dissociative anesthetic with complex actions on the CNS. We investigated here the effects of ketamine anesthesia on somatosensory processing in the rat spinal cord, thalamus, and cerebral cortex, using the quantitative 2-deoxyglucose mapping technique. Unanesthetized or ketamine-anesthetized male Sprague-Dawley rats received a s.c. injection of a dilute formaldehyde solution (5%, 0.08 ml) into a forepaw, inducing prolonged noxious afferent input, or an equal volume of isotonic saline as a control stimulus. The 2-deoxyglucose experiments started 30 min after the injection. In the cervical enlargement of the spinal cord, ketamine had no significant effect on glucose metabolic rates in saline-injected animals, whereas it prevented the metabolic increases elicited by prolonged noxious stimulation in unanesthetized animals. At the thalamic level, ketamine increased glucose uptake in both saline- and formalin-injected rats in the lateral posterior, lateral dorsal, medial dorsal, gelatinosus, antero-ventral and antero-medial thalamic nuclei, whereas it decreased metabolic activity in the ventro-basal complex. At the cortical level, the drug increased metabolic activity in both control and formalin groups in the lacunosus-molecularis layer of the dorsal hippocampus, posterior parietal, retrosplenial, cingulate and frontal cortex; significant metabolic decreases were found in the CA1 region of the dorsal hippocampus and in the parietal 1 and 2 cortical areas. In the investigated brain regions, ketamine did not abolish noxious-evoked increases in glucose uptake, which were in fact enhanced in the forelimb cortex and in the lacunosus-molecularis layer of the hippocampus. The dissociation between the spinal and supraspinal effects of ketamine suggests a specific antinociceptive action on spinal circuits, in parallel with complex changes of the activity of brain circuits involved in somatosensory processing. More generally, this study shows that functional imaging techniques are able to quantitatively assess the effects of anesthetic drugs on nociceptive processing at different levels of the neuraxis.
Collapse
Affiliation(s)
- C A Porro
- Dipartimento Scienze e Tecnologie Biomediche, Università di Udine, P. le Kolbe 4, I-33100 Udine, Italy.
| | | | | | | | | | | |
Collapse
|
74
|
Traub RJ, Wang G. Colonic inflammation decreases thermal sensitivity of the forepaw and hindpaw in the rat. Neurosci Lett 2004; 359:81-4. [PMID: 15050717 DOI: 10.1016/j.neulet.2004.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 02/09/2004] [Accepted: 02/11/2004] [Indexed: 10/26/2022]
Abstract
Noxious stimulation at one site on the body can inhibit noxious stimulation at distal body sites. This has been extensively demonstrated for somatic stimuli, but less so for visceral stimuli. In the present study we present a model for visceral inflammatory stimuli inhibiting somatic thermal sensitivity in awake rats. Colonic inflammation induced by mustard oil increases the hindpaw and forepaw withdrawal latency from a noxious radiant heat source by 35-50% compared to baseline responses. The duration of the effect is dose-dependent. The withdrawal latency in control rats (mineral oil in colon, mustard oil on skin) was not affected. Rotarod performance was not affected by 5% mustard oil indicating that colonic inflammation did not produce a general malaise or decrease in motor performance. These data suggest that visceral inflammation in the rat decreases somatic sensitivity similar to that reported by patients with colonic hypersensitivity from irritable bowel syndrome or inflammatory bowel diseases.
Collapse
Affiliation(s)
- Richard J Traub
- Department of Biomedical Sciences, Dental School and Program in Neurosciences, University of Maryland, 666 W. Baltimore St., Baltimore, MD 21201, USA.
| | | |
Collapse
|
75
|
Sun W, Panneton WM. Defining projections from the caudal pressor area of the caudal ventrolateral medulla. J Comp Neurol 2004; 482:273-93. [PMID: 15690490 DOI: 10.1002/cne.20434] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We previously defined a functional area in the caudal medulla oblongata that elicits an increase in arterial pressure when stimulated (Sun and Panneton [2002] Am. J. Physiol. 283:R768-R778). In the present study, anterograde and retrograde tracing techniques were used to investigate the projections of this caudal pressor area (CPA) to the medulla and pons. Injections of biotinylated dextran amine into the CPA resulted in numerous labeled fibers with varicosities in the ipsilateral subnucleus reticularis dorsalis, commissural subnucleus of the nucleus tractus solitarii, lateral medulla, medial facial nucleus, A5 area, lateral vestibular nucleus, and internal lateral subnucleus of the parabrachial complex. Sparser projections were found ipsilaterally in the pressor and depressor areas of the medulla and the spinal trigeminal nucleus and contralaterally in the CPA. Injections of the retrograde tracer Fluoro-Gold into these areas labeled neurons in the CPA as well as the nearby medullary dorsal horn and reticular formation. However, we conclude that the CPA projects preferentially to the subnucleus reticularis dorsalis, commissural nucleus tractus solitarii, lateral medulla, A5 area, and internal lateral parabrachial nucleus. Weaker projections were seen to the CVLM and RVLM and to the contralateral CPA. The projection to the facial nucleus arises from nearby reticular neurons, whereas projections to the vestibular nucleus arise from the lateral reticular nucleus. Labeled neurons in the CPA consisted mostly of small bipolar and some triangular neurons. The projection to the CVLM, or to A5 area, may provide for the increase in arterial pressure with CPA stimulation. However, most of the projections described herein are to nuclei implicated in the processing of noxious information. This implies a unique role for the CPA in somatoautonomic regulation.
