51
|
Martínez-Glez V, Tenorio J, Nevado J, Gordo G, Rodríguez-Laguna L, Feito M, de Lucas R, Pérez-Jurado LA, Ruiz Pérez VL, Torrelo A, Spinner NB, Happle R, Biesecker LG, Lapunzina P. A six-attribute classification of genetic mosaicism. Genet Med 2020; 22:1743-1757. [PMID: 32661356 PMCID: PMC8581815 DOI: 10.1038/s41436-020-0877-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 01/23/2023] Open
Abstract
Mosaicism denotes an individual who has at least two populations of cells with distinct genotypes that are derived from a single fertilized egg. Genetic variation among the cell lines can involve whole chromosomes, structural or copy number variants, small or single nucleotide variants, or epigenetic variants. The mutational events that underlie mosaic variants occur during mitotic cell divisions after fertilization and zygote formation. The initiating mutational event can occur in any types of cell at any time in development, leading to enormous variation in the distribution and phenotypic effect of mosaicism. A number of classification proposals have been put forward to classify genetic mosaicism into categories based on the location, pattern, and mechanisms of the disease. We here propose a new classification of genetic mosaicism that considers the affected tissue, the pattern and distribution of the mosaicism, the pathogenicity of the variant, the direction of the change (benign to pathogenic vs. pathogenic to benign), and the postzygotic mutational mechanism. The accurate and comprehensive categorization and subtyping of mosaicisms is important and has potential clinical utility to define the natural history of these disorders, tailor follow-up frequency and interventions, estimate recurrence risks, and guide therapeutic decisions.
Collapse
Affiliation(s)
- Víctor Martínez-Glez
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain. .,Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain. .,ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium.
| | - Jair Tenorio
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.,Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain.,ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - Julián Nevado
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.,Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain.,ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - Gema Gordo
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.,Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain
| | - Lara Rodríguez-Laguna
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.,Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain
| | - Marta Feito
- Department of Pediatric Dermatology, Hospital Universitario La Paz-UAM, Madrid, Spain
| | - Raúl de Lucas
- Department of Pediatric Dermatology, Hospital Universitario La Paz-UAM, Madrid, Spain
| | - Luis A Pérez-Jurado
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.,Genetics Unit, Universitat Pompeu Fabra and Hospital del Mar Research Institute (IMIM), Barcelona, Spain.,Women's and Children's Hospital, South Australia Medical and Health Research Institute (SAHMRI) and University of Adelaide, Adelaide, SA, Australia
| | - Víctor L Ruiz Pérez
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.,ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium.,Instituto de Investigaciones Biomédicas de Madrid (CSIC-UAM), Madrid, Spain
| | - Antonio Torrelo
- Department of Pediatrics, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Nancy B Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicines at The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rudolf Happle
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Leslie G Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, MD, USA
| | - Pablo Lapunzina
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain. .,Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain. .,ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium.
| |
Collapse
|
52
|
Chromosomal alterations among age-related haematopoietic clones in Japan. Nature 2020; 584:130-135. [PMID: 32581364 DOI: 10.1038/s41586-020-2426-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 04/02/2020] [Indexed: 12/26/2022]
Abstract
The extent to which the biology of oncogenesis and ageing are shaped by factors that distinguish human populations is unknown. Haematopoietic clones with acquired mutations become common with advancing age and can lead to blood cancers1-10. Here we describe shared and population-specific patterns of genomic mutations and clonal selection in haematopoietic cells on the basis of 33,250 autosomal mosaic chromosomal alterations that we detected in 179,417 Japanese participants in the BioBank Japan cohort and compared with analogous data from the UK Biobank. In this long-lived Japanese population, mosaic chromosomal alterations were detected in more than 35.0% (s.e.m., 1.4%) of individuals older than 90 years, which suggests that such clones trend towards inevitability with advancing age. Japanese and European individuals exhibited key differences in the genomic locations of mutations in their respective haematopoietic clones; these differences predicted the relative rates of chronic lymphocytic leukaemia (which is more common among European individuals) and T cell leukaemia (which is more common among Japanese individuals) in these populations. Three different mutational precursors of chronic lymphocytic leukaemia (including trisomy 12, loss of chromosomes 13q and 13q, and copy-neutral loss of heterozygosity) were between two and six times less common among Japanese individuals, which suggests that the Japanese and European populations differ in selective pressures on clones long before the development of clinically apparent chronic lymphocytic leukaemia. Japanese and British populations also exhibited very different rates of clones that arose from B and T cell lineages, which predicted the relative rates of B and T cell cancers in these populations. We identified six previously undescribed loci at which inherited variants predispose to mosaic chromosomal alterations that duplicate or remove the inherited risk alleles, including large-effect rare variants at NBN, MRE11 and CTU2 (odds ratio, 28-91). We suggest that selective pressures on clones are modulated by factors that are specific to human populations. Further genomic characterization of clonal selection and cancer in populations from around the world is therefore warranted.
Collapse
|
53
|
Qian L, Soderquist C, Schrank‐Hacker A, Strauser H, Dupoux V, Tang CN, Smith JR, Sun A, Majumdar S, Nguyen T, Widura S, Landsburg DJ, Schuster SJ, Baxter RHG, Bogusz AM. Deletion 20q12 is associated with histological transformation of nodal marginal zone lymphoma to diffuse large B-cell lymphoma. Am J Hematol 2020; 95:238-244. [PMID: 31804739 DOI: 10.1002/ajh.25694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 11/06/2022]
Abstract
The genetic and molecular abnormalities underlying histological transformation (HT) of nodal marginal zone lymphoma (NMZL) to diffuse large B-cell lymphoma (DLBCL) are not well known. While del(20q12) is commonly deleted in myelodysplastic syndrome it has not previously been associated with DLBCL. We recently described a case of DLBCL harboring del(20q12) in a patient with a history of MZL involving lymph nodes and skin. Here we report eight matched cases of transformed MZL(tMZL): six from nodal MZL (tNMZL) and two from splenic MZL (tSMZL). We found >20% del(20q12) in 4/6 tNMZL, but not in tSMZL, nor in unmatched DLBCL, MZL with increased large cells (MZL-ILC), or MZL cases. To examine whether transformation is associated with a specific gene signature, the matched cases were analyzed for multiplexed gene expression using the Nanostring PanCancer Pathways panel. The differential gene expression signature revealed enrichment of inflammatory markers, as previously observed in MZL. Also, tMZL and de novo DLBCL were enriched for extracellular matrix proteins such as collagen and fibronectin, vascular development protein PDGFRβ, DNA repair protein RAD51, and oncogenic secrete protein Wnt11. A subset of genes is expressed differentially in del(20q12) tMZL cases vs non-del(20q12) tMZL cases. These results suggest a specific pathway is involved in the histological transformation of NMZL, which could serve as an indicator of aggressive clinical course in this otherwise indolent neoplasm.
Collapse
Affiliation(s)
- Lei Qian
- Department of Medical Genetics & Molecular Biochemistry, Lewis Katz School of MedicineTemple University Philadelphia Pennsylvania
| | - Craig Soderquist
- Department of Pathology and Cell BiologyColumbia University Medical Center New York Pennsylvania
| | - April Schrank‐Hacker
- Department of Pathology and Laboratory MedicineHospital of the University of Pennsylvania Philadelphia Pennsylvania
| | - Honore Strauser
- Department of Pathology and Laboratory MedicineHospital of the University of Pennsylvania Philadelphia Pennsylvania
| | - Vanessa Dupoux
- Department of Pathology and Laboratory MedicineHospital of the University of Pennsylvania Philadelphia Pennsylvania
| | - Chi Ngong Tang
- Department of Pathology and Laboratory MedicineHospital of the University of Pennsylvania Philadelphia Pennsylvania
| | - Jennifer R. Smith
- Department of Pathology and Laboratory MedicineHospital of the University of Pennsylvania Philadelphia Pennsylvania
| | - Ang Sun
- Department of BiologyTemple University Philadelphia Pennsylvania
| | - Sonali Majumdar
- Wistar Genomics Shared ResourceThe Wistar Institute Philadelphia Pennsylvania
| | - Tran Nguyen
- Wistar Genomics Shared ResourceThe Wistar Institute Philadelphia Pennsylvania
| | - Sandy Widura
- Wistar Genomics Shared ResourceThe Wistar Institute Philadelphia Pennsylvania
| | - Daniel J. Landsburg
- Department of Medicine, Perelman School of MedicineUniversity of Pennsylvania Philadelphia Pennsylvania
- Lymphoma Program, Abramson Cancer CenterUniversity of Pennsylvania Philadelphia Pennsylvania
| | - Stephen J. Schuster
- Department of Medicine, Perelman School of MedicineUniversity of Pennsylvania Philadelphia Pennsylvania
- Lymphoma Program, Abramson Cancer CenterUniversity of Pennsylvania Philadelphia Pennsylvania
| | - Richard H. G. Baxter
- Department of Medical Genetics & Molecular Biochemistry, Lewis Katz School of MedicineTemple University Philadelphia Pennsylvania
| | - Agata M. Bogusz
- Department of Pathology and Laboratory MedicineHospital of the University of Pennsylvania Philadelphia Pennsylvania
- Lymphoma Program, Abramson Cancer CenterUniversity of Pennsylvania Philadelphia Pennsylvania
| |
Collapse
|
54
|
Abstract
PURPOSE OF REVIEW Genetic mosaicism is the presence of a somatic mutation in a subset of cells that differs from the inherited germline genome. Detectable genetic mosaicism is attractive as a potential early biomarker for cancer risk because of its established relationship with aging, introduction of potentially deleterious mutations, and clonal selection and expansion of mutated cells. The aim of this review is to survey shared risk factors associated with genetic mosaicism, aging and cancer risk. RECENT FINDINGS Studies have associated aging, cigarette smoking and several genetic susceptibility loci with increased risk of acquiring genetic mosaicism. Genetic mosaicism has also been associated with numerous outcomes including cancer risk and cancer mortality; however, the level of evidence supporting these associations varies considerably. SUMMARY Ample evidence exists for shared risk factors for genetic mosaicism and cancer risk as well as abundant support linking genetic mosaicism in leukocytes to hematologic malignancies. The relationship between genetic mosaicism in circulating leukocytes and solid malignancies remains an active area of research.
Collapse
|
55
|
Guo X, Dai X, Zhou T, Wang H, Ni J, Xue J, Wang X. Mosaic loss of human Y chromosome: what, how and why. Hum Genet 2020; 139:421-446. [DOI: 10.1007/s00439-020-02114-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
|
56
|
Jakubek YA, Chang K, Sivakumar S, Yu Y, Giordano MR, Fowler J, Huff CD, Kadara H, Vilar E, Scheet P. Large-scale analysis of acquired chromosomal alterations in non-tumor samples from patients with cancer. Nat Biotechnol 2020; 38:90-96. [PMID: 31685958 PMCID: PMC8082517 DOI: 10.1038/s41587-019-0297-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 09/25/2019] [Indexed: 01/21/2023]
Abstract
Mosaicism, the presence of subpopulations of cells bearing somatic mutations, is associated with disease and aging and has been detected in diverse tissues, including apparently normal cells adjacent to tumors. To analyze mosaicism on a large scale, we surveyed haplotype-specific somatic copy number alterations (sCNAs) in 1,708 normal-appearing adjacent-to-tumor (NAT) tissue samples from 27 cancer sites and in 7,149 blood samples from The Cancer Genome Atlas. We find substantial variation across tissues in the rate, burden and types of sCNAs, including those spanning entire chromosome arms. We document matching sCNAs in the NAT tissue and the adjacent tumor, suggesting a shared clonal origin, as well as instances in which both NAT tissue and tumor tissue harbor a gain of the same oncogene arising in parallel from distinct parental haplotypes. These results shed light on pan-tissue mutations characteristic of field cancerization, the presence of oncogenic processes adjacent to cancer cells.
