51
|
Application of Remote Sensing to Assess the Biophysical Characteristics of Palm Oil Trees for Ecological Study. JOURNAL OF LANDSCAPE ECOLOGY 2020. [DOI: 10.2478/jlecol-2020-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Oil palms are an important crop for Malaysia as the main crop cultivated from agricultural lands for economic purposes. The livelihood of small growers is, in fact, very dependent on that industry. The present study employs the application of remote sensing of higher resolution to assess the biophysical characteristics of oil palms stands for a plantation in Lenggeng, Negeri Sembilan, Malay Peninsula. Band combination with the use of natural, red, blue bands and red-edge spectrum was employed to obtain early information on the oil palm stands at the site. We subsequently employed fish eye camera to collect information on leaf area index at the field. The study also measured the height and diameter at breast height of all plots established in the site. Finally, correlation was performed to establish the relationships between height-to-leaf area index relations. Diameter at breast height measuring points was scattered at the upper part of the line that formed negative relationships (R2 = -0.0313). Height was positively associated with leaf area index, a bit weaker (R2 = 0.2323). Interpolation found plots at varying elevation level. Maximum height of the trees was recorded at the highest elevation in the site, presumably due to the higher solar radiation that enhances photosynthesis. Our study demonstrates the usefulness of the finding for implementation elsewhere in assessing the biophysical characteristics of oil palm trees. The study leads to further understanding of oil palms, specifically the biophysical characteristics associated with plant productivity assessment.
Collapse
|
52
|
Does Sentinel-1A Backscatter Capture the Spatial Variability in Canopy Gaps of Tropical Agroforests? A Proof-of-Concept in Cocoa Landscapes in Cameroon. REMOTE SENSING 2020. [DOI: 10.3390/rs12244163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A reliable estimation and monitoring of tree canopy cover or shade distribution is essential for a sustainable cocoa production via agroforestry systems. Remote sensing (RS) data offer great potential in retrieving and monitoring vegetation status at landscape scales. However, parallel advancements in image processing and analysis are required to appropriately use such data for different targeted applications. This study assessed the potential of Sentinel-1A (S-1A) C-band synthetic aperture radar (SAR) backscatter in estimating canopy cover variability in cocoa agroforestry landscapes. We investigated two landscapes, in Center and South Cameroon, which differ in predominant vegetation: forest-savannah transition and forest landscape, respectively. We estimated canopy cover using in-situ digital hemispherical photographs (DHPs) measures of gap fraction, verified the relationship with SAR backscatter intensity and assessed predictions based on three machine learning approaches: multivariate bootstrap regression, neural networks regression, and random forest regression. Our results showed that about 30% of the variance in canopy gap fraction in the cocoa production landscapes was shared by the used SAR backscatter parameters: a combination of S-1A backscatter intensity, backscatter coefficients, difference, cross ratios, and normalized ratios. Based on the model predictions, the VV (co-polarization) backscatter showed high importance in estimating canopy gap fraction; the VH (cross-polarized) backscatter was less sensitive to the estimated canopy gap. We observed that a combination of different backscatter variables was more reliable at predicting the canopy gap variability in the considered type of vegetation in this study—agroforests. Semi-variogram analysis of canopy gap fraction at the landscape scale revealed higher spatial clustering of canopy gap, based on spatial correlation, at a distance range of 18.95 m in the vegetation transition landscape, compared to a 51.12 m spatial correlation range in the forest landscape. We provide new insight on the spatial variability of canopy gaps in the cocoa landscapes which may be essential for predicting impacts of changing and extreme (drought) weather conditions on farm management and productivity. Our results contribute a proof-of-concept in using current and future SAR images to support management tools or strategies on tree inventorying and decisions regarding incentives for shade tree retention and planting in cocoa landscapes.
Collapse
|
53
|
Duan B, Man X, Cai T, Xiao R, Ge Z. Increasing soil organic carbon and nitrogen stocks along with secondary forest succession in permafrost region of the Daxing’an mountains, northeast China. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
54
|
Cox DTC, Maclean IMD, Gardner AS, Gaston KJ. Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. GLOBAL CHANGE BIOLOGY 2020; 26:7099-7111. [PMID: 32998181 DOI: 10.1111/gcb.15336] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The impacts of the changing climate on the biological world vary across latitudes, habitats and spatial scales. By contrast, the time of day at which these changes are occurring has received relatively little attention. As biologically significant organismal activities often occur at particular times of day, any asymmetry in the rate of change between the daytime and night-time will skew the climatic pressures placed on them, and this could have profound impacts on the natural world. Here we determine global spatial variation in the difference in the mean annual rate at which near-surface daytime maximum and night-time minimum temperatures and mean daytime and mean night-time cloud cover, specific humidity and precipitation have changed over land. For the years 1983-2017, we derived hourly climate data and assigned each hour as occurring during daylight or darkness. In regions that showed warming asymmetry of >0.5°C (equivalent to mean surface temperature warming during the 20th century) we investigated corresponding changes in cloud cover, specific humidity and precipitation. We then examined the proportional change in leaf area index (LAI) as one potential biological response to diel warming asymmetry. We demonstrate that where night-time temperatures increased by >0.5°C more than daytime temperatures, cloud cover, specific humidity and precipitation increased. Conversely, where daytime temperatures increased by >0.5°C more than night-time temperatures, cloud cover, specific humidity and precipitation decreased. Driven primarily by increased cloud cover resulting in a dampening of daytime temperatures, over twice the area of land has experienced night-time warming by >0.25°C more than daytime warming, and has become wetter, with important consequences for plant phenology and species interactions. Conversely, greater daytime relative to night-time warming is associated with hotter, drier conditions, increasing species vulnerability to heat stress and water budgets. This was demonstrated by a divergent response of LAI to warming asymmetry.
Collapse
Affiliation(s)
- Daniel T C Cox
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - Ilya M D Maclean
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | | | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| |
Collapse
|
55
|
Drinkwater R, Jucker T, Potter JHT, Swinfield T, Coomes DA, Slade EM, Gilbert MTP, Lewis OT, Bernard H, Struebig MJ, Clare EL, Rossiter SJ. Leech blood-meal invertebrate-derived DNA reveals differences in Bornean mammal diversity across habitats. Mol Ecol 2020; 30:3299-3312. [PMID: 33171014 PMCID: PMC8359290 DOI: 10.1111/mec.15724] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/29/2022]
Abstract
The application of metabarcoding to environmental and invertebrate‐derived DNA (eDNA and iDNA) is a new and increasingly applied method for monitoring biodiversity across a diverse range of habitats. This approach is particularly promising for sampling in the biodiverse humid tropics, where rapid land‐use change for agriculture means there is a growing need to understand the conservation value of the remaining mosaic and degraded landscapes. Here we use iDNA from blood‐feeding leeches (Haemadipsa picta) to assess differences in mammalian diversity across a gradient of forest degradation in Sabah, Malaysian Borneo. We screened 557 individual leeches for mammal DNA by targeting fragments of the 16S rRNA gene and detected 14 mammalian genera. We recorded lower mammal diversity in the most heavily degraded forest compared to higher quality twice logged forest. Although the accumulation curves of diversity estimates were comparable across these habitat types, diversity was higher in twice logged forest, with more taxa of conservation concern. In addition, our analysis revealed differences between the community recorded in the heavily logged forest and that of the twice logged forest. By revealing differences in mammal diversity across a human‐modified tropical landscape, our study demonstrates the value of iDNA as a noninvasive biomonitoring approach in conservation assessments.
Collapse
Affiliation(s)
- Rosie Drinkwater
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Tommaso Jucker
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Joshua H T Potter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Tom Swinfield
- Department of Plant Sciences, Forest and Ecology Conservation Group, University of Cambridge, Cambridge, UK
| | - David A Coomes
- Department of Plant Sciences, Forest and Ecology Conservation Group, University of Cambridge, Cambridge, UK
| | - Eleanor M Slade
- Department of Zoology, University of Oxford, Oxford, UK.,Asian School of the Environment, Nanyang Technological University, Singapore City, Singapore
| | - M Thomas P Gilbert
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.,University Museum, NTNU, Trondheim, Norway
| | - Owen T Lewis
- Department of Zoology, University of Oxford, Oxford, UK
| | - Henry Bernard
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Matthew J Struebig
- Durrell Institute of Conservation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Elizabeth L Clare
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
56
|
Williamson J, Slade EM, Luke SH, Swinfield T, Chung AYC, Coomes DA, Heroin H, Jucker T, Lewis OT, Vairappan CS, Rossiter SJ, Struebig MJ. Riparian buffers act as microclimatic refugia in oil palm landscapes. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13784] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph Williamson
- School of Biological and Chemical Sciences Queen Mary University of London London UK
| | - Eleanor M. Slade
- Asian School of the EnvironmentNanyang Technological University Singapore City Singapore
| | - Sarah H. Luke
- Durrell Institute of Conservation and Ecology (DICE) School of Anthropology and Conservation University of Kent Canterbury UK
- Department of Zoology University of Cambridge Cambridge UK
| | - Tom Swinfield
- Department of Plant Sciences University of Cambridge Conservation Research Institute Cambridge UK
| | | | - David A. Coomes
- Department of Plant Sciences University of Cambridge Conservation Research Institute Cambridge UK
| | - Herry Heroin
- Institute for Tropical Biology and Conservation Universiti Malaysia Sabah Kota Kinabalu Sabah Malaysia
| | - Tommaso Jucker
- School of Biological Sciences University of Bristol Bristol UK
| | - Owen T. Lewis
- Department of Zoology University of Oxford Oxford UK
| | - Charles S. Vairappan
- Institute for Tropical Biology and Conservation Universiti Malaysia Sabah Kota Kinabalu Sabah Malaysia
| | - Stephen J. Rossiter
- School of Biological and Chemical Sciences Queen Mary University of London London UK
| | - Matthew J. Struebig
- Durrell Institute of Conservation and Ecology (DICE) School of Anthropology and Conservation University of Kent Canterbury UK
| |
Collapse
|
57
|
Wang Y, Del Campo AD, Wei X, Winkler R, Liu W, Li Q. Responses of forest carbon and water coupling to thinning treatments from leaf to stand scales in a young montane pine forest. CARBON BALANCE AND MANAGEMENT 2020; 15:24. [PMID: 33141394 PMCID: PMC7609426 DOI: 10.1186/s13021-020-00159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Water-use efficiency (WUE) represents the coupling of forest carbon and water. Little is known about the responses of WUE to thinning at multiple spatial scales. The objective of this research was to use field measurements to understand short-term effects of two thinning treatments (T1: 4500 stems ha-1; and T2: 1100 stems ha-1) and the control (NT: 27,000 stems ha-1) on WUE at the three spatial scales (leaf level: the ratio of leaf photosynthesis to leaf transpiration; tree-level: tree growth to tree transpiration; and stand level: net primary production (NPP) to stand transpiration) and intrinsic WUEi (the ratio of leaf photosynthesis to stomatal conductance at leaf-level; and NPP to canopy conductance at stand-level) in a 16-year old natural lodgepole pine forest. Leaf-level measurements were conducted in 2017, while tree- and stand-level measurements were conducted in both 2016 (the normal precipitation year) and 2017 (the drought year). RESULTS The thinning treatments did not significantly affect the tree- and stand-level WUE in the normal year of 2016. However, the thinning significantly affected WUE in the drought year of 2017: T2 exhibited significantly higher tree-level WUE (0.49 mm2 kg-1) than NT (0.08 mm2 kg-1), and compared to NT, the stand-level WUE values in the thinned stands (T1 and T2) were significantly higher, with means of 0.31, 0.56 and 0.70 kg m-3, respectively. However, the leaf-level and stand-level WUEi in the thinned stands in the drought year were significantly lower than those in the unthinned stands. No significant differences in the leaf-level WUE were found among the treatments in 2017. In addition, the thinning did not significantly change the WUE-VPD relationships at any studied spatial scale. CONCLUSIONS The thinning treatments did not cause significant changes in all studied WUE metrics in a normal year. However, their effects were significantly promoted under the drought conditions probably due to the decrease in soil water availability, demonstrating that thinning can improve WUE and consequently support forests to cope with the drought effects. The inconsistent results on the effects of the thinning on forest carbon and water coupling at the spatial scales and the lack of the consistent WUE metrics constraint across-scale comparison and transferring of WUE.
