51
|
Cheung CCL, Monaco I, Kostevšek N, Franchini MC, Al-Jamal WT. Nanoprecipitation preparation of low temperature-sensitive magnetoliposomes. Colloids Surf B Biointerfaces 2020; 198:111453. [PMID: 33234412 DOI: 10.1016/j.colsurfb.2020.111453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/05/2023]
Abstract
Lysolipid-containing thermosensitive liposomes (LTSL) have gained attention for triggered release of chemotherapeutics. Superparamagnetic iron oxide nanoparticles (SPION) offers multimodal imaging and hyperthermia therapy opportunities as a promising theranostic agent. Combining LTSL with SPION may further enhance their performance and functionality of LTSL. However, a major challenge in clinical translation of nanomedicine is the poor scalability and complexity of their preparation process. Exploiting the nature of self-assembly, nanoprecipitation is a simple and scalable technique for preparing liposomes. Herein, we developed a novel SPION-incorporated lysolipid-containing thermosensitive liposome (mLTSL10) formulation using nanoprecipitation. The formulation and processing parameters were carefully designed to ensure high reproducibility and stability of mLTSL10. The effect of solvent, aqueous-to-organic volume ratio, SPION concentration on the mLTSL10 size and dispersity was investigated. mLTSL10 were successfully prepared with a small size (∼100 nm), phase transition temperature at around 42 °C, and high doxorubicin encapsulation efficiency. Indifferent from blank LTSL, we demonstrated that mLTSL10 combining the functionality of both LTSL and SPION can be successfully prepared using a scalable nanoprecipitation approach.
Collapse
Affiliation(s)
- Calvin C L Cheung
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Ilaria Monaco
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Italy
| | - Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | - Wafa T Al-Jamal
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
52
|
Tomeh MA, Zhao X. Recent Advances in Microfluidics for the Preparation of Drug and Gene Delivery Systems. Mol Pharm 2020; 17:4421-4434. [PMID: 33213144 DOI: 10.1021/acs.molpharmaceut.0c00913] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug delivery systems (DDSs) have great potential for improving the treatment of several diseases, especially microbial infections and cancers. However, the formulation procedures of DDSs remain challenging, especially at the nanoscale. Reducing batch-to-batch variation and enhancing production rate are some of the essential requirements for accelerating the translation of DDSs from a small scale to an industrial level. Microfluidic technologies have emerged as an alternative to the conventional bench methods to address these issues. By providing precise control over the fluid flows and rapid mixing, microfluidic systems can be used to fabricate and engineer different types of DDSs with specific properties for efficient delivery of a wide range of drugs and genetic materials. This review discusses the principles of controlled rapid mixing that have been employed in different microfluidic strategies for producing DDSs. Moreover, the impact of the microfluidic device design and parameters on the type and properties of DDS formulations was assessed, and recent applications in drug and gene delivery were also considered.
Collapse
Affiliation(s)
- Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom.,School of Pharmacy, Changzhou University, Changzhou 213164, China
| |
Collapse
|
53
|
Aburai K, Hatanaka K, Takano S, Fujii S, Sakurai K. Characterizing an siRNA-Containing Lipid-Nanoparticle Prepared by a Microfluidic Reactor: Small-Angle X-ray Scattering and Cryotransmission Electron Microscopic Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12545-12554. [PMID: 32988200 DOI: 10.1021/acs.langmuir.0c01079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A new cationic-lipid/siRNA particle that was designed to deliver siRNA was investigated by the combination of small-angle X-ray scattering (SAXS), asymmetric field flow fractionation coupled with multiangle light scattering, and cryotransmission electron microscopy (cryo-TEM). The particle was prepared through two-step mixing using a microfluidic technique. In the first step, siRNA was premixed with a cationic lipid in an EtOH-rich solution. In the second step, the premixed solution was mixed with other lipids, followed by solvent exchange with water. SAXS showed formation of a siRNA/cationic lipid pair in the first step, and this pair consisted of the major part of the core in the final particle. The relationship between the hydrodynamic radius and the radius of gyration indicated the formation of a densely packed core and PEG-rich shell, confirming a well-known core-shell model. SAXS and cryo-TEM showed that the ordering of the core structure enhanced as the siRNA content increased.
Collapse
Affiliation(s)
- Kenichi Aburai
- Research Function Units, R&D Division, Kyowa Kirin Company, Ltd., 3-6-6, Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | - Kentaro Hatanaka
- Research Function Units, R&D Division, Kyowa Kirin Company, Ltd., 3-6-6, Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | - Shin Takano
- Department of Chemistry and Biochemistry, Faculty of Engineering, University of Kitakyushu, 1-1, Hibikino, Kitakyushu 808-0135, Japan
| | - Shota Fujii
- Department of Chemistry and Biochemistry, Faculty of Engineering, University of Kitakyushu, 1-1, Hibikino, Kitakyushu 808-0135, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, Faculty of Engineering, University of Kitakyushu, 1-1, Hibikino, Kitakyushu 808-0135, Japan
| |
Collapse
|
54
|
Bianchera A, Bettini R. Polysaccharide nanoparticles for oral controlled drug delivery: the role of drug-polymer and interpolymer interactions. Expert Opin Drug Deliv 2020; 17:1345-1359. [PMID: 32602795 DOI: 10.1080/17425247.2020.1789585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The oral route still represents the most popular way of administering drugs; nowadays oral administration faces new challenges, in particular with regards to the delivery of APIs that are poorly absorbed and sensitive to degradation such as macromolecules and biotechnological drugs. Nanoparticles are promising tools for the efficient delivery of these drugs to the gastrointestinal tract. Areas covered:Approaches and techniques for the formulation of drugs, with particular focus on the preparation of polysaccharide nanoparticles obtained by non-covalent interactions. Expert opinion:Polysaccharide-based nanoparticulate systems offer the opportunity to address some of the issues posed by biotechnological drugs, as well as by small molecules, with problems of stability/intestinal absorption, by exploiting the capability of the polymer to establish non-covalent bonds with functional groups in the chemical structure of the API. This area of research will continue to grow, provided that these drug delivery technologies will efficaciously be translated into systems that can be manufactured on a large scale under GMP conditions. Industrial scale-up represents the biggest obstacle to overcome in view of the transformation of very promising results obtained on lab scale into medicinal products. To do that, an effort toward the simplification of the process and technologies is necessary.
Collapse
Affiliation(s)
- Annalisa Bianchera
- Food and Drug Department, Viale Delle Scienze 27/a, University of Parma , Parma, Italy
| | - Ruggero Bettini
- Food and Drug Department, Viale Delle Scienze 27/a, University of Parma , Parma, Italy
| |
Collapse
|
55
|
Machado ND, García-Manrique P, Fernández MA, Blanco-López MC, Matos M, Gutiérrez G. Cholesterol free niosome production by microfluidics: Comparative with other conventional methods. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
56
|
Sun Y, Lee RJ, Meng F, Wang G, Zheng X, Dong S, Teng L. Microfluidic self-assembly of high cabazitaxel loading albumin nanoparticles. NANOSCALE 2020; 12:16928-16933. [PMID: 32776029 DOI: 10.1039/c9nr10941b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cabazitaxel (CTX) is a promising anticancer drug. In this study, CTX-loaded human serum albumin (HSA) nanoparticles (MF-NPs-CTX) were prepared by a microfluidic (MF) method and were evaluated for tumor inhibition in PC-3 and HeLa cells in vitro and in vivo. The in vitro experiments showed that MF-NPs-CTX had higher drug loading content (DLC) as compared with NPs prepared by the bottom-up (BU) method (BU-NPs-CTX). Besides, MF-NPs-CTX exhibited uniform particle size distribution, high stability, sustained drug release, and high biosafety, in vivo imaging studies demonstrated that MF-NPs-CTX accumulated preferentially at the tumor site, compared to BU-NPs-CTX. The enhanced tumor uptake also increased the therapeutic efficacy of MF-NPs-CTX. Both MF-NPs-CTX and tween-CTX exhibited good tumor inhibition effect in vivo. MF-NPs-CTX had better biosafety and biocompatibility than tween-CTX. These results demonstrated that high CTX loading of MF-NPs-CTX has potential in the clinical treatment of tumors.
Collapse
Affiliation(s)
- Yating Sun
- Jilin University, School of Life Sciences, Changchun, Jilin, China.
| | | | | | | | | | | | | |
Collapse
|
57
|
Ma Q, Cao J, Gao Y, Han S, Liang Y, Zhang T, Wang X, Sun Y. Microfluidic-mediated nano-drug delivery systems: from fundamentals to fabrication for advanced therapeutic applications. NANOSCALE 2020; 12:15512-15527. [PMID: 32441718 DOI: 10.1039/d0nr02397c] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nano-drug delivery systems (NDDS) are functional drug-loaded nanocarriers extensively applied in the healthcare and pharmaceutical areas. Recently, microfluidics has been demonstrated as one of the most promising techniques to fabricate high-performance NDDS with uniform morphology, size and size distribution, reduced batch-to-batch variations and controllable drug delivering capacity. Here, a brief review of the microfluidic-mediated NDDS is presented. The fundamentals of microfluidics are first interpreted with an emphasis on the fluid characteristics, design and materials for microfluidic devices. Then a comprehensive and in-depth depiction of the microfluidic-mediated fabrications of controllable NDDS with well-tailored internal structures and integrated functions for controlled encapsulation and drug release are categorized and reviewed, with particular descriptions about the underlying formation mechanisms. Afterwards, recently appreciated representative applications of the microfluidic-mediated NDDS for delivering multiple drugs are systematically summarized. Finally, conclusions and perspectives on further advancing the microfluidic-mediated NDDS toward more powerful and versatile platforms for therapeutic applications are discussed.