Collapse
Affiliation(s)
- Y A Jakubek
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - K Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Sivakumar
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Yu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M R Giordano
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Fowler
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C D Huff
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - E Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
57
|
Narisu N, Rothwell R, Vrtačnik P, Rodríguez S, Didion J, Zöllner S, Erdos MR, Collins FS, Eriksson M. Analysis of somatic mutations identifies signs of selection during in vitro aging of primary dermal fibroblasts. Aging Cell 2019; 18:e13010. [PMID: 31385397 PMCID: PMC6826141 DOI: 10.1111/acel.13010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 06/20/2019] [Accepted: 06/30/2019] [Indexed: 12/13/2022] Open
Abstract
Somatic mutations are critical for cancer development and may play a role in age-related functional decline. Here, we used deep sequencing to analyze the prevalence of somatic mutations during in vitro cell aging. Primary dermal fibroblasts from healthy subjects of young and advanced age, from Hutchinson-Gilford progeria syndrome and from xeroderma pigmentosum complementation groups A and C, were first restricted in number and then expanded in vitro. DNA was obtained from cells pre- and post-expansion and sequenced at high depth (1656× mean coverage), over a cumulative 290 kb target region, including the exons of 44 aging-related genes. Allele frequencies of 58 somatic mutations differed between the pre- and post-cell culture expansion passages. Mathematical modeling revealed that the frequency change of three of the 58 mutations was unlikely to be explained by genetic drift alone, indicative of positive selection. Two of these three mutations, CDKN2A c.53C>T (T18M) and ERCC8 c.*772T>A, were identified in cells from a patient with XPA. The allele frequency of the CDKN2A mutation increased from 0% to 55.3% with increasing cell culture passage. The third mutation, BRCA2 c.6222C>T (H2074H), was identified in a sample from a healthy individual of advanced age. However, further validation of the three mutations suggests that other unmeasured variants probably provide the selective advantage in these cells. Our results reinforce the notions that somatic mutations occur during aging and that some are under positive selection, supporting the model of increased tissue heterogeneity with increased age.
Collapse
Affiliation(s)
- Narisu Narisu
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | | | - Peter Vrtačnik
- Department of Biosciences and Nutrition, Center for Innovative MedicineKarolinska InstitutetHuddingeSweden
| | - Sofía Rodríguez
- Department of Biosciences and Nutrition, Center for Innovative MedicineKarolinska InstitutetHuddingeSweden
| | - John Didion
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | - Sebastian Zöllner
- Department of BiostatisticsUniversity of MichiganAnn ArborMIUSA
- Department of PsychiatryUniversity of MichiganAnn ArborMIUSA
| | - Michael R. Erdos
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | - Francis S. Collins
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | - Maria Eriksson
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
- Department of Biosciences and Nutrition, Center for Innovative MedicineKarolinska InstitutetHuddingeSweden
| |
Collapse
|
58
|
Thompson DJ, Genovese G, Halvardson J, Ulirsch JC, Wright DJ, Terao C, Davidsson OB, Day FR, Sulem P, Jiang Y, Danielsson M, Davies H, Dennis J, Dunlop MG, Easton DF, Fisher VA, Zink F, Houlston RS, Ingelsson M, Kar S, Kerrison ND, Kinnersley B, Kristjansson RP, Law PJ, Li R, Loveday C, Mattisson J, McCarroll SA, Murakami Y, Murray A, Olszewski P, Rychlicka-Buniowska E, Scott RA, Thorsteinsdottir U, Tomlinson I, Moghadam BT, Turnbull C, Wareham NJ, Gudbjartsson DF, Kamatani Y, Hoffmann ER, Jackson SP, Stefansson K, Auton A, Ong KK, Machiela MJ, Loh PR, Dumanski JP, Chanock SJ, Forsberg LA, Perry JRB. Genetic predisposition to mosaic Y chromosome loss in blood. Nature 2019; 575:652-657. [PMID: 31748747 PMCID: PMC6887549 DOI: 10.1038/s41586-019-1765-3] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Mosaic loss of chromosome Y (LOY) in circulating white blood cells is the most common form of clonal mosaicism1-5, yet our knowledge of the causes and consequences of this is limited. Here, using a computational approach, we estimate that 20% of the male population represented in the UK Biobank study (n = 205,011) has detectable LOY. We identify 156 autosomal genetic determinants of LOY, which we replicate in 757,114 men of European and Japanese ancestry. These loci highlight genes that are involved in cell-cycle regulation and cancer susceptibility, as well as somatic drivers of tumour growth and targets of cancer therapy. We demonstrate that genetic susceptibility to LOY is associated with non-haematological effects on health in both men and women, which supports the hypothesis that clonal haematopoiesis is a biomarker of genomic instability in other tissues. Single-cell RNA sequencing identifies dysregulated expression of autosomal genes in leukocytes with LOY and provides insights into why clonal expansion of these cells may occur. Collectively, these data highlight the value of studying clonal mosaicism to uncover fundamental mechanisms that underlie cancer and other ageing-related diseases.
Collapse
Affiliation(s)
- Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Giulio Genovese
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonatan Halvardson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jacob C Ulirsch
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Daniel J Wright
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Open Targets Core Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Chikashi Terao
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | | | - Felix R Day
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | - Marcus Danielsson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hanna Davies
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Malcolm G Dunlop
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit and CRUK Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Victoria A Fisher
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Martin Ingelsson
- Geriatrics Research Group, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Siddhartha Kar
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Nicola D Kerrison
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | | | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chey Loveday
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Jonas Mattisson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Steven A McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Anna Murray
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Pawel Olszewski
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Edyta Rychlicka-Buniowska
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Robert A Scott
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Unnur Thorsteinsdottir
- deCODE Genetics, Amgen, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Ian Tomlinson
- Cancer Genetics and Evolution Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Behrooz Torabi Moghadam
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- William Harvey Research Institute, Queen Mary University, London, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Daniel F Gudbjartsson
- deCODE Genetics, Amgen, Reykjavík, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Kyoto-McGill International Collaborative School in Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steve P Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Kari Stefansson
- deCODE Genetics, Amgen, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | | | - Ken K Ong
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Po-Ru Loh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jan P Dumanski
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Lars A Forsberg
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Beijer Laboratory of Genome Research, Uppsala University, Uppsala, Sweden
| | - John R B Perry
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
59
|
Longitudinal changes in the frequency of mosaic chromosome Y loss in peripheral blood cells of aging men varies profoundly between individuals. Eur J Hum Genet 2019; 28:349-357. [PMID: 31654039 PMCID: PMC7028735 DOI: 10.1038/s41431-019-0533-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 11/18/2022] Open
Abstract
Mosaic loss of chromosome Y (LOY) is the most common somatic genetic aberration and is associated with increased risk for all-cause mortality, various forms of cancer and Alzheimer’s disease, as well as other common human diseases. By tracking LOY frequencies in subjects from which blood samples have been serially collected up to five times during up to 22 years, we observed a pronounced intra-individual variation of changes in the frequency of LOY within individual men over time. We observed that in some individuals the frequency of LOY in blood clearly progressed over time and that in other men, the frequency was constant or showed other types of longitudinal development. The predominant method used for estimating LOY is calculation of the median Log R Ratio of probes located in the male specific part of chromosome Y (mLRRY) from intensity data generated by SNP-arrays, which is difficult to interpret due to its logarithmic and inversed scale. We present here a formula to transform mLRRY-values to percentage of LOY that is a more comprehensible unit. The formula was derived using measurements of LOY from matched samples analysed using SNP-array, whole genome sequencing and a new AMELX/AMELY-based assay for droplet digital PCR. The methods described could be applied for analyses of the vast amount of SNP-array data already generated in the scientific community, allowing further discoveries of LOY associated diseases and outcomes.
Collapse
|
60
|
Yoon J, Yun JW, Jung CW, Kim HJ, Kim SH. Clonal dominance of a donor-derived del(20q) clone after allogeneic hematopoietic stem cell transplantation in an acute myeloid leukemia patient with del(20q). J Clin Lab Anal 2019; 33:e22951. [PMID: 31187545 PMCID: PMC6757114 DOI: 10.1002/jcla.22951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 11/25/2022] Open
Abstract
Del(20q) is the most frequently detected large structural genetic mosaicism alteration in the healthy aging population, occurring in approximately 0.1% of older persons. Age‐related clonal hematopoiesis of copy number variations (CNVs) is linked to an increased risk of hematologic malignancies, but the clinical impact of hematopoietic stem cells (HSCs) harboring such CNVs, such as del(20q), is not clearly understood. Here, we report an acute myeloid leukemia (AML) patient with known del(20q) who acquired donor‐derived del(20q) after allogeneic hematopoietic stem cell transplantation (HSCT). The HSCs with del(20q) engrafted and expanded over time, but the patient did not clinically progress to myeloid neoplasm. Although donor‐derived del(20q) from a healthy donor has been reported previously, our case is the first to review the clonal dynamics of a del(20q) clone and its post‐transplantation impact. Since recurrent hematology neoplasm‐associated CNVs, including del(20q), may not be rare among aged HSCT donors, identifying the origin of such a CNV is necessary for clinical decisions when clonal abnormality appears after HSCT, even in recipients who previously had the same abnormality.
Collapse
Affiliation(s)
- Jung Yoon
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Won Yun
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chul Won Jung
- Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun-Hee Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
61
|
Low-level mosaicism in tuberous sclerosis complex: prevalence, clinical features, and risk of disease transmission. Genet Med 2019; 21:2639-2643. [PMID: 31160751 DOI: 10.1038/s41436-019-0562-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To examine the prevalence and spectrum of mosaic variant allele frequency (MVAF) in tuberous sclerosis complex (TSC) patients with low-level mosaicism and correlate genetic findings with clinical features and transmission risk. METHODS Massively parallel sequencing was performed on 39 mosaic TSC patients with 170 different tissue samples. RESULTS TSC mosaic patients (MVAF: 0-10%, median 1.7% in blood DNA) had a milder and distinct clinical phenotype in comparison with other TSC series, with similar facial angiofibromas (92%) and kidney angiomyolipomas (83%), and fewer seizures, cortical tubers, and multiple other manifestations (p < 0.0001 for six features). MVAF of TSC1/TSC2 pathogenic variants was highly variable in different tissue samples. Remarkably, skin lesions were the most reliable tissue for variant identification, and 6 of 39 (15%) patients showed no evidence of the variant in blood. Semen analysis showed absence of the variant in 3 of 5 mosaic men. The expected distribution of MVAF in comparison with that observed here suggests that there is a considerable number of individuals with low-level mosaicism for a TSC2 pathogenic variant who are not recognized clinically. CONCLUSION Our findings provide information on variability in MVAF and risk of transmission that has broad implications for other mosaic genetic disorders.