Collapse
Affiliation(s)
- Yi Wang
- Department of Earth, Environmental and Geographic Sciences, University of British Columbia, Okanagan, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
- Department of Geography and Environmental Management, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Antonio D Del Campo
- Research Group in Forest Science and Technology (Re-ForeST), Universitat Politècnica de València, Camí de Vera s/n, E-46022, València, Spain
| | - Xiaohua Wei
- Department of Earth, Environmental and Geographic Sciences, University of British Columbia, Okanagan, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada.
| | - Rita Winkler
- The British Columbia Ministry of Forests Lands, Natural Resource Operations and Rural Development, 515 Columbia St, Kamloops, BC, V2C 2T7, Canada
| | - Wanyi Liu
- Department of Earth, Environmental and Geographic Sciences, University of British Columbia, Okanagan, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Qiang Li
- Department of Earth, Environmental and Geographic Sciences, University of British Columbia, Okanagan, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
58
|
Hood AS, Advento AD, Stone J, Fayle TM, Fairnie AL, Waters HS, Foster WA, Snaddon JL, Ps S, Caliman JP, Naim M, Turner EC. Removing understory vegetation in oil palm agroforestry reduces ground-foraging ant abundance but not species richness. Basic Appl Ecol 2020. [DOI: 10.1016/j.baae.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
59
|
Land Use/Land Cover Changes and the Relationship with Land Surface Temperature Using Landsat and MODIS Imageries in Cameron Highlands, Malaysia. LAND 2020. [DOI: 10.3390/land9100372] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mountainous regions are more sensitive to climatic condition changes and are susceptible to recent increases in temperature. Due to urbanization and land use/land cover (LULC) issues, Cameron Highlands has been impacted by rising land surface temperature (LST) variation. Thus, this study was carried out to explore the impact of the LULC change on LST in the Cameron Highlands from 2009 to 2019 using remote sensing images acquired from Landsat 7 ETM+, Landsat 8 Operational Land Imager (OLI/TIRS), and Moderate Resolution Imaging Spectroradiometer (MODIS) 11A Thermal sensors. A split-window algorithm was applied to Landsat 8 images (2013–2019) to derive the LST. Air temperature data of the study area were also obtained to cross-validate data sources. Based on the validation results, the accuracy of LULC and LST outputs were more than 94.6% and 80.0%, respectively. The results show that the current trend of urban growth continues at a rate of 0.16% per year, and the area experienced an LST increase of 2 °C between 2009 and 2019. This study is crucial for land planners and environmentalists to understand the impacts of LULC change on LST and to propose appropriate policy measures to control development in Cameron Highlands.
Collapse
|
60
|
Thom D, Sommerfeld A, Sebald J, Hagge J, Müller J, Seidl R. Effects of disturbance patterns and deadwood on the microclimate in European beech forests. AGRICULTURAL AND FOREST METEOROLOGY 2020; 291:108066. [PMID: 35646194 PMCID: PMC7612769 DOI: 10.1016/j.agrformet.2020.108066] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
More frequent and severe disturbances increasingly open the forest canopy and initiate tree regeneration. Simultaneously, increasing weather extremes, such as drought and heat, are threatening species adapted to cool and moist climate. The magnitude of the microclimatic buffering capacity of forest canopies to mitigate hot and dry weather conditions and its disturbance-induced reduction remains poorly quantified. Also, the influence of disturbance legacies (e.g., deadwood) on forest microclimate is unresolved. In a unique manipulation experiment we investigated (i) the microclimatic buffering capacity of forest canopies in years with different climatic conditions; (ii) the impacts of spatial disturbance patterns on surface light and microclimate; and (iii) the effect of deadwood presence and type on microclimate. Treatments included two disturbance patterns (i.e., aggregated and distributed), four deadwood types (i.e., standing, downed, standing and downed, removed), and one untreated control (i.e., nine treatments in total), replicated at five sites dominated by European beech (Fagus sylvatica L.) in southeastern Germany. We measured forest floor light conditions and derived diurnal extremes and variation in temperature (T) and vapor pressure deficit (VPD) during four consecutive summer seasons (2016 - 2019). The buffering capacity of intact forest canopies was higher in warm and dry years. Surface light was significantly higher in spatially aggregated disturbance gaps compared to distributed disturbances of similar severity. An increase in surface light by 10 % relative to closed canopies elevated Tmax and VPDmax by 0.42°C and 0.04 kPa, respectively. Deadwood presence and type did not affect the forest microclimate significantly. Microclimatic buffering under forest canopies can dampen the effects of climate change. However, increasing canopy disturbances result in more light penetrating the canopy, reducing the microclimatic buffering capacity of forests. We conclude that forest management should foster microclimatic buffering in forests as one element of a multi-pronged strategy to counter climate change.
Collapse
Affiliation(s)
- Dominik Thom
- Ecosystem Dynamics and Forest Management Group, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
- Institute of Silviculture, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences (BOKU) Vienna, Peter-Jordan-Straße 82, 1190 Vienna, Austria
- Gund Institute for Environment, University of Vermont, 617 Main Street, Burlington, VT 05405, USA
| | - Andreas Sommerfeld
- Institute of Silviculture, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences (BOKU) Vienna, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - Julius Sebald
- Ecosystem Dynamics and Forest Management Group, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
- Institute of Silviculture, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences (BOKU) Vienna, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - Jonas Hagge
- Forest Nature Conservation, Faculty of Forest Sciences, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| | - Jörg Müller
- Ecological Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, University of Würzburg, Glashüttenstraße 5, 96181 Rauhenebrach, Germany
- Bavarian Forest National Park, Freyunger Strasse 2, 94481 Grafenau, Germany
| | - Rupert Seidl
- Ecosystem Dynamics and Forest Management Group, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
- Institute of Silviculture, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences (BOKU) Vienna, Peter-Jordan-Straße 82, 1190 Vienna, Austria
- Berchtesgaden National Park, Doktorberg 6, 83471 Berchtesgaden, Germany
| |
Collapse
|
61
|
Shuhada SN, Salim S, Nobilly F, Lechner AM, Azhar B. Conversion of peat swamp forest to oil palm cultivation reduces the diversity and abundance of macrofungi. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
62
|
Diaz Villa MVE, Cristiano PM, De Diego MS, Rodríguez SA, Bucci SJ, Scholz F, Goldstein G. Primary Productivity Determinants of Different Land Uses in Humid Subtropical Ecosystems: From Native Forests to Tree Plantations. Ecosystems 2020. [DOI: 10.1007/s10021-020-00529-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
63
|
Messina S, Edwards DP, AbdElgawad H, Beemster GTS, Tomassi S, Benedick S, Eens M, Costantini D. Impacts of selective logging on the oxidative status of tropical understorey birds. J Anim Ecol 2020; 89:2222-2234. [PMID: 32535926 DOI: 10.1111/1365-2656.13280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/27/2020] [Indexed: 11/27/2022]
Abstract
Selective logging is the dominant form of human disturbance in tropical forests, driving changes in the abundance of vertebrate and invertebrate populations relative to undisturbed old-growth forests. A key unresolved question is understanding which physiological mechanisms underlie different responses of species and functional groups to selective logging. Regulation of oxidative status is thought to be one major physiological mechanism underlying the capability of species to cope with environmental changes. Using a correlational cross-sectional approach, we compared a number of oxidative status markers among 15 understorey bird species in unlogged and selectively logged forest in Borneo in relation to their feeding guild. We then tested how variation of markers between forest types was associated with that in population abundance. Birds living in logged forests had a higher activity of the antioxidant enzyme superoxide dismutase and a different regulation of the glutathione cycle compared to conspecific birds in unlogged forest. However, neither oxidative damage nor oxidized glutathione differed between forest types. We also found that omnivores and insectivores differed significantly in all markers related to the key cellular antioxidant glutathione irrespective of the forest type. Species with higher levels of certain antioxidant markers in a given type of forest were less abundant in that forest type compared to the other. Our results suggest that there was little long-term effect of logging (last logging rotation occurred ~15 years prior to the study) on the oxidative status of understorey bird species. However, it is unclear if this was owing to plasticity or evolutionary change. Our correlative results also point to a potential negative association between some antioxidants and population abundance irrespective of the forest type.
Collapse
Affiliation(s)
- Simone Messina
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - David P Edwards
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium.,Botany and Microbiology Department, Beni-Suef University, Beni-Suef, Egypt
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Suzanne Tomassi
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Suzan Benedick
- School of Sustainable Agriculture, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Marcel Eens
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), Muséum National d'Histoire Naturelle, CNRS, Paris, France
| |
Collapse
|
64
|
Carbon declines along tropical forest edges correspond to heterogeneous effects on canopy structure and function. Proc Natl Acad Sci U S A 2020; 117:7863-7870. [PMID: 32229568 DOI: 10.1073/pnas.1914420117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nearly 20% of tropical forests are within 100 m of a nonforest edge, a consequence of rapid deforestation for agriculture. Despite widespread conversion, roughly 1.2 billion ha of tropical forest remain, constituting the largest terrestrial component of the global carbon budget. Effects of deforestation on carbon dynamics in remnant forests, and spatial variation in underlying changes in structure and function at the plant scale, remain highly uncertain. Using airborne imaging spectroscopy and light detection and ranging (LiDAR) data, we mapped and quantified changes in forest structure and foliar characteristics along forest/oil palm boundaries in Malaysian Borneo to understand spatial and temporal variation in the influence of edges on aboveground carbon and associated changes in ecosystem structure and function. We uncovered declines in aboveground carbon averaging 22% along edges that extended over 100 m into the forest. Aboveground carbon losses were correlated with significant reductions in canopy height and leaf mass per area and increased foliar phosphorus, three plant traits related to light capture and growth. Carbon declines amplified with edge age. Our results indicate that carbon losses along forest edges can arise from multiple, distinct effects on canopy structure and function that vary with edge age and environmental conditions, pointing to a need for consideration of differences in ecosystem sensitivity when developing land-use and conservation strategies. Our findings reveal that, although edge effects on ecosystem structure and function vary, forests neighboring agricultural plantations are consistently vulnerable to long-lasting negative effects on fundamental ecosystem characteristics controlling primary productivity and carbon storage.