Collapse
Affiliation(s)
- Wei Sun
- Department of Anatomy and Neurobiology, St. Louis University School of Medicine, St. Louis, Missouri 63104-1004, USA
| | | |
Collapse
|
76
|
Treede RD. Pain and the Somatosensory Cortex. Pain 2003. [DOI: 10.1201/9780203911259.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
77
|
Monconduit L, Bourgeais L, Bernard JF, Villanueva L. Convergence of cutaneous, muscular and visceral noxious inputs onto ventromedial thalamic neurons in the rat. Pain 2003; 103:83-91. [PMID: 12749962 DOI: 10.1016/s0304-3959(02)00418-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have recently described a population of neurons in the lateral part of the ventromedial thalamus (VMl), that respond exclusively to noxious cutaneous stimuli, regardless of which part of the body is stimulated. The purpose of the present study was to investigate the convergence of cutaneous, muscular and visceral noxious inputs onto single, VMl neurons in anesthetized rats. VMl neurons were characterized by their responses to Adelta- and C-fiber activation as well as noxious heat applied to the hindpaw. We investigated whether they responded also to colorectal distensions. In an additional series of experiments, we tested the effects of colorectal, intraperitoneal, intramuscular and subcutaneous applications of the chemical irritant mustard oil (MO). The present study shows that a population of neurons located within the thalamic VMl nucleus, carries nociceptive somatosensory signals from the entire body. All these neurons responded to noxious cutaneous and intramuscular stimuli but not to levels of distension that could be considered innocuous or noxious, of the intact and inflammed colon and rectum. Although colorectal distension did not elicit VMl responses, convergence of visceral as well as muscle and cutaneous nociceptors was demonstrated by the increases in ongoing (background) discharges following intracolonic MO. A distinct effect is seen after MO injection into the lumen of the colon: an increase in ongoing activity for 15min but still a lack of effect of colorectal distension. Moreover, following inflammation induced by subcutaneous injections of MO VMl neurons developed responses to both thermal and mechanical innocuous skin stimulation, reminiscent of allodynia phenomena. It is suggested that the VMl contributes to attentional aspects of nociceptive processing and/or to the integration of widespread noxious events in terms of the appropriate potential motor responses.
Collapse
Affiliation(s)
- Lénaïc Monconduit
- Inserm E 216, Neurobiologie de la douleur trigéminale, Faculté de Chirurgie dentaire, 11 boulevard Charles de Gaulle, 63000 Clermont-Ferrand, France.
| | | | | | | |
Collapse
|
78
|
Zhang ZX, Lü H, Dong XP, Liu J, Xu TL. Kinetics of etomidate actions on GABA(A) receptors in the rat spinal dorsal horn neurons. Brain Res 2002; 953:93-100. [PMID: 12384242 DOI: 10.1016/s0006-8993(02)03274-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electrophysiological properties of etomidate (ET)-induced current (I(ET)) at different concentrations and effects of ET at clinically relevant concentrations (1-10 microM) on postsynaptic GABA(A) receptor function were investigated using whole-cell patch-clamp technique in mechanically dissociated rat spinal dorsal horn neurons. The results showed that ET actions were concentration-dependent: low concentrations (10 microM) of ET potentiated GABA-activated current (I(GABA)), slowed activation, desensitization and deactivation of GABA(A) receptors; moderate concentrations (10-1,000 microM) of ET directly activated and desensitized GABA(A) receptors; high concentrations (>1,000 microM) of ET produced an inhibitory effect on I(ET). In addition, ET prolonged the duration of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) in the mechanically dissociated rat dorsal horn neurons. These results suggest that general anesthetics-induced changes at spinal level could significantly contribute to analgesia and general anesthesia.
Collapse
Affiliation(s)
- Zhen-Xiong Zhang
- Laboratory of Receptor Pharmacology, Department of Neurobiology and Biophysics, School of Life Sciences, University of Science and Technology of China, P.O. Box 4, Hefei 230027, China
| | | | | | | | | |
Collapse
|
79
|
Le Bars D. The whole body receptive field of dorsal horn multireceptive neurones. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2002; 40:29-44. [PMID: 12589904 DOI: 10.1016/s0165-0173(02)00186-8] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multireceptive neurones are found in the spinal dorsal horn and may be projection neurones and/or interneurones for polysynaptic reflexes. The cutaneous receptive field of a multireceptive neurone exhibits a gradient of sensitivity with the centre responding to any mechanical stimulus, including hair movements and light touch, while the periphery responds only to noxious stimuli. These neurones also receive signals from viscera, muscles and joints. This convergence of inputs means that multireceptive neurones are continuously capturing all the information from both the interface with the external environment (the skin) and the internal milieu (the viscera, muscles, etc.). This information constitutes a 'basic somaesthetic activity' that could help the somatosensory system build a 'global representation of the body'. In addition to be seen as a global entity, the output of multireceptive neurones should be understood in dynamic terms since the size of the peripheral fields of the individual neurones may change, as a result of the plasticity of both excitatory and inhibitory segmental processes. Furthermore, the activity of these neurones can be inhibited from most of the remaining parts of the body via supraspinal mechanisms. These diffuse noxious inhibitory controls (DNIC) are triggered by peripheral A delta- and C-fibres, involve brain structures confined to the caudal-most part of the medulla including the subnucleus reticularis dorsalis (SRD) and are mediated by descending pathways in the dorsolateral funiculi. A painful focus that both activates a segmental subset of neurones and inhibits the remaining population can seriously disrupt this basic activity, resulting in the distortion of the body representation in favour of the painful focus, which becomes pre-eminent and (relatively) oversized.