Collapse
|
62
|
Machiela MJ, Myers TA, Lyons CJ, Koster R, Figg WD, Colli LM, Jessop L, Ahearn TU, Freedman ND, García-Closas M, Chanock SJ. Detectible mosaic truncating PPM1D mutations, age and breast cancer risk. J Hum Genet 2019; 64:545-550. [PMID: 30850729 PMCID: PMC8211387 DOI: 10.1038/s10038-019-0589-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/20/2019] [Indexed: 12/16/2022]
Abstract
Mosaic protein truncating variants (PTVs) in the phosphatase, Mg2+/Mn2+dependent 1D (PPM1D) gene in blood-derived DNA have been associated with increased risk of breast cancer. We analyzed PPM1D PTVs in blood from 3817 breast cancer cases and 3058 controls by deep sequencing of a previously defined region in exon 6 of PPM1D. We identified 50 of 6875 (0.73%) participants having a mosaic PPM1D PTV. We observed a higher frequency of mosaic PPM1D PTVs with increasing age (Ptrend = 2.9 × 10-6). We did not observe an overall association between PPM1D PTVs and increased breast cancer risk (OR = 1.51, 95% CI = 0.84-2.71). Evidence for an association was observed in a subset of cases with DNA collected 1-year or more before breast cancer diagnosis (OR = 3.44, 95% CI = 1.62-7.30, P-value = 0.001); however, no significant association was observed for the larger series of cases with DNA collected post diagnosis (OR = 1.01, 95% CI = 0.51-2.01, P-value = 0.98). Our study indicates that the PPM1D PTVs are present at higher rates than previously reported and the frequency of PPM1D PTVs increases with age. We observed limited evidence for an association between mosaic PPM1D PTVs and breast cancer risk, suggesting mosaic PPM1D PTVs in the blood likely do not influence risk of breast cancer.
Collapse
Affiliation(s)
- Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Timothy A Myers
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher J Lyons
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roelof Koster
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William D Figg
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Leandro M Colli
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lea Jessop
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
63
|
|
64
|
Fischer KE, Riddle NC. Sex Differences in Aging: Genomic Instability. J Gerontol A Biol Sci Med Sci 2019; 73:166-174. [PMID: 28575157 DOI: 10.1093/gerona/glx105] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/26/2017] [Indexed: 11/13/2022] Open
Abstract
Aging is characterized by decreasing physiological integration, reduced function, loss of resilience, and increased risk of death. Paradoxically, although women live longer, they suffer greater morbidity particularly late in life. These sex differences in human lifespan and healthspan are consistently observed in all countries and during every era for which reliable data exist. While these differences are ubiquitous in humans, evidence of sex differences in longevity and health for other species is more equivocal. Among fruit flies, nematodes, and mice, sex differences in lifespan vary depending on strain and treatment. In this review, we focus on sex differences in age-related alterations in DNA damage and mutation rates, telomere attrition, epigenetics, and nuclear architecture. We find that robust sex differences exist, eg, the higher incidence of DNA damage in men compared to women, but sex differences are not often conserved between species. For most mechanisms reviewed here, there are insufficient data to make a clear determination regarding the impact of sex, largely because sex differences have not been analyzed. Overall, our findings reveal an urgent need for well-designed studies that explicitly examine sex differences in molecular drivers of aging.
Collapse
Affiliation(s)
| | - Nicole C Riddle
- Department of Biology, The University of Alabama at Birmingham
| |
Collapse
|
65
|
Torabi K, Erola P, Alvarez-Mora MI, Díaz-Gay M, Ferrer Q, Castells A, Castellví-Bel S, Milà M, Lozano JJ, Miró R, Ried T, Ponsa I, Camps J. Quantitative analysis of somatically acquired and constitutive uniparental disomy in gastrointestinal cancers. Int J Cancer 2018; 144:513-524. [PMID: 30350313 PMCID: PMC6635747 DOI: 10.1002/ijc.31936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/31/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022]
Abstract
Somatically acquired uniparental disomies (aUPDs) are frequent events in solid tumors and have been associated with cancer‐related genes. Studies assessing their functional consequences across several cancer types are therefore necessary. Here, we aimed at integrating aUPD profiles with the mutational status of cancer‐related genes in a tumor‐type specific manner. Using TCGA datasets for 1,032 gastrointestinal cancers, including colon (COAD), rectum (READ), stomach (STAD), esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC), we show a non‐random distribution of aUPD, suggesting the existence of a cancer‐specific landscape of aUPD events. Our analysis indicates that aUPD acts as a “second hit” in Knudson's model in order to achieve biallelic inactivation of tumor suppressor genes. In particular, APC, ARID1A and NOTCH1 were recurrently inactivated by the presence of homozygous mutation as a consequence of aUPD in COAD and READ, STAD and ESCC, respectively. Furthermore, while TP53 showed inactivation caused by aUPD at chromosome arm 17p across all tumor types, copy number losses at this genomic position were also frequent. By experimental and computationally inferring genome ploidy, we demonstrate that an increased number of aUPD events, both affecting the whole chromosome or segments of it, were present in highly aneuploid genomes compared to near‐diploid tumors. Finally, the presence of mosaic UPD was detected at a higher frequency in DNA extracted from peripheral blood lymphocytes of patients with colorectal cancer compared to healthy individuals. In summary, our study defines specific profiles of aUPD in gastrointestinal cancers and provides unequivocal evidence of their relevance in cancer. What's new? Somatically acquired uniparental disomies (aUPDs), in which two copies of a chromosome originate from the same parent, have been documented in various human cancers. Here, the authors examined the frequency of aUPDs in different gastrointestinal cancer types. Events involving aUPDs were found to occur at high incidence in gastrointestinal cancers and at increased frequency particularly in highly aneuploid genomes. The data also reveal a nonrandom distribution of aUPDs, with evidence of biallelic inactivation of tumor suppressor genes and activation of oncogenes in a tumor type‐specific manner. The findings suggest that aUPDs are functionally relevant in gastrointestinal malignancies.
Collapse
Affiliation(s)
- Keyvan Torabi
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain.,Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Pau Erola
- Bioinformatics Unit, CIBEREHD, Barcelona, Catalonia, Spain.,Roslin Institute, University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Maria Isabel Alvarez-Mora
- Biochemistry and Molecular Genetics Department, Hospital Clínic, IDIBAPS, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Catalonia, Spain
| | - Marcos Díaz-Gay
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Queralt Ferrer
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Antoni Castells
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Sergi Castellví-Bel
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Montserrat Milà
- Biochemistry and Molecular Genetics Department, Hospital Clínic, IDIBAPS, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Catalonia, Spain
| | | | - Rosa Miró
- Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain.,Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Immaculada Ponsa
- Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain.,Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain.,Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| |
Collapse
|
66
|
|
67
|
Ouwens KG, Jansen R, Tolhuis B, Slagboom PE, Penninx BW, Boomsma DI. A characterization of postzygotic mutations identified in monozygotic twins. Hum Mutat 2018; 39:1393-1401. [PMID: 29980163 PMCID: PMC6175188 DOI: 10.1002/humu.23586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 01/09/2023]
Abstract
Postzygotic mutations are DNA changes acquired from the zygote stage onwards throughout the lifespan. These changes lead to differences in DNA sequence among cells of an individual, potentially contributing to the etiology of complex disorders. Here we compared whole genome DNA sequence data of two monozygotic twin pairs, 40 and 100 years old, to detect somatic mosaicism. DNA samples were sequenced twice on two Illumina platforms (13X and 40X read depth) for increased specificity. Using differences in allelic ratios resulted in sets of 1,720 and 1,739 putative postzygotic mutations in the 40-year-old twin pair and 100-year-old twin pair, respectively, for subsequent enrichment analysis. This set of putative mutations was strongly (p < 4.37e-91) enriched in both twin pairs for regulatory elements. The corresponding genes were significantly enriched for genes that are alternatively spliced, and for genes involved in GTPase activity. This research shows that somatic mosaicism can be detected in monozygotic twin pairs by using allelic ratios calculated from DNA sequence data and that the mutations which are found by this approach are not randomly distributed throughout the genome.
Collapse
Affiliation(s)
- Klaasjan G. Ouwens
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
- Genalice Core BVNijkerkThe Netherlands
| | - Rick Jansen
- Department of PsychiatryVU University Medical CenterAmsterdamThe Netherlands
| | | | - P. Eline Slagboom
- Department of Molecular EpidemiologyLeids Universitair Medisch CentrumLeidenThe Netherlands
| | | | - Dorret I. Boomsma
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
68
|
Loftfield E, Zhou W, Graubard BI, Yeager M, Chanock SJ, Freedman ND, Machiela MJ. Predictors of mosaic chromosome Y loss and associations with mortality in the UK Biobank. Sci Rep 2018; 8:12316. [PMID: 30120341 PMCID: PMC6098142 DOI: 10.1038/s41598-018-30759-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Mosaic loss of the Y chromosome (mLOY) is the most commonly reported large structural somatic event. Previous studies have indicated age and cigarette smoking increase the risk of mLOY, but the relationship of other exposures with mLOY and mLOY with disease has not been adequately investigated. We characterized mLOY in a large cohort of 223,338 men from the UK Biobank by scanning for deviations in genotyping array median log2 intensity ratios (mLRR) of the Y chromosome using a standard algorithm. A total of 3,789 (1.7%) men showed evidence for mLOY (mLRR < −0.15). In multivariable-adjusted logistic regression models, we found that mLOY increases exponentially with age (overall P-value < 4.9 × 10−324; p-value for the quadratic term = 2.1 × 10−7), and observed a strong association with current smoking (P-value = 7.8 × 10−184). We observed less mLOY in men of African ancestry (0.4%) compared to men of European ancestry (1.8%, P-value = 0.003). Although mLOY was not associated with prevalent cancer (P-value = 0.61), associations were observed for diabetes (P-value = 0.003) and cardiovascular disease (P-value = 0.01). Using Cox proportional hazards regression models, mLOY was associated with all-cause mortality among men with a high proportion of cells affected (mLRR < −0.40; HR = 1.35, 95% CI = 1.08–1.70, P-value = 0.009). In conclusion, mLOY was associated with several health-related factors as well as with all-cause mortality. Further functional studies are warranted to understand how and in what way mLOY could influence adult male health.
Collapse
Affiliation(s)
- Erikka Loftfield
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA.,Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Barry I Graubard
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA.,Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA.
| |
Collapse
|
69
|
McNeill LH, Reitzel LR, Escoto KH, Roberson CL, Nguyen N, Vidrine JI, Strong LL, Wetter DW. Engaging Black Churches to Address Cancer Health Disparities: Project CHURCH. Front Public Health 2018; 6:191. [PMID: 30073158 PMCID: PMC6060541 DOI: 10.3389/fpubh.2018.00191] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022] Open
Abstract
African Americans in the United States suffer disproportionately from cancer, having the highest mortality rate of any racial/ethnic group across all cancers for the past several decades. In addition, significant disparities exist in several cancer risk behaviors, including obesity, intake of fruits and vegetables, leisure time physical activity and cancer screening. Addressing these disparities require successful development of relationships with minority communities to partner in the research process, in order to understand areas of critical need and develop interventions that are compatible with this community. In this manuscript we describe Project CHURCH (Creating a Higher Understanding of Cancer Research and Community Health), a collaborative partnership between The University of Texas MD Anderson Cancer Center and Houston-area African American churches. Project CHURCH was developed to understand disparities in cancer prevention risk factors and engage African Americans as partners in the research process. Using community-based participatory research principles, we describe the development and infrastructure of the research partnership, as well as how the church community has been engaged in the development and implementation of a large African American cohort study (N = 2,338). Finally, the characteristics of the cohort are presented along with cohort success in addressing community need while having significant contribution to the scientific literature. Project CHURCH serves as a valuable resource for cancer prevention in the African American community.