Collapse
|
65
|
Carbon and Nitrogen Stocks in Three Types of Larix gmelinii Forests in Daxing’an Mountains, Northeast China. FORESTS 2020. [DOI: 10.3390/f11030305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Studying carbon and nitrogen stocks in different types of larch forest ecosystems is of great significance for assessing the carbon sink capacity and nitrogen level in larch forests. To evaluate the effects of the differences of forest type on the carbon and nitrogen stock capacity of the larch forest ecosystem, we selected three typical types of larch forest ecosystems in the northern part of Daxing’an Mountains, which were the Rhododendron simsii-Larix gmelinii forest (RL), Ledum palustre-Larix gmelinii forest (LL) and Sphagnum-Bryum-Ledum palustre-Larix gmelinii forest (SLL), to determine the carbon and nitrogen stocks in the vegetation (trees and understories), litter and soil. Results showed that there were significant differences in carbon and nitrogen stocks among the three types of larch forest ecosystems, showing a sequence of SLL (288.01 Mg·ha−1 and 25.19 Mg·ha−1) > LL (176.52 Mg·ha−1 and 14.85 Mg·ha−1) > RL (153.93 Mg·ha−1 and 10.00 Mg·ha−1) (P < 0.05). The largest proportions of carbon and nitrogen stocks were found in soils, accounting for 83.20%, 72.89% and 64.61% of carbon stocks and 98.61%, 97.58% and 96.00% of nitrogen stocks in the SLL, LL and RL, respectively. Also, it was found that significant differences among the three types of larch forest ecosystems in terms of soil carbon and nitrogen stocks (SLL > LL > RL) (P < 0.05) were the primary reasons for the differences in the ecosystem carbon and nitrogen stocks. More than 79% of soil carbon and 51% of soil nitrogen at a depth of 0–100 cm were stored in the upper 50 cm of the soil pool. In the vegetation layer, due to the similar tree biomass carbon and nitrogen stocks, there were no significant differences in carbon and nitrogen stocks among the three types of larch forest ecosystems. The litter carbon stock in the SLL was significantly higher than that in the LL and RL (P < 0.05), but no significant differences in nitrogen stock were found among them (P > 0.05). These findings suggest that different forest types with the same tree layer and different understory vegetation can greatly affect the carbon and nitrogen stock capacity of the forest ecosystem. This indicates that understory vegetation may have significant effects on the carbon and nitrogen stocks in soil and litter, which highlights the need to consider the effects of understory in future research into the carbon and nitrogen stock capacity of forest ecosystems.
Collapse
|
66
|
Luke SH, Dwi Advento A, Dow RA, Aryawan AAK, Barclay H, Eycott AE, Hinsch JK, Kurniawan C, Naim M, Mann DJ, Pujianto, Purnomo D, Rambe TDS, Slade EM, Soeprapto, Ps S, Suhardi, Tarigan RS, Wahyuningsih R, Widodo RH, Caliman J, Snaddon JL, Foster WA, Turner EC. Complexity within an oil palm monoculture: The effects of habitat variability and rainfall on adult dragonfly (Odonata) communities. Biotropica 2020. [DOI: 10.1111/btp.12749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarah H. Luke
- Department of Zoology University of Cambridge Cambridge UK
| | - Andreas Dwi Advento
- Sinar Mas Agro Resources Technology Research Institute (SMARTRI) Pekanbaru Indonesia
| | - Rory A. Dow
- Naturalis Biodiversity Center Leiden The Netherlands
- Sarawak Museum Campus Project Kuching Malaysia
| | | | - Holly Barclay
- School of Science Monash University Malaysia Selangor Darul Ehsan Malaysia
| | - Amy E. Eycott
- Department of Zoology University of Cambridge Cambridge UK
- Faculty of Biosciences and Aquaculture Nord University Steinkjer Steinkjer Norway
| | - Julie K. Hinsch
- Department of Zoology University of Cambridge Cambridge UK
- Center for Macroecology, Evolution and Climate Natural History Museum of Denmark Copenhagen Denmark
| | - Candra Kurniawan
- Sinar Mas Agro Resources Technology Research Institute (SMARTRI) Pekanbaru Indonesia
| | - Mohammad Naim
- Sinar Mas Agro Resources Technology Research Institute (SMARTRI) Pekanbaru Indonesia
| | | | - Pujianto
- Sinar Mas Agro Resources Technology Research Institute (SMARTRI) Pekanbaru Indonesia
| | - Dedi Purnomo
- Sinar Mas Agro Resources Technology Research Institute (SMARTRI) Pekanbaru Indonesia
| | | | - Eleanor M. Slade
- Department of Zoology University of Oxford Oxford UK
- Asian School of the Environment Nanyang Technological University Singapore Singapore
| | - Soeprapto
- Sinar Mas Agro Resources Technology Research Institute (SMARTRI) Pekanbaru Indonesia
| | - Sudharto Ps
- Sinar Mas Agro Resources Technology Research Institute (SMARTRI) Pekanbaru Indonesia
| | - Suhardi
- Sinar Mas Agro Resources Technology Research Institute (SMARTRI) Pekanbaru Indonesia
| | - Ribka Sionita Tarigan
- Sinar Mas Agro Resources Technology Research Institute (SMARTRI) Pekanbaru Indonesia
| | - Resti Wahyuningsih
- Sinar Mas Agro Resources Technology Research Institute (SMARTRI) Pekanbaru Indonesia
| | - Rudy Harto Widodo
- Sinar Mas Agro Resources Technology Research Institute (SMARTRI) Pekanbaru Indonesia
| | - Jean‐Pierre Caliman
- Sinar Mas Agro Resources Technology Research Institute (SMARTRI) Pekanbaru Indonesia
| | - Jake L. Snaddon
- School of Geography and Environmental Science University of Southampton Southampton UK
| | | | | |
Collapse
|
67
|
Phillips JW, Chung AYC, Edgecombe GD, Ellwood MDF. Bird's nest ferns promote resource sharing by centipedes. Biotropica 2020. [DOI: 10.1111/btp.12713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Josie W. Phillips
- Centre for Research in Biosciences University of the West of England Bristol UK
| | | | | | | |
Collapse
|
68
|
Ramezani MR, Massah Bavani AR, Jafari M, Binesh A, Peters S. Investigating the leaf area index changes in response to climate change (case study: Kasilian catchment, Iran). SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
69
|
Kovács B, Tinya F, Németh C, Ódor P. Unfolding the effects of different forestry treatments on microclimate in oak forests: results of a 4-yr experiment. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02043. [PMID: 31758609 PMCID: PMC7900960 DOI: 10.1002/eap.2043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/23/2019] [Accepted: 10/21/2019] [Indexed: 05/11/2023]
Abstract
A stable below-canopy microclimate of forests is essential for their biodiversity and ecosystem functionality. Forest management necessarily modifies the buffering capacity of woodlands. However, the specific effects of different forestry treatments on site conditions, the temporal recovery after the harvests, and the reason for the contrasts between treatments are still poorly understood. The effects of four different forestry treatments (clear-cutting, retention tree group, preparation cutting, and gap-cutting) on microclimatic variables were studied within a field experiment in a managed oak-dominated stand in Hungary, before (2014) and after (2015-2017) the interventions by complete block design with six replicates. From the first post-treatment year, clear-cuts differed the most from the uncut control due to the increased irradiance and heat load. Means and variability of air and soil temperature increased, air became dryer along with higher soil moisture levels. Retention tree groups could effectively ameliorate the extreme temperatures but not the mean values. Preparation cutting induced slight changes from the original buffered and humid forest microclimate. Despite the substantially more incoming light, gap-cutting could retain the cool and humid air conditions and showed the highest increase in soil moisture after the interventions. For most microclimate variables, we could not observe any obvious trend within 3 yr. However, soil temperature variability decreased with time in clear-cuts, while soil moisture difference continuously increased in gap- and clear-cuts. Based on multivariate analyses, the treatments separated significantly based mainly on the temperature maxima and variability. We found that (1) the effect sizes among treatment levels were consistent throughout the years, (2) the climatic recovery time for variables appears to be far more than 3 yr, and (3) the applied silvicultural methods diverged mainly among the temperature maxima. Based on our study, the spatially heterogeneous and fine-scaled treatments of continuous cover forestry (gap-cutting, selection systems) are recommended. By applying these practices, the essential structural elements creating buffered microclimate could be more successfully maintained. Thus, forestry interventions could induce less pronounced alterations in environmental conditions for forest-dwelling organism groups.
Collapse
Affiliation(s)
- Bence Kovács
- MTA Centre for Ecological ResearchInstitute of Ecology and BotanyAlkotmány út 2‐4VácrátótH‐2163Hungary
- MTA Centre for Ecological ResearchGINOP Sustainable Ecosystems Research GroupKlebelsberg Kuno utca 3TihanyH‐8237Hungary
- Department of Plant Systematics, Ecology and Theoretical BiologyEötvös Loránd UniversityPázmány Péter sétány 1/CBudapestH‐1117Hungary
| | - Flóra Tinya
- MTA Centre for Ecological ResearchInstitute of Ecology and BotanyAlkotmány út 2‐4VácrátótH‐2163Hungary
| | - Csaba Németh
- MTA Centre for Ecological ResearchGINOP Sustainable Ecosystems Research GroupKlebelsberg Kuno utca 3TihanyH‐8237Hungary
| | - Péter Ódor
- MTA Centre for Ecological ResearchInstitute of Ecology and BotanyAlkotmány út 2‐4VácrátótH‐2163Hungary
- MTA Centre for Ecological ResearchGINOP Sustainable Ecosystems Research GroupKlebelsberg Kuno utca 3TihanyH‐8237Hungary
| |
Collapse
|
70
|
França FM, Ferreira J, Vaz‐de‐Mello FZ, Maia LF, Berenguer E, Ferraz Palmeira A, Fadini R, Louzada J, Braga R, Hugo Oliveira V, Barlow J. El Niño impacts on human‐modified tropical forests: Consequences for dung beetle diversity and associated ecological processes. Biotropica 2020. [DOI: 10.1111/btp.12756] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Filipe M. França
- Embrapa Amazônia Oriental Belém Brazil
- Instituto de Ciências Biológicas Universidade Federal do Pará Belém Brazil
- Lancaster Environment Centre Lancaster University Lancaster UK
| | - Joice Ferreira
- Embrapa Amazônia Oriental Belém Brazil
- Instituto de Ciências Biológicas Universidade Federal do Pará Belém Brazil
| | | | - Laís F. Maia
- Bio‐Protection Research Centre School of Biological Sciences University of Canterbury Christchurch New Zealand
| | - Erika Berenguer
- Lancaster Environment Centre Lancaster University Lancaster UK
- Environmental Change Institute University of Oxford Oxford UK
| | | | - Rodrigo Fadini
- Instituto de Biodiversidade e Florestas Universidade Federal do Oeste do Pará Santarém Brazil
| | - Júlio Louzada
- Departamento de Biologia Universidade Federal de Lavras Lavras Brazil
| | - Rodrigo Braga
- Departamento de Biologia Universidade Federal de Lavras Lavras Brazil
- Unidade Divinópolis Universidade do Estado de Minas Gerais Divinópolis Brazil
| | | | - Jos Barlow
- Lancaster Environment Centre Lancaster University Lancaster UK
- Departamento de Biologia Universidade Federal de Lavras Lavras Brazil
- MCT/Museu Paraense Emílio Goeldi Belém Brazil
| |
Collapse
|
71
|
Evapotranspiration in the Tono Reservoir Catchment in Upper East Region of Ghana Estimated by a Novel TSEB Approach from ASTER Imagery. REMOTE SENSING 2020. [DOI: 10.3390/rs12030569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Evapotranspiration (ET) is dynamic and influences water resource distribution. Sustainable management of water resources requires accurate estimations of the individual components that result in evapotranspiration, including the daily net radiation (DNR). Daily ET is more useful than the evaporative fraction (EF) provided by remote sensing ET models, and to account for daily variations, EF is usually combined with the DNR. DNR exhibits diurnal and spatiotemporal variations due to landscape heterogeneity. In the modified Two-Source Energy Balance (TSEB) approach by Zhuang and Wu, 2015, ecophysiological constraint functions of temperature and moisture of plants based on atmospheric moisture and vegetation indices were introduced, but the DNR was not spatially accounted for in the estimation of the daily ET. This research adopted a novel approach that accounts for spatiotemporal variations in estimated daily ET by incorporating the Bisht and Bras DNR model in the modified version of the TSEB model. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite imagery over the Tono irrigation watershed within the Upper East Region of Ghana and Southern Burkina Faso were used. We estimated the energy fluxes of latent and sensible heat as well as the net radiation and soil heat fluxes from the satellite images and compared our results with ground-based measurements from an eddy covariance (EC) station established by the West African Science Service Center on Climate Change and Adapted Land Use (WASCAL) within the watershed area. We noticed a similarity between our model estimated fluxes and ET with the ground-based EC station measurements. Eight different land use/cover types were identified in the study area, and each of these contributed significantly to the overall ET variations between the two study periods: December 2009 and December 2017. For instance, due to a higher leaf area index (LAI) for all vegetation types in December 2009 than in December 2017, the ET for December 2017 was higher than that for December 2009. We also noticed that the land use/cover types within the footprint area of the EC station were only six out of the eight. Generally, all the surface energy fluxes increased from December 2009 to December 2017. Mean ET varied from 3.576 to 4.486 (mm/d) for December 2009 while from 4.502 to 5.280 (mm/d) for December 2017 across the different land use/cover classes. Knowledge of the dynamics of evapotranspiration and adoption of cost-effective methods to estimate its individual components in an effective and efficient way is critical to water resources management. Our findings provide a tool for all water stakeholders within watersheds to manage water resources in an engaging and cost-effective way.
