51
|
Liu M, López de Juan Abad B, Cheng K. Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies. Adv Drug Deliv Rev 2021; 173:504-519. [PMID: 33831476 PMCID: PMC8299409 DOI: 10.1016/j.addr.2021.03.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/16/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Cardiac fibrosis remains an unresolved problem in heart diseases. After initial injury, cardiac fibroblasts (CFs) are activated and subsequently differentiate into myofibroblasts (myoFbs) that are major mediator cells in the pathological remodeling. MyoFbs exhibit proliferative and secretive characteristics, and contribute to extracellular matrix (ECM) turnover, collagen deposition. The persistent functions of myoFbs lead to fibrotic scars and cardiac dysfunction. The anti-fibrotic treatment is hindered by the elusive mechanism of fibrosis and lack of specific targets on myoFbs. In this review, we will outline the progress of cardiac fibrosis and its contributions to the heart failure. We will also shed light on the role of myoFbs in the regulation of adverse remodeling. The communication between myoFbs and other cells that are involved in the heart injury and repair respectively will be reviewed in detail. Then, recently developed therapeutic strategies to treat fibrosis will be summarized such as i) chimeric antigen receptor T cell (CAR-T) therapy with an optimal target on myoFbs, ii) direct reprogramming from stem cells to quiescent CFs, iii) "off-target" small molecular drugs. The application of nano/micro technology will be discussed as well, which is involved in the construction of cell-based biomimic platforms and "pleiotropic" drug delivery systems.
Collapse
Affiliation(s)
- Mengrui Liu
- Department of Molecular Biomedical Sciences, North Carolina State University, NC, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Blanca López de Juan Abad
- Department of Molecular Biomedical Sciences, North Carolina State University, NC, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, NC, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA.
| |
Collapse
|
52
|
Moreno SE, Massee M, Koob TJ. Dehydrated Human Amniotic Membrane Inhibits Myofibroblast Contraction through the Regulation of the TGFβ‒SMAD Pathway In Vitro. JID INNOVATIONS 2021; 1:100020. [PMID: 34909718 PMCID: PMC8659710 DOI: 10.1016/j.xjidi.2021.100020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 01/07/2023] Open
Abstract
Excessive fibrosis affects more than 100 million patients yearly, leading to the accumulation of extracellular matrix that compromises tissue architecture and impedes its function. Intrinsic properties of the amniotic membrane have alluded to its potential to inhibit excessive fibrosis; therefore, this study aimed to investigate the effects of dehydrated human amnion/chorion membrane (dHACM) on dermal fibroblasts and their role in fibrotic pathways. Human dermal fibroblasts were stimulated with TGFβ1, triggering myofibroblast-like characteristics in vitro. Subsequent addition of dHACM in the continued presence of TGFβ1 inhibited downstream signaling, leading to a reduction in the expression of known fibrotic and extracellular matrix genes. In addition, dHACM decreased alpha-smooth muscle actin, a stress filament responsible for contractile activity in scarring. The functional outcome of these effects was observed in an ex vivo model for cellular contraction. Hyperactivation of TGFβ signaling increased the contractile capacity of myofibroblasts embedded within a collagen substrate. Simultaneous addition of dHACM treatment prevented the marked contraction, which is likely a direct result of the inhibition of TGFβ signaling mentioned earlier. These observations may support the use of dHACM in the regulation of fibroblast activity as it relates to tissue fibrosis.
Collapse
Affiliation(s)
| | - Michelle Massee
- MiMedx Group, Inc, Marietta, Georgia, USA
- Correspondence: Michelle Massee, Research and Development, MiMedx Group, Inc, 1775 West Oak Commons Court Northeast, Marietta, Georgia 30062, USA.
| | | |
Collapse
|
53
|
Meyer TJ, Stöth M, Moratin H, Ickrath P, Herrmann M, Kleinsasser N, Hagen R, Hackenberg S, Scherzad A. Cultivation of Head and Neck Squamous Cell Carcinoma Cells with Wound Fluid Leads to Cisplatin Resistance via Epithelial-Mesenchymal Transition Induction. Int J Mol Sci 2021; 22:4474. [PMID: 33922946 PMCID: PMC8123302 DOI: 10.3390/ijms22094474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Locoregional recurrence is a major reason for therapy failure after surgical resection of head and neck squamous cell carcinoma (HNSCC). The physiological process of postoperative wound healing could potentially support the proliferation of remaining tumor cells. The aim of this study was to evaluate the influence of wound fluid (WF) on the cell cycle distribution and a potential induction of epithelial-mesenchymal transition (EMT). To verify this hypothesis, we incubated FaDu and HLaC78 cells with postoperative WF from patients after neck dissection. Cell viability in dependence of WF concentration and cisplatin was measured by flow cytometry. Cell cycle analysis was performed by flow cytometry and EMT-marker expression by rtPCR. WF showed high concentrations of interleukin (IL)-6, IL-8, IL-10, CCL2, MCP-1, EGF, angiogenin, and leptin. The cultivation of tumor cells with WF resulted in a significant increase in cell proliferation without affecting the cell cycle. In addition, there was a significant enhancement of the mesenchymal markers Snail 2 and vimentin, while the expression of the epithelial marker E-cadherin was significantly decreased. After cisplatin treatment, tumor cells incubated with WF showed a significantly higher resistance compared with the control group. The effect of cisplatin-resistance was dependent on the WF concentration. In summary, proinflammatory cytokines are predominantly found in WF. Furthermore, the results suggest that EMT can be induced by WF, which could be a possible mechanism for cisplatin resistance.
Collapse
Affiliation(s)
- Till Jasper Meyer
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, D-97080 Würzburg, Germany; (M.S.); (H.M.); (P.I.); (N.K.); (R.H.); (S.H.)
| | - Manuel Stöth
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, D-97080 Würzburg, Germany; (M.S.); (H.M.); (P.I.); (N.K.); (R.H.); (S.H.)
| | - Helena Moratin
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, D-97080 Würzburg, Germany; (M.S.); (H.M.); (P.I.); (N.K.); (R.H.); (S.H.)
| | - Pascal Ickrath
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, D-97080 Würzburg, Germany; (M.S.); (H.M.); (P.I.); (N.K.); (R.H.); (S.H.)
| | - Marietta Herrmann
- IZKF Research Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Würzburg and Bernhard-Heine Centrum for Locomotion Research, University of Würzburg, D-97070 Würzburg, Germany;
| | - Norbert Kleinsasser
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, D-97080 Würzburg, Germany; (M.S.); (H.M.); (P.I.); (N.K.); (R.H.); (S.H.)
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, D-97080 Würzburg, Germany; (M.S.); (H.M.); (P.I.); (N.K.); (R.H.); (S.H.)
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, D-97080 Würzburg, Germany; (M.S.); (H.M.); (P.I.); (N.K.); (R.H.); (S.H.)
| | - Agmal Scherzad
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, D-97080 Würzburg, Germany; (M.S.); (H.M.); (P.I.); (N.K.); (R.H.); (S.H.)
| |
Collapse
|
54
|
Dopamine receptor agonists ameliorate bleomycin-induced pulmonary fibrosis by repressing fibroblast differentiation and proliferation. Biomed Pharmacother 2021; 139:111500. [PMID: 33901873 DOI: 10.1016/j.biopha.2021.111500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/23/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common fatal interstitial lung disease, with limited therapeutic options. The abnormal and uncontrolled differentiation and proliferation of fibroblasts have been confirmed to play a crucial role in driving the pathogenesis of IPF. Therefore, effective and well-tolerated antifibrotic agents that interfere with fibroblasts would be an ideal treatment, but no such treatments are available. Remarkably, we found that dopamine (DA) receptor D1 (D1R) and DA receptor D2 (D2R) were both upregulated in myofibroblasts in lungs of IPF patients and a bleomycin (BLM)-induced mouse model. Then, we explored the safety and efficacy of DA, fenoldopam (FNP, a selective D1R agonist) and sumanirole (SMR, a selective D2R agonist) in reversing BLM-induced pulmonary fibrosis. Further data showed that DA receptor agonists exerted potent antifibrotic effects in BLM-induced pulmonary fibrosis by attenuating the differentiation and proliferation of fibroblasts. Detailed pathway analysis revealed that DA receptor agonists decreased the phosphorylation of Smad2 induced by TGF-β1 in primary human lung fibroblasts (PHLFs) and IMR-90 cells. Overall, DA receptor agonists protected mice from BLM-induced pulmonary fibrosis and may be therapeutically beneficial for IPF patients in a clinical setting.
Collapse
|
55
|
Abed S, Turner R, Serniuck N, Tat V, Naiel S, Hayat A, Mekhael O, Vierhout M, Ask K, Rullo AF. Cell-specific drug targeting in the lung. Biochem Pharmacol 2021; 190:114577. [PMID: 33887259 DOI: 10.1016/j.bcp.2021.114577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/26/2022]
Abstract
Non-targeted drug delivery systems have several limitations including the decreased bioavailability of the drug, poor stability and rapid clearance in addition to off-target distribution. Cell-specific targeted delivery approaches promise to overcome some of these limitations and enhance therapeutic selectivity. In this review, we aim to discuss cell-specific targeted approachesin the lung at the biochemical and molecular levels. These approaches include;a) directly administered small molecule drugs with intracellular action; b) targeted biologics and synthetic hybrids with extracellular action; c) site activateddrugs; and d) delivery systems.We discuss the pharmaceutical and biochemical parameters that govern the fate of drug molecules at delivery sites while presenting an overview of relevant literature surrounding this area of research and current advancements.
Collapse
Affiliation(s)
- Soumeya Abed
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Rebecca Turner
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Nickolas Serniuck
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Victor Tat
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada
| | - Safaa Naiel
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Aaron Hayat
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Olivia Mekhael
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Megan Vierhout
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.
| | - Anthony F Rullo
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
56
|
Tacke F, Weiskirchen R. Non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH)-related liver fibrosis: mechanisms, treatment and prevention. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:729. [PMID: 33987427 PMCID: PMC8106094 DOI: 10.21037/atm-20-4354] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is the excessive expression and accumulation of extracellular matrix proteins in the liver. Fibrotic scarring occurs as the consequence of chronic injury and inflammation. While the successful treatment of hepatitis B and C reduced the burden of liver disease related to viral hepatitis, non-alcoholic fatty liver disease (NAFLD) or non-alcoholic steatohepatitis (NASH) are nowadays the leading causes of hepatic fibrosis worldwide. Although basic research activities have significantly advanced our understanding of the molecular disease pathogenesis, the present therapeutic options for fibrosis are still limited. In advanced disease stages, liver transplantation often remains the only curative treatment. This highlights the necessity of preventive strategies to avoid complications of fibrosis, particularly cirrhosis, portal hypertension and liver cancer. Lifestyle modifications (weight loss, exercise, healthy diet) are the basis for prevention and treatment of NAFLD-associated fibrosis. In the present review, we discuss recent advances in antifibrotic prevention and therapy. In particular, we review the current concepts for antifibrotic drug candidates in the treatment of NAFLD and NASH. While some compounds aim at reverting pathogenic liver metabolism, an alternative approach is to disconnect the injury (e.g., NAFLD) from inflammation and/or fibrosis. Investigational drugs typically target metabolic pathways, insulin resistance, hepatocyte death, inflammatory cell recruitment or activation, the gut-liver axis, matrix expression or matrix turnover. While several promising drug candidates failed in phase 2 or 3 clinical trials (including elafibranor, emricasan and selonsertib), promising results with the farnesoid X receptor agonist obeticholic acid, the pan-PPAR agonist lanifibranor and the chemokine receptor CCR2/CCR5 inhibitor cenicriviroc support the expectation of an effective pharmacological therapy for liver fibrosis in the near future. Tackling NAFLD-associated fibrosis from different directions by combinatorial drug treatment and effective lifestyle changes hold the greatest prospects.