Collapse
Affiliation(s)
- Lorna H McNeill
- Health Disparities Research, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lorraine R Reitzel
- Psychological Health and Learning Sciences, University of Houston, Houston, TX, United States
| | - Kamisha H Escoto
- Health Disparities Research, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Crystal L Roberson
- Health Disparities Research, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nga Nguyen
- Health Disparities Research, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jennifer I Vidrine
- Family and Preventive Medicine, Stephenson Cancer Center, University of Oklahoma, Oklahoma, OK, United States
| | - Larkin L Strong
- Health Disparities Research, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David W Wetter
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
70
|
Loh PR, Genovese G, Handsaker RE, Finucane HK, Reshef YA, Palamara PF, Birmann BM, Talkowski ME, Bakhoum SF, McCarroll SA, Price AL. Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations. Nature 2018; 559:350-355. [PMID: 29995854 PMCID: PMC6054542 DOI: 10.1038/s41586-018-0321-x] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 05/16/2018] [Indexed: 02/06/2023]
Abstract
The selective pressures that shape clonal evolution in healthy individuals are largely unknown. Here we investigate 8,342 mosaic chromosomal alterations, from 50 kb to 249 Mb long, that we uncovered in blood-derived DNA from 151,202 UK Biobank participants using phase-based computational techniques (estimated false discovery rate, 6-9%). We found six loci at which inherited variants associated strongly with the acquisition of deletions or loss of heterozygosity in cis. At three such loci (MPL, TM2D3-TARSL2, and FRA10B), we identified a likely causal variant that acted with high penetrance (5-50%). Inherited alleles at one locus appeared to affect the probability of somatic mutation, and at three other loci to be objects of positive or negative clonal selection. Several specific mosaic chromosomal alterations were strongly associated with future haematological malignancies. Our results reveal a multitude of paths towards clonal expansions with a wide range of effects on human health.
Collapse
Affiliation(s)
- Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Robert E Handsaker
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hilary K Finucane
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Schmidt Fellows Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yakir A Reshef
- Department of Computer Science, Harvard University, Cambridge, MA, USA
| | | | - Brenda M Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Steven A McCarroll
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Alkes L Price
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
71
|
Kong Y, Berko ER, Marcketta A, Maqbool SB, Simões-Pires CA, Kronn DF, Ye KQ, Suzuki M, Auton A, Greally JM. Detecting, quantifying, and discriminating the mechanism of mosaic chromosomal aneuploidies using MAD-seq. Genome Res 2018; 28:1039-1052. [PMID: 29773658 PMCID: PMC6028128 DOI: 10.1101/gr.226282.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 04/04/2018] [Indexed: 01/23/2023]
Abstract
Current approaches to detect and characterize mosaic chromosomal aneuploidy are limited by sensitivity, efficiency, cost, or the need to culture cells. We describe the mosaic aneuploidy detection by massively parallel sequencing (MAD-seq) capture assay and the MADSEQ analytical approach that allow low (<10%) levels of mosaicism for chromosomal aneuploidy or regional loss of heterozygosity to be detected, assigned to a meiotic or mitotic origin, and quantified as a proportion of the cells in the sample. We show results from a multi-ethnic MAD-seq (meMAD-seq) capture design that works equally well in populations of diverse racial and ethnic origins and how the MADSEQ analytical approach can be applied to exome or whole-genome sequencing data, revealing previously unrecognized aneuploidy or copy number neutral loss of heterozygosity in samples studied by the 1000 Genomes Project, cell lines from public repositories, and one of the Illumina Platinum Genomes samples. We have made the meMAD-seq capture design and MADSEQ analytical software open for unrestricted use, with the goal that they can be applied in clinical samples to allow new insights into the unrecognized prevalence of mosaic chromosomal aneuploidy in humans and its phenotypic associations.
Collapse
Affiliation(s)
- Yu Kong
- Department of Genetics and Center for Epigenomics, Albert Einstein College of Medicine, New York, New York 10461, USA
| | - Esther R Berko
- Department of Genetics and Center for Epigenomics, Albert Einstein College of Medicine, New York, New York 10461, USA
| | - Anthony Marcketta
- Department of Genetics and Center for Epigenomics, Albert Einstein College of Medicine, New York, New York 10461, USA
| | - Shahina B Maqbool
- Department of Genetics and Center for Epigenomics, Albert Einstein College of Medicine, New York, New York 10461, USA
| | - Claudia A Simões-Pires
- Department of Genetics and Center for Epigenomics, Albert Einstein College of Medicine, New York, New York 10461, USA
| | - David F Kronn
- Department of Pediatrics, New York Medical College, Valhalla, New York 10595, USA
| | - Kenny Q Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, New York 10461, USA
| | - Masako Suzuki
- Department of Genetics and Center for Epigenomics, Albert Einstein College of Medicine, New York, New York 10461, USA
| | - Adam Auton
- Department of Genetics and Center for Epigenomics, Albert Einstein College of Medicine, New York, New York 10461, USA
| | - John M Greally
- Department of Genetics and Center for Epigenomics, Albert Einstein College of Medicine, New York, New York 10461, USA
| |
Collapse
|
72
|
Machiela MJ, Jessop L, Zhou W, Yeager M, Chanock SJ. Characterization of breakpoint regions of large structural autosomal mosaic events. Hum Mol Genet 2018; 26:4388-4394. [PMID: 28973384 DOI: 10.1093/hmg/ddx324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/14/2017] [Indexed: 01/10/2023] Open
Abstract
Recent studies have reported a higher than anticipated frequency of large clonal autosomal mosaic events >2 Mb in size in the aging population. Mosaic events are detected from analyses of intensity parameters of linear stretches with deviations in heterozygous probes of single nucleotide polymorphism microarrays. The non-random distribution of detected mosaic events throughout the genome suggests common mechanisms could influence the formation of mosaic events. Here we use publicly available data tracks from the University of California Santa Cruz Genome Browser to investigate the genomic characteristics of the regions at the terminal ends of two frequent types of large structural mosaic events: telomeric neutral events and interstitial losses. We observed breakpoints are more likely to occur in regions enriched for open chromatin, increased gene density, elevated meiotic recombination rates and in the proximity of repetitive elements. These observations suggest that detected mosaic event breakpoints are preferentially recovered in genomic regions that are observed to be active and thus more accessible to environmental exposures and events related to gene transcription. We propose that errors in DNA repair pathways, such as non-homologous end joining and homologous recombination, may be important cellular mechanisms that lead to the formation of large structural mosaic events such as interstitial losses and copy neutral events that include telomeres. Further studies using next generation sequencing technologies should be instrumental in mapping the specific junctions of mosaic events to the nucleotide and provide insights into the molecular mechanisms responsible for clonal somatic structural events.
Collapse
Affiliation(s)
- Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lea Jessop
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.,Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.,Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
73
|
Vorsanova SG, Zelenova MA, Yurov YB, Iourov IY. Behavioral Variability and Somatic Mosaicism: A Cytogenomic Hypothesis. Curr Genomics 2018; 19:158-162. [PMID: 29606902 PMCID: PMC5850503 DOI: 10.2174/1389202918666170719165339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/11/2016] [Accepted: 01/01/2017] [Indexed: 02/06/2023] Open
Abstract
Behavioral sciences are inseparably related to genetics. A variety of neurobehavioral phenotypes are suggested to result from genomic variations. However, the contribution of genetic factors to common behavioral disorders (i.e. autism, schizophrenia, intellectual disability) remains to be understood when an attempt to link behavioral variability to a specific genomic change is made. Probably, the least appreciated genetic mechanism of debilitating neurobehavioral disorders is somatic mosaicism or the occurrence of genetically diverse (neuronal) cells in an individual’s brain. Somatic mosaicism is assumed to affect directly the brain being associated with specific behavioral patterns. As shown in studies of chromosome abnormalities (syndromes), genetic mosaicism is able to change dynamically the phenotype due to inconsistency of abnormal cell proportions. Here, we hypothesize that brain-specific postzygotic changes of mosaicism levels are able to modulate variability of behavioral phenotypes. More precisely, behavioral phenotype variability in individuals exhibiting somatic mosaicism might correlate with changes in the amount of genetically abnormal cells throughout the lifespan. If proven, the hypothesis can be used as a basis for therapeutic interventions through regulating levels of somatic mosaicism to increase functioning and to improve overall condition of individuals with behavioral problems.
Collapse
Affiliation(s)
- Svetlana G Vorsanova
- Separated Structural Unit "Clinical Research Institute of Pediatrics at Pirogov Russian National Research Medical University named after Y.E Veltishev", Ministry of Health of Russian Federation, Moscow125412, Russian Federation.,Mental Health Research Center, Moscow117152, Russian Federation.,Moscow State University of Psychology and Education, Moscow127051, Russian Federation
| | - Maria A Zelenova
- Separated Structural Unit "Clinical Research Institute of Pediatrics at Pirogov Russian National Research Medical University named after Y.E Veltishev", Ministry of Health of Russian Federation, Moscow125412, Russian Federation.,Mental Health Research Center, Moscow117152, Russian Federation.,Moscow State University of Psychology and Education, Moscow127051, Russian Federation
| | - Yuri B Yurov
- Separated Structural Unit "Clinical Research Institute of Pediatrics at Pirogov Russian National Research Medical University named after Y.E Veltishev", Ministry of Health of Russian Federation, Moscow125412, Russian Federation.,Mental Health Research Center, Moscow117152, Russian Federation.,Moscow State University of Psychology and Education, Moscow127051, Russian Federation
| | - Ivan Y Iourov
- Separated Structural Unit "Clinical Research Institute of Pediatrics at Pirogov Russian National Research Medical University named after Y.E Veltishev", Ministry of Health of Russian Federation, Moscow125412, Russian Federation.,Mental Health Research Center, Moscow117152, Russian Federation.,Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, Moscow123995, Russian Federation
| |
Collapse
|
74
|
Wang R, Metayer C, Morimoto L, Wiemels JL, Yang J, DeWan AT, Kang A, Ma X. Parental Age and Risk of Pediatric Cancer in the Offspring: A Population-Based Record-Linkage Study in California. Am J Epidemiol 2017; 186:843-856. [PMID: 28535175 PMCID: PMC5860074 DOI: 10.1093/aje/kwx160] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/29/2016] [Indexed: 01/07/2023] Open
Abstract
Linking birth records and cancer registry data from California, we conducted a population-based study with 23,419 cases and 87,593 matched controls born during 1978-2009 to investigate the relationship of parental age to risk of pediatric cancer. Compared with children born to mothers aged 20-24 years, those born to mothers in older age groups had a 13%-36% higher risk of pediatric cancer; the odds ratio for each 5-year increase in maternal age was 1.06 (95% confidence interval (CI): 1.04, 1.09). For cancer diagnosed in children in age groups 0-14 years and 15-19 years, the odds ratios for each 5-year increase in maternal age were 1.05 (95% CI: 1.02, 1.07) and 1.14 (95% CI: 1.09, 1.19), respectively. Having an older father also conferred an increased risk, with an odds ratio for each 5-year increase of 1.03 (95% CI: 1.02, 1.05) for cancer diagnosed at ages 0-19 years and 1.03 (95% CI: 1.02, 1.05) for cancer diagnosed at ages 0-14 years. While advancing maternal age increased risk of leukemia and central nervous system tumors, older paternal age was not associated with risk of either type. Both maternal and paternal older ages were associated with risk of lymphoma. In this large, population-based record-linkage study, advancing parental age, especially advancing maternal age, was associated with higher pediatric cancer risk, with variations across types of cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaomei Ma
- Correspondence to Dr. Xiaomei Ma, Yale School of Public Health, 60 College Street, PO Box 208034, New Haven, CT 06520-8034 (e-mail: )
| |
Collapse
|
75
|
King DA, Sifrim A, Fitzgerald TW, Rahbari R, Hobson E, Homfray T, Mansour S, Mehta SG, Shehla M, Tomkins SE, Vasudevan PC, Hurles ME. Detection of structural mosaicism from targeted and whole-genome sequencing data. Genome Res 2017; 27:1704-1714. [PMID: 28855261 PMCID: PMC5630034 DOI: 10.1101/gr.212373.116] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/18/2017] [Indexed: 01/11/2023]
Abstract
Structural mosaic abnormalities are large post-zygotic mutations present in a subset of cells and have been implicated in developmental disorders and cancer. Such mutations have been conventionally assessed in clinical diagnostics using cytogenetic or microarray testing. Modern disease studies rely heavily on exome sequencing, yet an adequate method for the detection of structural mosaicism using targeted sequencing data is lacking. Here, we present a method, called MrMosaic, to detect structural mosaic abnormalities using deviations in allele fraction and read coverage from next-generation sequencing data. Whole-exome sequencing (WES) and whole-genome sequencing (WGS) simulations were used to calculate detection performance across a range of mosaic event sizes, types, clonalities, and sequencing depths. The tool was applied to 4911 patients with undiagnosed developmental disorders, and 11 events among nine patients were detected. For eight of these 11 events, mosaicism was observed in saliva but not blood, suggesting that assaying blood alone would miss a large fraction, possibly >50%, of mosaic diagnostic chromosomal rearrangements.