Collapse
|
72
|
Singh H, Yadav M, Kumar N, Kumar A, Kumar M. Assessing adaptation and mitigation potential of roadside trees under the influence of vehicular emissions: A case study of Grevillea robusta and Mangifera indica planted in an urban city of India. PLoS One 2020; 15:e0227380. [PMID: 31990922 PMCID: PMC6986729 DOI: 10.1371/journal.pone.0227380] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/17/2019] [Indexed: 11/19/2022] Open
Abstract
The ever-increasing vehicle counts have resulted in a significant increase in air pollution impacting human and natural ecosystems including trees, and physical properties. Roadside plantations often act as a first defense line against the vehicular emissions to mitigate the impacts of pollutants. However, they are themselves vulnerable to these pollutants with varying levels of tolerance capacity. This demands a scientific investigation to assess the role of roadside plantation for better management and planning for urban sprawl where selected trees could be grown to mitigate the impacts of harmful pollutants. The present study assesses the impacts of vehicular emissions on the adaptation and mitigation potential of two important roadside tree species i.e. Grevillea robusta and Mangifera indica planted along roadsides in the capital city of Uttarakhand. Uttarakhand is one of the Indian Western Himalayan State and its capital city is situated on the foothills of Himalaya. The adaptation and mitigation potential were evaluated by studying the response of pollutants on the functional traits which drive the physiology of the trees. The CO2 assimilation rate, transpiration rate, stomatal conductance, water use efficiency (WUE), air pollution tolerance index (APTI), copper and proline accumulation, dust removal efficiency (DRE), leaf thickness and cooling created by plantation were studied to evaluate the response of trees exposed to roadside traffics. To compare the influence of pollutants, traits of trees grown in a control site with few or absence of vehicular movement were compared with the roadside trees. The control site represented part of a reserve forest where human interference is controlled and human-induced activities are prohibited. The vehicular frequency was found to modulate tree characteristics. The tree characteristics representing WUE, APTI, proline and copper accumulation, leaf thickness, cooling impact, and DRE were enhanced significantly, while the decreased CO2 assimilation rate was observed near roadside trees compared to the control site. We found both of the species to perform well to be used as one of the potential species for roadside and urban greening. However, there is a need to assess the potential of other species in reference to the present study.
Collapse
Affiliation(s)
- Hukum Singh
- Forest Research Institute, Dehradun, India
- * E-mail:
| | | | | | - Amit Kumar
- Forest Research Institute, Dehradun, India
| | | |
Collapse
|
73
|
|
74
|
Protecting environmental and socio-economic values of selectively logged tropical forests in the Anthropocene. ADV ECOL RES 2020. [DOI: 10.1016/bs.aecr.2020.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
75
|
Davison CW, Chapman PM, Wearn OR, Bernard H, Ewers RM. Shifts in the demographics and behavior of bearded pigs (
Sus barbatus
) across a land‐use gradient. Biotropica 2019. [DOI: 10.1111/btp.12724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Charles W. Davison
- Department of Life Sciences Imperial College London Berkshire UK
- Center for Macroecology, Evolution and Climate GLOBE Institute University of Copenhagen Copenhagen Denmark
| | | | | | - Henry Bernard
- Institute for Tropical Biology and Conservation Universiti Malaysia Sabah Kota Kinabalu Malaysia
| | - Robert M. Ewers
- Department of Life Sciences Imperial College London Berkshire UK
| |
Collapse
|
76
|
Integrating LiDAR, Multispectral and SAR Data to Estimate and Map Canopy Height in Tropical Forests. REMOTE SENSING 2019. [DOI: 10.3390/rs11222697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Developing accurate methods to map vegetation structure in tropical forests is essential to protect their biodiversity and improve their carbon stock estimation. We integrated LIDAR (Light Detection and Ranging), multispectral and SAR (Synthetic Aperture Radar) data to improve the prediction and mapping of canopy height (CH) at high spatial resolution (30 m) in tropical forests in South America. We modeled and mapped CH estimated from aircraft LiDAR surveys as a ground reference, using annual metrics derived from multispectral and SAR satellite imagery in a dry forest, a moist forest, and a rainforest of tropical South America. We examined the effect of the three forest types, five regression algorithms, and three predictor groups on the modelling and mapping of CH. Our CH models reached errors ranging from 1.2–3.4 m in the dry forest and 5.1–7.4 m in the rainforest and explained variances from 94–60% in the dry forest and 58–12% in the rainforest. Our best models show higher accuracies than previous works in tropical forests. The average accuracy of the five regression algorithms decreased from dry forests (2.6 m +/− 0.7) to moist (5.7 m +/− 0.4) and rainforests (6.6 m +/− 0.7). Random Forest regressions produced the most accurate models in the three forest types (1.2 m +/− 0.05 in the dry, 4.9 m +/− 0.14 in the moist, and 5.5 m +/− 0.3 the rainforest). Model performance varied considerably across the three predictor groups. Our results are useful for CH spatial prediction when GEDI (Global Ecosystem Dynamics Investigation lidar) data become available.
Collapse
|
77
|
Anamulai S, Sanusi R, Zubaid A, Lechner AM, Ashton-Butt A, Azhar B. Land use conversion from peat swamp forest to oil palm agriculture greatly modifies microclimate and soil conditions. PeerJ 2019; 7:e7656. [PMID: 31632845 PMCID: PMC6796957 DOI: 10.7717/peerj.7656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 08/10/2019] [Indexed: 11/29/2022] Open
Abstract
Oil palm (Elaeis guineensis) agriculture is rapidly expanding and requires large areas of land in the tropics to meet the global demand for palm oil products. Land cover conversion of peat swamp forest to oil palm (large- and small-scale oil palm production) is likely to have negative impacts on microhabitat conditions. This study assessed the impact of peat swamp forest conversion to oil palm plantation on microclimate conditions and soil characteristics. The measurement of microclimate (air temperature, wind speed, light intensity and relative humidity) and soil characteristics (soil surface temperature, soil pH, soil moisture, and ground cover vegetation temperature) were compared at a peat swamp forest, smallholdings and a large-scale plantation. Results showed that the peat swamp forest was 1.5–2.3 °C cooler with significantly greater relative humidity, lower light intensities and wind speed compared to the smallholdings and large-scale plantations. Soil characteristics were also significantly different between the peat swamp forest and both types of oil palm plantations with lower soil pH, soil and ground cover vegetation surface temperatures and greater soil moisture in the peat swamp forest. These results suggest that peat swamp forests have greater ecosystem benefits compared to oil palm plantations with smallholdings agricultural approach as a promising management practice to improve microhabitat conditions. Our findings also justify the conservation of remaining peat swamp forest as it provides a refuge from harsh microclimatic conditions that characterize large plantations and smallholdings.
Collapse
Affiliation(s)
- Subasini Anamulai
- Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ruzana Sanusi
- Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Institute of Tropical Forestry and Forest Product, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Akbar Zubaid
- Faculty of Science and Technology, National University of Malaysia, Bangi, Selangor, Malaysia
| | - Alex M Lechner
- School of Environmental and Geographical Sciences, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Adham Ashton-Butt
- British Trust for Ornithology, The Nunnery, Thetford, United Kingdom
| | - Badrul Azhar
- Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Biodiversity Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
78
|
Suter MK, Miller KA, Anggraeni I, Ebi KL, Game ET, Krenz J, Masuda YJ, Sheppard L, Wolff NH, Spector JT. Association between work in deforested, compared to forested, areas and human heat strain: An experimental study in a rural tropical environment. ENVIRONMENTAL RESEARCH LETTERS : ERL [WEB SITE] 2019; 14:084012. [PMID: 31485260 PMCID: PMC6724538 DOI: 10.1088/1748-9326/ab2b53] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND With climate change, adverse human health effects caused by heat exposure are of increasing public health concern. Forests provide beneficial ecosystem services for human health, including local cooling. Few studies have assessed the relationship between deforestation and heat-related health effects in tropical, rural populations. We sought to determine whether deforested compared to forested landscapes are associated with increased physiological heat strain in a rural, tropical environment. METHODS We analyzed data from 363 healthy adult participants from ten villages who participated in a two-by-two factorial, randomized study in East Kalimantan, Indonesia from 10/1/17 to 11/6/17. Using simple randomization, field staff allocated participants equally to different conditions to conduct a 90-minute outdoor activity, representative of typical work. Core body temperature was estimated at each minute during the activity using a validated algorithm from baseline oral temperatures and sequential heart rate data, measured using chest band monitors. We used linear regression models, clustered by village and with a sandwich variance estimator, to assess the association between deforested versus forested conditions and the number of minutes each participant spent above an estimated core body temperature threshold of 38.5°C. RESULTS Compared to those in the forested condition (n=172), participants in the deforested condition (n=159) spent an average of 3.08 (95% CI 0.57, 5.60) additional minutes with an estimated core body temperature exceeding 38.5°C, after adjustment for age, sex, body mass index, and experiment start time, with a larger difference among those who began the experiment after 12 noon (5.17 [95% CI 2.20, 8.15]). CONCLUSIONS In this experimental study in a tropical, rural setting, activity in a deforested versus a forested setting was associated with increased objectively measured heat strain. Longer durations of hyperthermia can increase the risk of serious health outcomes. Land use decisions should consider the implications of deforestation on local heat exposure and health as well as on forest services, including carbon storage functions that impact climate change mitigation.