Collapse
|
80
|
Monconduit L, Desbois C, Villanueva L. The integrative role of the rat medullary subnucleus reticularis dorsalis in nociception. Eur J Neurosci 2002; 16:937-44. [PMID: 12372030 DOI: 10.1046/j.1460-9568.2002.02148.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurons within the medullary subnucleus reticularis dorsalis (SRD) of the rat convey selectively nociceptive information from all parts of the body. We have sought to define the neuronal networks that convey information from widespread noxious stimuli to the diffuse thalamocortical system and also modulate spinal outflow. The experiments, which were performed in rats, were designed to determine whether efferents from the SRD issue collaterals to the thalamus and spinal cord. Injections of the tracers fluorogold and tetramethylrhodamine-labelled dextran were centred stereotaxically in two areas that receive dense projections from the SRD: the cervical spinal cord and the lateral ventromedial thalamus (VMl), respectively. In other experimental series, SRD neurons were characterized electrophysiologically and individually labelled in a Golgi-like manner following juxtacellular iontophoresis of biotin-dextran. More than half reticulothalamic neurons within the SRD provided monosynaptic connections to the spinal cord. SRD neurons that responded to Adelta- or Adelta- and C-fibre activation from any area of the body had axons that gave both ascending and descending collaterals. Because the SRD innervates several areas involved in motor processing and receives strong, direct influences from several cortical regions, it could provide a structural basis for the processing of nociceptive and motor activities.
Collapse
Affiliation(s)
- L Monconduit
- INSERM, E216, Neurobiologie de la douleur trigéminale, Faculté de Chirurgie Dentaire, 11, Boulevard Charles de Gaulle, 63000, Clermont-Ferrand, France
| | | | | |
Collapse
|
81
|
Le Bars D, Willer JC. Pain modulation triggered by high-intensity stimulation: implication for acupuncture analgesia? ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0531-5131(02)00412-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
82
|
Shay BL, Hochman S. Serotonin alters multi-segmental convergence patterns in spinal cord deep dorsal horn and intermediate laminae neurons in an in vitro young rat preparation. Pain 2002; 95:7-14. [PMID: 11790462 DOI: 10.1016/s0304-3959(01)00364-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Each spinal neuron has a receptive field that corresponds to stimulation of a specific area of skin or subcutaneous tissue. Receptive fields are plastic and can be altered during development and injury but the actions of neuromodulators, such as serotonin (5-hydroxytryptamine, 5-HT) on receptive field properties are not well known. We used stimulation of multiple adjacent dorsal root spinal segments as a measure of "receptive field size" to determine the effects of 5-HT on multi-segmental convergent input onto neurons in laminae IV-VII. Whole-cell patch-clamp recordings were undertaken in the in vitro hemisected thoracolumbar spinal cord of rats aged 8-10 days old. Based on synaptic responses, neurons could be divided into two predominant groups and 5-HT exerted different effects on these groups. The first group received excitatory post-synaptic potentials (EPSPs) from the homonymous dorsal root but inhibitory post-synaptic potentials (IPSPs) with increasing amplitude from more distant dorsal roots. In this group, 5-HT preferentially depressed the IPSPs from adjacent nerve roots while leaving the EPSP intact. The second group received short-latency EPSPs from all segments stimulated and 5-HT potently depressed all synaptic input. In both populations the depressant actions of 5-HT increased with dose (0.1-10.0 microM). Bicuculline and strychnine did not affect the 5-HT induced short-latency synaptic depression. These results suggest that descending serotonergic systems depress spinal sensory convergence in a graded and differentiated manner. The findings are discussed in relation to the modulation of nociceptive signaling.
Collapse
|
83
|
Hochman S, Garraway S, Machacek D, Shay B. 5-HT Receptors and the Neuromodulatory Control of Spinal Cord Function. MOTOR NEUROBIOLOGY OF THE SPINAL CORD 2001. [DOI: 10.1201/9781420042641.ch3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
84
|
Parabrachial internal lateral neurons convey nociceptive messages from the deep laminas of the dorsal horn to the intralaminar thalamus. J Neurosci 2001. [PMID: 11245700 DOI: 10.1523/jneurosci.21-06-02159.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study investigates the physiological properties of parabrachial internal lateral (PBil) neurons that project to the paracentral thalamic (PC) nucleus using antidromic activation and single-unit recording techniques in anesthetized rat. We reported here that most of these neurons responded exclusively to the nociceptive stimulation of large receptive fields with a sustained firing that often outlasted the stimulus up to several minutes. These responses were depressed by intravenous morphine. Our results demonstrated a novel spino-PBil-PC pathway, which transmits nociceptive messages to the PC nucleus, which in turn projects to the prefrontal cortex. Recent clinical imaging studies showed the important participation of prefrontal cortex in emotional response to pain. This spino-PBil-PC pathway may explain how nociceptive messages reach the prefrontal cortex and thus trigger unbearable aversive aspects of pain.