Collapse
Affiliation(s)
- Daniel A King
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Alejandro Sifrim
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Tomas W Fitzgerald
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Raheleh Rahbari
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Emma Hobson
- Department of Clinical Genetics, Chapel Allerton Hospital, Leeds LS7 4SA, United Kingdom
| | - Tessa Homfray
- Southwest Thames Regional Genetics Centre, St George's Healthcare NHS Trust, London SW17 0RE, United Kingdom
| | - Sahar Mansour
- Southwest Thames Regional Genetics Centre, St George's Healthcare NHS Trust, London SW17 0RE, United Kingdom
| | - Sarju G Mehta
- East Anglian Regional Genetics Service, Addenbrookes Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Mohammed Shehla
- South East Thames Regional Genetics Centre, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Susan E Tomkins
- Department of Clinical Genetics, St Michael's Hospital, Bristol BS2 8EG, United Kingdom
| | | | - Matthew E Hurles
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
76
|
Abstract
Therapy-related myeloid neoplasms (t-MN) arise as a late effect of chemotherapy and/or radiation administered for a primary condition, typically a malignant disease, solid organ transplant or autoimmune disease. Survival is measured in months, not years, making t-MN one of the most aggressive and lethal cancers. In this Review, we discuss recent developments that reframe our understanding of the genetic and environmental aetiology of t-MN. Emerging data are illuminating who is at highest risk of developing t-MN, why t-MN are chemoresistant and how we may use this information to treat and ultimately prevent this lethal disease.
Collapse
MESH Headings
- Antineoplastic Agents, Alkylating/adverse effects
- Bone Marrow Cells
- Chromosome Aberrations
- Chromosomes, Human, Pair 5
- Chromosomes, Human, Pair 7
- Clone Cells/physiology
- Gene-Environment Interaction
- Genetic Predisposition to Disease
- Hematopoiesis
- Humans
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/therapy
- Mutation
- Myelodysplastic Syndromes/etiology
- Myelodysplastic Syndromes/therapy
- Neoplasms, Second Primary/etiology
- Neoplasms, Second Primary/therapy
- Prognosis
- Radiation Exposure/adverse effects
- Risk Factors
Collapse
Affiliation(s)
- Megan E McNerney
- Department of Pathology and the Department of Pediatrics, The University of Chicago, Chicago, Illinois 60637, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois 60637, USA
| | - Lucy A Godley
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois 60637, USA
| | - Michelle M Le Beau
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois 60637, USA
| |
Collapse
|
77
|
Machiela MJ, Dagnall CL, Pathak A, Loud JT, Chanock SJ, Greene MH, McGlynn KA, Stewart DR. Mosaic chromosome Y loss and testicular germ cell tumor risk. J Hum Genet 2017; 62:637-640. [PMID: 28275244 PMCID: PMC5444985 DOI: 10.1038/jhg.2017.20] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 12/23/2022]
Abstract
Studies have suggested mosaic loss of chromosome Y (mLOY) in blood-derived DNA is common in older men. Cohort studies investigating mLOY and mortality have reported contradictory results. Previous work found a 1.6 Mb deletion of the AZFc region on the Y chromosome (the “gr/gr” deletion) is associated with both male infertility and increased risk of testicular germ cell tumors (TGCT). We investigated whether mosaic loss across the entire Y chromosome was associated with TGCT. We obtained blood and buccal-derived DNA from two case-control studies: the NCI Familial Testicular Cancer Study (FTC; cases=172, controls=163) and the NCI US Servicemen's Testicular Tumor Environmental and Endocrine Determinants Study (STEED; cases=506, controls=611). We utilized 15 quantitative polymerase chain reactions (qPCR) spanning the Y chromosome to assess mLOY. Multivariate logistic regression models adjusted for study batch effects detected no significant overall relationship between mean chromosome Y T/R ratio and TGCT (OR=0.34, 95% CI=0.10–1.17, P=0.09). When restricted to familial TGCT cases, a significantly lower T/R ratio was observed in cases compared with controls (0.993 vs 1.014, P-value=0.01). Our study suggests mLOY, as measured by 15 probes spanning the Y chromosome, could be associated with familial TGCT, but larger studies are required to confirm this observation.
Collapse
Affiliation(s)
- Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Casey L Dagnall
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.,Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | - Anand Pathak
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jennifer T Loud
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mark H Greene
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Douglas R Stewart
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
78
|
Wegman-Ostrosky T, Savage SA. The genomics of inherited bone marrow failure: from mechanism to the clinic. Br J Haematol 2017; 177:526-542. [PMID: 28211564 DOI: 10.1111/bjh.14535] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/19/2016] [Indexed: 12/31/2022]
Abstract
The inherited bone marrow failure syndromes (IBMFS) typically present with significant cytopenias in at least one haematopoietic cell lineage that may progress to pancytopenia, and are associated with increased risk of cancer. Although the clinical features of the IBMFS are often diagnostic, variable disease penetrance and expressivity may result in diagnostic dilemmas. The discovery of the genetic aetiology of the IBMFS has been greatly facilitated by next-generation sequencing methods. This has advanced understanding of the underlying biology of the IBMFS and been essential in improving clinical management and genetic counselling for affected patients. Herein we review the clinical features, underlying biology, and new genomic discoveries in the IBMFS, including Fanconi anaemia, dyskeratosis congenita, Diamond Blackfan anaemia, Shwachman Diamond syndrome and some disorders of the myeloid and megakaryocytic lineages.
Collapse
Affiliation(s)
- Talia Wegman-Ostrosky
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Research Division, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
79
|
Mosaic chromosome 20q deletions are more frequent in the aging population. Blood Adv 2017; 1:380-385. [PMID: 29296952 DOI: 10.1182/bloodadvances.2016003129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/09/2017] [Indexed: 11/20/2022] Open
Abstract
Deletions on the long-arm of chromosome 20, del(20q), are common karyotypic abnormalities in myeloid disorders. Bioinformatic analyses of the B-allele frequency and log R ratio values from genome-wide association data have identified individuals who are mosaic for large structural abnormalities (>2 Mb). We investigated the most common autosomal event, namely mosaic del(20q), in 46 254 nonhematologic cancer cases and 36 229 cancer-free controls. We detected 91 mosaic del(20q) in leukocytes (80%) and buccal material (20%). The mosaic del(20q) mapped to a well-characterized minimally deleted region (MDR) reported in myeloid disorders. Common breakpoint clusters map to the coordinates of 29.9 to 31.5 Mb on the centromeric side of mosaic del(20q), and 42.0 to 45.4 Mb and 48.1 to 50.7 Mb on the telomeric end (GRCh36). Multivariate analyses suggest del(20q) increases with age, and is more common in males but less common in individuals of African ancestry. No conclusive associations were noted between the presence of mosaic del(20q) and subsequent solid tumor risk. Our observations demonstrate that the MDR of del(20q) is the most common large scale mosaic autosomal abnormality in whole blood and has a frequency of ∼1 in every 1000 adults over the age of 50, which exceeds the expected incidence of myeloid leukemia in the population. Our results indicate that subclonal mosaic events of a region implicated in myeloid disorders on 20q are more frequent than the predicted population-estimated incidence of myeloid diseases, and thus suggest that these events can be tolerated until additional events accumulate that drive myeloid disorders.
Collapse
|
80
|
Detectable clonal mosaicism in blood as a biomarker of cancer risk in Fanconi anemia. Blood Adv 2017; 1:319-329. [PMID: 29296947 DOI: 10.1182/bloodadvances.2016000943] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/11/2016] [Indexed: 01/28/2023] Open
Abstract
Detectable clonal mosaicism for large chromosomal events has been associated with aging and an increased risk of hematological and some solid cancers. We hypothesized that genetic cancer predisposition disorders, such as Fanconi anemia (FA), could manifest a high rate of chromosomal mosaic events (CMEs) in peripheral blood, which could be used as early biomarkers of cancer risk. We studied the prevalence of CMEs by single-nucleotide polymorphism (SNP) array in 130 FA patients' blood DNA and their impact on cancer risk. We detected 51 CMEs (4.4-159 Mb in size) in 16 out of 130 patients (12.3%), of which 9 had multiple CMEs. The most frequent events were gains at 3q (n = 6) and 1q (n = 5), both previously associated with leukemia, as well as rearrangements with breakpoint clustering within the major histocompatibility complex locus (P = 7.3 × 10-9). Compared with 15 743 age-matched population controls, FA patients had a 126 to 140 times higher risk of detectable CMEs in blood (P < 2.2 × 10-16). Prevalent and incident hematologic and solid cancers were more common in CME carriers (odds ratio [OR] = 11.6, 95% confidence interval [CI] = 3.4-39.3, P = 2.8 × 10-5), leading to poorer prognosis. The age-adjusted hazard risk (HR) of having cancer was almost 5 times higher in FA individuals with CMEs than in those without CMEs. Regarding survival, the HR of dying was 4 times higher in FA individuals having CMEs (HR = 4.0, 95% CI = 2.0-7.9, P = 5.7 × 10-5). Therefore, our data suggest that molecular karyotyping with SNP arrays in easy-to-obtain blood samples could be used for better monitoring of bone marrow clonal events, cancer risk, and overall survival of FA patients.
Collapse
|
81
|
Machiela MJ, Chanock SJ. The ageing genome, clonal mosaicism and chronic disease. Curr Opin Genet Dev 2017; 42:8-13. [PMID: 28068559 DOI: 10.1016/j.gde.2016.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/22/2016] [Accepted: 12/06/2016] [Indexed: 02/04/2023]
Abstract
Clonal mosaicism arises when a postzygotic mutational event is detectable in subpopulations of cells as an alternative genotype while not present in the germline genome. Although described in a subset of pediatric disorders, new genomic technologies have detected higher than anticipated frequencies of clonal mosaicism in adult population studies, stimulating investigation as to how clonal mosaicism could contribute to chronic human diseases, such as cancer, diabetes and neurodegenerative disorders. It has also been postulated to be an important mechanism for functional cellular diversity, including the brain. Early studies have characterized the spectrum of detectable mosaic alterations and have begun to investigate whether detectable mosaicism could be important as an overall biomarker for risk or in the case of hematologic cancers, identification of preleukemic clones.
Collapse
Affiliation(s)
- Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892-9776, United States
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892-9776, United States.
| |
Collapse
|
82
|
Andriani GA, Vijg J, Montagna C. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain. Mech Ageing Dev 2017; 161:19-36. [PMID: 27013377 PMCID: PMC5490080 DOI: 10.1016/j.mad.2016.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 01/31/2023]
Abstract
Aneuploidy and polyploidy are a form of Genomic Instability (GIN) known as Chromosomal Instability (CIN) characterized by sporadic abnormalities in chromosome copy numbers. Aneuploidy is commonly linked to pathological states. It is a hallmark of spontaneous abortions and birth defects and it is observed virtually in every human tumor, therefore being generally regarded as detrimental for the development or the maturation of tissues under physiological conditions. Polyploidy however, occurs as part of normal physiological processes during maturation and differentiation of some mammalian cell types. Surprisingly, high levels of aneuploidy are present in the brain, and their frequency increases with age suggesting that the brain is able to maintain its functionality in the presence of high levels of mosaic aneuploidy. Because somatic aneuploidy with age can reach exceptionally high levels, it is likely to have long-term adverse effects in this organ. We describe the mechanisms accountable for an abnormal DNA content with a particular emphasis on the CNS where cell division is limited. Next, we briefly summarize the types of GIN known to date and discuss how they interconnect with CIN. Lastly we highlight how several forms of CIN may contribute to genetic variation, tissue degeneration and disease in the CNS.