Collapse
Affiliation(s)
- Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
57
|
Kwon HC, Song JJ, Park YB, Lee SW. Fibrosis-5 predicts end-stage renal disease in patients with microscopic polyangiitis and granulomatosis with polyangiitis without substantial liver diseases. Clin Exp Med 2021; 21:399-406. [PMID: 33611672 PMCID: PMC8266773 DOI: 10.1007/s10238-021-00691-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
We previously reported that fibrosis-4 (FIB-4) was associated with poor outcomes of microscopic polyangiitis (MPA) and granuloma with polyangiitis (GPA). We also investigated the potential of FIB-5, a novel index, in predicting all-cause mortality and end-stage renal disease (ESRD) during follow-up in patients with MPA and GPA without substantial liver diseases. Clinical and laboratory data at diagnosis were collected by reviewing the medical records of 180 patients with MPA and GPA. FIB-5 was obtained by a following equation: FIB-5 = (serum albumin (g/L) × 0.3 + platelet count (109/L) × 0.05) − (alkaline phosphatase (IU/L) × 0.014 + aspartate aminotransferase/alanine aminotransferase ratio × 6 + 14). The median age of the patients at diagnosis was 61.0 years. FIB-5 at diagnosis could not reflect the cross-sectional vasculitis activity. The cutoffs of FIB-5 for poor outcomes was set as 0.82 (the lowest tertile) and -0.42 (the lowest quartile) at diagnosis. In Kaplan–Meier survival analysis, patients with FIB-5 < 0.82 and those with FIB-5 < -0.42 exhibited lower ESRD-free survival rates than those without. However, it could not predict all-cause mortality. In multivariable Cox hazards analysis, both FFS (Hazard ratio (HR) 1.554) and FIB-5 < 0.82 (HR 2.096) as well as both FFS (HR 1.534) and FIB-5 < -0.42 (HR 2.073) at diagnosis independently predicted ESRD during follow-up. In conclusion, FIB-5 < 0.82 and FIB-5 < -0.42 at diagnosis could predict the occurrence of ESRD, but not all-cause mortality, during follow-up in patients with MPA and GPA without substantial liver diseases.
Collapse
Affiliation(s)
- Hyeok Chan Kwon
- Department of Rheumatology, Dankook University Hospital, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Jason Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
58
|
Wu B, Tang X, Zhou Z, Ke H, Tang S, Ke R. RNA sequencing analysis of FGF2-responsive transcriptome in skin fibroblasts. PeerJ 2021; 9:e10671. [PMID: 33520460 PMCID: PMC7812929 DOI: 10.7717/peerj.10671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/08/2020] [Indexed: 01/01/2023] Open
Abstract
Background Fibroblast growth factor 2 (FGF2) is a highly pleiotropic cytokine with antifibrotic activity in wound healing. During the process of wound healing and fibrosis, fibroblasts are the key players. Although accumulating evidence has suggested the antagonistic effects of FGF2 in the activation process of fibroblasts, the mechanisms by which FGF2 hinders the fibroblast activation remains incompletely understood. This study aimed to identify the key genes and their regulatory networks in skin fibroblasts treated with FGF2. Methods RNA-seq was performed to identify the differentially expressed mRNA (DEGs) and lncRNA between FGF2-treated fibroblasts and control. DEGs were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, the networks between mRNAs and lncRNAs were constructed by Pearson correlation analysis and the networkanalyst website. Finally, hub genes were validated by real time-PCR. Results Between FGF2-treated fibroblasts and control fibroblasts, a total of 1475 DEGs was obtained. These DEGs were mainly enriched in functions such as the ECM organization, cell adhesion, and cell migration. They were mainly involved in ECM-receptor interaction, PI3K-Akt signaling, and the Hippo pathway. The hub DEGs included COL3A1, COL4A1, LOX, PDGFA, TGFBI, and ITGA10. Subsequent real-time PCR, as well as bioinformatics analysis, consistently demonstrated that the expression of ITGA10 was significantly upregulated while the other five DEGs (COL3A1, COL4A1, LOX, PDGFA, TGFBI) were downregulated in FGF2-treated fibroblasts. Meanwhile, 213 differentially expressed lncRNAs were identified and three key lncRNAs (HOXA-AS2, H19, and SNHG8) were highlighted in FGF2-treated fibroblasts. Conclusion The current study comprehensively analyzed the FGF2-responsive transcriptional profile and provided candidate mechanisms that may account for FGF2-mediated wound healing.
Collapse
Affiliation(s)
- Baojin Wu
- Department of Plastic Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xinjie Tang
- Department of Plastic Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhaoping Zhou
- Department of Plastic Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Honglin Ke
- Department of Emergency, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shao Tang
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Ronghu Ke
- Department of Plastic Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
59
|
Hou J, Ji Q, Ji J, Ju S, Xu C, Yong X, Xu X, Muddassir M, Chen X, Xie J, Han X. Co-delivery of siPTPN13 and siNOX4 via (myo)fibroblast-targeting polymeric micelles for idiopathic pulmonary fibrosis therapy. Am J Cancer Res 2021; 11:3244-3261. [PMID: 33537085 PMCID: PMC7847691 DOI: 10.7150/thno.54217] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Rationale: (Myo)fibroblasts are the ultimate effector cells responsible for the production of collagen within alveolar structures, a core phenomenon in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Although (myo)fibroblast-targeted therapy holds great promise for suppressing the progression of IPF, its development is hindered by the limited drug delivery efficacy to (myo)fibroblasts and the vicious circle of (myo)fibroblast activation and evasion of apoptosis. Methods: Here, a dual small interfering RNA (siRNA)-loaded delivery system of polymeric micelles is developed to suppress the development of pulmonary fibrosis via a two-arm mechanism. The micelles are endowed with (myo)fibroblast-targeting ability by modifying the Fab' fragment of the anti-platelet-derived growth factor receptor-α (PDGFRα) antibody onto their surface. Two different sequences of siRNA targeting protein tyrosine phosphatase-N13 (PTPN13, a promoter of the resistance of (myo)fibroblasts to Fas-induced apoptosis) and NADPH oxidase-4 (NOX4, a key regulator for (myo)fibroblast differentiation and activation) are loaded into micelles to inhibit the formation of fibroblastic foci. Results: We demonstrate that Fab'-conjugated dual siRNA-micelles exhibit higher affinity to (myo)fibroblasts in fibrotic lung tissue. This Fab'-conjugated dual siRNA-micelle can achieve remarkable antifibrotic effects on the formation of fibroblastic foci by, on the one hand, suppressing (myo)fibroblast activation via siRNA-induced knockdown of NOX4 and, on the other hand, sensitizing (myo)fibroblasts to Fas-induced apoptosis by siRNA-mediated PTPN13 silencing. In addition, this (myo)fibroblast-targeting siRNA-loaded micelle did not induce significant damage to major organs, and no histopathological abnormities were observed in murine models. Conclusion: The (myo)fibroblast-targeting dual siRNA-loaded micelles offer a potential strategy with promising prospects in molecular-targeted fibrosis therapy.
Collapse
|
60
|
Fernando K, Kwang LG, Lim JTC, Fong ELS. Hydrogels to engineer tumor microenvironments in vitro. Biomater Sci 2021; 9:2362-2383. [DOI: 10.1039/d0bm01943g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Illustration of engineered hydrogel to recapitulate aspects of the tumor microenvironment.
Collapse
Affiliation(s)
- Kanishka Fernando
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - Leng Gek Kwang
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - Joanne Tze Chin Lim
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - Eliza Li Shan Fong
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
- The N.1 Institute for Health
- National University of Singapore
| |
Collapse
|
61
|
Miao H, Wu XQ, Zhang DD, Wang YN, Guo Y, Li P, Xiong Q, Zhao YY. Deciphering the cellular mechanisms underlying fibrosis-associated diseases and therapeutic avenues. Pharmacol Res 2020; 163:105316. [PMID: 33248198 DOI: 10.1016/j.phrs.2020.105316] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Fibrosis is the excessive deposition of extracellular matrix components, which results in disruption of tissue architecture and loss of organ function. Fibrosis leads to high morbidity and mortality worldwide, mainly due to the lack of effective therapeutic strategies against fibrosis. It is generally accepted that fibrosis occurs during an aberrant wound healing process and shares a common pathogenesis across different organs such as the heart, liver, kidney, and lung. A better understanding of the fibrosis-related cellular and molecular mechanisms will be helpful for development of targeted drug therapies. Extensive studies revealed that numerous mediators contributed to fibrogenesis, suggesting that targeting these mediators may be an effective therapeutic strategy for antifibrosis. In this review, we describe a number of mediators involved in tissue fibrosis, including aryl hydrocarbon receptor, Yes-associated protein, cannabinoid receptors, angiopoietin-like protein 2, high mobility group box 1, angiotensin-converting enzyme 2, sphingosine 1-phosphate receptor-1, SH2 domain-containing phosphatase-2, and long non-coding RNAs, with the goal that drugs targeting these important mediators might exhibit a beneficial effect on antifibrosis. In addition, these mediators show profibrotic effects on multiple tissues, suggesting that targeting these mediators will exert antifibrotic effects on different organs. Furthermore, we present a variety of compounds that exhibit therapeutic effects against fibrosis. This review suggests therapeutic avenues for targeting organ fibrosis and concurrently identifies challenges and opportunities for designing new therapeutic strategies against fibrosis.
Collapse
Affiliation(s)
- Hua Miao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Dan-Dan Zhang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, 1700 Lomas Blvd NE, Albuquerque, 87131, USA
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, Department of Nephrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, Jiangsu, China.
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
62
|
Fang G, Tang B. Current advances in the nano-delivery of celastrol for treating inflammation-associated diseases. J Mater Chem B 2020; 8:10954-10965. [PMID: 33174584 DOI: 10.1039/d0tb01939a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammation is ubiquitous in the body, and uncontrolled inflammation often contributes to various diseases. Celastrol, a compound isolated from a Chinese medicinal herb, holds great potential in treating multiple inflammation-associated diseases. However, its further clinical use is limited by its poor solubility, bioavailability, and high organ toxicity. With the advancement of nanotechnology, the nano-delivery of celastrol can effectively improve its oral bioavailability, maximize its efficacy and minimize its side effects. Here, we summarize the roles of celastrol in the treatment of various inflammation-associated diseases, with a special emphasis on its role in modulating immune cell signaling or non-immune cell signaling within the inflammatory microenvironment, and we highlight the latest advances in nano-delivery strategies for celastrol to treat diseases associated with inflammation.