Collapse
|
85
|
Desbois C, Villanueva L. The organization of lateral ventromedial thalamic connections in the rat: a link for the distribution of nociceptive signals to widespread cortical regions. Neuroscience 2001; 102:885-98. [PMID: 11182250 DOI: 10.1016/s0306-4522(00)00537-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have used several anatomical tracing techniques to study the organization of the lateral ventromedial thalamic nucleus in the rat, a region that is selectively activated by cutaneous nociceptive inputs from any part of the body. The lateral ventromedial thalamic projections are organized as a widespread dense band covering mainly layer I of the dorsolateral anterior-most aspect of the cortex. This band diminishes progressively as one moves caudally, disappearing completely at 1mm caudal to bregma level. These widespread projections contrast with the circumscribed projections to the deep layers of the primary somatosensory and insular cortices from the adjacent ventral posteromedial and ventroposterior parvicellular thalamic regions, respectively. Injections into the lateral part of the ventromedial thalamic nucleus of an anterograde/retrograde tracer showed that the cortical layer I areas showing the densest projections from this thalamic region also contain the greatest number of retrogradely labeled cells in cortical layers V and VI. The same injections retrogradely labeled numerous cells which were confined to the dorsal subnucleus reticularis dorsalis in an area that contains a concentration of neurons with widespread nociceptive convergence. Finally, the lateral part of the ventromedial thalamic nucleus was also differentially labeled following a topical application of tetramethylrhodamine-labeled dextran on the dorsolateral anterior cortex. These findings suggest that lateral ventromedial thalamic neurons could be part of a spino-reticulo-thalamo-cortical network that allows signals of pain from any part of the body surface to spread across widespread cortical areas.
Collapse
Affiliation(s)
- C Desbois
- INSERM, U-161, 2, Rue d'Alésia, 75014, Paris, France
| | | |
Collapse
|
86
|
Azami J, Green DL, Roberts MH, Monhemius R. The behavioural importance of dynamically activated descending inhibition from the nucleus reticularis gigantocellularis pars alpha. Pain 2001; 92:53-62. [PMID: 11323126 DOI: 10.1016/s0304-3959(00)00471-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have recently demonstrated (J Physiol 506 (1998) 459) that the dynamic activation of descending inhibition of the nociceptive response of spinal multireceptive cells occurs in the nucleus reticularis gigantocellularis pars alpha (GiA). In the same paper we have shown that Lamina I dorsal horn cells are responsible for activating this inhibition via a pathway which runs in the contralateral dorsolateral funiculus. The effects of dynamically activating this system by noxious stimulation on behavioural responses to noxious stimuli have not been established. Here we demonstrate the effects of GiA on the behavioural response during application of standardized noxious stimuli. As this system is activated in response to noxious stimulation (J Physiol 506 (1998) 459), it is possible that chronic pain states may also activate GiA. We have therefore investigated this possibility in animals following partial sciatic nerve ligation (an animal model of chronic pain; Pain 43 (1990) 205). Male Wistar rats (280-310 g) were anaesthetized with halothane (0.5-2% in O(2)). Guide cannulae for microinjections were stereotaxically placed above GiA. In one group of animals the sciatic nerve was partially ligated. Animals were allowed to recover for 4-6 days. The responses of each animal during the formalin test (Pain 4 (1977) 161) and the tail flick test (Pain 12 (1982) 229) were recorded on different days. Microinjections (0.5 microl) of either gamma-aminobutyric acid (GABA, 200 mM), D-L homocysteic acid (DLH, 25 mM) or 0.9% saline (as control) into GiA were performed during these tests in a randomized, blind manner. In animals without sciatic nerve ligation, microinjection of GABA to GiA did not significantly affect the animal's response during the tail flick test. However microinjection of DLH significantly increased the latency of tail flick from 6.2 +/- 0.8 to 8.4 +/- 0.5 s for up to 15 min (n = 7, P < 0.01, Mann-Whitney U-test). Microinjection of GABA to GiA increased the behavioural response to formalin between 10 and 20 min post-injection, while microinjection of DLH reduced this response at all time points except 10 min post-injection (n = 8, P < 0.05, Mann-Whitney U-test). In animals with sciatic nerve ligation, microinjections (0.5 microl) of either GABA (200 mM), or saline (as control) into GiA contralateral to the partial sciatic ligation were performed during these tests in a randomized, blind manner. Partial sciatic ligation significantly reduced the behavioural response to contralaterally applied formalin from 15 min post-injection onwards, compared to controls without sciatic nerve ligation. Microinjection of GABA to GiA significantly increased the behavioural response to formalin from 20 to 50 min post-injection. The inactivation of GiA only causes behavioural effects in nociceptive tests of a long enough duration to activate the system (i.e. the formalin test but not the tail flick test). Chemical activation of the system affects both tests. These data strongly support the concept of an important analgesic system which is activated in response to noxious stimulation, and subsequently acts to reduce behavioural responses to noxious stimuli.