Collapse
Affiliation(s)
- Qingming Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Huang Y, Jazani AM, Howell EP, Reynolds LA, Oh JK, Moffitt MG. Microfluidic Shear Processing Control of Biological Reduction Stimuli-Responsive Polymer Nanoparticles for Drug Delivery. ACS Biomater Sci Eng 2020; 6:5069-5083. [DOI: 10.1021/acsbiomaterials.0c00896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yuhang Huang
- Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Arman Moini Jazani
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Elliot P. Howell
- Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Lisa A. Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Matthew G. Moffitt
- Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
59
|
Liposomes: Advancements and innovation in the manufacturing process. Adv Drug Deliv Rev 2020; 154-155:102-122. [PMID: 32650041 DOI: 10.1016/j.addr.2020.07.002] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/13/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022]
Abstract
Liposomes are well recognised as effective drug delivery systems, with a range of products approved, including follow on generic products. Current manufacturing processes used to produce liposomes are generally complex multi-batch processes. Furthermore, liposome preparation processes adopted in the laboratory setting do not offer easy translation to large scale production, which may delay the development and adoption of new liposomal systems. To promote advancement and innovation in liposome manufacturing processes, this review considers the range of manufacturing processes available for liposomes, from laboratory scale and scale up, through to large-scale manufacture and evaluates their advantages and limitations. The regulatory considerations associated with the manufacture of liposomes is also discussed. New innovations that support leaner scalable technologies for liposome fabrication are outlined including self-assembling liposome systems and microfluidic production. The critical process attributes that impact on the liposome product attributes are outlined to support potential wider adoption of these innovations.
Collapse
|
60
|
Filipczak N, Pan J, Yalamarty SSK, Torchilin VP. Recent advancements in liposome technology. Adv Drug Deliv Rev 2020; 156:4-22. [PMID: 32593642 DOI: 10.1016/j.addr.2020.06.022] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 12/22/2022]
Abstract
The liposomes have continued to be well-recognized as an important nano-sized drug delivery system with attractive properties, such a characteristic bilayer structure assembling the cellular membrane, easy-to-prepare and high bio-compatibility. Extensive effort has been devoted to the development of liposome-based drug delivery systems during the past few decades. Many drug candidates have been encapsulated in liposomes and investigated for reduced toxicity and extended duration of therapeutic effect. The liposomal encapsulation of hydrophilic and hydrophobic small molecule therapeutics as well as other large molecule biologics have been established among different academic and industrial research groups. To date, there has been an increasing number of FDA-approved liposomal-based therapeutics together with more and more undergoing clinical trials, which involve a wide range of applications in anticancer, antibacterial, and antiviral therapies. In order to meet the continuing demand for new drugs in clinics, more recent advancements have been investigated for optimizing liposomal-based drug delivery system with more reproducible preparation technique and a broadened application to novel modalities, including nucleic acid therapies, CRISPR/Cas9 therapies and immunotherapies. This review focuses on the recent liposome' preparation techniques, the excipients of liposomal formulations used in various novel studies and the routes of administration used to deliver liposomes to targeted areas of disease. It aims to update the research in liposomal delivery and highlights future nanotechnological approaches.
Collapse
|
61
|
Hamdallah SI, Zoqlam R, Erfle P, Blyth M, Alkilany AM, Dietzel A, Qi S. Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth. Int J Pharm 2020; 584:119408. [PMID: 32407942 DOI: 10.1016/j.ijpharm.2020.119408] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/25/2022]
Abstract
Using micro-sized channels to manipulate fluids is the essence of microfluidics which has wide applications from analytical chemistry to material science and cell biology research. Recently, using microfluidic-based devices for pharmaceutical research, in particular for the fabrication of micro- and nano-particles, has emerged as a new area of interest. The particles that can be prepared by microfluidic devices can range from micron size droplet-based emulsions to nano-sized drug loaded polymeric particles. Microfluidic technology poses unique advantages in terms of the high precision of the mixing regimes and control of fluids involved in formulation preparation. As a result of this, monodispersity of the particles prepared by microfluidics is often recognised as being a particularly advantageous feature in comparison to those prepared by conventional large-scale mixing methods. However, there is a range of practical drawbacks and challenges of using microfluidics as a direct micron- and nano-particle manufacturing method. Technological advances are still required before this type of processing can be translated for application by the pharmaceutical industry. This review focuses specifically on the application of microfluidics for pharmaceutical solid nanoparticle preparation and discusses the theoretical foundation of using the nanoprecipitation principle to generate particles and how this is translated into microfluidic design and operation.
Collapse
Affiliation(s)
- Sherif I Hamdallah
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Randa Zoqlam
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | - Peer Erfle
- Technische Universität Braunschweig, Institut für Mikrotechnik / Institute of Microtechnology, Alte Salzdahlumer Str. 203, Geb. 1A, 38124 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Mark Blyth
- School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK
| | - Alaaldin M Alkilany
- Department of Pharmaceutics & Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Andreas Dietzel
- Technische Universität Braunschweig, Institut für Mikrotechnik / Institute of Microtechnology, Alte Salzdahlumer Str. 203, Geb. 1A, 38124 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Sheng Qi
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
62
|
Tammaro O, Costagliola di Polidoro A, Romano E, Netti PA, Torino E. A Microfluidic Platform to design Multimodal PEG - crosslinked Hyaluronic Acid Nanoparticles (PEG-cHANPs) for diagnostic applications. Sci Rep 2020; 10:6028. [PMID: 32265496 PMCID: PMC7138812 DOI: 10.1038/s41598-020-63234-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 03/27/2020] [Indexed: 12/23/2022] Open
Abstract
The combination of different imaging modalities can allow obtaining simultaneously morphological and functional information providing a more accurate diagnosis. This advancement can be reached through the use of multimodal tracers, and nanotechnology-based solutions allow the simultaneous delivery of different diagnostic compounds moving a step towards their safe administration for multimodal imaging acquisition. Among different processes, nanoprecipitation is a consolidate method for the production of nanoparticles and its implementation in microfluidics can further improve the control over final product features accelerating its potential clinical translation. A Hydrodynamic Flow Focusing (HFF) approach is proposed to produce through a ONE-STEP process Multimodal Pegylated crosslinked Hyaluronic Acid NanoParticles (PEG-cHANPs). A monodisperse population of NPs with an average size of 140 nm is produced and Gd-DTPA and ATTO488 compounds are co-encapsulated, simultaneously. The results showed that the obtained multimodal nanoparticle could work as MRI/Optical imaging probe. Furthermore, under the Hydrodenticity effect, a boosting of the T1 values with respect to free Gd-DTPA is preserved.
Collapse
Affiliation(s)
- Olimpia Tammaro
- University of Naples Federico II, Department of Chemical, Materials and Production Engineering (DICMaPI), P.le Tecchio 80, 80125, Naples, Italy
- Fondazione Istituto Italiano di Tecnologia, IIT, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Angela Costagliola di Polidoro
- University of Naples Federico II, Department of Chemical, Materials and Production Engineering (DICMaPI), P.le Tecchio 80, 80125, Naples, Italy
- Fondazione Istituto Italiano di Tecnologia, IIT, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Eugenia Romano
- University of Naples Federico II, Department of Chemical, Materials and Production Engineering (DICMaPI), P.le Tecchio 80, 80125, Naples, Italy
- Fondazione Istituto Italiano di Tecnologia, IIT, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Paolo Antonio Netti
- University of Naples Federico II, Department of Chemical, Materials and Production Engineering (DICMaPI), P.le Tecchio 80, 80125, Naples, Italy
- Fondazione Istituto Italiano di Tecnologia, IIT, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Interdisciplinary Research Center on Biomaterials, CRIB, University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy
| | - Enza Torino
- University of Naples Federico II, Department of Chemical, Materials and Production Engineering (DICMaPI), P.le Tecchio 80, 80125, Naples, Italy.
- Fondazione Istituto Italiano di Tecnologia, IIT, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center on Biomaterials, CRIB, University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy.
| |
Collapse
|
63
|
Hao N, Zhang M, Zhang JXJ. Microfluidics for ZnO micro-/nanomaterials development: rational design, controllable synthesis, and on-chip bioapplications. Biomater Sci 2020; 8:1783-1801. [PMID: 31965125 PMCID: PMC7768907 DOI: 10.1039/c9bm01787a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zinc oxide (ZnO) materials hold great promise in diverse applications due to their attractive physicochemical features. Recent years, especially the last decade, have witnessed considerable progress toward rational design and bioapplications of multiscale ZnO materials through microfluidic techniques. Design of a microfluidic device that allows for precise control over reaction conditions could not only yield ZnO particles with a fast production rate and high quality, but also permit downstream applications with desirable and superior performance. This review summarizes microfluidic approaches for the synthesis and applications of ZnO micro-/nanomaterials. In particular, we discuss the recent achievement of using microfluidic reactors in the controllable synthesis of ZnO structures (wire, rod, sphere, flower, sheet, flake, spindle, and ellipsoid), and highlight the unprecedented opportunities for applying them in biosensing, biological separation, and molecular catalysis applications through microfluidic chips. Finally, major challenges and potential opportunities are explored to guide future studies in this area.