Collapse
Affiliation(s)
- Grasiella A Andriani
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department Ophthalmology and Visual Science, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department of Pathology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA.
| |
Collapse
|
83
|
Abstract
Post-zygotic variation refers to genetic changes that arise in the soma of an individual and that are not usually inherited by the next generation. Although there is a paucity of research on such variation, emerging studies show that it is common: individuals are complex mosaics of genetically distinct cells, to such an extent that no two somatic cells are likely to have the exact same genome. Although most types of mutation can be involved in post-zygotic variation, structural genetic variants are likely to leave the largest genomic footprint. Somatic variation has diverse physiological roles and pathological consequences, particularly when acquired variants influence the clonal trajectories of the affected cells. Post-zygotic variation is an important confounder in medical genetic testing and a promising avenue for research: future studies could involve analyses of sorted and single cells from multiple tissue types to fully explore its potential.
Collapse
|
84
|
Maxwell PH. Growth conditions that increase or decrease lifespan in Saccharomyces cerevisiae lead to corresponding decreases or increases in rates of interstitial deletions and non-reciprocal translocations. BMC Genet 2016; 17:140. [PMID: 27769161 PMCID: PMC5073950 DOI: 10.1186/s12863-016-0447-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accumulation of DNA damage, mutations, and chromosomal abnormalities is associated with aging in many organisms. How directly various forms of genomic instability contribute to lifespan in different aging contexts is still under active investigation. Testing whether treatments that alter lifespan change mutation rates early during lifespan could provide support for genomic instability being at least partly responsible for changes in the rates of aging. RESULTS Rates of mutations, direct repeat recombination, or retrotransposition were measured in young cell populations from two strain backgrounds of Saccharomyces cerevisiae exposed to several growth conditions that shortened or extended yeast chronological lifespan. In most cases, rates of genomic instability did not consistently increase in young cells exposed to lifespan-shortening conditions or decrease in young cells exposed to lifespan-extending conditions. The mutation rate for a copy of the CAN1 gene integrated onto the right arm of chromosome VIII did show expected increases or decreases in young cells in the lifespan-altering growth conditions. These mutations were determined to frequently result from non-allelic recombination events, including non-reciprocal translocations, and were more strongly stimulated by using hydroxyurea to induce DNA replication stress than by the general DNA-damaging agent methyl methanesulfonate. CONCLUSIONS The results are not consistent with changes in mutation rates in general mediating the influence of alternative growth conditions on yeast lifespan. The strong correlation between non-allelic recombination events and the effects of the alternative growth conditions on lifespan indicates that genomic instability due to changes in recombination rates may directly contribute to the rate of aging or that lifespan-altering treatments may consistently increase or decrease DNA replication stress. These results further support the connection between DNA replication stress and aging observed in multiple organisms. Chromosomal abnormalities that likely arise from recombination events are more prevalent in multiple human tissues with increasing age, and further work in yeast could help to define mechanisms responsible for this observation and the impact of chromosomal abnormalities on aging.
Collapse
Affiliation(s)
- Patrick H Maxwell
- Department of Biological Sciences, Rensselaer Polytechnic Institute, CBIS Room 2123, 110 8th Street, Troy, 12180, NY, USA.
| |
Collapse
|
85
|
Phyllanthus emblica Fruit Extract Activates Spindle Assembly Checkpoint, Prevents Mitotic Aberrations and Genomic Instability in Human Colon Epithelial NCM460 Cells. Int J Mol Sci 2016; 17:ijms17091437. [PMID: 27598149 PMCID: PMC5037716 DOI: 10.3390/ijms17091437] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/27/2022] Open
Abstract
The fruit of Phyllanthus emblica Linn. (PE) has been widely consumed as a functional food and folk medicine in Southeast Asia due to its remarkable nutritional and pharmacological effects. Previous research showed PE delays mitotic progress and increases genomic instability (GIN) in human colorectal cancer cells. This study aimed to investigate the similar effects of PE by the biomarkers related to spindle assembly checkpoint (SAC), mitotic aberrations and GIN in human NCM460 normal colon epithelial cells. Cells were treated with PE and harvested differently according to the biomarkers observed. Frequencies of micronuclei (MN), nucleoplasmic bridge (NPB) and nuclear bud (NB) in cytokinesis-block micronucleus assay were used as indicators of GIN. Mitotic aberrations were assessed by the biomarkers of chromosome misalignment, multipolar division, chromosome lagging and chromatin bridge. SAC activity was determined by anaphase-to- metaphase ratio (AMR) and the expression of core SAC gene budding uninhibited by benzimidazoles related 1 (BubR1). Compared with the control, PE-treated cells showed (1) decreased incidences of MN, NPB and NB (p < 0.01); (2) decreased frequencies of all mitotic aberration biomarkers (p < 0.01); and (3) decreased AMR (p < 0.01) and increased BubR1 expression (p < 0.001). The results revealed PE has the potential to protect human normal colon epithelial cells from mitotic and genomic damages partially by enhancing the function of SAC.
Collapse
|
86
|
Oluwole OA, Revay T, Mahboubi K, Favetta LA, King WA. Somatic Mosaicism in Bulls Estimated from Genome-Wide CNV Array and TSPY Gene Copy Numbers. Cytogenet Genome Res 2016; 149:176-181. [DOI: 10.1159/000448368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2016] [Indexed: 11/19/2022] Open
Abstract
Somatic mosaicism has become a focus in human research due to the implications of individual genetic variability in disease. Here, we assessed somatic copy number variations (CNVs) in Holstein bulls in 2 respects. We estimated genome-wide CNVs and assayed CNVs of the TSPY gene, the most variable bovine gene from the Y chromosome. Somatic tissues (blood, lung, heart, muscle, testis, and brain) of 4 bulls were arrayed on the Illumina Bovine SNP50k chip and qPCR tested for TSPY copy numbers. Our results showed extensive copy number divergence in tissues within the same animal as well as significant copy number alterations of TSPY. We detected a mean of 31 CNVs per animal among which 14 were of germline origin, as they were constantly present in all investigated tissues of the animal, while 18 were specific to 1 tissue. Thus, 57% of the total number of detected CNVs was the result of de novo somatic events. Further, TSPY copy number was found to vary significantly among tissues as well as among the same tissue type from different animals in a wide range from 7 to 224% of the calibrator. Our study shows significant autosomal and Y-chromosomal de novo somatic CNV in bulls.
Collapse
|
87
|
Machiela MJ, Zhou W, Karlins E, Sampson JN, Freedman ND, Yang Q, Hicks B, Dagnall C, Hautman C, Jacobs KB, Abnet CC, Aldrich MC, Amos C, Amundadottir LT, Arslan AA, Beane-Freeman LE, Berndt SI, Black A, Blot WJ, Bock CH, Bracci PM, Brinton LA, Bueno-de-Mesquita HB, Burdett L, Buring JE, Butler MA, Canzian F, Carreón T, Chaffee KG, Chang IS, Chatterjee N, Chen C, Chen C, Chen K, Chung CC, Cook LS, Crous Bou M, Cullen M, Davis FG, De Vivo I, Ding T, Doherty J, Duell EJ, Epstein CG, Fan JH, Figueroa JD, Fraumeni JF, Friedenreich CM, Fuchs CS, Gallinger S, Gao YT, Gapstur SM, Garcia-Closas M, Gaudet MM, Gaziano JM, Giles GG, Gillanders EM, Giovannucci EL, Goldin L, Goldstein AM, Haiman CA, Hallmans G, Hankinson SE, Harris CC, Henriksson R, Holly EA, Hong YC, Hoover RN, Hsiung CA, Hu N, Hu W, Hunter DJ, Hutchinson A, Jenab M, Johansen C, Khaw KT, Kim HN, Kim YH, Kim YT, Klein AP, Klein R, Koh WP, Kolonel LN, Kooperberg C, Kraft P, Krogh V, Kurtz RC, LaCroix A, Lan Q, Landi MT, Marchand LL, Li D, Liang X, Liao LM, Lin D, Liu J, Lissowska J, Lu L, Magliocco AM, Malats N, Matsuo K, McNeill LH, McWilliams RR, Melin BS, Mirabello L, Moore L, Olson SH, Orlow I, Park JY, Patiño-Garcia A, Peplonska B, Peters U, Petersen GM, Pooler L, Prescott J, Prokunina-Olsson L, Purdue MP, Qiao YL, Rajaraman P, Real FX, Riboli E, Risch HA, Rodriguez-Santiago B, Ruder AM, Savage SA, Schumacher F, Schwartz AG, Schwartz KL, Seow A, Wendy Setiawan V, Severi G, Shen H, Sheng X, Shin MH, Shu XO, Silverman DT, Spitz MR, Stevens VL, Stolzenberg-Solomon R, Stram D, Tang ZZ, Taylor PR, Teras LR, Tobias GS, Van Den Berg D, Visvanathan K, Wacholder S, Wang JC, Wang Z, Wentzensen N, Wheeler W, White E, Wiencke JK, Wolpin BM, Wong MP, Wu C, Wu T, Wu X, Wu YL, Wunder JS, Xia L, Yang HP, Yang PC, Yu K, Zanetti KA, Zeleniuch-Jacquotte A, Zheng W, Zhou B, Ziegler RG, Perez-Jurado LA, Caporaso NE, Rothman N, Tucker M, Dean MC, Yeager M, Chanock SJ. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome. Nat Commun 2016; 7:11843. [PMID: 27291797 PMCID: PMC4909985 DOI: 10.1038/ncomms11843] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases.