Collapse
Affiliation(s)
- Guihua Fang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu Province 226001, China.
| | | |
Collapse
|
63
|
Ly TD, Kleine A, Fischer B, Schmidt V, Hendig D, Kuhn J, Knabbe C, Faust I. Identification of Putative Non-Substrate-Based XT-I Inhibitors by Natural Product Library Screening. Biomolecules 2020; 10:E1467. [PMID: 33096778 PMCID: PMC7589200 DOI: 10.3390/biom10101467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 02/02/2023] Open
Abstract
Fibroproliferative diseases are characterized by excessive accumulation of extracellular matrix (ECM) components leading to organ dysfunction. This process is characterized by an increase in myofibroblast content and enzyme activity of xylosyltransferase-I (XT-I), the initial enzyme in proteoglycan (PG) biosynthesis. Therefore, the inhibition of XT-I could be a promising treatment for fibrosis. We used a natural product-inspired compound library to identify non-substrate-based inhibitors of human XT-I by UPLC-MS/MS. We combined this cell-free approach with virtual and molecular biological analyses to confirm and prioritize the inhibitory potential of the compounds identified. The characterization for compound potency in TGF-β1-driven XYLT1 transcription regulation in primary dermal human fibroblasts (key cells in ECM remodeling) was addressed by gene expression analysis. Consequently, we identified amphotericin B and celastrol as new non-substrate-based XT-I protein inhibitors. Their XT-I inhibitory effects were mediated by an uncompetitive or a competitive inhibition mode, respectively. Both compounds reduced the cellular XYLT1 expression level and XT-I activity. We showed that these cellular inhibitor-mediated changes involve the TGF-β and microRNA-21 signaling pathway. The results of our study provide a strong rationale for the further optimization and future usage of the XT-I inhibitors identified as promising therapeutic agents of fibroproliferative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany; (T.-D.L.); (A.K.); (B.F.); (V.S.); (D.H.); (J.K.); (C.K.)
| |
Collapse
|
64
|
Abstract
INTRODUCTION Myofibroblasts are the primary executor and influencer in lung fibrosis. Latest studies on lung myofibroblast pathobiology have significantly advanced the understanding of the pathogenesis of lung fibrosis and shed new light on strategies targeting these cells to treat this disease. AREAS COVERED This article reviewed the most recent progresses, mainly within the last 5 years, on the definition, origin, activity regulation, and targeting of lung myofibroblasts in lung fibrosis. We did a literature search on PubMed using the keywords below from the dates 2010 to 2020. EXPERT OPINION With the improved cell lineage characterization and the advent of scRNA-seq, the field is having much better picture of the lung myofibroblast origin and mesenchymal heterogeneity. Additionally, cellular metabolism has emerged as a key regulation of lung myofibroblast pathogenic phenotype and is a promising therapeutic target for treating a variety of lung fibrotic disorders.
Collapse
Affiliation(s)
- Dingyuan Jiang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Clinical Research Center for Respiratory Diseases , Beijing, China
| | - Tapan Dey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama, USA
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama, USA
| |
Collapse
|
65
|
Chemerin-156 is the Active Isoform in Human Hepatic Stellate Cells. Int J Mol Sci 2020; 21:ijms21207555. [PMID: 33066326 PMCID: PMC7589075 DOI: 10.3390/ijms21207555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
The chemokine chemerin exists as C-terminally processed isoforms whose biological functions are mostly unknown. A highly active human chemerin variant (huChem-157) was protective in experimental hepatocellular carcinoma (HCC) models. Hepatic stellate cells (HSCs) are central mediators of hepatic fibrogenesis and carcinogenesis and express the chemerin receptors chemokine-like receptor 1 (CMKLR1) and G protein-coupled receptor 1 (GPR1). Here we aimed to analyse the effect of chemerin isoforms on the viability, proliferation and secretome of the human HSC cell line LX-2. Therefore, huChem-157, 156 and 155 were over-expressed in LX-2 cells, which have low endogenous chemerin levels. HuChem-157 produced in LX-2 cells activated CMKLR1 and GPR1, and huChem-156 modestly induced GPR1 signaling. HuChem-155 is an inactive chemerin variant. Chemerin isoforms had no effect on cell viability and proliferation. Cellular expression of the fibrotic proteins galectin-3 and alpha-smooth muscle actin was not regulated by any chemerin isoform. HuChem-156 increased IL-6, IL-8 and galectin-3 in cell media. HuChem-157 was ineffective, and accordingly, did not enhance levels of these proteins in media of primary human hepatic stellate cells when added exogenously. These analyses provide evidence that huChem-156 is the biologic active chemerin variant in hepatic stellate cells and acts as a pro-inflammatory factor.
Collapse
|
66
|
Abstract
Rationale: The association between idiopathic pulmonary fibrosis (IPF) and lung cancer has been previously reported. However, there is the potential for significant confounding by age and smoking, and an accurate summary risk estimate has not been previously ascertained.Objectives: To determine the risk and burden of lung cancer in patients with IPF, accounting for known confounders.Methods: We conducted a comprehensive literature search of MEDLINE, EMBASE, and SCOPUS databases and used the Newcastle Ottawa criteria to assess study quality. We then assessed the quality of ascertainment of IPF cases based on modern consensus criteria. Data that relied on administrative claims or autopsies were excluded. We calculated summary risk estimates using a random effects model.Results: Twenty-five cohort studies were included in the final analysis. The estimated adjusted incidence rate ratio from two studies was 6.42 (95% confidence interval [CI], 3.21-9.62) and accounted for age, sex, and smoking. The summary incidence rate from 11 studies was 2.07 per 100 person-years (95% CI, 1.46-2.67), and the summary mortality rate was 1.06 per 100 person-years (95% CI, 0.62-1.51) obtained from three studies. The summary prevalence from 11 studies was 13.74% (95% CI, 10.17-17.30), and the proportion of deaths attributable to lung cancer was 10.20 (95% CI, 8.52-11.87) and was obtained from nine studies.Conclusions: IPF is an increased independent risk factor for lung cancer, even after accounting for smoking. Further well-designed studies using modern consensus criteria are needed to explore mechanisms of this association.
Collapse
|
67
|
Kurniawan DW, Booijink R, Pater L, Wols I, Vrynas A, Storm G, Prakash J, Bansal R. Fibroblast growth factor 2 conjugated superparamagnetic iron oxide nanoparticles (FGF2-SPIONs) ameliorate hepatic stellate cells activation in vitro and acute liver injury in vivo. J Control Release 2020; 328:640-652. [PMID: 32979454 DOI: 10.1016/j.jconrel.2020.09.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/01/2020] [Accepted: 09/20/2020] [Indexed: 12/17/2022]
Abstract
Liver diseases are the growing health problem with no clinically approved therapy available. Activated hepatic stellate cells (HSCs) are the key driver cells responsible for extracellular matrix deposition, the hallmark of liver fibrosis. Fibroblast growth factor 2 (FGF2) has shown to possess anti-fibrotic effects in fibrotic diseases including liver fibosis, and promote tissue regeneration. Among the fibroblast growth factor receptors (FGFRs), FGF2 interact primarily with FGFR1, highly overexpressed on activated HSCs, and inhibit HSCs activation. However, FGF2 poses several limitations including poor systemic half-life and stability owing to enzymatic degradation. The aim of this study is to improve the stability and half-life of FGF2 thereby improving the therapuetic efficacy of FGF2 for the treatment of liver fibrosis. We found that FGFR1-3 mRNA levels were overexpressed in cirrhotic human livers, while FGFR1c, 2c, 3c, 4 and FGF2 mRNA levels were overexpressed in TGFβ-activated HSCs (LX2 cells) and FGFR1 protein expression was highly increased in TGFβ-activated HSCs. Treatment with FGF2 inhibited TGFβ-induced HSCs activation, migration and contraction in vitro. FGF2 was conjugated to superparamagnetic iron-oxide nanoparticles (SPIONs) using carbodiimide chemistry, and the resulting FGF2-SPIONs were confirmed by dynamic light scattering (DLS), zeta potential, dot-blot analysis and Prussian Blue iron-staining. In vitro, treatment with FGF2-SPIONs evidenced increased therapeutic effects (attenuated TGFβ-induced HSCs activation, migration and contraction) of FGF2 in TGFβ-activated HSCs and ameliorated early liver fibrogenesis in vivo in acute carbon tetrachloride (CCl4)-induced liver injury mouse model. In contrast, free FGF2 showed no significant effects in vivo. Altogether, this study presents a promising therapeutic approach using FGF2-SPIONs for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Dhadhang Wahyu Kurniawan
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands; Department of Pharmacy, Universitas Jenderal Soedirman, Purwokerto, Indonesia
| | - Richell Booijink
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Lena Pater
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Irene Wols
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Aggelos Vrynas
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Gert Storm
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands; Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Ruchi Bansal
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
68
|
Kiratipaiboon C, Voronkova M, Ghosh R, Rojanasakul LW, Dinu CZ, Chen YC, Rojanasakul Y. SOX2Mediates Carbon Nanotube-Induced Fibrogenesis and Fibroblast Stem Cell Acquisition. ACS Biomater Sci Eng 2020; 6:5290-5304. [PMID: 33455278 DOI: 10.1021/acsbiomaterials.0c00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Certain nanosized particles like carbon nanotubes (CNTs) are known to induce pulmonary fibrosis, but the underlying mechanisms are unclear, and efforts to prevent this disease are lacking. Fibroblast-associated stem cells (FSCs) have been suggested as a critical driver of fibrosis induced by CNTs by serving as a renewable source of extracellular matrix-producing cells; however, a detailed understanding of this process remains obscure. Here, we demonstrated that single-walled CNTs induced FSC acquisition and fibrogenic responses in primary human lung fibroblasts. This was indicated by increased expression of stem cell markers (e.g., CD44 and ABCG2) and fibrogenic markers (e.g., collagen and α-SMA) in CNT-exposed cells. These cells also showed increased sphere formation, anoikis resistance, and aldehyde dehydrogenase (ALDH) activities, which are characteristics of stem cells. Mechanistic studies revealed sex-determining region Y-box 2 (SOX2), a self-renewal associated transcription factor, as a key driver of FSC acquisition and fibrogenesis. Upregulation and colocalization of SOX2 and COL1 were found in the fibrotic lung tissues of CNT-exposed mice via oropharyngeal aspiration after 56 days. The knockdown of SOX2 by gene silencing abrogated the fibrogenic and FSC-inducing effects of CNTs. Chromatin immunoprecipitation assays identified SOX2-binding sites on COL1A1 and COL1A2, indicating SOX2 as a transcription factor in collagen synthesis. SOX2 was also found to play a critical role in TGF-β-induced fibrogenesis through its collagen- and FSC-inducing effects. Since many nanomaterials are known to induce TGF-β, our findings that SOX2 regulate FSCs and fibrogenesis may have broad implications on the fibrogenic mechanisms and treatment strategies of various nanomaterial-induced fibrotic disorders.
Collapse
Affiliation(s)
- Chayanin Kiratipaiboon
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Maria Voronkova
- WVU Cancer Institute, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Rajib Ghosh
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Liying W Rojanasakul
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Yi Charlie Chen
- College of Health Science, Technology and Mathematics, Alderson Broaddus University, Philippi, West Virginia 26416, United States
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, United States.,WVU Cancer Institute, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
69
|
Wadsworth BJ, Cederberg RA, Lee CM, Firmino NS, Franks SE, Pan J, Colpo N, Lin KS, Benard F, Bennewith KL. Angiotensin II type 1 receptor blocker telmisartan inhibits the development of transient hypoxia and improves tumour response to radiation. Cancer Lett 2020; 493:31-40. [PMID: 32763272 DOI: 10.1016/j.canlet.2020.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/03/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
Hypoxic tumour cells are radiation-resistant and are associated with poor therapeutic outcome. A poorly understood source of tumour hypoxia is unstable perfusion, which exposes tumour cells to varying oxygen tensions over time creating "transiently" hypoxic cells. Evidence suggests that angiotensin II type 1 receptor blockers (ARBs) can improve tumour perfusion by reducing collagen deposition from cancer associated fibroblasts (CAFs). However, the influence of ARBs on transient hypoxia and tumour radiation response is unknown. We tested how the ARBs losartan and telmisartan affected the solid tumour microenvironment, using fluorescent perfusion dyes and positron emission tomography to quantify tumour perfusion, and a combination of hypoxia markers and the hemorheological agent pentoxifylline to assess transient tumour hypoxia. We found CAF-containing tumours have reduced collagen I levels in response to telmisartan, but not losartan. Telmisartan significantly increased tumour blood flow, stabilized microregional tumour perfusion, and decreased tumour hypoxia by reducing the development of transient hypoxia. Telmisartan-treated tumours were more responsive to radiation, indicating that telmisartan reduces a therapeutically important population of transiently hypoxic tumour cells. Our findings indicate telmisartan is capable of modifying the tumour microenvironment to stabilize tumour perfusion, reduce transient hypoxia, and improve tumour radiation response.