Collapse
Affiliation(s)
- Nanjing Hao
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA.
| | - Michael Zhang
- The Lawrenceville School, 2500 Main St, Lawrenceville, New Jersey 08648, USA
| | - John X J Zhang
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
64
|
Kotouček J, Hubatka F, Mašek J, Kulich P, Velínská K, Bezděková J, Fojtíková M, Bartheldyová E, Tomečková A, Stráská J, Hrebík D, Macaulay S, Kratochvílová I, Raška M, Turánek J. Preparation of nanoliposomes by microfluidic mixing in herring-bone channel and the role of membrane fluidity in liposomes formation. Sci Rep 2020; 10:5595. [PMID: 32221374 PMCID: PMC7101380 DOI: 10.1038/s41598-020-62500-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/10/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction of microfluidic mixing technique opens a new door for preparation of the liposomes and lipid-based nanoparticles by on-chip technologies that are applicable in a laboratory and industrial scale. This study demonstrates the role of phospholipid bilayer fragment as the key intermediate in the mechanism of liposome formation by microfluidic mixing in the channel with “herring-bone” geometry used with the instrument NanoAssemblr. The fluidity of the lipid bilayer expressed as fluorescence anisotropy of the probe N,N,N-Trimethyl-4-(6-phenyl-1,3,5-hexatrien-1-yl) was found to be the basic parameter affecting the final size of formed liposomes prepared by microfluidic mixing of an ethanol solution of lipids and water phase. Both saturated and unsaturated lipids together with various content of cholesterol were used for liposome preparation and it was demonstrated, that an increase in fluidity results in a decrease of liposome size as analyzed by DLS. Gadolinium chelating lipids were used to visualize the fine structure of liposomes and bilayer fragments by CryoTEM. Experimental data and theoretical calculations are in good accordance with the theory of lipid disc micelle vesiculation.
Collapse
Affiliation(s)
- Jan Kotouček
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - František Hubatka
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Josef Mašek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Pavel Kulich
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Kamila Velínská
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Jaroslava Bezděková
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic.,Mendel University in Brno, Department of Chemistry and Biochemistry, Zemedelska 1, 61300, Brno, Czech Republic
| | - Martina Fojtíková
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Eliška Bartheldyová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Andrea Tomečková
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Jana Stráská
- Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 11, 78371, Olomouc, Czech Republic
| | - Dominik Hrebík
- Central European Institute of Technology CEITEC, Structural Virology, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Stuart Macaulay
- Malvern Panalytical, Malvern, Worcestershire, United Kingdom
| | - Irena Kratochvílová
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 8, Czechia.
| | - Milan Raška
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic. .,Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, 775 15, Olomouc, Czech Republic.
| | - Jaroslav Turánek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic.
| |
Collapse
|
65
|
Zhao X, Bian F, Sun L, Cai L, Li L, Zhao Y. Microfluidic Generation of Nanomaterials for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1901943. [PMID: 31259464 DOI: 10.1002/smll.201901943] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/09/2019] [Indexed: 05/23/2023]
Abstract
As nanomaterials (NMs) possess attractive physicochemical properties that are strongly related to their specific sizes and morphologies, they are becoming one of the most desirable components in the fields of drug delivery, biosensing, bioimaging, and tissue engineering. By choosing an appropriate methodology that allows for accurate control over the reaction conditions, not only can NMs with high quality and rapid production rate be generated, but also designing composite and efficient products for therapy and diagnosis in nanomedicine can be realized. Recent evidence implies that microfluidic technology offers a promising platform for the synthesis of NMs by easy manipulation of fluids in microscale channels. In this Review, a comprehensive set of developments in the field of microfluidics for generating two main classes of NMs, including nanoparticles and nanofibers, and their various potentials in biomedical applications are summarized. Furthermore, the major challenges in this area and opinions on its future developments are proposed.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, P. R. China
| | - Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Yuanjin Zhao
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
66
|
Huang Y, Moini Jazani A, Howell EP, Oh JK, Moffitt MG. Controlled Microfluidic Synthesis of Biological Stimuli-Responsive Polymer Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:177-190. [PMID: 31820915 DOI: 10.1021/acsami.9b17101] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microfluidic flow-directed self-assembly of biological stimuli-responsive block copolymers is demonstrated with dual-location cleavable linkages at the junction between hydrophilic and hydrophobic blocks and on pendant group within the hydrophobic blocks. On-chip self-assembly within a two-phase microfluidic reactor forms various "DualM" polymer nanoparticles (PNPs), including cylinders and multicompartment vesicles, with sizes and morphologies that are tunable with manufacturing flow rate. Complex kinetically trapped intermediates between shear-dependent states provide the most detailed mechanism to date of microfluidic PNP formation in the presence of flow-variable high shear. Glutathione (GSH)-triggered changes in PNP size and internal structure depend strongly on the initial flow-directed size and internal structure. Upon incubation in GSH, flow-directed PNPs with smaller average sizes showed a faster hydrodynamic size increase (attributed to junction cleavage) and those with higher excess Gibbs free energy showed faster inner compartment growth (attributed to pendant cleavage). These results demonstrate that the combination of chemical control of the location of biologically responsive linkages with microfluidic shear processing offers promising routes for tunable "smart" polymeric nanomedicines.
Collapse
Affiliation(s)
- Yuhang Huang
- Department of Chemistry , University of Victoria , PO Box 1700 Stn CSC, Victoria , BC V8W 2Y2 Canada
| | - Arman Moini Jazani
- Department of Chemistry and Biochemistry , Concordia University , 7141 Sherbrooke St. West , Montreal , Quebec H4B 1R6 , Canada
| | - Elliot P Howell
- Department of Chemistry , University of Victoria , PO Box 1700 Stn CSC, Victoria , BC V8W 2Y2 Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry , Concordia University , 7141 Sherbrooke St. West , Montreal , Quebec H4B 1R6 , Canada
| | - Matthew G Moffitt
- Department of Chemistry , University of Victoria , PO Box 1700 Stn CSC, Victoria , BC V8W 2Y2 Canada
| |
Collapse
|
67
|
Mixing Optimization in Grooved Serpentine Microchannels. MICROMACHINES 2020; 11:mi11010061. [PMID: 31947897 PMCID: PMC7019475 DOI: 10.3390/mi11010061] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022]
Abstract
Computational fluid dynamics modeling at Reynolds numbers ranging from 10 to 100 was used to characterize the performance of a new type of micromixer employing a serpentine channel with a grooved surface. The new topology exploits the overlap between the typical Dean flows present in curved channels due to the centrifugal forces experienced by the fluids, and the helical flows induced by slanted groove-ridge patterns with respect to the direction of the flow. The resulting flows are complex, with multiple vortices and saddle points, leading to enhanced mixing across the section of the channel. The optimization of the mixers with respect to the inner radius of curvature (Rin) of the serpentine channel identifies the designs in which the mixing index quality is both high (M > 0.95) and independent of the Reynolds number across all the values investigated.
Collapse
|
68
|
Shkodra-Pula B, Vollrath A, Schubert US, Schubert S. Polymer-based nanoparticles for biomedical applications. FRONTIERS OF NANOSCIENCE 2020. [DOI: 10.1016/b978-0-08-102828-5.00009-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
69
|
Subramaniyan Parimalam S, Badilescu S, Sonenberg N, Bhat R, Packirisamy M. Lab-On-A-Chip for the Development of Pro-/Anti-Angiogenic Nanomedicines to Treat Brain Diseases. Int J Mol Sci 2019; 20:ijms20246126. [PMID: 31817343 PMCID: PMC6940944 DOI: 10.3390/ijms20246126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/23/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
There is a huge demand for pro-/anti-angiogenic nanomedicines to treat conditions such as ischemic strokes, brain tumors, and neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Nanomedicines are therapeutic particles in the size range of 10–1000 nm, where the drug is encapsulated into nano-capsules or adsorbed onto nano-scaffolds. They have good blood–brain barrier permeability, stability and shelf life, and able to rapidly target different sites in the brain. However, the relationship between the nanomedicines’ physical and chemical properties and its ability to travel across the brain remains incompletely understood. The main challenge is the lack of a reliable drug testing model for brain angiogenesis. Recently, microfluidic platforms (known as “lab-on-a-chip” or LOCs) have been developed to mimic the brain micro-vasculature related events, such as vasculogenesis, angiogenesis, inflammation, etc. The LOCs are able to closely replicate the dynamic conditions of the human brain and could be reliable platforms for drug screening applications. There are still many technical difficulties in establishing uniform and reproducible conditions, mainly due to the extreme complexity of the human brain. In this paper, we review the prospective of LOCs in the development of nanomedicines for brain angiogenesis–related conditions.
Collapse
Affiliation(s)
- Subhathirai Subramaniyan Parimalam
- Optical-Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 2W1, Canada; (S.B.); (M.P.)
- Correspondence: or
| | - Simona Badilescu
- Optical-Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 2W1, Canada; (S.B.); (M.P.)