Collapse
Affiliation(s)
- J Azami
- Department of Anaesthetics, University Hospital of Wales, CF4 4XN, Cardiff, UK
| | | | | | | |
Collapse
|
87
|
Diotte M, Bielajew C, Miguelez M, Miliaressis E. Factors that influence the persistence of stimulation-induced aversion. Physiol Behav 2001; 72:661-7. [PMID: 11336997 DOI: 10.1016/s0031-9384(01)00418-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain stimulation reward in certain regions has been shown to produce analgesia to externally applied painful stimuli. In the present experiments, we studied how electrical self-stimulation of the dorsal raphe (DR) nucleus modifies the aversive effects of electrical stimulation of the nucleus reticularis gigantocellularis (Gi) or of the dorsal tegmentum (DTg). In the first study, the threshold for latency to escape aversive Gi stimulation was tracked before and after exposure to rewarding DR stimulation. Only a few sessions of DR self-stimulation were required to produce a complete and long-lasting inhibition of Gi aversion. In the second study, the aversion induced by DTg stimulation rapidly disappeared following a few test sessions at that site. Unlike our previous experience with Gi aversion that required either pairing with rewarding lateral hypothalamic (LH) or ventral tegmental area (VTA) pulses in order to increase the threshold for latency to escape Gi aversion, in this study, simply brief experience with rewarding DR stimulation in unpaired trials was sufficient to entirely suppress Gi-induced aversion. Even more surprising was the finding that unlike the Gi, aversion obtained from activation of the DTg does not persist, its threshold for escape quickly increases, and within a few sessions is no longer evident. One interpretation of these findings is that the aversion mechanisms associated with the Gi and DTg are differentially susceptible to analgesic processes.
Collapse
Affiliation(s)
- M Diotte
- School of Psychology, University of Ottawa, 145 Jean-Jacques Lussier Street, P.O. Box 450, Station A, K1N 6N5, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
88
|
Abstract
Pain is necessary for survival, but persistent pain can result in anxiety, depression and a reduction in the quality of life. The discriminative and affective qualities of pain are both thought to be regulated in an activity-dependent fashion. Recent studies have identified cells and molecules that regulate pain sensitivity and the parallel pathways that distribute nociceptive information to limbic or sensory areas of the forebrain. Here, we emphasize the cellular and neurobiological consequences of pain, especially those that are involved in the generation and maintenance of chronic pain. These new insights into pain processing will significantly alter our approach to pain control and the development of new analgesics.
Collapse
Affiliation(s)
- S P Hunt
- Department of Anatomy and Developmental Biology, Medawar Building, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
89
|
Diotte M, Miguelez M, Miliaressis E, Bielajew C. Interactions between rewarding lateral hypothalamic and aversive nucleus reticularis gigantocellularis stimulation. Behav Brain Res 2000; 116:149-56. [PMID: 11080546 DOI: 10.1016/s0166-4328(00)00268-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The interaction between rewarding and aversive consequences of brain stimulation were assessed in two studies. In the first, the frequency threshold for 300 ms trains of combined lateral hypothalamic (LH) and nucleus reticularis gigantocellularis (Gi) stimulation, in which each LH pulse was followed 2 ms later by the Gi one, was determined for one month. Compared to the threshold for trains of single LH pulses, combined LH-Gi stimulation initially increased the frequency threshold; however, this effect reversed within one session and was subsequently maintained for the duration of the study. The aversion produced by Gi stimulation, as measured by latency to escape, was abolished following a single session of LH-Gi pairs. In the second study, a subset of animals received both presentations of combined pulses, LH followed by Gi, and the reverse; the interval between pulses was varied from 0.2 to 6.4 ms. The effectiveness of combined stimulation, determined by the ratio of LH frequency thresholds to that of the LH-Gi ranged from 0 to 50% across animals but the individual effectiveness functions within animals did not vary with different intervals. In addition, the order of presentation of pulses was of no consequence. Thus, not only did exposure to LH stimulation appear to obliterate Gi aversion, but the combination of LH and Gi pulses added to the rewarding effect produced by LH stimulation alone.
Collapse
Affiliation(s)
- M Diotte
- School of Psychology, University of Ottawa, 11 Marie Curie, Room 108, University of Ottawa, Ont., K1N 6N5, Canada
| | | | | | | |
Collapse
|
90
|
Gall O, Villanueva L, Bouhassira D, Le Bars D. Spatial encoding properties of subnucleus reticularis dorsalis neurons in the rat medulla. Brain Res 2000; 873:131-4. [PMID: 10915819 DOI: 10.1016/s0006-8993(00)02524-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of spatial summation, produced by noxious thermal stimuli, was investigated on medullary Subnucleus Reticularis Dorsalis (SRD) neurons of anaesthetized rats. Neurons with 'whole body' receptive fields were excited by a random sequence of thermal stimuli involving four different surface areas of a hindpaw (1.9, 4.8, 7.5 and 18 cm(2)). The responses of SRD neurons progressively decrease when the area of noxious stimulation exceeded 4.8 cm(2). The shape of the stimulus-response curve closely match the shape of dorsal horn convergent neurons, previously recorded under similar experimental conditions. These results suggest that, with respect to spatial encoding properties, SRD neurons are driven by the same supraspinally-mediated inhibitory mechanisms as dorsal horn convergent neurons.