Collapse
Affiliation(s)
- Megan K. Suter
- Department of Epidemiology, University of Washington, Seattle, Washington, United States
| | - Kristin A. Miller
- Department of Epidemiology, University of Washington, Seattle, Washington, United States
| | - Ike Anggraeni
- Faculty of Public Health, Mulawarman University, Samarinda, Indonesia
| | - Kristie L. Ebi
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States
- Department of Global Health, University of Washington, Seattle, Washington, United States
| | - Edward T. Game
- Global Science, The Nature Conservancy, Arlington, Virginia, United States
| | - Jennifer Krenz
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States
| | - Yuta J. Masuda
- Global Science, The Nature Conservancy, Arlington, Virginia, United States
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States
- Department of Biostatistics, University of Washington, Seattle, Washington, United States
| | - Nicholas H. Wolff
- Global Science, The Nature Conservancy, Arlington, Virginia, United States
| | - June T. Spector
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States
- Department of Medicine, University of Washington, Seattle, Washington, United States
| |
Collapse
|
79
|
Parrett JM, Mann DJ, Chung AYC, Slade EM, Knell RJ. Sexual selection predicts the persistence of populations within altered environments. Ecol Lett 2019; 22:1629-1637. [DOI: 10.1111/ele.13358] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/22/2019] [Accepted: 07/05/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Jonathan M. Parrett
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
| | - Darren J. Mann
- Hope Entomological Collections, Museum of Natural History Oxford University Oxford UK
| | - Arthur Y. C. Chung
- Forestry Department Forest Research Centre P.O. Box 1407 90715 Sandakan Sabah Malaysia
| | - Eleanor M. Slade
- Department of Zoology University of Oxford South Parks Road Oxford OX1 3PS UK
- Asian School of the Environment Nanyang Technological University 50 Nanyang Avenue Singapore City 639798 Singapore
| | - Robert J. Knell
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
| |
Collapse
|
80
|
Seaman DJI, Bernard H, Ancrenaz M, Coomes D, Swinfield T, Milodowski DT, Humle T, Struebig MJ. Densities of Bornean orang-utans (Pongo pygmaeus morio) in heavily degraded forest and oil palm plantations in Sabah, Borneo. Am J Primatol 2019; 81:e23030. [PMID: 31328289 PMCID: PMC6771663 DOI: 10.1002/ajp.23030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 11/07/2022]
Abstract
The conversion of forest to agriculture continues to contribute to the loss and fragmentation of remaining orang-utan habitat. There are still few published estimates of orang-utan densities in these heavily modified agricultural areas to inform range-wide population assessments and conservation strategies. In addition, little is known about what landscape features promote orang-utan habitat use. Using indirect nest count methods, we implemented surveys and estimated population densities of the Northeast Bornean orang-utan (Pongo pygmaeus morio) across the continuous logged forest and forest remnants in a recently salvage-logged area and oil palm plantations in Sabah, Malaysian Borneo. We then assessed the influence of landscape features and forest structural metrics obtained from LiDAR data on estimates of orang-utan density. Recent salvage logging appeared to have a little short-term effect on orang-utan density (2.35 ind/km 2 ), which remained similar to recovering logged forest nearby (2.32 ind/km 2 ). Orang-utans were also present in remnant forest patches in oil palm plantations, but at significantly lower numbers (0.82 ind/km 2 ) than nearby logged forest and salvage-logged areas. Densities were strongly influenced by variation in canopy height but were not associated with other potential covariates. Our findings suggest that orang-utans currently exist, at least in the short-term, within human-modified landscapes, providing that remnant forest patches remain. We urge greater recognition of the role that these degraded habitats can have in supporting orang-utan populations, and that future range-wide analyses and conservation strategies better incorporate data from human-modified landscapes.
Collapse
Affiliation(s)
- Dave J I Seaman
- Durrell Institute of Con servation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Henry Bernard
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Marc Ancrenaz
- HUTAN-Kinabatangan Orangutan Conservation Programme, Sandakan, Sabah, Malaysia.,Borneo Futures, Bandar Seri Begawan, Brunei Darussalam
| | - David Coomes
- Department of Plant Sciences, Forest Ecology and Conservation Group, University of Cambridge, Cambridge, UK
| | - Thomas Swinfield
- Department of Plant Sciences, Forest Ecology and Conservation Group, University of Cambridge, Cambridge, UK.,Centre for Conservation Science, Royal Society for the Protection of Birds, David Attenborough Building, Cambridge, UK
| | | | - Tatyana Humle
- Durrell Institute of Con servation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Matthew J Struebig
- Durrell Institute of Con servation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury, UK
| |
Collapse
|
81
|
Garcia RA, Clusella-Trullas S. Thermal landscape change as a driver of ectotherm responses to plant invasions. Proc Biol Sci 2019; 286:20191020. [PMID: 31238850 DOI: 10.1098/rspb.2019.1020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A growing body of research demonstrates the impacts of invasive alien plants on native animals, but few studies consider thermal effects as a driver of the responses of native organisms. As invasive alien plants establish and alter the composition and arrangement of plant communities, the thermal landscapes available to ectotherms also change. Our study reviews the research undertaken to date on the thermal effects of alien plant invasions on native reptiles, amphibians, insects and arachnids. The 37 studies published between 1970 and early 2019 portray an overall detrimental effect of invasive plants on thermal landscapes, ectothermic individuals' performance and species abundance, diversity and composition. With a case study of a lizard species, we illustrate the use of thermal ecology tools in plant invasion research and test the generality of alien plant effects: changes in thermoregulation behaviour in invaded landscapes varied depending on the level of invasion and lizard traits. Together, the literature review and case study show that thermal effects of alien plants on ectotherms can be substantial albeit context-dependent. Further research should cover multiple combinations of native/invasive plant growth forms, invasion stages and ectotherm traits. More attention is also needed to test causality along the chain of effects from thermal landscapes to individuals, populations and communities.
Collapse
Affiliation(s)
- Raquel A Garcia
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University , Private Bag X1, Matieland 7602 , South Africa
| | - Susana Clusella-Trullas
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University , Private Bag X1, Matieland 7602 , South Africa
| |
Collapse
|
82
|
Bista D, Paudel PK, Jnawali SR, Sherpa AP, Shrestha S, Acharya KP. Red panda fine-scale habitat selection along a Central Himalayan longitudinal gradient. Ecol Evol 2019; 9:5260-5269. [PMID: 31110677 PMCID: PMC6509368 DOI: 10.1002/ece3.5116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Red panda Ailurus fulgens, an endangered habitat specialist, inhabits a narrow distribution range in bamboo abundance forests along mountain slopes in the Himalaya and Hengduan Mountains. However, their habitat use may be different in places with different longitudinal environmental gradients, climatic regimes, and microclimate. This study aimed to determine the habitat variables affecting red panda distribution across different longitudinal gradients through a multivariate analysis. We studied habitat selection patterns along the longitudinal gradient in Nepal's Himalaya which is grouped into the eastern, central, and western complexes. We collected data on red panda presence and habitat variables (e.g., tree richness, canopy cover, bamboo abundance, water availability, tree diameter, tree height) by surveys along transects throughout the species' potential range. We used a multimodal inference approach with a generalized linear model to test the relative importance of environmental variables. Although the study showed that bamboo abundance had a major influence, habitat selection was different across longitudinal zones. Both canopy cover and species richness were unimportant in eastern Nepal, but their influence increased progressively toward the west. Conversely, tree height showed a decreasing influence on habitat selection from Eastern to Western Nepal. Red panda's habitat selection revealed in this study corresponds to the uneven distribution of vegetation assemblages and the dry climatic gradient along the eastern-western Himalayas which could be related to a need to conserve energy and thermoregulate. This study has further highlighted the need of importance of bamboo conservation and site-specific conservation planning to ensure long-term red panda conservation.
Collapse
Affiliation(s)
- Damber Bista
- Red Panda NetworkKathmanduNepal
- Wildlife Science Unit, School of Agriculture and Food SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Prakash Kumar Paudel
- Centre for Conservation BiologyKathmandu Institute of Applied SciencesKathmanduNepal
| | | | | | | | | |
Collapse
|
83
|
Impacts of forestation and deforestation on local temperature across the globe. PLoS One 2019; 14:e0213368. [PMID: 30893352 PMCID: PMC6426338 DOI: 10.1371/journal.pone.0213368] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/19/2019] [Indexed: 11/20/2022] Open
Abstract
Changing forest cover is a key driver of local climate change worldwide, as it affects both albedo and evapotranspiration (ET). Deforestation and forestation are predicted to have opposing influences on surface albedo and ET rates, and thus impact local surface temperatures differently. Relationships between forest change, albedo, ET, and local temperatures may further vary regionally, as the strengths of warming by albedo effects and cooling by ET effects vary with latitude. Despite these important relationships, the magnitude of forest cover effects on local surface temperature across the globe remains unclear. Using recently-released global forest change data, we first show that forestation and deforestation have pervasive and opposite effects on LST, ET and albedo worldwide. Deforestation from 2000 to 2010 caused consistent warming of 0.38 ± 0.02 (mean ± SE) and 0.16 ± 0.01°C in tropical and temperate regions respectively, while forestation caused cooling in those regions of -0.18 ± 0.02 and -0.19 ± 0.02°C. Tropical forests were particularly sensitive to the climate effects of forest change, with forest cover losses of ~50% associated with increased LST of 1.08 ± 0.25°C, whereas similar forest cover gains decreased LST by -1.11 ± 0.26°C. Secondly, based on a new structural equation model, we show that these changes on LST were largely mediated by changes in albedo and ET. Finally, based on this model, we show that predicted forest changes in Brazil associated with a business-as-usual land use scenario through 2050 may increase LST up to 1.45°C. Our results contribute to a better understanding of the mechanistic inter-relationships between forest change and changes in albedo, ET and LST, and provide additional evidence that forestation has the potential to reverse deforestation impacts on local climate, especially in tropical and temperate regions.