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada;
| | - Rama Bhat
- Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 2W1, Canada;
| | - Muthukumaran Packirisamy
- Optical-Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 2W1, Canada; (S.B.); (M.P.)
| |
Collapse
|
70
|
Dervisevic E, Tuck KL, Voelcker NH, Cadarso VJ. Recent Progress in Lab-On-a-Chip Systems for the Monitoring of Metabolites for Mammalian and Microbial Cell Research. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5027. [PMID: 31752167 PMCID: PMC6891382 DOI: 10.3390/s19225027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Lab-on-a-chip sensing technologies have changed how cell biology research is conducted. This review summarises the progress in the lab-on-a-chip devices implemented for the detection of cellular metabolites. The review is divided into two subsections according to the methods used for the metabolite detection. Each section includes a table which summarises the relevant literature and also elaborates the advantages of, and the challenges faced with that particular method. The review continues with a section discussing the achievements attained due to using lab-on-a-chip devices within the specific context. Finally, a concluding section summarises what is to be resolved and discusses the future perspectives.
Collapse
Affiliation(s)
- Esma Dervisevic
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
| | - Kellie L. Tuck
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia;
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia;
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC 3168, Australia
- The Melbourne Centre for Nanofabrication, Australian National Fabrication Facility-Victorian Node, Clayton, VIC 3800, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Victor J. Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
- The Melbourne Centre for Nanofabrication, Australian National Fabrication Facility-Victorian Node, Clayton, VIC 3800, Australia
| |
Collapse
|
71
|
Bovone G, Guzzi EA, Tibbitt MW. Flow‐based reactor design for the continuous production of polymeric nanoparticles. AIChE J 2019. [DOI: 10.1002/aic.16840] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Giovanni Bovone
- Macromolecular Engineering Laboratory, Department of Mechanical and Process EngineeringETH Zürich Zürich 8092 Switzerland
| | - Elia A. Guzzi
- Macromolecular Engineering Laboratory, Department of Mechanical and Process EngineeringETH Zürich Zürich 8092 Switzerland
| | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process EngineeringETH Zürich Zürich 8092 Switzerland
| |
Collapse
|
72
|
Evaluation of novel cationic gene based liposomes with cyclodextrin prepared by thin film hydration and microfluidic systems. Sci Rep 2019; 9:15120. [PMID: 31641141 PMCID: PMC6805922 DOI: 10.1038/s41598-019-51065-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 09/17/2019] [Indexed: 01/14/2023] Open
Abstract
In gene delivery, non-viral vectors have become the preferred carrier system for DNA delivery. They can overcome major viral issues such as immunogenicity and mutagenicity. Cationic lipid-mediated gene transfer is one of the most commonly used non-viral vectors, which have been shown to be a safe and effective carrier. However, their use in gene delivery often exhibits low transfection efficiency and stability. The aim of this study was to examine the effectiveness of novel non-viral gene delivery systems. This study has investigated the encapsulation and transfection efficiency of cationic liposomes prepared from DOTAP and carboxymethyl-β-cyclodextrin (CD). The encapsulation efficiency of the CD-lipoplex complexes were also studied with and without the addition of Pluronic-F127, using both microfluidic and thin film hydration methods. In vitro transfection efficiencies of these complexes were determined in COS7 and SH-SY5Y cell lines. Formulation stability was evaluated using liposomes size, zeta potential and polydispersity index. In addition, the external morphology was studied using transmission electron microcopy (TEM). Results revealed that formulations produced by microfluidic method had smaller, more uniform and homogenious size and zeta-potential as well as higher encapsulation efficiency when compared with liposomes manufactured by thin film hydration method. Overall, the results of this study show that carboxymethyl-β-cyclodextrin increased lipoplexes' encapsulation efficiency using both NanoAssemblr and rotary evaporator manufacturing processes. However, this increase was reduced slightly following the addition of Pluronic-F127. The addition of carboxymethyl-β-cyclodextrin to cationic liposomes resulted in an increase in transfection efficiency in mammalian cell lines. However, this increase appeared to be cell line specific, COS7 showed higher transfection efficiency compared to SH-SY5Y.
Collapse
|
73
|
Rasouli MR, Tabrizian M. An ultra-rapid acoustic micromixer for synthesis of organic nanoparticles. LAB ON A CHIP 2019; 19:3316-3325. [PMID: 31495858 DOI: 10.1039/c9lc00637k] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Mixing is a crucial step in many chemical analyses and synthesis processes, particularly in nanoparticle formation, where it determines the nucleation rate, homogeneity, and physicochemical characteristics of the products. In this study, we propose an energy-efficient acoustic platform based on boundary-driven acoustic streaming, which provides the rapid mixing required to control nanoprecipitation. The device encompasses oscillatory bubbles and sharp edges in the microchannel to transform the acoustic energy into vigorous vortical fluid motions. The combination of bubbles and sharp edges at their immediate proximity induced substantially stronger acoustic microstreams than the simple superposition of their effects. The device could effectively homogenize DI water and fluorescein within a mixing length of 25.2 μm up to a flow rate of 116 μL min-1 at a driving voltage of 40 Vpp, corresponding to a mixing time of 0.8 ms. This rapid mixing was employed to mitigate some complexities in nanoparticle synthesis, namely controlling nanoprecipitation and size, batch to batch variation, synthesis throughput, and clogging. Both polymeric nanoparticles and liposomes were synthesized in this platform and showed a smaller effective size and narrower size distribution in comparison to those obtained by a hydrodynamic flow focusing method. Through changing the mixing time, the effective size of the nanoparticles could be fine-tuned for both polymeric nanoparticles and liposomes. The rapid mixing and strong vortices prevent aggregation of nanoparticles, leading to a substantially higher throughput of liposomes in comparison with that by the hydrodynamic flow focusing method. The straightforward fabrication process of the system coupled with low power consumption, high-controllability, and rapid mixing time renders this mixer a practical platform for a myriad of nano and biotechnological applications.
Collapse
Affiliation(s)
- M Reza Rasouli
- Biomedical Engineering Department-Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B4, Canada.
| | - Maryam Tabrizian
- Biomedical Engineering Department-Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B4, Canada. and Faculty of Dentistry, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
74
|
Has C, Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J Liposome Res 2019; 30:336-365. [DOI: 10.1080/08982104.2019.1668010] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- C. Has
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - P. Sunthar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
75
|
Streck S, Neumann H, Nielsen HM, Rades T, McDowell A. Comparison of bulk and microfluidics methods for the formulation of poly-lactic- co-glycolic acid (PLGA) nanoparticles modified with cell-penetrating peptides of different architectures. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2019; 1:100030. [PMID: 31517295 PMCID: PMC6733288 DOI: 10.1016/j.ijpx.2019.100030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/04/2019] [Accepted: 08/12/2019] [Indexed: 01/05/2023]
Abstract
The efficient and reproducible production of nanoparticles using bulk nanoprecipitation methods is still challenging because of low batch to batch reproducibility. Here, we optimize a bulk nanoprecipitation method using design of experiments and translate to a microfluidic device to formulate surface-modified poly-lactic-co-glycolic (PLGA) nanoparticles. Cell-penetrating peptides (CPPs) with a short, long linear or branched architecture were used for the surface modification of PLGA nanoparticles. The microfluidics method was more time efficient than the bulk nanoprecipitation method and allowed the formulation of uniform PLGA nanoparticles with a size of 150 nm, a polydispersity index below 0.150 and with better reproducibility in comparison to the bulk nanoprecipitation method. After surface modification the size of CPP-tagged PLGA nanoparticles increased to 160–180 nm and the surface charge of the CPP-tagged PLGA nanoparticles varied between −24 mV and +3 mV, depending on the architecture and concentration of the conjugated CPP. Covalent attachment of CPPs to the PLGA polymer was confirmed with FTIR by identifying the formation of an amide bond. The conjugation efficiency of CPPs to the polymeric PLGA nanoparticles was between 32 and 80%. The development and design of reproducible nanoformulations with tuneable surface properties is crucial to understand interactions at the nano-bio interface.
Collapse
Affiliation(s)
- Sarah Streck
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | | | - Hanne Mørck Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Arlene McDowell
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
76
|
Continuous flow production of size-controllable niosomes using a thermostatic microreactor. Colloids Surf B Biointerfaces 2019; 182:110378. [PMID: 31352251 DOI: 10.1016/j.colsurfb.2019.110378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/16/2019] [Accepted: 07/17/2019] [Indexed: 11/21/2022]
Abstract
The new roles of vesicular systems in advanced biomedical, analytical and food science applications demand novel preparation processes designed to reach the new standards. Particle size and monodispersity have become essential properties to control. In this work, key parameters, involved in a microfluidic reactor with hydrodynamic flow focusing, were investigated in order to quantify their effects on niosomes morphology. Particular attention was given to temperature, which is both a requirement to handle non-ionic surfactants with phase transition temperature above RT, and a tailoring variable for size and monodispersity control. With this aim, niosomes with two different sorbitan esters and cholesterol as stabilizer were formulated. High resolution and conventional 3D-printing technologies were employed for the fabrication of microfluidic reactor and thermostatic systems, since this additive technology has been essential for microfluidics development in terms of cost-effective and rapid prototyping. A customised device to control temperature and facilitate visualization of the process was developed, which can be easily coupled with commercial inverted microscopes. The results demonstrated the capability of microfluidic production of niosomes within the full range of non-ionic surfactants and membrane stabilizers.