Collapse
Affiliation(s)
- Brennan J Wadsworth
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rachel A Cederberg
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Che-Min Lee
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Natalie S Firmino
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Jinhe Pan
- Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Nadine Colpo
- Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Kuo-Shyan Lin
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada; Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Francois Benard
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada; Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Kevin L Bennewith
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
70
|
Li X, Wong SS, Tan C, Espinoza CR, Hagood JS. Loss of Thy-1 may reduce lung regeneration after pneumonectomy in mice. Minerva Med 2020; 112:622-630. [PMID: 32696636 DOI: 10.23736/s0026-4806.20.06691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Lung regeneration plays an important role in lung repair after injury. It is reliant upon proliferation of multiple cell types in the lung, including endothelium, epithelium, and fibroblasts, as well as remodeling of the extracellular matrix. METHODS Lung regeneration following injury progresses via an initial infammatory response during which macrophages clear the tissue of cellular debris. This process continues through cellular proliferation when existing cells and progenitors act to repopulate cells lost during injury, followed by tissue maturation in which newly formed cells achieve a diferentiated phenotype. RESULTS Signaling pathways critical for lung regeneration include FGF, EGF, WNT, and NOTCH. In addition, HDACs, miRNAs, ELASTIN, and MMP14 have been shown to regulate lung regeneration. Partial pneumonectomy (PNX) has been used as a therapeutic and investigational tool for several decades. Following PNX the remaining lung increases in size to compensate for loss of volume and respiratory capacity. CONCLUSIONS Much has been learned about the triggers and mechanisms regulating pulmonary regeneration. However, the role of thymocyte differentiation antigen-1(thy-1) in post-PNX lung growth remains incompletely characterized. Thy-1 is a phosphatidylinositol glycoprotein with a relative molecular weight of 25000~37000 Da, which is expressed in almost all types of fibroblasts and regulates many biological functions. It not only supports the structure of fibroblasts, but also can balance cell proliferation, migration and regulate the synthesis of immune inflammatory mediators.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, China.,Department of Paediatrics, University of California San Diego, CA, USA
| | - Simon S Wong
- Department of Paediatrics, University of California San Diego, CA, USA
| | - Chunting Tan
- Department of Paediatrics, University of California San Diego, CA, USA
| | - Celia R Espinoza
- Department of Paediatrics, University of California San Diego, CA, USA
| | - James S Hagood
- Department of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC, USA -
| |
Collapse
|
71
|
Santos DM, Pantano L, Pronzati G, Grasberger P, Probst CK, Black KE, Spinney JJ, Hariri LP, Nichols R, Lin Y, Bieler M, Seither P, Nicklin P, Wyatt D, Tager AM, Medoff BD. Screening for YAP Inhibitors Identifies Statins as Modulators of Fibrosis. Am J Respir Cell Mol Biol 2020; 62:479-492. [PMID: 31944822 DOI: 10.1165/rcmb.2019-0296oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a lung disease with limited therapeutic options that is characterized by pathological fibroblast activation and aberrant lung remodeling with scar formation. YAP (Yes-associated protein) is a transcriptional coactivator that mediates mechanical and biochemical signals controlling fibroblast activation. In this study, we developed a high-throughput small-molecule screen for YAP inhibitors in primary human lung fibroblasts. Multiple HMG-CoA (hydroxymethylglutaryl-coenzyme A) reductase inhibitors (statins) were found to inhibit YAP nuclear localization via induction of YAP phosphorylation, cytoplasmic retention, and degradation. We further show that the mevalonate pathway regulates YAP activation, and that simvastatin treatment reduces fibrosis markers in activated human lung fibroblasts and in the bleomycin mouse model of pulmonary fibrosis. Finally, we show that simvastatin modulates YAP in vivo in mouse lung fibroblasts. Our results highlight the potential of small-molecule screens for YAP inhibitors and provide a mechanism for the antifibrotic activity of statins in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
| | - Lorena Pantano
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Gina Pronzati
- Division of Pulmonary and Critical Care Medicine, and
| | | | | | | | | | - Lida P Hariri
- Division of Pulmonary and Critical Care Medicine, and.,Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Yufei Lin
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | | | | | | - David Wyatt
- Biotherapeutics Discovery, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | | | | |
Collapse
|
72
|
Pakshir P, Noskovicova N, Lodyga M, Son DO, Schuster R, Goodwin A, Karvonen H, Hinz B. The myofibroblast at a glance. J Cell Sci 2020; 133:133/13/jcs227900. [DOI: 10.1242/jcs.227900] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT
In 1971, Gabbiani and co-workers discovered and characterized the “modification of fibroblasts into cells which are capable of an active spasm” (contraction) in rat wound granulation tissue and, accordingly, named these cells ‘myofibroblasts’. Now, myofibroblasts are not only recognized for their physiological role in tissue repair but also as cells that are key in promoting the development of fibrosis in all organs. In this Cell Science at a Glance and the accompanying poster, we provide an overview of the current understanding of central aspects of myofibroblast biology, such as their definition, activation from different precursors, the involved signaling pathways and most widely used models to study their function. Myofibroblasts will be placed into context with their extracellular matrix and with other cell types communicating in the fibrotic environment. Furthermore, the challenges and strategies to target myofibroblasts in anti-fibrotic therapies are summarized to emphasize their crucial role in disease progression.
Collapse
Affiliation(s)
- Pardis Pakshir
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Nina Noskovicova
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Monika Lodyga
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Dong Ok Son
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Ronen Schuster
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Amanda Goodwin
- Nottingham NIHR Respiratory Biomedical Research Unit, University of Nottingham, Nottingham NG7 2UH, UK
| | - Henna Karvonen
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Respiratory Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, POB 20, 90029 Oulu, Finland
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
73
|
Lambrecht J, van Grunsven LA, Tacke F. Current and emerging pharmacotherapeutic interventions for the treatment of liver fibrosis. Expert Opin Pharmacother 2020; 21:1637-1650. [PMID: 32543284 DOI: 10.1080/14656566.2020.1774553] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Chronic liver disease is due to various causes of persistent liver damage and will eventually lead to the development of liver fibrosis. If no treatment is initiated, this condition may progress to cirrhosis and hepatocellular carcinoma. Current treatments comprise the elimination of the cause of injury, such as by lifestyle changes, alcohol abstinence, and antiviral agents. However, such etiology-driven therapy is often insufficient in patients with late-stage fibrosis/cirrhosis, therefore maintaining the need for efficient antifibrotic pharmacotherapeutic interventions. AREAS COVERED The authors discuss the recent advances in the development of antifibrotic drugs, which target various pathways of the fibrogenesis process, including cell death, inflammation, gut-liver axis, and myofibroblast activation. Due to the significant burden of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH), various agents which specifically target metabolic pathways and their related receptors/ligands have been developed. For some of them, e.g., obeticholic acid, advanced stage clinical trials indicate antifibrotic efficacy in NAFLD and NASH. EXPERT OPINION Significant advances have been made in the development of novel antifibrotic pharmacotherapeutics. The authors expect that the development of combinatorial therapies, which combine compounds that target various pathways of fibrosis progression, will have a major impact as future etiology-independent therapies.
Collapse
Affiliation(s)
- Joeri Lambrecht
- Liver Cell Biology Research Group, Vrije Universiteit Brussel , Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Research Group, Vrije Universiteit Brussel , Brussels, Belgium
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medical Center , Berlin, Germany
| |
Collapse
|
74
|
Ly TD, Plümers R, Fischer B, Schmidt V, Hendig D, Kuhn J, Knabbe C, Faust I. Activin A-Mediated Regulation of XT-I in Human Skin Fibroblasts. Biomolecules 2020; 10:E609. [PMID: 32295230 PMCID: PMC7226200 DOI: 10.3390/biom10040609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/25/2022] Open
Abstract
Fibrosis is a fundamental feature of systemic sclerosis (SSc) and is characterized by excessive accumulation of extracellular matrix components like proteoglycans (PG) or collagens in skin and internal organs. Serum analysis from SSc patients showed an increase in the enzyme activity of xylosyltransferase (XT), the initial enzyme in PG biosynthesis. There are two distinct XT isoforms-XT-I and XT-II-in humans, but until now only XT-I is associated with fibrotic remodelling for an unknown reason. The aim of this study was to identify new XT mediators and clarify the underlying mechanisms, in view of developing putative therapeutic anti-fibrotic interventions in the future. Therefore, we used different cytokines and growth factors, small molecule inhibitors as well as small interfering RNAs, and assessed the cellular XT activity and XYLT1 expression in primary human dermal fibroblasts by radiochemical activity assays and qRT-PCR. We identified a new function of activin A as a regulator of XYLT1 mRNA expression and XT activity. While the activin A-induced XT-I increase was found to be mediated by activin A receptor type 1B, MAPK and Smad pathways, the activin A treatment did not alter the XYLT2 expression. Furthermore, we observed a reciprocal regulation of XYLT1 and XYLT2 transcription after inhibition of the activin A pathway components. These results improve the understanding of the differential expression regulation of XYLT isoforms under pathological fibroproliferative conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
75
|
Lambrou GI, Hatziagapiou K, Vlahopoulos S. Inflammation and tissue homeostasis: the NF-κB system in physiology and malignant progression. Mol Biol Rep 2020; 47:4047-4063. [PMID: 32239468 DOI: 10.1007/s11033-020-05410-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
Disruption of tissue function activates cellular stress which triggers a number of mechanisms that protect the tissue from further damage. These mechanisms involve a number of homeostatic modules, which are regulated at the level of gene expression by the transactivator NF-κB. This transcription factor shifts between activation and repression of discrete, cell-dependent gene expression clusters. Some of its target genes provide feedback to NF-κB itself, thereby strengthening the inflammatory response of the tissue and later terminating inflammation to facilitate restoration of tissue homeostasis. Disruption of key feedback modules for NF-κB in certain cell types facilitates the survival of clones with genomic aberrations, and protects them from being recognized and eliminated by the immune system, to enable thereby carcinogenesis.
Collapse
Affiliation(s)
- George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece.
| |
Collapse
|
76
|
Fu H, Gu YH, Yang YN, Liao S, Wang GH. MiR-200b/c family inhibits renal fibrosis through modulating epithelial-to-mesenchymal transition via targeting fascin-1/CD44 axis. Life Sci 2020; 252:117589. [PMID: 32220622 DOI: 10.1016/j.lfs.2020.117589] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Renal fibrosis is the characteristic of all kinds of chronic kidney diseases (CKDs). Fascin-1 plays an important role in tumor development, but the roles of fascin-1 in renal fibrosis have not been studied. Here, we explored the role of fascin-1 in renal fibrosis and the potential mechanisms. METHODS Kidney unilateral ureteral obstruction (UUO) mouse model was used as an in vivo model, and proximal tubule epithelial cell lines treated with TGF-β1 were used as in vitro model of renal fibrosis. Cell transfection was performed to manipulate the expression of miR-200b/c, fascin-1 and CD44. Western blotting, qRT-PCR, immunohistochemistry or immunofluorescence assays were used to measure levels of miR-200b/c, fascin-1, CD44, and fibrosis and EMT-related markers. H&E and Masson stainings were used to examine the degree of injury and fibrosis in kidneys. Dual luciferase assay was used to examine the interaction between miR-200b/c family and fascin-1. RESULTS Fascin-1 and CD44 levels were both significantly up-regulated while miR-200b/c family was reduced in models of renal fibrosis. Furthermore, overexpression of miR-200b/c family and inhibition of fascin-1 or CD44 ameliorated renal fibrosis through suppressing EMT process. Mechanistically, miR-200b/c family directly and negatively regulated the expression of fascin-1. Overexpression of fascin-1 could reverse the effects of miR-200b/c family on renal fibrosis, and fascin-1 regulated renal fibrosis by activating CD44. CONCLUSION Our study is the first to show that fascin-1 plays a critical role in renal fibrosis. MiR-200b/c family could inhibit renal fibrosis through modulating EMT process by directly targeting fascin-1/CD44 axis.