Collapse
|
84
|
Both S, Riutta T, Paine CET, Elias DMO, Cruz RS, Jain A, Johnson D, Kritzler UH, Kuntz M, Majalap-Lee N, Mielke N, Montoya Pillco MX, Ostle NJ, Arn Teh Y, Malhi Y, Burslem DFRP. Logging and soil nutrients independently explain plant trait expression in tropical forests. THE NEW PHYTOLOGIST 2019; 221:1853-1865. [PMID: 30238458 DOI: 10.1111/nph.15444] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
Plant functional traits regulate ecosystem functions but little is known about how co-occurring gradients of land use and edaphic conditions influence their expression. We test how gradients of logging disturbance and soil properties relate to community-weighted mean traits in logged and old-growth tropical forests in Borneo. We studied 32 physical, chemical and physiological traits from 284 tree species in eight 1 ha plots and measured long-term soil nutrient supplies and plant-available nutrients. Logged plots had greater values for traits that drive carbon capture and growth, whilst old-growth forests had greater values for structural and persistence traits. Although disturbance was the primary driver of trait expression, soil nutrients explained a statistically independent axis of variation linked to leaf size and nutrient concentration. Soil characteristics influenced trait expression via nutrient availability, nutrient pools, and pH. Our finding, that traits have dissimilar responses to land use and soil resource availability, provides robust evidence for the need to consider the abiotic context of logging when predicting plant functional diversity across human-modified tropical forests. The detection of two independent axes was facilitated by the measurement of many more functional traits than have been examined in previous studies.
Collapse
Affiliation(s)
- Sabine Both
- Institute of Biological and Environmental Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen, AB24 3UU, UK
- Environmental and Rural Science, University of New England, Armidale, 2351, NSW, Australia
| | - Terhi Riutta
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - C E Timothy Paine
- Environmental and Rural Science, University of New England, Armidale, 2351, NSW, Australia
| | - Dafydd M O Elias
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 4YQ, UK
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - R S Cruz
- Instituto de Ciencias de la Naturaleza, Territorio y Energías Renovables, Pontificia Universidad Católica del Perú, Lima, Perú
| | - Annuar Jain
- The South East Asia Rainforest Research Partnership (SEARRP), Danum Valley Field Centre, PO Box 60282, 91112, Lahad Datu, Sabah, Malaysia
| | - David Johnson
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Ully H Kritzler
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Marianne Kuntz
- Institute of Biological and Environmental Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen, AB24 3UU, UK
| | - Noreen Majalap-Lee
- Forest Research Centre, Peti Surat 1407, 90715, Sandakan, Sabah, Malaysia
| | - Nora Mielke
- Institute of Biological and Environmental Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen, AB24 3UU, UK
| | - Milenka X Montoya Pillco
- Institute of Biological and Environmental Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen, AB24 3UU, UK
| | - Nicholas J Ostle
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 4YQ, UK
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - Yit Arn Teh
- Institute of Biological and Environmental Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen, AB24 3UU, UK
| | - Yadvinder Malhi
- Environmental and Rural Science, University of New England, Armidale, 2351, NSW, Australia
| | - David F R P Burslem
- Institute of Biological and Environmental Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen, AB24 3UU, UK
| |
Collapse
|
85
|
Pfeifer M, Boyle MJW, Dunning S, Olivier PI. Forest floor temperature and greenness link significantly to canopy attributes in South Africa's fragmented coastal forests. PeerJ 2019; 7:e6190. [PMID: 30648017 PMCID: PMC6330204 DOI: 10.7717/peerj.6190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/30/2018] [Indexed: 11/20/2022] Open
Abstract
Tropical landscapes are changing rapidly due to changes in land use and land management. Being able to predict and monitor land use change impacts on species for conservation or food security concerns requires the use of habitat quality metrics, that are consistent, can be mapped using above-ground sensor data and are relevant for species performance. Here, we focus on ground surface temperature (Thermalground) and ground vegetation greenness (NDVIdown) as potentially suitable metrics of habitat quality. Both have been linked to species demography and community structure in the literature. We test whether they can be measured consistently from the ground and whether they can be up-scaled indirectly using canopy structure maps (Leaf Area Index, LAI, and Fractional vegetation cover, FCover) developed from Landsat remote sensing data. We measured Thermalground and NDVIdown across habitats differing in tree cover (natural grassland to forest edges to forests and tree plantations) in the human-modified coastal forested landscapes of Kwa-Zulua Natal, South Africa. We show that both metrics decline significantly with increasing canopy closure and leaf area, implying a potential pathway for upscaling both metrics using canopy structure maps derived using earth observation. Specifically, our findings suggest that opening forest canopies by 20% or decreasing forest canopy LAI by one unit would result in increases of Thermalground by 1.2 °C across the range of observations studied. NDVIdown appears to decline by 0.1 in response to an increase in canopy LAI by 1 unit and declines nonlinearly with canopy closure. Accounting for micro-scale variation in temperature and resources is seen as essential to improve biodiversity impact predictions. Our study suggests that mapping ground surface temperature and ground vegetation greenness utilising remotely sensed canopy cover maps could provide a useful tool for mapping habitat quality metrics that matter to species. However, this approach will be constrained by the predictive capacity of models used to map field-derived forest canopy attributes. Furthermore, sampling efforts are needed to capture spatial and temporal variation in Thermalground within and across days and seasons to validate the transferability of our findings. Finally, whilst our approach shows that surface temperature and ground vegetation greenness might be suitable habitat quality metric used in biodiversity monitoring, the next step requires that we map demographic traits of species of different threat status onto maps of these metrics in landscapes differing in disturbance and management histories. The derived understanding could then be exploited for targeted landscape restoration that benefits biodiversity conservation at the landscape scale.
Collapse
Affiliation(s)
- Marion Pfeifer
- Modelling, Evidence & Policy Group, SNES, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Michael J W Boyle
- Forest Ecology and Conservation Group, Silwood Park Campus, Imperial College London, Ascot, Berkshire, United Kingdom
| | - Stuart Dunning
- School of Geography, Politics and Sociology, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | |
Collapse
|
86
|
Drinkwater R, Schnell IB, Bohmann K, Bernard H, Veron G, Clare E, Gilbert MTP, Rossiter SJ. Using metabarcoding to compare the suitability of two blood-feeding leech species for sampling mammalian diversity in North Borneo. Mol Ecol Resour 2019; 19:105-117. [PMID: 30225935 PMCID: PMC7379310 DOI: 10.1111/1755-0998.12943] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 01/09/2023]
Abstract
The application of high-throughput sequencing (HTS) for metabarcoding of mixed samples offers new opportunities in conservation biology. Recently, the successful detection of prey DNA from the guts of leeches has raised the possibility that these, and other blood-feeding invertebrates, might serve as useful samplers of mammals. Yet little is known about whether sympatric leech species differ in their feeding preferences, and whether this has a bearing on their relative suitability for monitoring local mammalian diversity. To address these questions, we collected spatially matched samples of two congeneric leech species Haemadipsa picta and Haemadipsa sumatrana from lowland rainforest in Borneo. For each species, we pooled ~500 leeches into batches of 10 individuals, performed PCR to target a section of the mammalian 16S rRNA locus and undertook sequencing of amplicon libraries using an Illumina MiSeq. In total, we identified sequences from 14 mammalian genera, spanning nine families and five orders. We found greater numbers of detections, and higher diversity of OTUs, in H. picta compared with H. sumatrana, with rodents only present in the former leech species. However, comparison of samples from across the landscape revealed no significant difference in mammal community composition between the leech species. We therefore suggest that H. picta is the more suitable iDNA sampler in this degraded Bornean forest. We conclude that the choice of invertebrate sampler can influence the detectability of different mammal groups and that this should be accounted for when designing iDNA studies.
Collapse
Affiliation(s)
- Rosie Drinkwater
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| | | | - Kristine Bohmann
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
- School of Biological SciencesUniversity of East Anglia, Norwich Research ParkNorwich, NorfolkUK
| | - Henry Bernard
- Institute for Tropical Biology and ConservationUniversiti Malaysia Sabah, Jalan UMSKota KinabaluSabahMalaysia
| | - Géraldine Veron
- Institut Systématique Evolution Biodiversité (ISYEB)Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHEParis CedexFrance
| | - Elizabeth Clare
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| | - M. Thomas P. Gilbert
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
- NTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Stephen J. Rossiter
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| |
Collapse
|
87
|
Brozovic R, Abrams JF, Mohamed A, Wong ST, Niedballa J, Bhagwat T, Sollmann R, Mannan S, Kissing J, Wilting A. Effects of forest degradation on the moonrat Echinosorex gymnura in Sabah, Malaysian Borneo. Mamm Biol 2018. [DOI: 10.1016/j.mambio.2018.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
88
|
Jucker T, Hardwick SR, Both S, Elias DMO, Ewers RM, Milodowski DT, Swinfield T, Coomes DA. Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes. GLOBAL CHANGE BIOLOGY 2018; 24:5243-5258. [PMID: 30246358 DOI: 10.1111/gcb.14415] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/02/2018] [Indexed: 05/05/2023]
Abstract
Local-scale microclimatic conditions in forest understoreys play a key role in shaping the composition, diversity and function of these ecosystems. Consequently, understanding what drives variation in forest microclimate is critical to forecasting ecosystem responses to global change, particularly in the tropics where many species already operate close to their thermal limits and rapid land-use transformation is profoundly altering local environments. Yet our ability to characterize forest microclimate at ecologically meaningful scales remains limited, as understorey conditions cannot be directly measured from outside the canopy. To address this challenge, we established a network of microclimate sensors across a land-use intensity gradient spanning from old-growth forests to oil-palm plantations in Borneo. We then combined these observations with high-resolution airborne laser scanning data to characterize how topography and canopy structure shape variation in microclimate both locally and across the landscape. In the processes, we generated high-resolution microclimate surfaces spanning over 350 km2 , which we used to explore the potential impacts of habitat degradation on forest regeneration under both current and future climate scenarios. We found that topography and vegetation structure were strong predictors of local microclimate, with elevation and terrain curvature primarily constraining daily mean temperatures and vapour pressure deficit (VPD), whereas canopy height had a clear dampening effect on microclimate extremes. This buffering effect was particularly pronounced on wind-exposed slopes but tended to saturate once canopy height exceeded 20 m-suggesting that despite intensive logging, secondary forests remain largely thermally buffered. Nonetheless, at a landscape-scale microclimate was highly heterogeneous, with maximum daily temperatures ranging between 24.2 and 37.2°C and VPD spanning two orders of magnitude. Based on this, we estimate that by the end of the century forest regeneration could be hampered in degraded secondary forests that characterize much of Borneo's lowlands if temperatures continue to rise following projected trends.
Collapse
Affiliation(s)
- Tommaso Jucker
- Forest Ecology and Conservation group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
- CSIRO Land and Water, Floreat, WA, Australia
| | - Stephen R Hardwick
- Blackett Laboratory, Department of Physics, Imperial College London, London, UK
| | - Sabine Both
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Dafydd M O Elias
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, UK
| | | | | | - Tom Swinfield
- Forest Ecology and Conservation group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - David A Coomes
- Forest Ecology and Conservation group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
89
|
Liu Z, Jiang F, Zhu Y, Li F, Jin G. Spatial heterogeneity of leaf area index in a temperate old-growth forest: Spatial autocorrelation dominates over biotic and abiotic factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:287-295. [PMID: 29627552 DOI: 10.1016/j.scitotenv.2018.03.333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/19/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Leaf area index (LAI) controls many eco-physiological processes and can be widely used to scale-up leaf processes to ecosystem, landscape and regional levels. However, the macro-scale spatial heterogeneity of LAI and its controlling factors are not fully understood. We estimated annual maximum LAI using an LAI-2200 plant canopy analyzer in a 9-ha, old-growth, mixed broadleaved-Korean pine (Pinus koraiensis) forest in China. We analyzed the spatial heterogeneity of LAI and mapped its distribution using geostatistical methods; then, through variance partitioning, we examined the influences of several biotic factors, abiotic factors and spatial autocorrelation on the LAI distribution. Variance partitioning showed that these factors altogether explained 59% of the variation in the distribution of LAI. Compared to biotic and abiotic factors, spatial autocorrelation controlled more spatial heterogeneity of LAI by explaining 51.4% of the total variation in LAI. For biotic and abiotic factors, the mean diameter at breast height (DBH) of large trees (DBH > 10 cm), elevation, soil temperature and soil mass moisture content significantly affected the LAI distribution (P < 0.01). Notably, spatial autocorrelation unexpectedly explained the most variation in the LAI values, and it also varies with cardinal direction and is a key descriptor of LAI spatial variability. These results suggest that the influence of spatial autocorrelation on LAI distribution should attract more attention and that both the relative importance of and interactions among different determining factors is helpful for better understanding the mechanistic determinants of LAI distributions in temperate mixed forests.