Collapse
|
77
|
Cheung CCL, Al-Jamal WT. Sterically stabilized liposomes production using staggered herringbone micromixer: Effect of lipid composition and PEG-lipid content. Int J Pharm 2019; 566:687-696. [PMID: 31212051 DOI: 10.1016/j.ijpharm.2019.06.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 02/02/2023]
Abstract
Preparation of lipid-based drug delivery systems by microfluidics has been increasingly popular, due to the reproducible, continuous and scalable nature of the microfluidic process. Despite exciting development in the field, versatility and superiority of microfluidics over conventional methods still need further evidence, since preparing clinically-relevant sterically stabilised liposomes has been lacking. The present study describes the optimisation of PEGylated liposomal formulations of various rigidity using staggered herringbone micromixer (SHM). The effect of both processing parameters (total flow rate (TFR) and aqueous-to-ethanol flow rate ratio (FRR)) and formulation parameters (lipid components and composition, initial lipid concentration and aqueous media) was investigated and discussed. Liposomal formulations consist of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC), with cholesterol and PEGylated lipid (DSPE-PEG2000) were successfully prepared with the desired size (∼100 nm) and dispersity (<0.2). Doxorubicin was successfully encapsulated in these liposomes at high (>80%) encapsulation efficiency using the pH-gradient remote loading method, illustrating their bilayer integrity and capability as drug delivery systems. We demonstrated that clinically-relevant PEGylated liposomal formulations could be prepared with properties comparable to conventional techniques. Limitations and recommendations on the microfluidic production of PEGylated liposomes were also discussed.
Collapse
Affiliation(s)
- Calvin C L Cheung
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Wafa T Al-Jamal
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
78
|
Hao N, Nie Y, Zhang JX. Microfluidics for silica biomaterials synthesis: opportunities and challenges. Biomater Sci 2019; 7:2218-2240. [PMID: 30919847 PMCID: PMC6538461 DOI: 10.1039/c9bm00238c] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The rational design and controllable synthesis of silica nanomaterials bearing unique physicochemical properties is becoming increasingly important for a variety of biomedical applications from imaging to drug delivery. Microfluidics has recently emerged as a promising platform for nanomaterial synthesis, providing precise control over particle size, shape, porosity, and structure compared to conventional batch synthesis approaches. This review summarizes microfluidics approaches for the synthesis of silica materials as well as the design, fabrication and the emerging roles in the development of new classes of functional biomaterials. We highlight the unprecedented opportunities of using microreactors in biomaterial synthesis, and assess the recent progress of continuous and discrete microreactors and the associated biomedical applications of silica materials. Finally, we discuss the challenges arising from the intrinsic properties of microfluidics reactors for inspiring future research in this field.
Collapse
Affiliation(s)
- Nanjing Hao
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
| | - Yuan Nie
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
| | - John X.J. Zhang
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
| |
Collapse
|
79
|
Li K, Yang X, Xue C, Zhao L, Zhang Y, Gao X. Biomimetic human lung-on-a-chip for modeling disease investigation. BIOMICROFLUIDICS 2019. [PMID: 31263514 DOI: 10.1063/1.5119052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The lung is the primary respiratory organ of the human body and has a complicated and precise tissue structure. It comprises conductive airways formed by the trachea, bronchi and bronchioles, and many alveoli, the smallest functional units where gas-exchange occurs via the unique gas-liquid exchange interface known as the respiratory membrane. In vitro bionic simulation of the lung or its microenvironment, therefore, presents a great challenge, which requires the joint efforts of anatomy, physics, material science, cell biology, tissue engineering, and other disciplines. With the development of micromachining and miniaturization technology, the concept of a microfluidics-based organ-on-a-chip has received great attention. An organ-on-a-chip is a small cell-culture device that can accurately simulate tissue and organ functions in vitro and has the potential to replace animal models in evaluations of drug toxicity and efficacy. A lung-on-a-chip, as one of the first proposed and developed organs-on-a-chip, provides new strategies for designing a bionic lung cell microenvironment and for in vitro construction of lung disease models, and it is expected to promote the development of basic research and translational medicine in drug evaluation, toxicological detection, and disease model-building for the lung. This review summarizes current lungs-on-a-chip models based on the lung-related cellular microenvironment, including the latest advances described in studies of lung injury, inflammation, lung cancer, and pulmonary fibrosis. This model should see effective use in clinical medicine to promote the development of precision medicine and individualized diagnosis and treatment.
Collapse
Affiliation(s)
- Kaiyan Li
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Xingyuan Yang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Chang Xue
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Lijuan Zhao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | | | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
80
|
Wang Z, Guo B, Middha E, Huang Z, Hu Q, Fu Z, Liu B. Microfluidics-Prepared Uniform Conjugated Polymer Nanoparticles for Photo-Triggered Immune Microenvironment Modulation and Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11167-11176. [PMID: 30810026 DOI: 10.1021/acsami.8b22579] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Photothermal therapy (PTT) has shown great promise to spatiotemporally ablate cancer cells, and further understanding of the immune system response to PTT treatment would contribute to improvement in therapeutic outcomes. Herein, we utilize microfluidic technology to prepare biocompatible conjugated polymer nanoparticles (CP NPs) as PTT agents and assess the immune response triggered by CP-based PTT treatment in vitro and in vivo. Through careful control of the antisolvent, CP NPs with a uniform diameter of 52 nm were obtained. The c-RGD-functionalized CP NPs exhibit high photothermal conversion efficiency, inducing effective cancer cell death under an 808 nm laser illumination. Using macrophage cells as the model, CP NPs demonstrate effective activation of proinflammatory immune response. Furthermore, in tumor-bearing mice model, a single round of CP NP-assisted PTT could efficiently induce antitumor immunity activation and ultimately inhibit tumor growth. The study provides detailed understanding of both microfluidic technology for CP NP fabrication and photothermal-triggered antitumor immune responses.
Collapse
Affiliation(s)
- Zhe Wang
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Bing Guo
- Department of Chemical and Bio-Molecular Engineering , National University of Singapore , 117585 , Singapore
| | - Eshu Middha
- Department of Chemical and Bio-Molecular Engineering , National University of Singapore , 117585 , Singapore
| | - Zemin Huang
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Bin Liu
- Department of Chemical and Bio-Molecular Engineering , National University of Singapore , 117585 , Singapore
| |
Collapse
|
81
|
Tao J, Chow SF, Zheng Y. Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles. Acta Pharm Sin B 2019; 9:4-18. [PMID: 30766774 PMCID: PMC6361851 DOI: 10.1016/j.apsb.2018.11.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 01/08/2023] Open
Abstract
Nanoparticles are considered to be a powerful approach for the delivery of poorly water-soluble drugs. One of the main challenges is developing an appropriate method for preparation of drug nanoparticles. As a simple, rapid and scalable method, the flash nanoprecipitation (FNP) has been widely used to fabricate these drug nanoparticles, including pure drug nanocrystals, polymeric micelles, polymeric nanoparticles, solid lipid nanoparticles, and polyelectrolyte complexes. This review introduces the application of FNP to produce poorly water-soluble drug nanoparticles by controllable mixing devices, such as confined impinging jets mixer (CIJM), multi-inlet vortex mixer (MIVM) and many other microfluidic mixer systems. The formation mechanisms and processes of drug nanoparticles by FNP are described in detail. Then, the controlling of supersaturation level and mixing rate during the FNP process to tailor the ultrafine drug nanoparticles as well as the influence of drugs, solvent, anti-solvent, stabilizers and temperature on the fabrication are discussed. The ultrafine and uniform nanoparticles of poorly water-soluble drug nanoparticles prepared by CIJM, MIVM and microfluidic mixer systems are reviewed briefly. We believe that the application of microfluidic mixing devices in laboratory with continuous process control and good reproducibility will be benefit for industrial formulation scale-up.