Collapse
Affiliation(s)
- Hua Fu
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha 410013, PR China
| | - Yong-Hong Gu
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha 410013, PR China
| | - Ye-Ning Yang
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha 410013, PR China
| | - Shan Liao
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha 410013, PR China
| | - Guo-Hui Wang
- Medical Laboratory Center, Third Xiangya Hospital, Central South University, Changsha 410013, PR China.
| |
Collapse
|
77
|
Guo J, Zeng H, Chen Y. Emerging Nano Drug Delivery Systems Targeting Cancer-Associated Fibroblasts for Improved Antitumor Effect and Tumor Drug Penetration. Mol Pharm 2020; 17:1028-1048. [PMID: 32150417 DOI: 10.1021/acs.molpharmaceut.0c00014] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jian Guo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Huating Zeng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| |
Collapse
|
78
|
Understanding the mechanisms that determine extracellular matrix remodeling in the infarcted myocardium. Biochem Soc Trans 2020; 47:1679-1687. [PMID: 31724697 DOI: 10.1042/bst20190113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
Abstract
Myocardial Infarction (MI) initiates a series of wound healing events that begins with up-regulation of an inflammatory response and culminates in scar formation. The extracellular matrix (ECM) is intricately involved in all stages from initial break down of existing ECM to synthesis of new ECM to form the scar. This review will summarize our current knowledge on the processes involved in ECM remodeling after MI and identify the gaps that still need to be filled.
Collapse
|
79
|
The life cycle of cancer-associated fibroblasts within the tumour stroma and its importance in disease outcome. Br J Cancer 2020; 122:931-942. [PMID: 31992854 PMCID: PMC7109057 DOI: 10.1038/s41416-019-0705-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/11/2019] [Accepted: 12/10/2019] [Indexed: 02/08/2023] Open
Abstract
The tumour microenvironment (TME) determines vital aspects of tumour development, such as tumour growth, metastases and response to therapy. Cancer-associated fibroblasts (CAFs) are abundant and extremely influential in this process and interact with cellular and matrix TME constituents such as endothelial and immune cells and collagens, fibronectin and elastin, respectively. However, CAFs are also the recipients of signals—both chemical and physical—that are generated by the TME, and their phenotype effectively evolves alongside the tumour mass during tumour progression. Amid a rising clinical interest in CAFs as a crucial force for disease progression, this review aims to contextualise the CAF phenotype using the chronological framework of the CAF life cycle within the evolving tumour stroma, ranging from quiescent fibroblasts to highly proliferative and secretory CAFs. The emergence, properties and clinical implications of CAF activation are discussed, as well as research strategies used to characterise CAFs and current clinical efforts to alter CAF function as a therapeutic strategy.
Collapse
|
80
|
Sacchi M, Bansal R, Rouwkema J. Bioengineered 3D Models to Recapitulate Tissue Fibrosis. Trends Biotechnol 2020; 38:623-636. [PMID: 31952833 DOI: 10.1016/j.tibtech.2019.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Fibrosis, characterized by progressive tissue stiffening resulting in organ failure, is a growing health problem affecting millions of people worldwide. Currently, therapeutic options for tissue fibrosis are severely limited and organ transplantation is the only effective treatment for the end-stage fibrotic diseases with inherent limitations. Recent advancements in engineered 3D in vitro human disease mimic models, recapitulating the tissue pathophysiology, have provided unique state-of-the-art platforms for: (i) understanding the biological mechanisms involved in the disease pathogenesis; and (ii) high-throughput and reproducible drug screening. This review focuses on the recent multidisciplinary developments made towards advanced 3D biomimetic fibrotic tissue (liver, kidney, and lung) models that combine highly precision manufacturing techniques with high cellular functionality and biophysical (mechanical) properties.
Collapse
Affiliation(s)
- Marta Sacchi
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
81
|
Tang H, Mao J, Ye X, Zhang F, Kerr WG, Zheng T, Zhu Z. SHIP-1, a target of miR-155, regulates endothelial cell responses in lung fibrosis. FASEB J 2019; 34:2011-2023. [PMID: 31907997 DOI: 10.1096/fj.201902063r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/22/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022]
Abstract
Src Homology 2-containing Inositol Phosphatase-1 (SHIP-1) is a target of miR-155, a pro-inflammatory factor. Deletion of the SHIP-1 gene in mice caused spontaneous lung inflammation and fibrosis. However, the role and function of endothelial miR-155 and SHIP-1 in lung fibrosis remain unknown. Using whole-body miR-155 knockout mice and endothelial cell-specific conditional miR-155 (VEC-Cre-miR-155 or VEC-miR-155) or SHIP-1 (VEC-SHIP-1) knockout mice, we assessed endothelial-mesenchymal transition (EndoMT) and fibrotic responses in bleomycin (BLM) induced lung fibrosis models. Primary mouse lung endothelial cells (MLEC) and human umbilical vein endothelial cells (HUVEC) with SHIP-1 knockdown were analyzed in TGF-β1 or BLM, respectively, induced fibrotic responses. Fibrosis and EndoMT were significantly reduced in miR-155KO mice and changes in EndoMT markers in MLEC after TGF-β1 stimulation confirmed the in vivo findings. Furthermore, lung fibrosis and EndoMT responses were reduced in VEC-miR-155 mice but significantly enhanced in VEC-SHIP-1 mice after BLM challenge. SHIP-1 knockdown in HUVEC cells resulted in enhanced EndoMT induced by BLM. Meanwhile, these changes involved the PI3K/AKT, JAK/STAT3, and SMAD/STAT signaling pathways. These studies demonstrate that endothelial miR-155 plays an important role in fibrotic responses in the lung through EndoMT. Endothelial SHIP-1 is essential in controlling fibrotic responses and SHIP-1 is a target of miR-155. Endothelial cells are an integral part in lung fibrosis.
Collapse
Affiliation(s)
- Haiying Tang
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT, USA.,Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jingwei Mao
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT, USA.,Department of Gastroenterology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xujun Ye
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT, USA
| | - Fengrui Zhang
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT, USA
| | - William G Kerr
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Tao Zheng
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT, USA.,Department of Molecular Microbiology and Immunology, Brown University Warren Alpert Medical School, Providence, RI, USA
| | - Zhou Zhu
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT, USA.,Department of Molecular Microbiology and Immunology, Brown University Warren Alpert Medical School, Providence, RI, USA
| |
Collapse
|
82
|
Vallée A, Lecarpentier Y. TGF-β in fibrosis by acting as a conductor for contractile properties of myofibroblasts. Cell Biosci 2019; 9:98. [PMID: 31827764 PMCID: PMC6902440 DOI: 10.1186/s13578-019-0362-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/30/2019] [Indexed: 12/21/2022] Open
Abstract
Myofibroblasts are non-muscle contractile cells that play a key physiologically role in organs such as the stem villi of the human placenta during physiological pregnancy. They are able to contract and relax in response to changes in the volume of the intervillous chamber. Myofibroblasts have also been observed in several diseases and are involved in wound healing and the fibrotic processes affecting several organs, such as the liver, lungs, kidneys and heart. During the fibrotic process, tissue retraction rather than contraction is correlated with collagen synthesis in the extracellular matrix, leading to irreversible fibrosis and, finally, apoptosis of myofibroblasts. The molecular motor of myofibroblasts is the non-muscle type IIA and B myosin (NMMIIA and NMMIIB). Fibroblast differentiation into myofibroblasts is largely governed by the transforming growth factor-β1 (TGF-β1). This system controls the canonical WNT/β-catenin pathway in a positive manner, and PPARγ in a negative manner. The WNT/β-catenin pathway promotes fibrosis, while PPARγ prevents it. This review focuses on the contractile properties of myofibroblasts and the conductor, TGF-β1, which together control the opposing interplay between PPARγ and the canonical WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- 1Délégation à la Recherche Clinique (DRCI), Hôpital Foch, Suresnes, France.,DACTIM-MIS, Laboratoire de Mathématiques et Applications (LMA), CNRS, UMR 7348, Université de Poitiers, CHU de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| |
Collapse
|
83
|
Liu J, Zhao B, Zhu H, Pan Q, Cai M, Bai X, Li X, Hu X, Zhang M, Shi J, Zheng Z, Yang A, Hu D. Wnt4 negatively regulates the TGF-β1-induced human dermal fibroblast-to-myofibroblast transition via targeting Smad3 and ERK. Cell Tissue Res 2019; 379:537-548. [PMID: 31776823 DOI: 10.1007/s00441-019-03110-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 09/22/2019] [Indexed: 12/15/2022]
Abstract
Abnormal activation of Wnt signaling has been demonstrated in the wound healing process and the pathogenesis of fibrotic disorders, with Wnt4 specifically identified as having a key role in the pathogenesis of renal, pulmonary and liver fibrosis. Wnt4 also was found to be upregulated by transforming growth factor-β1 (TGF-β1) in fetal and postnatal murine fibroblasts and bone marrow mesenchymal cells, suggesting an underlying cooperation between Wnt4 and TGF-β1 in fibrosis. However, the specific roles of Wnt4 in TGF-β1-induced skin myofibroblast transition and hypertrophic scar formation remain unclear. In the present study, we first observed reduced Wnt4 expression in hypertrophic scar tissue compared with that in normal skin tissue. Following upregulation by TGF-β1, Wnt4 inhibited the TGF-β1-induced transdifferentiation of fibroblasts into myofibroblasts. Using fibroblast-populated collagen lattice contraction assays, we showed that the increased contractility induced by TGF-β1 was significantly blocked by exogenous Wnt4 and the α-smooth muscle actin (α-SMA) expression was decreased in fibroblasts in the collagen lattices. In addition, knockdown of Wnt4 resulted in further increases in α-SMA and collagen I expressions. Further investigation showed that Wnt4 could inhibit the autocrine effect of TGF-β1 as well as block the phosphorylation of Smad3 and ERK but not of AKT or JNK. Lastly, using hypertrophic scar-derived fibroblasts, we showed that the elevated α-SMA and collagen I levels were markedly reduced after treatment with Wnt4. Taken together, our results suggest that Wnt4 negatively regulates TGF-β1-induced fibroblast activation, which may represent a novel therapeutic strategy for the treatment and prevention of hypertrophic scars.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Bin Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China.,School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Huayu Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Qing Pan
- Outpatient Department, The Second Artillery Engineering College, 18 Lishan Road, Xi'an, 710025, Shaanxi, China
| | - Mingda Cai
- The PLA 94062 troops Korla Air Force Hospital, Korla, 841000, Xinjiang, China
| | - Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Xiaoqiang Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Xiaolong Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Min Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Zhao Zheng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Angang Yang
- Department of Immunology, School of Preclinical Education, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
84
|
Rocher M, Robert PY, Desmoulière A. The myofibroblast, biological activities and roles in eye repair and fibrosis. A focus on healing mechanisms in avascular cornea. Eye (Lond) 2019; 34:232-240. [PMID: 31767967 DOI: 10.1038/s41433-019-0684-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 02/08/2023] Open
Abstract
Tissue healing is one of the mysteries of modern medicine. Healing involves complex processes and many cellular types, amongst which the myofibroblast plays a major role. In the eye, when needed, myofibroblasts can be found from the cornea to the retina, derived from a wide variety of different cells, and aimed at effectively repairing tissue damage. Myofibroblast differentiation requires transforming growth factor (TGF)-β1, the presence of specific extracellular matrix components such as the ED-A domain of fibronectin, and mechanical tension. Control of this process may, in some cases, be abnormal leading to development of fibrotic tissue, which alters and compromises the integrity of the original tissue. The eye is no exception to this rule with normal visual function, a highly demanding process, only possible in a fully integrated organ. The cornea, a transparent protective tissue and first dioptre of the eye, has the particularity of being entirely avascular and very richly innervated under normal physiological conditions. However, these anatomical features do not prevent it from developing myofibroblasts in the event of a deep corneal lesion. Activated by growth factors such as TGF-β1 and platelet-derived growth factor from the aqueous humour, tears or corneal epithelial cells, myofibroblasts can cause corneal scarring, sometimes with devastating consequences. Understanding the factors involved in healing and its signalling pathways, will potentially enable us to control corneal healing in the future, and thus avoid fibrotic ocular surface disease and the blindness that this may induce. Currently, this issue is the subject of very active research and development with the aim of discovering new antifibrotic therapies.