Collapse
Affiliation(s)
- Zhili Liu
- Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
| | - Feng Jiang
- Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
| | - Yu Zhu
- Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
| | - Fengri Li
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Guangze Jin
- Center for Ecological Research, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
90
|
Pillay R, Hua F, Loiselle BA, Bernard H, Fletcher RJ. Multiple stages of tree seedling recruitment are altered in tropical forests degraded by selective logging. Ecol Evol 2018; 8:8231-8242. [PMID: 30250698 PMCID: PMC6145000 DOI: 10.1002/ece3.4352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/12/2018] [Accepted: 05/14/2018] [Indexed: 11/08/2022] Open
Abstract
Tropical forest degradation is a global environmental issue. In degraded forests, seedling recruitment of canopy trees is vital for forest regeneration and recovery. We investigated how selective logging, a pervasive driver of tropical forest degradation, impacts canopy tree seedling recruitment, focusing on an endemic dipterocarp Dryobalanops lanceolata in Sabah, Borneo. During a mast-fruiting event in intensively logged and nearby unlogged forest, we examined four stages of the seedling recruitment process: seed production, seed predation, and negative density-dependent germination and seedling survival. Our results suggest that each stage of the seedling recruitment process is altered in logged forest. The seed crop of D. lanceolata trees in logged forest was one-third smaller than that produced by trees in unlogged forest. The functional role of vertebrates in seed predation increased in logged forest while that of non-vertebrates declined. Seeds in logged forest were less likely to germinate than those in unlogged forest. Germination increased with local-scale conspecific seed density in unlogged forest, but seedling survival tended to decline. However, both germination and seedling survival increased with local-scale conspecific seed density in logged forest. Notably, seed crop size, germination, and seedling survival tended to increase for larger trees in both unlogged and logged forests, suggesting that sustainable timber extraction and silvicultural practices designed to minimize damage to the residual stand are important to prevent seedling recruitment failure. Overall, these impacts sustained by several aspects of seedling recruitment in a mast-fruiting year suggest that intensive selective logging may affect long-term population dynamics of D. lanceolata. It is necessary to establish if other dipterocarp species, many of which are threatened by the timber trade, are similarly affected in tropical forests degraded by intensive selective logging.
Collapse
Affiliation(s)
- Rajeev Pillay
- Department of Wildlife Ecology and ConservationUniversity of FloridaGainesvilleFloridaUSA
| | - Fangyuan Hua
- Department of ZoologyUniversity of CambridgeCambridgeUK
| | - Bette A. Loiselle
- Department of Wildlife Ecology and ConservationUniversity of FloridaGainesvilleFloridaUSA
- Center for Latin American StudiesUniversity of FloridaGainesvilleFloridaUSA
| | - Henry Bernard
- Institute for Tropical Biology and ConservationUniversiti Malaysia SabahKota KinabaluSabahMalaysia
| | - Robert J. Fletcher
- Department of Wildlife Ecology and ConservationUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
91
|
The Short-Term Effects of Experimental Forestry Treatments on Site Conditions in an Oak–Hornbeam Forest. FORESTS 2018. [DOI: 10.3390/f9070406] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
92
|
Riutta T, Malhi Y, Kho LK, Marthews TR, Huaraca Huasco W, Khoo M, Tan S, Turner E, Reynolds G, Both S, Burslem DFRP, Teh YA, Vairappan CS, Majalap N, Ewers RM. Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests. GLOBAL CHANGE BIOLOGY 2018; 24:2913-2928. [PMID: 29364562 DOI: 10.1111/gcb.14068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 12/16/2017] [Indexed: 06/07/2023]
Abstract
Tropical forests play a major role in the carbon cycle of the terrestrial biosphere. Recent field studies have provided detailed descriptions of the carbon cycle of mature tropical forests, but logged or secondary forests have received much less attention. Here, we report the first measures of total net primary productivity (NPP) and its allocation along a disturbance gradient from old-growth forests to moderately and heavily logged forests in Malaysian Borneo. We measured the main NPP components (woody, fine root and canopy NPP) in old-growth (n = 6) and logged (n = 5) 1 ha forest plots. Overall, the total NPP did not differ between old-growth and logged forest (13.5 ± 0.5 and 15.7 ± 1.5 Mg C ha-1 year-1 respectively). However, logged forests allocated significantly higher fraction into woody NPP at the expense of the canopy NPP (42% and 48% into woody and canopy NPP, respectively, in old-growth forest vs 66% and 23% in logged forest). When controlling for local stand structure, NPP in logged forest stands was 41% higher, and woody NPP was 150% higher than in old-growth stands with similar basal area, but this was offset by structure effects (higher gap frequency and absence of large trees in logged forest). This pattern was not driven by species turnover: the average woody NPP of all species groups within logged forest (pioneers, nonpioneers, species unique to logged plots and species shared with old-growth plots) was similar. Hence, below a threshold of very heavy disturbance, logged forests can exhibit higher NPP and higher allocation to wood; such shifts in carbon cycling persist for decades after the logging event. Given that the majority of tropical forest biome has experienced some degree of logging, our results demonstrate that logging can cause substantial shifts in carbon production and allocation in tropical forests.
Collapse
Affiliation(s)
- Terhi Riutta
- School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, UK
| | - Yadvinder Malhi
- School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, UK
| | - Lip Khoon Kho
- School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, UK
- Biological Research Division, Tropical Peat Research Institute, Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | - Toby R Marthews
- School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, UK
- Centre for Ecology & Hydrology, Wallingford, UK
| | | | - MinSheng Khoo
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Sylvester Tan
- Center for Tropical Forest Science, Smithsonian Institution, Washington, DC, USA
| | - Edgar Turner
- Insect Ecology Group, University Museum of Zoology, University of Cambridge, Cambridge, UK
| | - Glen Reynolds
- Danum Valley Field Centre, The Royal Society South East Asia Rainforest Research Partnership, Lahad Datu, Sabah, Malaysia
| | - Sabine Both
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Yit Arn Teh
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Charles S Vairappan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Noreen Majalap
- Sabah Forestry Department, Forest Research Centre, Sandakan, Sabah, Malaysia
| | - Robert M Ewers
- Department of Life Sciences, Imperial College London, Ascot, UK
| |
Collapse
|
93
|
Jones KN, Rivers JW, Betts MG. Herbicides Exert Weak and Variable Effects on Microclimate in Early-Seral Forests. NORTHWEST SCIENCE 2018. [DOI: 10.3955/046.092.0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kristin N. Jones
- Department of Forest Ecosystems and Society, College of Forestry, 321 Richardson Hall, Oregon State University, Corvallis, Oregon 97331
| | - James W. Rivers
- Department of Forest Ecosystems and Society, College of Forestry, 321 Richardson Hall, Oregon State University, Corvallis, Oregon 97331
| | - Matthew G. Betts
- Department of Forest Ecosystems and Society, College of Forestry, 321 Richardson Hall, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
94
|
Gray REJ, Ewers RM, Boyle MJW, Chung AYC, Gill RJ. Effect of tropical forest disturbance on the competitive interactions within a diverse ant community. Sci Rep 2018; 8:5131. [PMID: 29572517 PMCID: PMC5865194 DOI: 10.1038/s41598-018-23272-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/26/2018] [Indexed: 11/30/2022] Open
Abstract
Understanding how anthropogenic disturbance influences patterns of community composition and the reinforcing interactive processes that structure communities is important to mitigate threats to biodiversity. Competition is considered a primary reinforcing process, yet little is known concerning disturbance effects on competitive interaction networks. We examined how differences in ant community composition between undisturbed and disturbed Bornean rainforest, is potentially reflected by changes in competitive interactions over a food resource. Comparing 10 primary forest sites to 10 in selectively-logged forest, we found higher genus richness and diversity in the primary forest, with 18.5% and 13.0% of genera endemic to primary and logged respectively. From 180 hours of filming bait cards, we assessed ant-ant interactions, finding that despite considered aggression over food sources, the majority of ant interactions were neutral. Proportion of competitive interactions at bait cards did not differ between forest type, however, the rate and per capita number of competitive interactions was significantly lower in logged forest. Furthermore, the majority of genera showed large changes in aggression-score with often inverse relationships to their occupancy rank. This provides evidence of a shuffled competitive network, and these unexpected changes in aggressive relationships could be considered a type of competitive network re-wiring after disturbance.
Collapse
Affiliation(s)
- Ross E J Gray
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK.
| | - Robert M Ewers
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Michael J W Boyle
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Arthur Y C Chung
- Forest Research Centre, Forestry Department, P.O. Box 1407, 90715, Sandakan, Sabah, Malaysia
| | - Richard J Gill
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| |
Collapse
|
95
|
Senior RA, Hill JK, Benedick S, Edwards DP. Tropical forests are thermally buffered despite intensive selective logging. GLOBAL CHANGE BIOLOGY 2018; 24:1267-1278. [PMID: 29052295 DOI: 10.1111/gcb.13914] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/04/2017] [Accepted: 09/06/2017] [Indexed: 05/05/2023]
Abstract
Tropical rainforests are subject to extensive degradation by commercial selective logging. Despite pervasive changes to forest structure, selectively logged forests represent vital refugia for global biodiversity. The ability of these forests to buffer temperature-sensitive species from climate warming will be an important determinant of their future conservation value, although this topic remains largely unexplored. Thermal buffering potential is broadly determined by: (i) the difference between the "macroclimate" (climate at a local scale, m to ha) and the "microclimate" (climate at a fine-scale, mm to m, that is distinct from the macroclimate); (ii) thermal stability of microclimates (e.g. variation in daily temperatures); and (iii) the availability of microclimates to organisms. We compared these metrics in undisturbed primary forest and intensively logged forest on Borneo, using thermal images to capture cool microclimates on the surface of the forest floor, and information from dataloggers placed inside deadwood, tree holes and leaf litter. Although major differences in forest structure remained 9-12 years after repeated selective logging, we found that logging activity had very little effect on thermal buffering, in terms of macroclimate and microclimate temperatures, and the overall availability of microclimates. For 1°C warming in the macroclimate, temperature inside deadwood, tree holes and leaf litter warmed slightly more in primary forest than in logged forest, but the effect amounted to <0.1°C difference between forest types. We therefore conclude that selectively logged forests are similar to primary forests in their potential for thermal buffering, and subsequent ability to retain temperature-sensitive species under climate change. Selectively logged forests can play a crucial role in the long-term maintenance of global biodiversity.