Collapse
Affiliation(s)
- O Gall
- Department of Anesthesiology, Hôpital Armand Trouseau, Netter, Paris, France
| | | | | | | |
Collapse
|
91
|
Sessle BJ. Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 11:57-91. [PMID: 10682901 DOI: 10.1177/10454411000110010401] [Citation(s) in RCA: 461] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This paper reviews the recent advances in knowledge of brainstem mechanisms related to craniofacial pain. It also draws attention to their clinical implications, and concludes with a brief overview and suggestions for future research directions. It first describes the general organizational features of the trigeminal brainstem sensory nuclear complex (VBSNC), including its input and output properties and intrinsic characteristics that are commensurate with its strategic role as the major brainstem relay of many types of somatosensory information derived from the face and mouth. The VBSNC plays a crucial role in craniofacial nociceptive transmission, as evidenced by clinical, behavioral, morphological, and electrophysiological data that have been especially derived from studies of the relay of cutaneous nociceptive afferent inputs through the subnucleus caudalis of the VBSNC. The recent literature, however, indicates that some fundamental differences exist in the processing of cutaneous vs. other craniofacial nociceptive inputs to the VBSNC, and that rostral components of the VBSNC may also play important roles in some of these processes. Modulatory mechanisms are also highlighted, including the neurochemical substrate by which nociceptive transmission in the VBSNC can be modulated. In addition, the long-term consequences of peripheral injury and inflammation and, in particular, the neuroplastic changes that can be induced in the VBSNC are emphasized in view of the likely role that central sensitization, as well as peripheral sensitization, can play in acute and chronic pain. The recent findings also provide new insights into craniofacial pain behavior and are particularly relevant to many approaches currently in use for the management of pain and to the development of new diagnostic and therapeutic procedures aimed at manipulating peripheral inputs and central processes underlying nociceptive transmission and its control within the VBSNC.
Collapse
Affiliation(s)
- B J Sessle
- Faculty of Dentistry, University of Toronto, Ontario, Canada
| |
Collapse
|
92
|
Thurston-Stanfield CL, Ranieri JT, Vallabhapurapu R, Barnes-Noble D. Role of vagal afferents and the rostral ventral medulla in intravenous serotonin-induced changes in nociception and arterial blood pressure. Physiol Behav 1999; 67:753-67. [PMID: 10604848 DOI: 10.1016/s0031-9384(99)00128-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intravenous administration of serotonin inhibits the nociceptive tail-flick (TF) reflex, partially through activation of vagal afferents. The present study examined the role of the rostral ventral medulla (RVM) in i.v. serotonin-produced inhibition of the TF reflex. In Experiment 1, the effects of anesthetic blockade of the RVM on serotonin-produced inhibition of the TF were determined. Lidocaine attenuated the serotonin-produced inhibition of the TF reflex, but had no effect on the cardiovascular effects of serotonin. In Experiment 2, the effects of i.v. serotonin on neural activity in the RVM in intact and cardiopulmonary deafferented rats were determined. Neurons in the RVM were classified as ON and OFF cells, where ON cells were excited by noxious heat, and OFF cells were inhibited. The effects of i.v. serotonin on TF latency, blood pressure, and ON or OFF cell activity were then determined. In intact rats, serotonin produced a dose-dependent increase in TF latency, triphasic changes in blood pressure, and bi- or triphasic changes in ON or OFF cell activity. The changes in blood pressure included an initial sharp decrease in blood pressure (Bezold-Jarisch reflex), followed by a brief pressor response, followed by a delay depressor response. ON cells were generally excited, although there was a period during which the excitation decreased. OFF cells were initially excited, followed by a period of inhibition, followed by a second period of excitation. Bilateral cervical vagotomy attenuated the increase in TF latency, the Bezold-Jarisch reflex, and the excitation of OFF cells, and potentiated the excitation of ON cells and the pressor response. Bilateral sinoaortic deafferentation attenuated the Bezold-Jarisch reflex and potentiated the pressor response. These findings indicate that i.v. serotonin inhibits the TF reflex through at least two distinct mechanisms, one of which requires the RVM. In addition, serotonin produces a vagally mediated excitation of OFF cells and inhibition of ON cells that may mediate some of the antinociception.
Collapse
|
93
|
Ventromedial thalamic neurons convey nociceptive signals from the whole body surface to the dorsolateral neocortex. J Neurosci 1999. [PMID: 10516323 DOI: 10.1523/jneurosci.19-20-09063.1999] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The somatosensory properties of ventromedial (VM) thalamic neurons were investigated in anesthetized rats by examining their responses to calibrated cutaneous stimuli. A population of neurons within the lateral part of the ventromedial thalamus (VMl) showed two peaks of activation after percutaneous electrical stimuli, regardless of which part of the body was stimulated. The early and late peaks were elicited by Adelta- and C-fiber activities with mean conduction velocities of 12.9 +/- 0.9 and 1 +/- 0.2 m/sec, respectively. These responses were strongly depressed or blocked after microinjections within the medullary subnucleus reticularis dorsalis of xylocaine or the NMDA antagonist MK-801. None of the VMl neurons responded to innocuous cutaneous or proprioceptive stimuli. In contrast, all these neurons responded to noxious mechanical and thermal stimulation of the limbs and showed monotonic increases in their discharges to increasingly strong noxious cutaneous stimuli. In addition, some VMl neurons were antidromically activated by stimulation in layer I of the dorsolateral frontal cortex. These findings suggest that the rat VMl conveys and encodes cutaneous nociceptive inputs from any part of the body surface to layer I of the dorsolateral neocortex. This reticulo-thalamo-cortical network may allow any signal of pain to gain access to widespread areas of the neocortex and thus help prime the cortex for attentional reactions and/or the coordination of motor responses.