Collapse
Affiliation(s)
- Maxime Rocher
- Department of Ophthalmology, Limoges University Hospital, F-87000, Limoges, France
| | - Pierre-Yves Robert
- Department of Ophthalmology, Limoges University Hospital, F-87000, Limoges, France
| | - Alexis Desmoulière
- Department of Physiology and EA 6309, Faculties of Medicine and Pharmacy, University of Limoges, F-87000, Limoges, France.
| |
Collapse
|
85
|
Deficiency of the adrenomedullin-RAMP3 system suppresses metastasis through the modification of cancer-associated fibroblasts. Oncogene 2019; 39:1914-1930. [PMID: 31754214 DOI: 10.1038/s41388-019-1112-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023]
Abstract
Tumor metastasis is a primary source of morbidity and mortality in cancer. Adrenomedullin (AM) is a multifunctional peptide regulated by receptor activity-modifying proteins (RAMPs). We previously reported that the AM-RAMP2 system is involved in tumor angiogenesis, but the function of the AM-RAMP3 system remains largely unknown. Here, we investigated the actions of the AM-RAMP2 and 3 systems in the tumor microenvironment and their impact on metastasis. PAN02 pancreatic cancer cells were injected into the spleens of mice, leading to spontaneous liver metastasis. Tumor metastasis was enhanced in vascular endothelial cell-specific RAMP2 knockout mice (DI-E-RAMP2-/-). By contrast, metastasis was suppressed in RAMP3-/- mice, where the number of podoplanin (PDPN)-positive cancer-associated fibroblasts (CAFs) was reduced in the periphery of tumors at metastatic sites. Because PDPN-positive CAFs are a hallmark of tumor malignancy, we assessed the regulation of PDPN and found that Src/Cas/PDPN signaling is mediated by RAMP3. In fact, RAMP3 deficiency CAFs suppressed migration, proliferation, and metastasis in co-cultures with tumor cells in vitro and in vivo. Moreover, the activation of RAMP2 in RAMP3-/- mice suppressed both tumor growth and metastasis. Based on these results, we suggest that the upregulation of PDPN in DI-E-RAMP2-/- mice increases malignancy, while the downregulation of PDPN in RAMP3-/- mice reduces it. Selective activation of RAMP2 and inhibition of RAMP3 would therefore be expected to suppress tumor metastasis. This study provides the first evidence that understanding and targeting to AM-RAMP systems could contribute to the development of novel therapeutics against metastasis.
Collapse
|
86
|
Pakharukova MY, Zaparina OG, Kovner AV, Mordvinov VA. Inhibition of Opisthorchis felineus glutathione-dependent prostaglandin synthase by resveratrol correlates with attenuation of cholangiocyte neoplasia in a hamster model of opisthorchiasis. Int J Parasitol 2019; 49:963-973. [PMID: 31628937 DOI: 10.1016/j.ijpara.2019.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022]
Abstract
Food-borne trematodiases represent major neglected parasitic diseases. Trematodes of the family Opisthorchiidae including Opisthorchis felineus, Opisthorchis viverrini and Clonorchis sinensis are ranked eight on the global list of the 24 most prevalent food-borne parasites. Chronic O. felineus infection symptoms include precancerous lesions with the potential for malignancy. In recent decades, liver flukes of the family Opisthorchiidae have been extensively scientifically explored, however despite this the molecular mechanisms of O. felineus pathogenicity and its carcinogenic potential have not been studied. Opisthorchis felineus glutathione-dependent prostaglandin synthase (GST σ) is the major component of the excretory-secretory product of this liver fluke. We hypothesised that the activity of this enzyme is involved in the infection pathogenesis, including the formation of precancerous lesions. To test this hypothesis and to gain insights into the mechanisms of precancerous lesion formation, we (i) investigated whether excretory parasitic GST σ retains its enzymatic activity, (ii) tested resveratrol (RSV) as a possible inhibitor of this enzyme, and (iii) assessed biliary neoplasia and oxidative DNA damage as well as the expression of neoplasia and fibrogenesis marker genes after prolonged administration of RSV in a hamster model. RSV was found to inhibit GST σ enzymatic activity in a dose-dependent manner (R = 0.85, P < 0.001; half-maximal effective dose (ED50) = 48.6 μM). Prolonged administration of RSV significantly suppressed high-grade biliary neoplasia (P = 0.008), attenuated upregulation of hyperplasia and fibrogenesis-related genes (Tgfb, α-SMA and CK7), and decreased the elevated oxidative DNA damage. Taking into account that RSV can influence a wide range of pathways, further research is needed to confirm the role of GST σ in O. felineus pathogenicity. Nevertheless, the chemopreventive effect of RSV targeting biliary neoplasia formation might be useful for improving the outcomes in infected populations and represents a compelling rationale for RSV testing in combination chemotherapy of opisthorchiasis.
Collapse
Affiliation(s)
- Maria Y Pakharukova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia.
| | - Oxana G Zaparina
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Anna V Kovner
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Viatcheslav A Mordvinov
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
87
|
Zhu Y, Yu F, Tan Y, Yuan H, Hu F. Strategies of targeting pathological stroma for enhanced antitumor therapies. Pharmacol Res 2019; 148:104401. [DOI: 10.1016/j.phrs.2019.104401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022]
|
88
|
Lima JD, Simoes E, de Castro G, Morais MRP, de Matos‐Neto EM, Alves MJ, Pinto NI, Figueredo RG, Zorn TM, Felipe‐Silva AS, Tokeshi F, Otoch JP, Alcantara P, Cabral FJ, Ferro ES, Laviano A, Seelaender M. Tumour-derived transforming growth factor-β signalling contributes to fibrosis in patients with cancer cachexia. J Cachexia Sarcopenia Muscle 2019; 10:1045-1059. [PMID: 31273954 PMCID: PMC6818454 DOI: 10.1002/jcsm.12441] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cachexia is a paraneoplastic syndrome related with poor prognosis. The tumour micro-environment contributes to systemic inflammation and increased oxidative stress as well as to fibrosis. The aim of the present study was to characterise the inflammatory circulating factors and tumour micro-environment profile, as potentially contributing to tumour fibrosis in cachectic cancer patients. METHODS 74 patients (weight stable cancer n = 31; cachectic cancer n = 43) diagnosed with colorectal cancer were recruited, and tumour biopsies were collected during surgery. Multiplex assay was performed to study inflammatory cytokines and growth factors. Immunohistochemistry analysis was carried out to study extracellular matrix components. RESULTS Higher protein expression of inflammatory cytokines and growth factors such as epidermal growth factor, granulocyte-macrophage colony-stimulating factor, interferon-α, and interleukin (IL)-8 was observed in the tumour and serum of cachectic cancer patients in comparison with weight-stable counterparts. Also, IL-8 was positively correlated with weight loss in cachectic patients (P = 0.04; r = 0.627). Immunohistochemistry staining showed intense collagen deposition (P = 0.0006) and increased presence of α-smooth muscle actin (P < 0.0001) in tumours of cachectic cancer patients, characterizing fibrosis. In addition, higher transforming growth factor (TGF)-β1, TGF-β2, and TGF-β3 expression (P = 0.003, P = 0.05, and P = 0.047, respectively) was found in the tumour of cachectic patients, parallel to p38 mitogen-activated protein kinase alteration. Hypoxia-inducible factor-1α mRNA content was significantly increased in the tumour of cachectic patients, when compared with weight-stable group (P = 0.005). CONCLUSIONS Our results demonstrate TGF-β pathway activation in the tumour in cachexia, through the (non-canonical) mitogen-activated protein kinase pathway. The results show that during cachexia, intratumoural inflammatory response contributes to the onset of fibrosis. Tumour remodelling, probably by TGF-β-induced transdifferentiation of fibroblasts to myofibroblasts, induces unbalanced inflammatory cytokine profile, angiogenesis, and elevation of extracellular matrix components (EMC). We speculate that these changes may affect tumour aggressiveness and present consequences in peripheral organs.
Collapse
Affiliation(s)
- Joanna D.C.C. Lima
- Cancer Metabolism Research Group, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Estefania Simoes
- Cancer Metabolism Research Group, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Gabriela de Castro
- Cancer Metabolism Research Group, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Mychel Raony P.T. Morais
- Cancer Metabolism Research Group, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | | | - Michele J. Alves
- Cancer Metabolism Research Group, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
- Department of PathologyOhio State UniversityColumbusOHUSA
| | - Nelson I. Pinto
- Department of PhysiologyFederal University of São PauloSão PauloBrazil
| | - Raquel G. Figueredo
- Cancer Metabolism Research Group, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Telma M.T. Zorn
- Cancer Metabolism Research Group, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | | | - Flavio Tokeshi
- Department of Clinical SurgeryUniversity of São PauloSão PauloBrazil
| | - José P. Otoch
- Department of Clinical SurgeryUniversity of São PauloSão PauloBrazil
| | - Paulo Alcantara
- Department of Clinical SurgeryUniversity of São PauloSão PauloBrazil
| | | | - Emer S. Ferro
- Department of PharmacologyUniversity of São PauloSão PauloBrazil
| | | | - Marilia Seelaender
- Cancer Metabolism Research Group, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
- Department of Clinical SurgeryUniversity of São PauloSão PauloBrazil
| |
Collapse
|
89
|
Abstract
Carbon nanotubes (CNTs) are nanomaterials with unique physicochemical properties that are targets of great interest for industrial and commercial applications. Notwithstanding, some characteristics of CNTs are associated with adverse outcomes from exposure to pathogenic particulates, raising concerns over health risks in exposed workers and consumers. Indeed, certain forms of CNTs induce a range of harmful effects in laboratory animals, among which inflammation, fibrosis, and cancer are consistently observed for some CNTs. Inflammation, fibrosis, and malignancy are complex pathological processes that, in summation, underlie a major portion of human disease. Moreover, the functional interrelationship among them in disease pathogenesis has been increasingly recognized. The CNT-induced adverse effects resemble certain human disease conditions, such as pneumoconiosis, idiopathic pulmonary fibrosis (IPF), and mesothelioma, to some extent. Progress has been made in understanding CNT-induced pathologic conditions in recent years, demonstrating a close interconnection among inflammation, fibrosis, and cancer. Mechanistically, a number of mediators, signaling pathways, and cellular processes are identified as major mechanisms that underlie the interplay among inflammation, fibrosis, and malignancy, and serve as pathogenic bases for these disease conditions in CNT-exposed animals. These studies indicate that CNT-induced pathological effects, in particular, inflammation, fibrosis, and cancer, are mechanistically, and in some cases, causatively, interrelated. These findings generate new insights into CNT adverse effects and pathogenesis and provide new targets for exposure monitoring and drug development against inflammation, fibrosis, and cancer caused by inhaled nanomaterials.