Collapse
Key Words
- ACN, acetonitrile
- CA 320S Seb, cellulose acetate 320S sebacate
- CAP Adp 0.33, cellulose acetate propionate 504-0.2 adipate 0.33
- CAP Adp 0.85, cellulose acetate propionate adipate 0.85
- CFA, cefuroxime axetil
- CIJM, confined impinging jets mixer
- CMCAB, carboxymethyl cellulose acetate butyrate
- CTACl, cetyltrimethylammonium chloride
- DMF, dimethyl formamide
- DMSO, dimethyl sulfoxide
- DSPE-PEG, distearyl phosphatidyl ethanolamine-poly(ethylene glycol)
- Dex-PLLA, dextrose-poly(l-lactic acid)
- FNP, flash nanoprecipitation
- Flash nanoprecipitation
- HPC, hydroxypropyl cellulose
- HPMC, hydroxypropyl methyl cellulose
- HPMCAS, hydroxypropyl methylcellulose acetate succinate
- MIVM, multi-inlet vortex mixer
- Microfluidic mixer device
- NaAlg, sodium alginate
- NaCMC, carboxymethyl cellulose sodium
- Nanoparticles
- P(MePEGCA-co-HDCA), poly(methoxy polyethylene glycol cyanoacrylate-co-hexadecyl cyanoacrylate)
- PAA, poly(acrylic acid)
- PAH, polyallylamine hydrochloride
- PCL, poly(ε-caprolactone)
- PEG, polyethylene glycol
- PEG-PCL, poly(ethylene glycol)-poly(ε-caprolactone)
- PEG-PLA, poly(ethylene glycol)-poly(lactic acid)
- PEG-PLGA, poly(ethylene glycol)-poly(lactic-co-glycolic acid)
- PEG-PS, poly(ethylene glycol)-polystyrene
- PEI, polyethyleneimine
- PEO-PDLLA, poly(ethylene oxide)-poly(d,l-lactic acid)
- PLA, poly(lactic acid)
- PLGA, poly(lactic-co-glycolic acid)
- PMMA, polymethyl methacrylate
- PSS, polyprotomine sulfate
- PVA, polyvinyl alcohol
- PVP, polyvinyl pyrrolidone
- Poorly water-soluble drug
- SDS, sodium dodecyl sulfonate
- SLS, sodium lauryl sulfate
- THF, tetrahydrofuran
- TPGS, tocopheryl polyethylene glycol 1000 succinate
- ε-PL, ε-polylysine
Collapse
Affiliation(s)
- Jinsong Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau, China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau, China
| |
Collapse
|
82
|
Streck S, Hong L, Boyd BJ, McDowell A. Microfluidics for the Production of Nanomedicines: Considerations for Polymer and Lipid-based Systems. Pharm Nanotechnol 2019; 7:423-443. [PMID: 31629401 DOI: 10.2174/2211738507666191019154815] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/30/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Microfluidics is becoming increasingly of interest as a superior technique for the synthesis of nanoparticles, particularly for their use in nanomedicine. In microfluidics, small volumes of liquid reagents are rapidly mixed in a microchannel in a highly controlled manner to form nanoparticles with tunable and reproducible structure that can be tailored for drug delivery. Both polymer and lipid-based nanoparticles are utilized in nanomedicine and both are amenable to preparation by microfluidic approaches. AIM Therefore, the purpose of this review is to collect the current state of knowledge on the microfluidic preparation of polymeric and lipid nanoparticles for pharmaceutical applications, including descriptions of the main synthesis modalities. Of special interest are the mechanisms involved in nanoparticle formation and the options for surface functionalisation to enhance cellular interactions. CONCLUSION The review will conclude with the identification of key considerations for the production of polymeric and lipid nanoparticles using microfluidic approaches.
Collapse
Affiliation(s)
- Sarah Streck
- School of Pharmacy, University of Otago, 18 Frederick Street, Dunedin 9054, New Zealand
| | - Linda Hong
- Drug Delivery, Disposition and Dynamics, and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Arlene McDowell
- School of Pharmacy, University of Otago, 18 Frederick Street, Dunedin 9054, New Zealand
| |
Collapse
|
83
|
Chiesa E, Dorati R, Pisani S, Conti B, Bergamini G, Modena T, Genta I. The Microfluidic Technique and the Manufacturing of Polysaccharide Nanoparticles. Pharmaceutics 2018; 10:pharmaceutics10040267. [PMID: 30544868 PMCID: PMC6321127 DOI: 10.3390/pharmaceutics10040267] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/16/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022] Open
Abstract
The microfluidic technique has emerged as a promising tool to accelerate the clinical translation of nanoparticles, and its application affects several aspects, such as the production of nanoparticles and the in vitro characterization in the microenvironment, mimicking in vivo conditions. This review covers the general aspects of the microfluidic technique and its application in several fields, such as the synthesis, recovering, and samples analysis of nanoparticles, and in vitro characterization and their in vivo application. Among these, advantages in the production of polymeric nanoparticles in a well-controlled, reproducible, and high-throughput manner have been highlighted, and detailed descriptions of microfluidic devices broadly used for the synthesis of polysaccharide nanoparticles have been provided. These nanoparticulate systems have drawn attention as drug delivery vehicles over many years; nevertheless, their synthesis using the microfluidic technique is still largely unexplored. This review deals with the use of the microfluidic technique for the synthesis of polysaccharide nanoparticles; evaluating features of the most studied polysaccharide drug carriers, such as chitosan, hyaluronic acid, and alginate polymers. The critical assessment of the most recent research published in literature allows us to assume that microfluidics will play an important role in the discovery and clinical translation of nanoplatforms.
Collapse
Affiliation(s)
- Enrica Chiesa
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Silvia Pisani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Gloria Bergamini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Tiziana Modena
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
84
|
He Z, Ranganathan N, Li P. Evaluating nanomedicine with microfluidics. NANOTECHNOLOGY 2018; 29:492001. [PMID: 30215611 DOI: 10.1088/1361-6528/aae18a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanomedicines are engineered nanoscale structures that have an extensive range of application in the diagnosis and therapy of many diseases. Despite the rapid progress in and tremendous potential of nanomedicines, their clinical translational process is still slow, owing to the difficulty in understanding, evaluating, and predicting their behavior in complex living organisms. Microfluidic techniques offer a promising way to resolve these challenges. Carefully designed microfluidic chips enable in vivo microenvironment simulation and high-throughput analysis, thus providing robust platforms for nanomedicine evaluation. Here, we summarize the recent developments and achievements in microfluidic methods for nanomedicine evaluation, categorized into four sections based on their target systems: single cell, multicellular system, organ, and organism levels. Finally, we provide our perspectives on the challenges and future directions of microfluidics-based nanomedicine evaluation.
Collapse
Affiliation(s)
- Ziyi He
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, United States of America
| | | | | |
Collapse
|
85
|
Forbes N, Hussain MT, Briuglia ML, Edwards DP, Horst JHT, Szita N, Perrie Y. Rapid and scale-independent microfluidic manufacture of liposomes entrapping protein incorporating in-line purification and at-line size monitoring. Int J Pharm 2018; 556:68-81. [PMID: 30503269 DOI: 10.1016/j.ijpharm.2018.11.060] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 10/27/2022]
Abstract
Within this paper we present work that has the ability to de-risk the translation of liposomes from bench to the clinic. We have used microfluidics for the rapid and scale-independent manufacture of liposomes and have incorporated in-line purification and at-line monitoring of particle size. Using this process, we have manufactured a range of neutral and anionic liposomes incorporating protein. Factors investigated include the microfluidics operating parameters (flow rate ratio (FRR) and total flow rate (TFR)) and the liposome formulation. From these studies, we demonstrate that FRR is a key factor influencing liposome size, protein loading and release profiles. The liposome formulations produced by microfluidics offer high protein loading (20-35%) compared to production by sonication or extrusion (<5%). This high loading achieved by microfluidics results from the manufacturing process and is independent of lipid selection and concentration across the range tested. Using in-line purification and at-line size monitoring, we outline the normal operating range for effective production of size controlled (60-100 nm), homogenous (PDI <0.2) high load liposomes. This easy microfluidic process provides a translational manufacturing pathway for liposomes in a wide-range of applications.
Collapse
Affiliation(s)
- Neil Forbes
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral St, University of Strathclyde, Glasgow, Scotland, G4 0RE, United Kingdom
| | - Maryam T Hussain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral St, University of Strathclyde, Glasgow, Scotland, G4 0RE, United Kingdom
| | - Maria L Briuglia
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Technology and Innovation Centre, University of Strathclyde, 99 George St, Glasgow, G1 1RD, United Kingdom
| | - Darren P Edwards
- Drug Discovery Unit, School of Life and Health Sciences, University of Dundee, Dow St, Dundee, Scotland DD1 5EH, United Kingdom
| | - Joop H Ter Horst
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Technology and Innovation Centre, University of Strathclyde, 99 George St, Glasgow, G1 1RD, United Kingdom
| | - Nicolas Szita
- Department of Biochemical Engineering, University College London, London WC1H 0AH, United Kingdom
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral St, University of Strathclyde, Glasgow, Scotland, G4 0RE, United Kingdom.
| |
Collapse
|
86
|
Suryawanshi PL, Gumfekar SP, Bhanvase BA, Sonawane SH, Pimplapure MS. A review on microreactors: Reactor fabrication, design, and cutting-edge applications. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.03.026] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
87
|
Chen R, Wulff JE, Moffitt MG. Microfluidic Processing Approach to Controlling Drug Delivery Properties of Curcumin-Loaded Block Copolymer Nanoparticles. Mol Pharm 2018; 15:4517-4528. [DOI: 10.1021/acs.molpharmaceut.8b00529] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ruyao Chen
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, British Columbia, Canada V8W 3V6
| | - Jeremy E. Wulff
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, British Columbia, Canada V8W 3V6
| | - Matthew G. Moffitt
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, British Columbia, Canada V8W 3V6
| |
Collapse
|
88
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
89
|
Garcia-Salinas S, Himawan E, Mendoza G, Arruebo M, Sebastian V. Rapid on-Chip Assembly of Niosomes: Batch versus Continuous Flow Reactors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19197-19207. [PMID: 29767998 DOI: 10.1021/acsami.8b02994] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The large-scale continuous production of niosomes remains challenging. The inherent drawbacks of batch processes such as large particle polydispersity and reduced batch-to-batch reproducibility are here overcome by using commercially available microfluidic reactors. Compared to the traditional batch-based film hydration method, herein, we demonstrate that it is possible to carry out the homogeneous, large-scale (up to 120 mg/min) production of niosomes using two different synthesis techniques (the thin film hydration method and the emulsification technique). Niosomes particle size can be controlled depending on the need by varying the synthesis temperature. The high cytocompatibility of the resulting niosomes was also demonstrated in this work on three different somatic cell lines. For the first time, the structure of the niosome multilamellar shell was also elucidated using high-resolution transmission electron microscopy (HR-STEM) as well as their colloidal stability over time (6 weeks) under different storage conditions. The morphology of cryo-protected or as-made niosomes was also evaluated by HR-STEM after freeze-drying. Finally, the dual ability of those synthetic, nonionic, surfactant-based vesicles to carry both hydrophilic and hydrophobic molecules was also here demonstrated by using laser scanning confocal microscopy.