Collapse
Affiliation(s)
- Mitchell J. Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Eric Karlins
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Joshua N. Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Qi Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Casey Dagnall
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Christopher Hautman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Kevin B. Jacobs
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
- Bioinformed, LLC, Gaithersburg, Maryland 20877, USA
| | - Christian C. Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Melinda C. Aldrich
- Department of Thoracic Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Christopher Amos
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Laufey T. Amundadottir
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Alan A. Arslan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, New York 10016, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016, USA
- New York University Cancer Institute, New York, New York 10016, USA
| | - Laura E. Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - William J. Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- International Epidemiology Institute, Rockville, Maryland 20850, USA
| | - Cathryn H. Bock
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Paige M. Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California 94143, USA
| | - Louise A. Brinton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - H Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), 3721 Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center, 3584 CX Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London SW7 2AZ, UK
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Laurie Burdett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Julie E. Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Mary A. Butler
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio 45226, USA
| | - Federico Canzian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Tania Carreón
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio 45226, USA
| | - Kari G. Chaffee
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Chu Chen
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Constance Chen
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300040, China
| | - Charles C. Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Linda S. Cook
- University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Marta Crous Bou
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Michael Cullen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Faith G. Davis
- Department of Public Health Sciences, School of Public Health, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Immaculata De Vivo
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ti Ding
- Shanxi Cancer Hospital, Taiyuan, Shanxi 030013, China
| | - Jennifer Doherty
- Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03755, USA
| | - Eric J. Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute, Catalan Institute of Oncology (ICO-IDIBELL), 08908 Barcelona, Spain
| | - Caroline G. Epstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Jin-Hu Fan
- Shanghai Cancer Institute, Shanghai 200032, China
| | - Jonine D. Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Joseph F. Fraumeni
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Christine M. Friedenreich
- Department of Population Health Research, Cancer Control Alberta, Alberta Health Services, Calgary, Alberta, Canada T2N 2T9
| | - Charles S. Fuchs
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Steven Gallinger
- Fred A Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada M5G 1X5
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotaong University School of Medicine, Shanghai 200032, China
| | - Susan M. Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia 30303, USA
| | - Montserrat Garcia-Closas
- Division of Genetics and Epidemiology, and Breakthrough Breast Cancer Centre, Institute for Cancer Research, London SM2 5NG, UK
| | - Mia M. Gaudet
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia 30303, USA
| | - J. Michael Gaziano
- Divisions of Preventive Medicine and Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Massachusetts Veterans Epidemiology Research and Information Center/VA Cooperative Studies Programs, Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02130, USA
| | - Graham G. Giles
- Cancer Epidemiology Centre, Cancer Council Victoria & Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Elizabeth M. Gillanders
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Edward L. Giovannucci
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Lynn Goldin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Christopher A. Haiman
- Department of Preventive Medicine, Biostatistics Division, Keck School of Medicine at the University of Southern California, Los Angeles, California 90033, USA
| | - Goran Hallmans
- Department of Public Health and Clinical Medicine/Nutritional Research, Umeå University, 901 87 Umeå, Sweden
| | - Susan E. Hankinson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Biostatistics and Epidemiology, University of Massachusetts School of Public Health and Health Sciences, Amherst, Massachusetts 01003, USA
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Roger Henriksson
- Department of Radiation Sciences, Oncology, Umeå University, 901 87 Umeå, Sweden
| | - Elizabeth A. Holly
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California 94143, USA
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 151-742, Republic of Korea
| | - Robert N. Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Chao A. Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Nan Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - David J. Hunter
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Mazda Jenab
- International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Christoffer Johansen
- Oncology, Finsen Centre, Rigshospitalet, 2100 Copenhagen, Denmark
- Unit of Survivorship Research, The Danish Cancer Society Research Centre, 2100 Copenhagen, Denmark
| | - Kay-Tee Khaw
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 1TN, UK
| | - Hee Nam Kim
- Center for Creative Biomedical Scientists, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yeul Hong Kim
- Department of Internal Medicine, Division of Oncology/Hematology, College of Medicine, Korea University Anam Hospital, Seoul 151-742, Republic of Korea
| | - Young Tae Kim
- Department of Thoracic and Cardiovascular Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Alison P. Klein
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Robert Klein
- Program in Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, USA
| | - Woon-Puay Koh
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 119077, Singapore
| | - Laurence N. Kolonel
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Vittorio Krogh
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milano 20133, Italy
| | - Robert C. Kurtz
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Andrea LaCroix
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xiaolin Liang
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Linda M. Liao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Dongxin Lin
- Department of Etiology & Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianjun Liu
- Department of Human Genetics, Genome Institute of Singapore 138672, Singapore
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, Maria Sklodowska-Curie Cancer Center and Institute of Oncology, Warsaw 02-781, Poland
| | - Lingeng Lu
- Yale School of Public Health, New Haven, Connecticut 06510, USA
| | | | - Nuria Malats
- Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Keitaro Matsuo
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Lorna H. McNeill
- Department of Health Disparities Research, Division of OVP, Cancer Prevention and Population Sciences, and Center for Community-Engaged Translational Research, Duncan Family Institute, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | - Beatrice S. Melin
- Department of Radiation Sciences, Oncology, Umeå University, 901 87 Umeå, Sweden
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Lee Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Sara H. Olson
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Irene Orlow
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Jae Yong Park
- Lung Cancer Center, Kyungpook National University Medical Center, Daegu 101, Republic of Korea
| | - Ana Patiño-Garcia
- Department of Pediatrics, University Clinic of Navarra, Universidad de Navarra, IdiSNA, Navarra Institute for Health Research, Pamplona 31080, Spain
| | - Beata Peplonska
- Nofer Institute of Occupational Medicine, Lodz 91-348, Poland
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Gloria M. Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Loreall Pooler
- University of Southern California, Los Angeles, California 90007, USA
| | - Jennifer Prescott
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ludmila Prokunina-Olsson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Mark P. Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - You-Lin Qiao
- Department of Epidemiology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Preetha Rajaraman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Francisco X. Real
- Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Elio Riboli
- Division of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2AZ, UK
| | - Harvey A. Risch
- Yale School of Public Health, New Haven, Connecticut 06510, USA
| | - Benjamin Rodriguez-Santiago
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08002, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, 28029, Spain
- Quantitative Genomic Medicine Laboratory, qGenomics, Barcelona 08003, Spain
| | - Avima M. Ruder
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio 45226, USA
| | - Sharon A. Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Fredrick Schumacher
- Department of Preventive Medicine, Biostatistics Division, Keck School of Medicine at the University of Southern California, Los Angeles, California 90033, USA
| | - Ann G. Schwartz
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Kendra L. Schwartz
- Karmanos Cancer Institute and Department of Family Medicine and Public Health Sciences, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Adeline Seow
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 119077, Singapore
| | - Veronica Wendy Setiawan
- Department of Preventive Medicine, Biostatistics Division, Keck School of Medicine at the University of Southern California, Los Angeles, California 90033, USA
| | - Gianluca Severi
- Cancer Epidemiology Centre, Cancer Council Victoria & Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Human Genetics Foundation (HuGeF), Torino, 10126, Italy
| | - Hongbing Shen
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology, Nanjing Medical University School of Public Health, Nanjing 210029, China
| | - Xin Sheng
- University of Southern California, Los Angeles, California 90007, USA
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwanju 501-746, Republic of Korea
| | - Xiao-Ou Shu
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Debra T. Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | | | - Victoria L. Stevens
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia 30303, USA
| | - Rachael Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Daniel Stram
- Department of Preventive Medicine, Biostatistics Division, Keck School of Medicine at the University of Southern California, Los Angeles, California 90033, USA
| | - Ze-Zhong Tang
- Shanxi Cancer Hospital, Taiyuan, Shanxi 030013, China
| | - Philip R. Taylor
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Lauren R. Teras
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia 30303, USA
| | - Geoffrey S. Tobias
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - David Van Den Berg
- Department of Preventive Medicine, Biostatistics Division, Keck School of Medicine at the University of Southern California, Los Angeles, California 90033, USA
| | - Kala Visvanathan
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21218, USA
| | - Sholom Wacholder
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Jiu-Cun Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - William Wheeler
- Information Management Services Inc., Calverton, Maryland, 20904, USA
| | - Emily White
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - John K. Wiencke
- University of California San Francisco, San Francisco, California 94143, USA
| | - Brian M. Wolpin
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Maria Pik Wong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chen Wu
- Department of Etiology & Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tangchun Wu
- Institute of Occupational Medicine and Ministry of Education Key Laboratory for Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan 430400, China
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou 515200, China
| | - Jay S. Wunder
- Guangdong Lung Cancer Institute, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou 515200, China
| | - Lucy Xia
- University of Southern California, Los Angeles, California 90007, USA
| | - Hannah P. Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Pan-Chyr Yang
- Division of Urologic Surgery, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Krista A. Zanetti
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Anne Zeleniuch-Jacquotte
- New York University Cancer Institute, New York, New York 10016, USA
- Department of Population Health, New York University School of Medicine, New York, New York 10016, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110001, China
| | - Regina G. Ziegler
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Luis A. Perez-Jurado
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08002, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, 28029, Spain
| | - Neil E. Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Margaret Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Michael C. Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| |
Collapse
|
88
|
Zhou W, Machiela MJ, Freedman ND, Rothman N, Malats N, Dagnall C, Caporaso N, Teras LT, Gaudet MM, Gapstur SM, Stevens VL, Jacobs KB, Sampson J, Albanes D, Weinstein S, Virtamo J, Berndt S, Hoover RN, Black A, Silverman D, Figueroa J, Garcia-Closas M, Real FX, Earl J, Marenne G, Rodriguez-Santiago B, Karagas M, Johnson A, Schwenn M, Wu X, Gu J, Ye Y, Hutchinson A, Tucker M, Perez-Jurado LA, Dean M, Yeager M, Chanock SJ. Mosaic loss of chromosome Y is associated with common variation near TCL1A. Nat Genet 2016; 48:563-8. [PMID: 27064253 PMCID: PMC4848121 DOI: 10.1038/ng.3545] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 03/16/2016] [Indexed: 12/12/2022]
Abstract
Mosaic loss of chromosome Y (mLOY) leading to gonosomal XY/XO commonly occurs during aging, particularly in smokers. We investigated whether mLOY was associated with non-hematological cancer in three prospective cohorts (8,679 cancer cases and 5,110 cancer-free controls) and genetic susceptibility to mLOY. Overall, mLOY was observed in 7% of men, and its prevalence increased with age (per-year odds ratio (OR) = 1.13, 95% confidence interval (CI) = 1.12-1.15; P < 2 × 10(-16)), reaching 18.7% among men over 80 years old. mLOY was associated with current smoking (OR = 2.35, 95% CI = 1.82-3.03; P = 5.55 × 10(-11)), but the association weakened with years after cessation. mLOY was not consistently associated with overall or specific cancer risk (for example, bladder, lung or prostate cancer) nor with cancer survival after diagnosis (multivariate-adjusted hazard ratio = 0.87, 95% CI = 0.73-1.04; P = 0.12). In a genome-wide association study, we observed the first example of a common susceptibility locus for genetic mosaicism, specifically mLOY, which maps to TCL1A at 14q32.13, marked by rs2887399 (OR = 1.55, 95% CI = 1.36-1.78; P = 1.37 × 10(-10)).
Collapse
Affiliation(s)
- Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, 21702, USA
| | - Mitchell J. Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Nuria Malats
- Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Casey Dagnall
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, 21702, USA
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Lauren T. Teras
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, 30303, USA
| | - Mia M. Gaudet
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, 30303, USA
| | - Susan M. Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, 30303, USA
| | - Victoria L. Stevens
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, 30303, USA
| | - Kevin B. Jacobs
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, 21702, USA
- Bioinformed, LLC, Gaithersburg, Maryland, 20877, USA
| | - Joshua Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Stephanie Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Jarmo Virtamo
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Sonja Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Robert N. Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Debra Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
- Division of Genetics and Epidemiology, Institute for Cancer Research, London, Surrey SM2 5NG, UK
| | - Francisco X Real
- Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, 08002, Spain
| | - Julie Earl
- Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Gaelle Marenne
- Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Benjamin Rodriguez-Santiago
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, 08002, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, 28029, Spain
- Quantitative Genomic Medicine Laboratory, qGenomics, Barcelona, 08003, Spain
| | - Margaret Karagas
- Biostatistics and Epidemiology Section, Dartmouth Medical School, Lebanon, NH, 03756, USA
| | - Alison Johnson
- Vermont Cancer Registry, Burlington, Vermont, 05402, USA
| | | | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, 21702, USA
| | - Margaret Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Luis A. Perez-Jurado
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, 08002, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, 28029, Spain
- Hospital del Mar Research Institute (IMIM) Barcelona 08003, Spain
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
- Laboratory of Experimental Immunology, Center for Cancer Research, NCI-Frederick, Frederick, Maryland, 21702, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, 21702, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| |
Collapse
|
89
|
Somatically acquired structural genetic differences: a longitudinal study of elderly Danish twins. Eur J Hum Genet 2016; 24:1506-10. [PMID: 27094753 DOI: 10.1038/ejhg.2016.34] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/26/2016] [Accepted: 03/18/2016] [Indexed: 11/08/2022] Open
Abstract
Structural genetic variants like copy number variants (CNVs) comprise a large part of human genetic variation and may be inherited as well as somatically acquired. Recent studies have reported the presence of somatically acquired structural variants in the human genome and it has been suggested that they may accumulate in elderly individuals. To further explore the presence and the age-related acquisition of somatic structural variants in the human genome, we investigated CNVs acquired over a period of 10 years in 86 elderly Danish twins as well as CNV discordances between co-twins of 18 monozygotic twin pairs. Furthermore, the presence of mosaic structural variants was explored. We identified four mosaic acquired uniparental disomy events on chromosome 4q and 14q in the follow-up samples from four individuals, and our study thereby supports the increasing prevalence of somatic mosaic variants with age.