Collapse
Affiliation(s)
- Jie Dong
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown , WV , USA
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown , WV , USA
| |
Collapse
|
90
|
Zhu Y, Yu F, Tan Y, Hong Y, Meng T, Liu Y, Dai S, Qiu G, Yuan H, Hu F. Reversing activity of cancer associated fibroblast for staged glycolipid micelles against internal breast tumor cells. Am J Cancer Res 2019; 9:6764-6779. [PMID: 31660067 PMCID: PMC6815968 DOI: 10.7150/thno.36334] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023] Open
Abstract
Rationale: Nano-carrier based combinational therapies for tumor cells hold great potential to improve the outcomes of patients. However, cancer associated fibroblasts (CAFs) in desmoplastic tumors and the derived pathological tumor stroma severely impede the access and sensitibity of tumor cells to antitumor therapies. Methods: Glycolipid-based polymeric micelles (GLPM) were developed to encapsulate an angiotensin II receptor I inhibitor (telmisartan, Tel) and a cytotoxic drug (doxorubicin, DOX) respectively, which could exert combinational antitumor efficacy by reprogramming tumor microenvironment to expose the vulnerability of internal tumor cells. Results: As demonstrated, α-SMA positive CAFs significantly decreased after the pre-administration of GLPM/Tel in vitro, which accordingly inhibited the secretion of the CAFs derived stroma. The tumor vessels were further decompressed as a result of the alleviated solid stress inside the tumor masses, which promoted more intratumoral drug delivery and penetration. Ultimately, staged administration of the combined GLPM/Tel and GLPM/DOX at the screened molar ratio not only inhibited the stroma continuously, but also achieved a synergistic antitumor effect through the apoptosis-related peroxisome proliferator-activated receptor-gamma (PPAR-γ) pathway. Conclusion: In summary, the strategy of suppressing tumor stroma for subsequent combinational therapies against internal breast tumor cells could provide avenues for management of intractable desmoplastic tumors.
Collapse
|
91
|
Lee EH, Park KI, Kim KY, Lee JH, Jang EJ, Ku SK, Kim SC, Suk HY, Park JY, Baek SY, Kim YW. Liquiritigenin inhibits hepatic fibrogenesis and TGF-β1/Smad with Hippo/YAP signal. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152780. [PMID: 31121384 DOI: 10.1016/j.phymed.2018.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 11/23/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Recent reports highlighted the possibility that Yes-associated protein (YAP) and transforming growth factor-β1 (TGF-β1) can act as critical regulators of hepatic stellate cells (HSCs) activation; therefore, it is natural for compounds targeting Hippo/YAP and TGF-β1/Smad signaling pathways to be identified as potential anti-fibrotic candidates. PURPOSE Liquiritigenin (LQ) is an aglycone of liquiritin and has been reported to protect the liver from injury. However, its effects on the Hippo/YAP and TGF-β1/Smad pathways have not been identified to date. METHODS We conducted a series of experiments using CCl4-induced fibrotic mice and cultured LX-2 cells. RESULT LQ significantly inhibited liver fibrosis, as indicated by decreases in regions of hepatic degeneration, inflammatory cell infiltration, and the intensity of α-smooth muscle actin (α-SMA) staining in mice. Moreover, LQ blocked the TGF-β1-induced phosphorylation of Smad 3, and the transcript levels of plasminogen activator inhibitor-1 (PAI-1) and matrix metalloproteinase-2 (MMP-2) in LX-2 cells, which is similar with resveratrol and oxyresveratrol (positive controls). Furthermore, LQ increased activation of large tumor suppressor kinase 1 (LATS1) with the induction of YAP phosphorylation, thereby preventing YAP transcriptional activity and suppressing the expression of exacerbated TGF-β1/Smad signaling molecules. CONCLUSION These results clearly show that LQ ameliorated experimental liver fibrosis by acting on the TGF-β1/Smad and Hippo/YAP pathways, indicating that LQ has the potential for effective treatment of liver fibrosis.
Collapse
Affiliation(s)
- Eun Hye Lee
- Department of Pathology, School of Medical Science, Kyungpook National University, Daegu 41566, South Korea
| | - Kwang-Il Park
- Korea Institute of Oriental Medicine, Daegu 41062, South Korea
| | - Kwang-Youn Kim
- Korea Institute of Oriental Medicine, Daegu 41062, South Korea
| | - Ju-Hee Lee
- College of Korean Medicine, Dongguk University, Gyeongju 38066, South Korea
| | - Eun Jeong Jang
- College of Oriental Medicine, Daegu Haany University, Gyeongsan 38610, South Korea
| | - Sae Kwang Ku
- College of Oriental Medicine, Daegu Haany University, Gyeongsan 38610, South Korea
| | - Sang Chan Kim
- College of Oriental Medicine, Daegu Haany University, Gyeongsan 38610, South Korea
| | - Ho Young Suk
- Yeungnam University, Gyeongsan 38541, South Korea
| | - Ji Young Park
- Department of Pathology, School of Medical Science, Kyungpook National University, Daegu 41566, South Korea
| | - Su Youn Baek
- College of Oriental Medicine, Daegu Haany University, Gyeongsan 38610, South Korea.
| | - Young Woo Kim
- College of Korean Medicine, Dongguk University, Gyeongju 38066, South Korea; College of Oriental Medicine, Daegu Haany University, Gyeongsan 38610, South Korea.
| |
Collapse
|
92
|
Regulation of Endothelial-to-Mesenchymal Transition by MicroRNAs in Chronic Allograft Dysfunction. Transplantation 2019; 103:e64-e73. [PMID: 30907855 DOI: 10.1097/tp.0000000000002589] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fibrosis is a universal finding in chronic allograft dysfunction, and it is characterized by an accumulation of extracellular matrix. The precise source of the myofibroblasts responsible for matrix deposition is not understood, and pharmacological strategies for prevention or treatment of fibrosis remain limited. One source of myofibroblasts in fibrosis is an endothelial-to-mesenchymal transition (EndMT), a process first described in heart development and involving endothelial cells undergoing a phenotypic change to become more like mesenchymal cells. Recently, lineage tracing of endothelial cells in mouse models allowed studies of EndMT in vivo and reported 27% to 35% of myofibroblasts involved in cardiac fibrosis and 16% of isolated fibroblasts in bleomycin-induced pulmonary fibrosis to be of endothelial origin. Over the past decade, mature microRNAs (miRNAs) have increasingly been described as key regulators of biological processes through repression or degradation of targeted mRNA. The stability and abundance of miRNAs in body fluids make them attractive as potential biomarkers, and progress is being made in developing miRNA targeted therapeutics. In this review, we will discuss the evidence of miRNA regulation of EndMT from in vitro and in vivo studies and the potential relevance of this to heart, lung, and kidney allograft dysfunction.
Collapse
|
93
|
Li Y, Xiao Z, Zhou Y, Zheng S, An Y, Huang W, He H, Yang Y, Li S, Chen Y, Xiao J, Wu J. Controlling the Multiscale Network Structure of Fibers To Stimulate Wound Matrix Rebuilding by Fibroblast Differentiation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28377-28386. [PMID: 31251577 DOI: 10.1021/acsami.9b06439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The extracellular matrix (ECM) plays the role of a double-edged sword for controlling the differentiation of fibroblasts toward contractile myofibroblasts in the wound healing process. However, the exact structure-function relationship between ECM morphology and fibroblast behaviors still remains unclear. To better understand this relationship, herein, we designed and prepared a series of biocompatible polycaprolactone (PCL)-based fibers with different fiber diameters (nano vs micro) and different alignments (random vs aligned) using a simple electrospinning process, with a particular attention to the morphological effect of PCL fiber scaffolds on guiding fibroblast behaviors. Microfibers with the larger fiber diameters induce less cell spreading, adhesion, differentiation, and migration because of their lower surface tension. In contrast, nanofibers will retain fibroblast cells with typical spindle shapes and promote the expression of focal adhesion proteins through the integrin pathway. Furthermore, nanofibers upregulate the expression of α-smooth muscle actin (α-SMA), transforming growth factor, and vimentin filaments, indicating that the size change of the PCL fiber matrix from micrometers to nanometers indeed alters fibroblast differentiation to activate more α-SMA-expressed contractile myofibroblasts. Such a fiber size-dependent fibroblast behavior is largely attributed to the enhanced surface tension from the dressing matrix, which helps to promote the conversion of fibroblasts to myofibroblasts via either tissue regeneration or fibrosis. Therefore, this work further indicated that the rearrangement of collagen from nano-tropocollagen to micro-collagen bundles during the wound healing process can reverse fibroblasts to myofibroblasts from motivated to demise. This finding allows us to achieve the structural-based design of a new fibrous matrix for promoting wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Yi Li
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , P. R. China
- The Third Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325200 , P. R. China
| | - Zecong Xiao
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , P. R. China
| | - Yajiao Zhou
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , P. R. China
| | - Sen Zheng
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , P. R. China
| | - Ying An
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , P. R. China
| | - Wen Huang
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , P. R. China
| | - Huacheng He
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou , Zhejiang 325027 , P. R. China
| | - Yao Yang
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou , Zhejiang 325027 , P. R. China
| | - Shengyu Li
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou , Zhejiang 325027 , P. R. China
| | - Yanxin Chen
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou , Zhejiang 325027 , P. R. China
| | - Jian Xiao
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , P. R. China
| | - Jiang Wu
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , P. R. China
| |
Collapse
|
94
|
M10 peptide attenuates silica-induced pulmonary fibrosis by inhibiting Smad2 phosphorylation. Toxicol Appl Pharmacol 2019; 376:46-57. [DOI: 10.1016/j.taap.2019.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 01/06/2023]
|
95
|
Yeung TL, Leung CS, Yip KP, Sheng J, Vien L, Bover LC, Birrer MJ, Wong STC, Mok SC. Anticancer Immunotherapy by MFAP5 Blockade Inhibits Fibrosis and Enhances Chemosensitivity in Ovarian and Pancreatic Cancer. Clin Cancer Res 2019; 25:6417-6428. [PMID: 31332047 DOI: 10.1158/1078-0432.ccr-19-0187] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/01/2019] [Accepted: 07/09/2019] [Indexed: 01/03/2023]
Abstract
PURPOSE Recent studies demonstrate the role of the tumor microenvironment in tumor progression. However, strategies used to overcome the malignant phenotypes of cancer cells modulated by the microenvironment have not been thoroughly explored. In this study, we evaluated the therapeutic efficacy of a newly developed mAb targeting microfibril-associated protein 5 (MFAP5), which is secreted predominately by cancer-associated fibroblast (CAF), in ovarian and pancreatic cancer models.Experimental Design: MAbs were developed using human MFAP5 recombinant protein as an antigen in mice, and antibodies from hybridoma clones were evaluated for their specificity to human and murine MFAP5. An Octet RED384 system was used to determine the kinetics of binding affinity and the specificity of the antibody clones, which were followed by epitope mapping and functional characterization by in vitro assays. The therapeutic efficacy of a lead anti-MFAP5 antibody clone 130A in tumor suppression was evaluated by ovarian tumor- and pancreatic tumor-bearing mouse models. RESULTS Three hybridoma clones, which produced antibodies with high affinity and specificity to MFAP5, were selected for functional studies. Antibody clone 130A, which recognizes a common epitope shared between human and murine MFAP5 protein, was further selected for in vivo studies. Results showed that clone 130A downregulated MFAP5-induced collagen production in CAFs, suppressed intratumoral microvessel leakiness, and enhanced paclitaxel bioavailability in both ovarian and pancreatic cancer mouse models. CONCLUSIONS These data suggest that MFAP5 blockade using an immunologic approach inhibits fibrosis, induces tumor vessel normalization, and enhances chemosensitivity in ovarian and pancreatic cancer, and can be used as a novel therapeutic agent.