Collapse
Affiliation(s)
- Sara Garcia-Salinas
- Department of Chemical Engineering and Environmental Technology and Institute of Nanoscience of Aragon (INA) , University of Zaragoza , Zaragoza 50009 Spain
- Aragon Health Research Institute (IIS Aragón) , Zaragoza 50009 , Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Madrid 28029 , Spain
| | - Erico Himawan
- Department of Chemical Engineering and Environmental Technology and Institute of Nanoscience of Aragon (INA) , University of Zaragoza , Zaragoza 50009 Spain
- Aragon Health Research Institute (IIS Aragón) , Zaragoza 50009 , Spain
| | - Gracia Mendoza
- Department of Chemical Engineering and Environmental Technology and Institute of Nanoscience of Aragon (INA) , University of Zaragoza , Zaragoza 50009 Spain
- Aragon Health Research Institute (IIS Aragón) , Zaragoza 50009 , Spain
| | - Manuel Arruebo
- Department of Chemical Engineering and Environmental Technology and Institute of Nanoscience of Aragon (INA) , University of Zaragoza , Zaragoza 50009 Spain
- Aragon Health Research Institute (IIS Aragón) , Zaragoza 50009 , Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Madrid 28029 , Spain
| | - Victor Sebastian
- Department of Chemical Engineering and Environmental Technology and Institute of Nanoscience of Aragon (INA) , University of Zaragoza , Zaragoza 50009 Spain
- Aragon Health Research Institute (IIS Aragón) , Zaragoza 50009 , Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Madrid 28029 , Spain
| |
Collapse
|
90
|
Wang X, Liu J, Wang P, deMello A, Feng L, Zhu X, Wen W, Kodzius R, Gong X. Synthesis of Biomaterials Utilizing Microfluidic Technology. Genes (Basel) 2018; 9:E283. [PMID: 29874840 PMCID: PMC6027171 DOI: 10.3390/genes9060283] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/16/2022] Open
Abstract
Recently, microfluidic technologies have attracted an enormous amount of interest as potential new tools for a large range of applications including materials synthesis, chemical and biological detection, drug delivery and screening, point-of-care diagnostics, and in-the-field analysis. Their ability to handle extremely small volumes of fluids is accompanied by additional benefits, most notably, rapid and efficient mass and heat transfer. In addition, reactions performed within microfluidic systems are highly controlled, meaning that many advanced materials, with uniform and bespoke properties, can be synthesized in a direct and rapid manner. In this review, we discuss the utility of microfluidic systems in the synthesis of materials for a variety of biological applications. Such materials include microparticles or microcapsules for drug delivery, nanoscale materials for medicine or cellular assays, and micro- or nanofibers for tissue engineering.
Collapse
Affiliation(s)
- Xiaohong Wang
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Jinfeng Liu
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Peizhou Wang
- Advanced Placement of Chemistry Program, International Department, Huzhou New Century Foreign Language School, Huzhou 313100, China.
| | | | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Xiaoli Zhu
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Weijia Wen
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Rimantas Kodzius
- Mathematics and Natural Sciences Department, the American University of Iraq, Sulaimani, Sulaymaniyah 46001, Iraq.
- Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 80539 Munich, Germany.
- Faculty of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany.
| | - Xiuqing Gong
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| |
Collapse
|
91
|
Morikawa Y, Tagami T, Hoshikawa A, Ozeki T. The Use of an Efficient Microfluidic Mixing System for Generating Stabilized Polymeric Nanoparticles for Controlled Drug Release. Biol Pharm Bull 2018; 41:899-907. [DOI: 10.1248/bpb.b17-01036] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoshinori Morikawa
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Akihiro Hoshikawa
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
92
|
Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals - A comprehensive review. Adv Drug Deliv Rev 2018; 131:22-78. [PMID: 30026127 DOI: 10.1016/j.addr.2018.07.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023]
Abstract
Low drug bioavailability, which is mostly a result of poor aqueous drug solubilities and of inadequate drug dissolution rates, is one of the most significant challenges that pharmaceutical companies are currently facing, since this may limit the therapeutic efficacy of marketed drugs, or even result in the discard of potential highly effective drug candidates during developmental stages. Two of the main approaches that have been implemented in recent years to overcome poor drug solubility/dissolution issues have frequently involved drug particle size reduction (i.e., micronization/nanonization) and/or the modification of some of the physicochemical and structural properties of poorly water soluble drugs. A large number of particle engineering methodologies have been developed, tested, and applied in the synthesis and control of particle size/particle-size distributions, crystallinities, and polymorphic purities of drug micro- and nano-particles/crystals. In recent years pharmaceutical processing using supercritical fluids (SCF), in general, and supercritical carbon dioxide (scCO2), in particular, have attracted a great attention from the pharmaceutical industry. This is mostly due to the several well-known advantageous technical features of these processes, as well as to other increasingly important subjects for the pharmaceutical industry, namely their "green", sustainable, safe and "environmentally-friendly" intrinsic characteristics. In this work, it is presented a comprehensive state-of-the-art review on scCO2-based processes focused on the formation and on the control of the physicochemical, structural and morphological properties of amorphous/crystalline pure drug nanoparticles. It is presented and discussed the most relevant scCO2, scCO2-based fluids and drug physicochemical properties that are pertinent for the development of successful pharmaceutical products, namely those that are critical in the selection of an adequate scCO2-based method to produce pure drug nanoparticles/nanocrystals. scCO2-based nanoparticle formation methodologies are classified in three main families, and in terms of the most important role played by scCO2 in particle formation processes: as a solvent; as an antisolvent or a co-antisolvent; and as a "high mobility" additive (a solute, a co-solute, or a co-solvent). Specific particle formation methods belonging to each one of these families are presented, discussed and compared. Some selected amorphous/crystalline drug nanoparticles that were prepared by these methods are compiled and presented, namely those studied in the last 10-15 years. A special emphasis is given to the formation of drug cocrystals. It is also discussed the fundamental knowledge and the main mechanisms in which the scCO2-based particle formation methods rely on, as well as the current status and urgent needs in terms of reliable experimental data and of robust modeling approaches. Other addressed and discussed topics include the currently available and the most adequate physicochemical, morphological and biological characterization methods required for pure drug nanoparticles/nanocrystals, some of the current nanometrology and regulatory issues associated to the use of these methods, as well as some scale-up, post-processing and pharmaceutical regulatory subjects related to the industrial implementation of these scCO2-based processes. Finally, it is also discussed the current status of these techniques, as well as their future major perspectives and opportunities for industrial implementation in the upcoming years.
Collapse
|
93
|
Guo P, Huang J, Zhao Y, Martin CR, Zare RN, Moses MA. Nanomaterial Preparation by Extrusion through Nanoporous Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703493. [PMID: 29468837 DOI: 10.1002/smll.201703493] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/09/2018] [Indexed: 05/20/2023]
Abstract
Template synthesis represents an important class of nanofabrication methods. Herein, recent advances in nanomaterial preparation by extrusion through nanoporous membranes that preserve the template membrane without sacrificing it, which is termed as "non-sacrificing template synthesis," are reviewed. First, the types of nanoporous membranes used in nanoporous membrane extrusion applications are introduced. Next, four common nanoporous membrane extrusion strategies: vesicle extrusion, membrane emulsification, precipitation extrusion, and biological membrane extrusion, are examined. These methods have been utilized to prepare a wide range of nanomaterials, including liposomes, emulsions, nanoparticles, nanofibers, and nanotubes. The principle and historical context of each specific technology are discussed, presenting prominent examples and evaluating their positive and negative features. Finally, the current challenges and future opportunities of nanoporous membrane extrusion methods are discussed.
Collapse
Affiliation(s)
- Peng Guo
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Jing Huang
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Yaping Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan road, Shanghai, 200240, China
| | - Charles R Martin
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305, USA
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
94
|
Molinaro R, Evangelopoulos M, Hoffman JR, Corbo C, Taraballi F, Martinez JO, Hartman KA, Cosco D, Costa G, Romeo I, Sherman M, Paolino D, Alcaro S, Tasciotti E. Design and Development of Biomimetic Nanovesicles Using a Microfluidic Approach. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1702749. [PMID: 29512198 DOI: 10.1002/adma.201702749] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/27/2017] [Indexed: 05/17/2023]
Abstract
The advancement of nanotechnology toward more sophisticated bioinspired approaches has highlighted the gap between the advantages of biomimetic and biohybrid platforms and the availability of manufacturing processes to scale up their production. Though the advantages of transferring biological features from cells to synthetic nanoparticles for drug delivery purposes have recently been reported, a standardizable, batch-to-batch consistent, scalable, and high-throughput assembly method is required to further develop these platforms. Microfluidics has offered a robust tool for the controlled synthesis of nanoparticles in a versatile and reproducible approach. In this study, the incorporation of membrane proteins within the bilayer of biomimetic nanovesicles (leukosomes) using a microfluidic-based platform is demonstrated. The physical, pharmaceutical, and biological properties of microfluidic-formulated leukosomes (called NA-Leuko) are characterized. NA-Leuko show extended shelf life and retention of the biological functions of donor cells (i.e., macrophage avoidance and targeting of inflamed vasculature). The NA approach represents a universal, versatile, robust, and scalable tool, which is extensively used for the assembly of lipid nanoparticles and adapted here for the manufacturing of biomimetic nanovesicles.