Collapse
Affiliation(s)
- Rebecca A Senior
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Jane K Hill
- Department of Biology, University of York, York, UK
| | - Suzan Benedick
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan, Malaysia
| | - David P Edwards
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
96
|
Staab M, Bruelheide H, Durka W, Michalski S, Purschke O, Zhu CD, Klein AM. Tree phylogenetic diversity promotes host-parasitoid interactions. Proc Biol Sci 2017; 283:rspb.2016.0275. [PMID: 27383815 DOI: 10.1098/rspb.2016.0275] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/09/2016] [Indexed: 11/12/2022] Open
Abstract
Evidence from grassland experiments suggests that a plant community's phylogenetic diversity (PD) is a strong predictor of ecosystem processes, even stronger than species richness per se This has, however, never been extended to species-rich forests and host-parasitoid interactions. We used cavity-nesting Hymenoptera and their parasitoids collected in a subtropical forest as a model system to test whether hosts, parasitoids, and their interactions are influenced by tree PD and a comprehensive set of environmental variables, including tree species richness. Parasitism rate and parasitoid abundance were positively correlated with tree PD. All variables describing parasitoids decreased with elevation, and were, except parasitism rate, dependent on host abundance. Quantitative descriptors of host-parasitoid networks were independent of the environment. Our study indicates that host-parasitoid interactions in species-rich forests are related to the PD of the tree community, which influences parasitism rates through parasitoid abundance. We show that effects of tree community PD are much stronger than effects of tree species richness, can cascade to high trophic levels, and promote trophic interactions. As during habitat modification phylogenetic information is usually lost non-randomly, even species-rich habitats may not be able to continuously provide the ecosystem process parasitism if the evolutionarily most distinct plant lineages vanish.
Collapse
Affiliation(s)
- Michael Staab
- Chair of Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Strasse 4, 79106 Freiburg, Germany
| | - Helge Bruelheide
- Geobotany and Botanical Garden, Institute of Biology, Martin Luther University of Halle-Wittenberg, 06108 Halle (Saale), Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Walter Durka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany Department of Community Ecology (BZF), Helmholtz Centre for Environmental Research UFZ, Theodor-Lieser-Strasse 4, 06120 Halle (Saale), Germany
| | - Stefan Michalski
- Department of Community Ecology (BZF), Helmholtz Centre for Environmental Research UFZ, Theodor-Lieser-Strasse 4, 06120 Halle (Saale), Germany
| | - Oliver Purschke
- Geobotany and Botanical Garden, Institute of Biology, Martin Luther University of Halle-Wittenberg, 06108 Halle (Saale), Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany Department of Computer Science, Martin Luther University of Halle-Wittenberg, Von-Seckendorff-Platz 1, 06120 Halle (Saale), Germany
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Alexandra-Maria Klein
- Chair of Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Strasse 4, 79106 Freiburg, Germany
| |
Collapse
|
97
|
Jhou HC, Wang YN, Wu CS, Yu JC, Chen CI. Photosynthetic gas exchange responses of Swietenia macrophylla King and Melia azedarach L. plantations under drought conditions. BOTANICAL STUDIES 2017; 58:57. [PMID: 29198038 PMCID: PMC5712295 DOI: 10.1186/s40529-017-0212-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/23/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The environmental stresses caused by climate change have become more severe in recent decades, affecting tree growth and physiology. Tropical forests have great potential for global carbon sequestration. However, they suffer from heavy rainfall and prolonged dry periods due to climate change. Swietenia macrophylla King and Melia azedarach L. are economically valuable trees that are widely planted in southern Taiwan. Plantations are exposed to either prolonged dry periods or heavy rainfall within the seasons of tropical monsoon areas. Photo-physiological comparisons may provide information that can improve management of S. macrophylla and M. azedarach plantations in tropical regions. RESULTS Both species exhibited a midday depression in leaf photosynthesis regardless of the season. The net photosynthetic rate (P N), stomatal conductance (g s), and transpiration rate (E) in the dry season all significantly decreased in both tree species. In addition, M. azedarach used water more efficiently than did S. macrophylla during the dry season, but S. macrophylla had higher P N compared with that in M. azedarach during the wet season. Temperature and vapor pressure deficit influenced P N variation in S. macrophylla and M. azedarach, respectively. Our data suggested that the P N and g s of M. azedarach, but not of S. macrophylla, were linearly correlated during the dry season. The reduction of the leaf area was more sever in M. azedarach than in S. macrophylla, thus preventing water loss more efficiently. CONCLUSIONS M. azedarach adapted to drought by reducing total leaf area and maintaining higher P N, g s, E, and WUE compared with those measured in S. macrophylla during the dry season. M. azedarach is more drought adaptation and more suitable for both humid and semi-humid areas than S. macrophylla, whereas the latter should be limited to more humid areas.
Collapse
Affiliation(s)
- Hong-Chyi Jhou
- The Experimental Forest, National Taiwan University, 55750 Nantou, Taiwan
| | - Ya-Nan Wang
- Department of Forestry and Resource Conservation, National Taiwan University, 10617 Taipei, Taiwan
| | - Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Jui-Chu Yu
- The Experimental Forest, National Taiwan University, 55750 Nantou, Taiwan
| | - Chung-I Chen
- Department of Forestry and Resource Conservation, National Taiwan University, 10617 Taipei, Taiwan
| |
Collapse
|
98
|
Creation of forest edges has a global impact on forest vertebrates. Nature 2017; 551:187-191. [PMID: 29088701 PMCID: PMC5681864 DOI: 10.1038/nature24457] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 09/26/2017] [Indexed: 12/17/2022]
Abstract
Forest edges influence more than half of the world's forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. Here we assembled a global dataset on species responses to fragmentation and developed a statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1,673 vertebrate species. We show that the abundances of 85% of species are affected, either positively or negatively, by forest edges. Species that live in the centre of the forest (forest core), that were more likely to be listed as threatened by the International Union for Conservation of Nature (IUCN), reached peak abundances only at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest-core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale.
Collapse
|
99
|
Both S, Elias DMO, Kritzler UH, Ostle NJ, Johnson D. Land use not litter quality is a stronger driver of decomposition in hyperdiverse tropical forest. Ecol Evol 2017; 7:9307-9318. [PMID: 29187970 PMCID: PMC5696412 DOI: 10.1002/ece3.3460] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/28/2017] [Accepted: 08/19/2017] [Indexed: 01/01/2023] Open
Abstract
In hyperdiverse tropical forests, the key drivers of litter decomposition are poorly understood despite its crucial role in facilitating nutrient availability for plants and microbes. Selective logging is a pressing land use with potential for considerable impacts on plant-soil interactions, litter decomposition, and nutrient cycling. Here, in Borneo's tropical rainforests, we test the hypothesis that decomposition is driven by litter quality and that there is a significant "home-field advantage," that is positive interaction between local litter quality and land use. We determined mass loss of leaf litter, collected from selectively logged and old-growth forest, in a fully factorial experimental design, using meshes that either allowed or precluded access by mesofauna. We measured leaf litter chemical composition before and after the experiment. Key soil chemical and biological properties and microclimatic conditions were measured as land-use descriptors. We found that despite substantial differences in litter quality, the main driver of decomposition was land-use type. Whilst inclusion of mesofauna accelerated decomposition, their effect was independent of land use and litter quality. Decomposition of all litters was slower in selectively logged forest than in old-growth forest. However, there was significantly greater loss of nutrients from litter, especially phosphorus, in selectively logged forest. The analyses of several covariates detected minor microclimatic differences between land-use types but no alterations in soil chemical properties or free-living microbial composition. These results demonstrate that selective logging can significantly reduce litter decomposition in tropical rainforest with no evidence of a home-field advantage. We show that loss of key limiting nutrients from litter (P & N) is greater in selectively logged forest. Overall, the findings hint at subtle differences in microclimate overriding litter quality that result in reduced decomposition rates in selectively logged forests and potentially affect biogeochemical nutrient cycling in the long term.
Collapse
Affiliation(s)
- Sabine Both
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
| | - Dafydd M. O. Elias
- Lancaster Environment CentreLancaster UniversityLancasterUK
- Centre for Ecology & HydrologyLancaster Environment CentreLancasterUK
| | - Ully H. Kritzler
- School of Earth and Environmental SciencesThe University of ManchesterManchesterUK
| | - Nick J. Ostle
- Lancaster Environment CentreLancaster UniversityLancasterUK
| | - David Johnson
- School of Earth and Environmental SciencesThe University of ManchesterManchesterUK
| |
Collapse
|
100
|
Senior RA, Hill JK, González del Pliego P, Goode LK, Edwards DP. A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol Evol 2017; 7:7897-7908. [PMID: 29043043 PMCID: PMC5632667 DOI: 10.1002/ece3.3262] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/13/2017] [Accepted: 06/25/2017] [Indexed: 01/09/2023] Open
Abstract
Temperature is a core component of a species' fundamental niche. At the fine scale over which most organisms experience climate (mm to ha), temperature depends upon the amount of radiation reaching the Earth's surface, which is principally governed by vegetation. Tropical regions have undergone widespread and extreme changes to vegetation, particularly through the degradation and conversion of rainforests. As most terrestrial biodiversity is in the tropics, and many of these species possess narrow thermal limits, it is important to identify local thermal impacts of rainforest degradation and conversion. We collected pantropical, site-level (<1 ha) temperature data from the literature to quantify impacts of land-use change on local temperatures, and to examine whether this relationship differed aboveground relative to belowground and between wet and dry seasons. We found that local temperature in our sample sites was higher than primary forest in all human-impacted land-use types (N = 113,894 daytime temperature measurements from 25 studies). Warming was pronounced following conversion of forest to agricultural land (minimum +1.6°C, maximum +13.6°C), but minimal and nonsignificant when compared to forest degradation (e.g., by selective logging; minimum +1°C, maximum +1.1°C). The effect was buffered belowground (minimum buffering 0°C, maximum buffering 11.4°C), whereas seasonality had minimal impact (maximum buffering 1.9°C). We conclude that forest-dependent species that persist following conversion of rainforest have experienced substantial local warming. Deforestation pushes these species closer to their thermal limits, making it more likely that compounding effects of future perturbations, such as severe droughts and global warming, will exceed species' tolerances. By contrast, degraded forests and belowground habitats may provide important refugia for thermally restricted species in landscapes dominated by agricultural land.
Collapse
Affiliation(s)
- Rebecca A. Senior
- Department of Animal and Plant Sciences, Alfred Denny BuildingUniversity of Sheffield, Western BankSheffieldUK
| | - Jane K. Hill
- Department of BiologyUniversity of York, Wentworth WayYorkUK
| | - Pamela González del Pliego
- Department of Animal and Plant Sciences, Alfred Denny BuildingUniversity of Sheffield, Western BankSheffieldUK
| | - Laurel K. Goode
- Department of Human Services and Oregon Health AuthoritySalemORUSA
| | - David P. Edwards
- Department of Animal and Plant Sciences, Alfred Denny BuildingUniversity of Sheffield, Western BankSheffieldUK
| |
Collapse
|