Collapse
Affiliation(s)
- Tsz-Lun Yeung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cecilia S Leung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kay-Pong Yip
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Jianting Sheng
- Department of Systems Medicine and Bioengineering, Houston Methodist Cancer Center, Weill Cornell Medical College, Houston, Texas
| | - Long Vien
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laura C Bover
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Michael J Birrer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Cancer Center, Weill Cornell Medical College, Houston, Texas. .,NCI Center for Modeling Cancer Development, Houston Methodist Research Institute, Houston, Texas
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| |
Collapse
|
96
|
The Use of Antifibrotic Recombinant nAG Protein in a Rat Liver Fibrosis Model. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9846919. [PMID: 31275996 PMCID: PMC6582902 DOI: 10.1155/2019/9846919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/22/2019] [Indexed: 11/17/2022]
Abstract
Objectives The “nAG” protein is the key protein mediating the regeneration of amputated limbs in salamanders. The senior author (MMA) developed the original hypothesis that since “nAG” is a “regenerative” protein, it must be also an “antifibrotic' protein. The antifibrotic properties were later confirmed in a rabbit skin hypertrophic scar model as well as in a rat spinal cord injury model. The aim of this study is to evaluate the potential therapeutic properties of the nAG protein in a rat liver fibrosis model. Methodology Liver fibrosis was induced using intraperitoneal injections of carbon tetrachloride (CCL4). A total of 45 rats were divided equally into 3 groups: Group I (the control group) received normal saline injections for 8 weeks, Group II received CCL4 for 8 weeks, and Group III received CCL4 and nAG for 8 weeks. At the end of the experiment, the serum levels of 6 proteins (hyaluronic acid, PDGF-AB, TIMP-1, laminin, procollagen III N-terminal peptide, and collagen IV-alpha 1 chain) were measured. Liver biopsies were also taken and the stages of live fibrosis were assessed histologically. Results The CCL4 treatment resulted in a significant increase in the serum levels of all 6 measured proteins. The nAG treatment significantly reduced these high levels. The degree of liver fibrosis was also significantly reduced in the CCL4/nAG group compared to the CCL4 group. Conclusions nAG treatment was able to significantly reduce the serum levels of several protein markers of liver fibrosis and also significantly reduced the histological degree of liver fibrosis.
Collapse
|
97
|
Mahadevan KK, Arora KS, Amzallag A, Williams E, Kulkarni AS, Fernandez-Del Castillo C, Lillemoe KD, Bardeesy N, Hong TS, Ferrone CR, Ting DT, Deshpande V. Quasimesenchymal phenotype predicts systemic metastasis in pancreatic ductal adenocarcinoma. Mod Pathol 2019; 32:844-854. [PMID: 30683911 PMCID: PMC7755428 DOI: 10.1038/s41379-018-0196-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 01/07/2023]
Abstract
Metastasis following surgical resection is a leading cause of mortality in pancreatic ductal adenocarcinoma. Epithelial-mesenchymal transition is thought to play an important role in metastasis, although its clinical relevance in metastasis remains uncertain. We evaluated a panel of RNA in-situ hybridization probes for epithelial-mesenchymal transition-related genes expressed in circulating tumor cells. We assessed the predictive value of this panel for metastasis in pancreatic ductal adenocarcinoma and, to determine if the phenotype is generalizable between cancers, in colonic adenocarcinoma. One hundred fifty-eight pancreatic ductal adenocarcinomas and 205 colonic adenocarcinomas were classified as epithelial or quasimesenchymal phenotype using dual colorimetric RNA-in-situ hybridization. SMAD4 expression on pancreatic ductal adenocarcinomas was assessed by immunohistochemistry. Pancreatic ductal adenocarcinomas with quasimesenchymal phenotype had a significantly shorter disease-specific survival (P = 0.031) and metastasis-free survival (P = 0.0001) than those with an epithelial phenotype. Pancreatic ductal adenocarcinomas with SMAD4 loss also had lower disease-specific survival (P = 0.041) and metastasis-free survival (P = 0.001) than those with intact SMAD4. However, the quasimesenchymal phenotype proved a more robust predictor of metastases-area under the curve for quasimesenchymal = 0.8; SMAD4 = 0.6. The quasimesenchymal phenotype also predicted metastasis-free survival (P = 0.004) in colonic adenocarcinoma. Epithelial-mesenchymal transition defined two phenotypes with distinct metastatic capabilities-epithelial phenotype tumors with predominantly organ-confined disease and quasimesenchymal phenotype with high risk of metastatic disease in two epithelial malignancies. Collectively, this work validates the relevance of epithelial-mesenchymal transition in human gastrointestinal tumors.
Collapse
Affiliation(s)
- Krishnan K Mahadevan
- Department of Pathology, Massachusetts General Hospital, Boston, MA and Harvard Medical School, Boston, MA, USA
| | - Kshitij S Arora
- Department of Pathology, Massachusetts General Hospital, Boston, MA and Harvard Medical School, Boston, MA, USA
| | - Arnaud Amzallag
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA and Harvard Medical School, Boston, MA, USA
| | - Erik Williams
- Department of Pathology, Massachusetts General Hospital, Boston, MA and Harvard Medical School, Boston, MA, USA
| | - Anupriya S Kulkarni
- Department of Medicine, Division of Oncology, Massachusetts General Hospital, Boston, MA and Harvard Medical School, Boston, MA, USA
| | | | - Keith D Lillemoe
- Department of Surgery, Massachusetts General Hospital, Boston, MA and Harvard Medical School, Boston, MA, USA
| | - Nabeel Bardeesy
- Department of Medicine, Division of Oncology, Massachusetts General Hospital, Boston, MA and Harvard Medical School, Boston, MA, USA
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA and Harvard Medical School, Boston, MA, USA
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital, Boston, MA and Harvard Medical School, Boston, MA, USA
| | - David T Ting
- Department of Medicine, Division of Oncology, Massachusetts General Hospital, Boston, MA and Harvard Medical School, Boston, MA, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, MA and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
98
|
Kim CL, Choi SH, Mo JS. Role of the Hippo Pathway in Fibrosis and Cancer. Cells 2019; 8:cells8050468. [PMID: 31100975 PMCID: PMC6562634 DOI: 10.3390/cells8050468] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022] Open
Abstract
The Hippo pathway is the key player in various signaling processes, including organ development and maintenance of tissue homeostasis. This pathway comprises a core kinases module and transcriptional activation module, representing a highly conserved mechanism from Drosophila to vertebrates. The central MST1/2-LATS1/2 kinase cascade in this pathway negatively regulates YAP/TAZ transcription co-activators in a phosphorylation-dependent manner. Nuclear YAP/TAZ bind to transcription factors to stimulate gene expression, contributing to the regenerative potential and regulation of cell growth and death. Recent studies have also highlighted the potential role of Hippo pathway dysfunctions in the pathology of several diseases. Here, we review the functional characteristics of the Hippo pathway in organ fibrosis and tumorigenesis, and discuss its potential as new therapeutic targets.
Collapse
Affiliation(s)
- Cho-Long Kim
- Department of Biomedical Sciences, Cancer Biology Graduate Program, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Sue-Hee Choi
- Department of Biomedical Sciences, Cancer Biology Graduate Program, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Jung-Soon Mo
- Genomic Instability Research Center (GIRC), Ajou University School of Medicine, Suwon 16499, Korea.
| |
Collapse
|
99
|
Sala L, Franco-Valls H, Stanisavljevic J, Curto J, Vergés J, Peña R, Duch P, Alcaraz J, García de Herreros A, Baulida J. Abrogation of myofibroblast activities in metastasis and fibrosis by methyltransferase inhibition. Int J Cancer 2019; 145:3064-3077. [PMID: 31032902 DOI: 10.1002/ijc.32376] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/28/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
Myofibroblasts are a population of highly contractile fibroblasts that express and require the activity of the transcription factor Snail1. Cancer-associated fibroblasts (CAFs) correlate with low survival of cancer patients when present in the stroma of primary tumors. Remarkably, the presence of myofibroblastic CAFs (which express Snail1) creates mechanical properties in the tumor microenvironment that support metastasis. However, therapeutic blockage of fibroblast activity in patients with cancer is a double-edged sword, as normal fibroblast activities often restrict tumor cell invasion. We used fibroblasts depleted of Snail1 or protein arginine methyltransferases 1 and 4 (PRMT1/-4) to identify specific epigenetic modifications induced by TGFβ/Snail1. Furthermore, we analyzed the in vivo efficiency of methyltransferase inhibitors using mouse models of wound healing and metastasis, as well as fibroblasts isolated from patients with idiopathic pulmonary fibrosis (IPF). Mechanistically, TGFβ-induced Snail1 promotes the epigenetic mark of asymmetrically dimethylated arginine. Critically, we found that inhibitors of methyltransferases prevent myofibroblast activity (but not regular fibroblast activity) in the extracellular matrix, both in cell culture and in vivo. In a mouse breast cancer model, the inhibitor sinefungin reduces both the myofibroblast activity in the tumor stroma and the metastatic burden in the lung. Two distinct inhibitors effectively blocked the exacerbated myofibroblast activity of patient-derived IPF fibroblasts. Our data reveal epigenetic regulation of myofibroblast transdifferentiation in both wound healing and in disease (fibrosis and breast cancer). Thus, methyltransferase inhibitors are good candidates as therapeutic reagents for these diseases.
Collapse
Affiliation(s)
- Laura Sala
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Héctor Franco-Valls
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Jelena Stanisavljevic
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Josue Curto
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Department of Cancer Biology, MD Anderson Cancer Center, Houston, Texas
| | - Jordi Vergés
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Raúl Peña
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Paula Duch
- Unitat de Biofísica i Bioenginyeria, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut - Universitat de Barcelona (UB), Barcelona, Spain
| | - Jordi Alcaraz
- Unitat de Biofísica i Bioenginyeria, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut - Universitat de Barcelona (UB), Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Josep Baulida
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| |
Collapse
|
100
|
Rehman M, Vodret S, Braga L, Guarnaccia C, Celsi F, Rossetti G, Martinelli V, Battini T, Long C, Vukusic K, Kocijan T, Collesi C, Ring N, Skoko N, Giacca M, Del Sal G, Confalonieri M, Raspa M, Marcello A, Myers MP, Crovella S, Carloni P, Zacchigna S. High-throughput screening discovers antifibrotic properties of haloperidol by hindering myofibroblast activation. JCI Insight 2019; 4:123987. [PMID: 30996132 PMCID: PMC6538355 DOI: 10.1172/jci.insight.123987] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/14/2019] [Indexed: 12/23/2022] Open
Abstract
Fibrosis is a hallmark in the pathogenesis of various diseases, with very limited therapeutic solutions. A key event in the fibrotic process is the expression of contractile proteins, including α-smooth muscle actin (αSMA) by fibroblasts, which become myofibroblasts. Here, we report the results of a high-throughput screening of a library of approved drugs that led to the discovery of haloperidol, a common antipsychotic drug, as a potent inhibitor of myofibroblast activation. We show that haloperidol exerts its antifibrotic effect on primary murine and human fibroblasts by binding to sigma receptor 1, independent from the canonical transforming growth factor-β signaling pathway. Its mechanism of action involves the modulation of intracellular calcium, with moderate induction of endoplasmic reticulum stress response, which in turn abrogates Notch1 signaling and the consequent expression of its targets, including αSMA. Importantly, haloperidol also reduced the fibrotic burden in 3 different animal models of lung, cardiac, and tumor-associated fibrosis, thus supporting the repurposing of this drug for the treatment of fibrotic conditions.
Collapse
Affiliation(s)
| | | | | | - Corrado Guarnaccia
- Biotechnology Development, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Fulvio Celsi
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo,” Trieste, Italy
| | - Giulia Rossetti
- Computational Biomedicine Section, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | | | | | | | | - Chiara Collesi
- Molecular Medicine, and
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Natasa Skoko
- Biotechnology Development, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine, and
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giannino Del Sal
- National Laboratory CIB, Area Science Park Padriciano, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Marco Confalonieri
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Marcello Raspa
- National Research Council, CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo Scalo, Rome, Italy
| | | | - Michael P. Myers
- Protein Networks Laboratories, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Sergio Crovella
- Biotechnology Development, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Paolo Carloni
- Computational Biomedicine Section, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Serena Zacchigna
- Cardiovascular Biology
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|