Collapse
|
94
|
Ellrich J, Andersen OK, Messlinger K, Arendt-Nielsen L. Convergence of meningeal and facial afferents onto trigeminal brainstem neurons: an electrophysiological study in rat and man. Pain 1999; 82:229-237. [PMID: 10488673 DOI: 10.1016/s0304-3959(99)00063-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Headache is often accompanied by referred pain in the face. This phenomenon is probably due to a convergence of afferent inputs from the meninges and the face onto central trigeminal neurons within the medullary dorsal horn (MDH). The possible existence and extent of this convergence was examined in rat and man. MDH neurons activated by stimulation of the parietal meninges were tested for convergent tactile and noxious mechanical input from all three facial branches of the trigeminal nerve. All 21 units with meningeal input could also be activated by facial stimuli. Brush stimuli applied to the supraorbital nerve area activated 86%, to the infraorbital nerve area 29%, and to the mental nerve area none of the units. Pinch stimuli applied to the supraorbital nerve area activated 95%, to the infraorbital nerve area 86%, and to the mental nerve area 52% of the units. The results suggest convergence of meningeal and facial inputs concentrated on the supraorbital nerve in rat. In man convergence was examined by probing neuronal excitability of MDH applying the blink reflex (BR) during Valsalva maneuver which probably increases intracranial pressure. The BR evoked by supraorbital nerve stimulation remained unchanged, while the BR evoked by mental nerve stimulation was significantly facilitated. This facilitation may be due to convergence of meningeal and facial inputs onto trigeminal neurons in man.
Collapse
Affiliation(s)
- Jens Ellrich
- Friedrich-Alexander-University, Institute of Physiology and Experimental Pathophysiology, Universitätsstr. 17, D-91054 Erlangen, Germany Aalborg University, Center for Sensory-Motor Interaction (SMI), Frederik Bajersvej 7 D3, DK-9220 Aalborg, Denmark
| | | | | | | |
Collapse
|
95
|
Desbois C, Le Bars D, Villanueva L. Organization of cortical projections to the medullary subnucleus reticularis dorsalis: A retrograde and anterograde tracing study in the rat. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990726)410:2<178::aid-cne2>3.0.co;2-f] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
96
|
Abstract
Sensory deficits on the contralateral face in Wallenberg's lateral medullary syndrome (WS) may be due to an involvement of the crossing contralateral trigeminothalamic tract. Alternatively, neurons within the medullary dorsal horn (MDH) get input from the contralateral face. MDH neurons supplying the supraorbital nerve area in rat were recorded by electrophysiological techniques. In this first study on contralateral projections, about 60% of the neurons received excitatory afferent input from the contralateral face as well as the ipsilateral supraorbital area. Thus, contralateral sensory deficits in WS may be due to an involvement of these neurons.
Collapse
Affiliation(s)
- J Ellrich
- Friedrich-Alexander-University, Institute of Physiology and Experimental Pathophysiology, Universitätsstr. 17, D-91054, Erlangen, Germany.
| | | |
Collapse
|
97
|
Porro CA, Cavazzuti M, Baraldi P, Giuliani D, Panerai AE, Corazza R. CNS pattern of metabolic activity during tonic pain: evidence for modulation by beta-endorphin. Eur J Neurosci 1999; 11:874-88. [PMID: 10103081 DOI: 10.1046/j.1460-9568.1999.00494.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
CNS correlates of acute prolonged pain, and the effects of partial blockade of the central beta-endorphin system, were investigated by the quantitative 2-deoxyglucose technique in unanaesthetized, freely moving rats. Experiments were performed during the second, tonic phase of the behavioural response to a prolonged chemical noxious stimulus (s.c. injection of dilute formalin into a forepaw), or after minor tissue injury (s.c. saline injection). During formalin-induced pain, local glucose utilization rates in the CNS were bilaterally increased in the grey matter of the cervical spinal cord, in spinal white matter tracts and in several supraspinal structures, including portions of the medullary reticular formation, locus coeruleus, lateral parabrachial region, anterior pretectal nucleus, the medial, lateral and posterior thalamic regions, basal ganglia, and the parietal, cingulate, frontal, insular and orbital cortical areas. Pretreatment with anti-beta-endorphin antibodies, injected i.c.v., led to increased metabolism in the tegmental nuclei, locus coeruleus, hypothalamic and thalamic structures, putamen, nucleus accumbens, diagonal band nuclei and dentate gyrus, and in portions of the parietal, cingulate, insular, frontal and orbital cortex. In formalin-injected rats, pretreated with anti-beta-endorphin, behavioural changes indicative of hyperalgesia (increased licking response) were found, which were paralleled by a significant enhancement of functional activity in the anterior pretectal nucleus and in thalamo-cortical systems. A positive correlation was found between the duration of the licking response and metabolic activity of several forebrain regions. These results provide a map of the CNS pattern of metabolic activity during tonic somatic pain, and demonstrate a modulatory role for beta-endorphin in central networks that process somatosensory inputs.