Collapse
Affiliation(s)
- Roberto Molinaro
- Center of Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
- Nanoinspired Biomedicine Lab, Fondazione Istituto di Ricerca, Pediatrica Città della Speranza, 35127, Padua, Italy
| | - Michael Evangelopoulos
- Center of Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
| | - Jessica R Hoffman
- Center of Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
| | - Claudia Corbo
- Center of Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
| | - Francesca Taraballi
- Center of Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
| | - Jonathan O Martinez
- Center of Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
| | - Kelly A Hartman
- Center of Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
| | - Donato Cosco
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus Universitario "S. Venuta,", Viale S. Venuta, Germaneto, I-88100, Catanzaro, Italy
| | - Giosue' Costa
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus Universitario "S. Venuta,", Viale S. Venuta, Germaneto, I-88100, Catanzaro, Italy
| | - Isabella Romeo
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus Universitario "S. Venuta,", Viale S. Venuta, Germaneto, I-88100, Catanzaro, Italy
| | - Michael Sherman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Campus Universitario "S. Venuta,", Viale S. Venuta, Germaneto, I-88100, Catanzaro, Italy
| | - Stefano Alcaro
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus Universitario "S. Venuta,", Viale S. Venuta, Germaneto, I-88100, Catanzaro, Italy
| | - Ennio Tasciotti
- Center of Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
- Houston Methodist Orthopedic and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| |
Collapse
|
95
|
Li X, Jiang X. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles. Adv Drug Deliv Rev 2018; 128:101-114. [PMID: 29277543 DOI: 10.1016/j.addr.2017.12.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
Microfluidic chips allow the rapid production of a library of nanoparticles (NPs) with distinct properties by changing the precursors and the flow rates, significantly decreasing the time for screening optimal formulation as carriers for drug delivery compared to conventional methods. The batch-to-batch reproducibility which is essential for clinical translation is achieved by precisely controlling the precursors and the flow rate, regardless of operators. Poly (lactic-co-glycolic acid) (PLGA) is the most widely used Food and Drug Administration (FDA)-approved biodegradable polymers. Researchers often combine PLGA with lipids or amphiphilic molecules to assemble into a core/shell structure to exploit the potential of PLGA-based NPs as powerful carriers for cancer-related drug delivery. In this review, we discuss the advantages associated with microfluidic chips for producing PLGA-based functional nanocomplexes for drug delivery. These laboratory-based methods can readily scale up to provide sufficient amount of PLGA-based NPs in microfluidic chips for clinical studies and industrial-scale production.
Collapse
|
96
|
Ahn J, Ko J, Lee S, Yu J, Kim Y, Jeon NL. Microfluidics in nanoparticle drug delivery; From synthesis to pre-clinical screening. Adv Drug Deliv Rev 2018; 128:29-53. [PMID: 29626551 DOI: 10.1016/j.addr.2018.04.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/15/2018] [Accepted: 04/02/2018] [Indexed: 01/03/2023]
Abstract
Microfluidic technologies employ nano and microscale fabrication techniques to develop highly controllable and reproducible fluidic microenvironments. Utilizing microfluidics, lead compounds can be produced with the controlled physicochemical properties, characterized in a high-throughput fashion, and evaluated in in vitro biomimetic models of human organs; organ-on-a-chip. As a step forward from conventional in vitro culture methods, microfluidics shows promise in effective preclinical testing of nanoparticle-based drug delivery. This review presents a curated selection of state-of-the-art microfluidic platforms focusing on the fabrication, characterization, and assessment of nanoparticles for drug delivery applications. We also discuss the current challenges and future prospects of nanoparticle drug delivery development using microfluidics.
Collapse
|
97
|
Current developments and applications of microfluidic technology toward clinical translation of nanomedicines. Adv Drug Deliv Rev 2018; 128:54-83. [PMID: 28801093 DOI: 10.1016/j.addr.2017.08.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/21/2017] [Accepted: 08/04/2017] [Indexed: 11/23/2022]
Abstract
Nanoparticulate drug delivery systems hold great potential for the therapy of many diseases, especially cancer. However, the translation of nanoparticulate drug delivery systems from academic research to industrial and clinical practice has been slow. This slow translation can be ascribed to the high batch-to-batch variations and insufficient production rate of the conventional preparation methods, and the lack of technologies for rapid screening of nanoparticulate drug delivery systems with high correlation to the in vivo tests. These issues can be addressed by the microfluidic technologies. For example, microfluidics can not only produce nanoparticles in a well-controlled, reproducible, and high-throughput manner, but also create 3D environments with continuous flow to mimic the physiological and/or pathological processes. This review provides an overview of the microfluidic devices developed to prepare nanoparticulate drug delivery systems, including drug nanosuspensions, polymer nanoparticles, polyplexes, structured nanoparticles and theranostic nanoparticles. We also highlight the recent advances of microfluidic systems in fabricating the increasingly realistic models of the in vivo milieu for rapid screening of nanoparticles. Overall, the microfluidic technologies offer a promise approach to accelerate the clinical translation of nanoparticulate drug delivery systems.
Collapse
|
98
|
Clark J, Kaufman M, Fodor PS. Mixing Enhancement in Serpentine Micromixers with a Non-Rectangular Cross-Section. MICROMACHINES 2018; 9:E107. [PMID: 30424041 PMCID: PMC6187473 DOI: 10.3390/mi9030107] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/16/2018] [Accepted: 02/28/2018] [Indexed: 12/12/2022]
Abstract
In this numerical study, a new type of serpentine micromixer involving mixing units with a non-rectangular cross-section is investigated. Similar to other serpentine/spiral shaped micromixers, the design exploits the formation of transversal vortices (Dean flows) in pressure-driven systems, associated with the centrifugal forces experienced by the fluid as it is confined to move along curved geometries. In contrast with other previous designs, though, the use of non-rectangular cross-sections that change orientation between mixing units is exploited to control the center of rotation of the transversal flows formed. The associated extensional flows that thus develop between the mixing segments complement the existent rotational flows, leading to a more complex fluid motion. The fluid flow characteristics and associated mixing are determined numerically from computational solutions to Navier⁻Stokes equations and the concentration-diffusion equation. It is found that the performance of the investigated mixers exceeds that of simple serpentine channels with a more consistent behavior at low and high Reynolds numbers. An analysis of the mixing quality using an entropic mixing index indicates that maximum mixing can be achieved at Reynolds numbers as small as 20 in less than four serpentine mixing units.
Collapse
Affiliation(s)
- Joshua Clark
- Department of Physics, Cleveland state University, 2121 Euclid Avenue, Cleveland, OH 44236, USA.
| | - Miron Kaufman
- Department of Physics, Cleveland state University, 2121 Euclid Avenue, Cleveland, OH 44236, USA.
| | - Petru S Fodor
- Department of Physics, Cleveland state University, 2121 Euclid Avenue, Cleveland, OH 44236, USA.
| |
Collapse
|
99
|
Amrani S, Tabrizian M. Characterization of Nanoscale Loaded Liposomes Produced by 2D Hydrodynamic Flow Focusing. ACS Biomater Sci Eng 2018; 4:502-513. [DOI: 10.1021/acsbiomaterials.7b00572] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Selya Amrani
- Biomedical
Engineering Department-Faculty of Medicine, ‡Faculty of Dentistry, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Maryam Tabrizian
- Biomedical
Engineering Department-Faculty of Medicine, ‡Faculty of Dentistry, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
100
|
García-Manrique P, Matos M, Gutiérrez G, Pazos C, Blanco-López MC. Therapeutic biomaterials based on extracellular vesicles: classification of bio-engineering and mimetic preparation routes. J Extracell Vesicles 2018; 7:1422676. [PMID: 29372017 PMCID: PMC5774402 DOI: 10.1080/20013078.2017.1422676] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) are emerging as novel theranostic tools. Limitations related to clinical uses are leading to a new research area on design and manufacture of artificial EVs. Several strategies have been reported in order to produce artificial EVs, but there has not yet been a clear criterion by which to differentiate these novel biomaterials. In this paper, we suggest for the first time a systematic classification of the terms used to build up the artificial EV landscape, based on the preparation method. This could be useful to guide the derivation to clinical trial routes and to clarify the literature. According to our classification, we have reviewed the main strategies reported to date for their preparation, including key points such as: cargo loading, surface targeting strategies, purification steps, generation of membrane fragments for the construction of biomimetic materials, preparation of synthetic membranes inspired in EV composition and subsequent surface decoration.
Collapse
Affiliation(s)
- Pablo García-Manrique
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | - Carmen Pazos
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | | |
Collapse
|