Collapse
Affiliation(s)
- C A Porro
- Scienze e Technologie Biomediche, University of Udine, P. le Kolbe 4, I-33100 Udine, Italy.
| | | | | | | | | | | |
Collapse
|
98
|
Ellrich J, Andersen OK, Treede RD, Arendt-Nielsen L. Convergence of nociceptive and non-nociceptive input onto the medullary dorsal horn in man. Neuroreport 1998; 9:3213-7. [PMID: 9831453 DOI: 10.1097/00001756-199810050-00015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Referred pain arising in orofacial pain states is probably due to convergence of different somatosensory input onto the medullary dorsal horn (MDH). To examine convergence between nociceptive and non-nociceptive input onto the MDH, the blink reflex (BR) was applied. R1- and R2-components can be evoked by innocuous stimuli, but only the R2 is elicited by painful heat. The BR was elicited by innocuous electrical stimuli applied to the supraorbital nerve. A conditioning painful heat pulse which did not evoke any BR was homotopically applied to the left forehead preceding the electrical stimulus by 75 ms. While R1 remained unchanged, the R2 was facilitated by about 30%. This study demonstrates a convergence of low-threshold mechanoreceptive and nociceptive inputs onto interneurons of the MDH in man.
Collapse
Affiliation(s)
- J Ellrich
- Johannes Gutenberg-University, Institute of Physiology and Pathophysiology, Mainz, Germany
| | | | | | | |
Collapse
|
99
|
Ellrich J, Treede RD. Characterization of blink reflex interneurons by activation of diffuse noxious inhibitory controls in man. Brain Res 1998; 803:161-8. [PMID: 9729360 DOI: 10.1016/s0006-8993(98)00646-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The blink reflex consists of an early, pontine R1-component and a late, medullary R2-component. R1 and R2 can be evoked by innocuous stimuli, but only the R2 also by painful heat, suggesting that the R2 is mediated by wide dynamic range neurons (WDR) of the spinal trigeminal nucleus. Remote noxious stimuli suppress the activity in WDR neurons via activation of diffuse noxious inhibitory controls (DNIC), whereas low-threshold mechanoreceptive neurons (LTM) are unaffected. In order to characterize the trigeminal interneurons of R1 and R2 we investigated the modulation of the blink reflex by remote painful heat. The blink reflex was elicited in 11 healthy subjects by innocuous electrical pulses applied to the left supraorbital nerve. The remote, painful heat stimuli were applied by a Peltier type thermode to the left volar forearm. Remote painful heat of 44 to 46 degreesC significantly suppressed the R2 by 15% (p<0.01), while the R1 remained unchanged. These results provide further evidence that the R2 is mediated by medullary WDR neurons and the R1 by pontine LTM neurons.
Collapse
Affiliation(s)
- J Ellrich
- Johannes Gutenberg-University, Institute of Physiology and Pathophysiology, Saarstr. 21, D-55099, Mainz, Germany. http://www.physiologiel.uni-erlangen.de/ellrich/ellrich.htm
| | | |
Collapse
|
100
|
Ness TJ, Follett KA, Piper J, Dirks BA. Characterization of neurons in the area of the medullary lateral reticular nucleus responsive to noxious visceral and cutaneous stimuli. Brain Res 1998; 802:163-74. [PMID: 9748555 DOI: 10.1016/s0006-8993(98)00608-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In halothane-anesthetized rats, 283 caudal medullary neurons responsive to colorectal distension (CRD) were characterized using extracellular electrodes. Neurons inhibited by CRD (n = 82) were in the area dorsal to the lateral reticular nucleus (LRN). Most neurons excited by CRD (n = 130) were located within or immediately adjacent to the LRN, were excited by noxious heat and/or noxious pinch of at least half the body surface and were called bilateral nociceptive specific (bNS) neurons. bNS neurons had accelerating responses to graded CRD (threshold: 20 +/- 2 mmHg). Ten of twelve bNS neurons tested could be antidromically activated by electrical stimulation of the midline cerebellum. Other neurons excited by CRD (n = 71) had mixed responses to cutaneous stimuli and were generally located in the area dorsal to the LRN. Increases in blood pressure due to intravenous phenylephrine did not significantly alter the spontaneous activity of neurons excited by CRD, but altered spontaneous activity (12 excited, four inhibited) in all neurons tested which were inhibited by CRD. Decreases in blood pressure produced by intravenous nitroprusside produced a reciprocal response in most neurons inhibited by CRD and had a delayed onset (20-30 s after bolus administration) excitatory effect on 21 of 27 units excited by CRD. Combined with other studies, these data suggest a role for neurons within and adjacent to the LRN in the modulation of visceral nociception. They also implicate a role for the cerebellum in visceral nociceptive processing.
Collapse
Affiliation(s)
- T J Ness
- Department of Anesthesiology, University of Alabama, Birmingham School of Medicine 35233-6810, USA.
| | | | | | | |
Collapse
|