Collapse
|
90
|
Valind A, Haikal C, Klasson MEK, Johansson MC, Gullander J, Soller M, Baldetorp B, Gisselsson D. The fetal thymus has a unique genomic copy number profile resulting from physiological T cell receptor gene rearrangement. Sci Rep 2016; 6:23500. [PMID: 27009469 PMCID: PMC4806331 DOI: 10.1038/srep23500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/09/2016] [Indexed: 12/14/2022] Open
Abstract
Somatic mosaicism, the presence of genetically distinct cells within an organism, has been increasingly associated with human morbidity, ranging from being a cause of rare syndromes to a risk factor for common disorders such as malignancy and cardiovascular disease. Previous studies interrogating the normal prevalence of somatic mosaicism have focused on adults. We here present an estimate of the baseline frequency of somatic mosaic copy number variation (CNV) at the time around birth, by sampling eight different organs from a total of five fetuses and newborns. Overall we find a significantly lower frequency of organ specific (i.e. mosaic) CNVs as compared to adults (p = 0.003; Mann-Whitney U-test). The rate of somatic CNV in adults has been estimated to around 2.2 CNV per organ assayed. In contrast, after stringent filtering, we found no organ-private CNVs in fetuses or newborns with exception of the thymus. This organ exhibited a specific genome profile in the form of deletions resulting from polyclonal T-cell receptor rearrangements. This implies that somatic non-immune related CNVs, if present at birth, are typically confined to very small cell populations within organs.
Collapse
Affiliation(s)
- Anders Valind
- Department of Clinical Genetics, Lund University BMC C13, Lund University, SE 221 84, Lund, Sweden
| | - C. Haikal
- Department of Clinical Genetics, Lund University BMC C13, Lund University, SE 221 84, Lund, Sweden
| | - M. E. K. Klasson
- Department of Clinical Genetics, Lund University BMC C13, Lund University, SE 221 84, Lund, Sweden
| | - M. C. Johansson
- Department of Oncology, Lund University University Hospital, SE 221 85, Lund, Sweden
| | - J. Gullander
- Department of Clinical Genetics, Lund University BMC C13, Lund University, SE 221 84, Lund, Sweden
| | - M. Soller
- Department of Clinical Genetics, Skåne Regional and University Laboratories University Hospital, SE 221 85, Lund, Sweden
| | - B. Baldetorp
- Department of Oncology, Lund University University Hospital, SE 221 85, Lund, Sweden
| | - David Gisselsson
- Department of Clinical Genetics, Lund University BMC C13, Lund University, SE 221 84, Lund, Sweden
- Department of Pathology, Skåne Regional and University Laboratories University Hospital, SE 221 85, Lund, Sweden
| |
Collapse
|
91
|
Extensive Hidden Genomic Mosaicism Revealed in Normal Tissue. Am J Hum Genet 2016; 98:571-578. [PMID: 26942289 DOI: 10.1016/j.ajhg.2016.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/03/2016] [Indexed: 01/10/2023] Open
Abstract
Genomic mosaicism arising from post-zygotic mutation has recently been demonstrated to occur in normal tissue of individuals ascertained with varied phenotypes, indicating that detectable mosaicism may be less an exception than a rule in the general population. A challenge to comprehensive cataloging of mosaic mutations and their consequences is the presence of heterogeneous mixtures of cells, rendering low-frequency clones difficult to discern. Here we applied a computational method using estimated haplotypes to characterize mosaic megabase-scale structural mutations in 31,100 GWA study subjects. We provide in silico validation of 293 previously identified somatic mutations and identify an additional 794 novel mutations, most of which exist at lower aberrant cell fractions than have been demonstrated in previous surveys. These mutations occurred across the genome but in a nonrandom manner, and several chromosomes and loci showed unusual levels of mutation. Our analysis supports recent findings about the relationship between clonal mosaicism and old age. Finally, our results, in which we demonstrate a nearly 3-fold higher rate of clonal mosaicism, suggest that SNP-based population surveys of mosaic structural mutations should be conducted with haplotypes for optimal discovery.
Collapse
|
92
|
Mosaic 13q14 deletions in peripheral leukocytes of non-hematologic cancer cases and healthy controls. J Hum Genet 2016; 61:411-8. [PMID: 26763882 PMCID: PMC4880507 DOI: 10.1038/jhg.2015.166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 01/07/2023]
Abstract
Loss of 13q14.3 is a chromosomal event found in approximately 50 percent of B-cell chronic lymphocytic leukemia (CLL) and monoclonal B-cell lymphocytosis (MBL) cases. Surveys of somatic alterations in solid tumors have shown sporadic 13q14.3 loss in many different tumor types, but not at high frequency in any specific tumor type. In our recent survey of the single nucleotide polymorphism (SNP) microarray data from 127,000 cancer free or solid tumor cases, we observed mosaic 13q14.3 loss as a common autosomal somatic large structural events (>2 Mb in size) in blood and buccal-derived DNA. Herein, we examined this region more closely investigating structural mosaic events <2 Mb using SNP microarray data in 46,254 non-hematologic cancer cases and 36,229 controls. We detected 60 individuals with 13q14.3 mosaic loss, one mosaic copy neutral uniparental disomy, and 13 individuals with homozygosity. While 13q14.3 loss size was variable, the minimally deleted region (MDR) (chr13:49,590,000-49,983,100; GRCh36) was comparable to what is classically reported in MBL and CLL. Breakpoint analysis of the estimated boundaries reveals enrichment for genes and open chromatin. The frequency of 13q14.3 loss significantly increases with increasing age (P-value=0.028), but was not significantly different between non-hematological cancer cases and controls (0.084% versus 0.058%; P-value=0.19). These findings suggest mosaic 13q14.3 losses accumulate with age. Individuals with detected mosaic 13q14.3 deletions may be early, undetected cases of MBL or CLL, but not necessarily all will develop MBL and CLL.
Collapse
|
93
|
Abstract
Diversity is the basis of fitness selection. Although the genome of an individual is considered to be largely stable, there is theoretical and experimental evidence--both in model organisms and in humans--that genetic mosaicism is the rule rather than the exception. The continuous generation of cell variants, their interactions and selective pressures lead to life-long tissue dynamics. Individuals may thus enjoy 'clonal health', defined as a clonal composition that supports healthy morphology and physiology, or suffer from clonal configurations that promote disease, such as cancer. The contribution of mosaicism to these processes starts during embryonic development. In this Opinion article, we argue that the road to cancer might begin during these early stages.
Collapse
Affiliation(s)
- Luis C Fernández
- Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre-CNIO, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Miguel Torres
- Centro Nacional de Investigaciones Cardiovasculares-CNIC, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Francisco X Real
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, and at the Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre-CNIO, 28029 Madrid, Spain
| |
Collapse
|
94
|
Somatic mosaicism for copy-neutral loss of heterozygosity and DNA copy number variations in the human genome. BMC Genomics 2015; 16:703. [PMID: 26376747 PMCID: PMC4573927 DOI: 10.1186/s12864-015-1916-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 09/09/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Somatic mosaicism denotes the presence of genetically distinct populations of somatic cells in one individual who has developed from a single fertilised oocyte. Mosaicism may result from a mutation that occurs during postzygotic development and is propagated to only a subset of the adult cells. Our aim was to investigate both somatic mosaicism for copy-neutral loss of heterozygosity (cn-LOH) events and DNA copy number variations (CNVs) in fully differentiated tissues. RESULTS We studied panels of tissue samples (11-12 tissues per individual) from four autopsy subjects using high-resolution Illumina HumanOmniExpress-12 BeadChips to reveal the presence of possible intra-individual tissue-specific cn-LOH and CNV patterns. We detected five mosaic cn-LOH regions >5 Mb in some tissue samples in three out of four individuals. We also detected three CNVs that affected only a portion of the tissues studied in one out of four individuals. These three somatic CNVs range from 123 to 796 kb and are also found in the general population. An attempt was made to explain the succession of genomic events that led to the observed somatic genetic mosaicism under the assumption that the specific mosaic patterns of CNV and cn-LOH changes reflect their formation during the postzygotic embryonic development of germinal layers and organ systems. CONCLUSIONS Our results give further support to the idea that somatic mosaicism for CNVs, and also cn-LOHs, is a common phenomenon in phenotypically normal humans. Thus, the examination of only a single tissue might not provide enough information to diagnose potentially deleterious CNVs within an individual. During routine CNV and cn-LOH analysis, DNA derived from a buccal swab can be used in addition to blood DNA to get information about the CNV/cn-LOH content in tissues of both mesodermal and ectodermal origin. Currently, the real frequency and possible phenotypic consequences of both CNVs and cn-LOHs that display somatic mosaicism remain largely unknown. To answer these questions, future studies should involve larger cohorts of individuals and a range of tissues.
Collapse
|
95
|
Aboalela N, Lyon D, Elswick RK, Kelly DL, Brumelle J, Bear HD, Jackson-Cook C. Perceived Stress Levels, Chemotherapy, Radiation Treatment and Tumor Characteristics Are Associated with a Persistent Increased Frequency of Somatic Chromosomal Instability in Women Diagnosed with Breast Cancer: A One Year Longitudinal Study. PLoS One 2015; 10:e0133380. [PMID: 26177092 PMCID: PMC4503400 DOI: 10.1371/journal.pone.0133380] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/26/2015] [Indexed: 11/18/2022] Open
Abstract
While advances in therapeutic approaches have resulted in improved survival rates for women diagnosed with breast cancer, subsets of these survivors develop persistent psychoneurological symptoms (fatigue, depression/anxiety, cognitive dysfunction) that compromise their quality of life. The biological basis for these persistent symptoms is unclear, but could reflect the acquisition of soma-wide chromosomal instability following the multiple biological/psychological exposures associated with the diagnosis/treatment of breast cancer. An essential first step toward testing this hypothesis is to determine if these cancer-related exposures are indeed associated with somatic chromosomal instability frequencies. Towards this end, we longitudinally studied 71 women (ages 23-71) with early-stage breast cancer and quantified their somatic chromosomal instability levels using a cytokinesis-blocked micronuclear/cytome assay at 4 timepoints: before chemotherapy (baseline); four weeks after chemotherapy initiation; six months after chemotherapy (at which time some women received radiotherapy); and one year following chemotherapy initiation. Overall, a significant change in instability frequencies was observed over time, with this change differing based on whether the women received radiotherapy (p=0.0052). Also, significantly higher instability values were observed one year after treatment initiation compared to baseline for the women who received: sequential taxotere/doxorubicin/cyclophosphamide (p<0.001) or taxotere/cyclophosphamide (p=0.014). Significant predictive associations for acquired micronuclear/cytome abnormality frequencies were also observed for race (p=0.0052), tumor type [luminal B tumors] (p=0.0053), and perceived stress levels (p=0.0129). The impact of perceived stress on micronuclear/cytome frequencies was detected across all visits, with the highest levels of stress being reported at baseline (p =0.0024). These findings suggest that the cancer-related exposome has an impact on both healthy somatic cells and tumor cells, and may lead to persistent chromosomal instability. In addition, stress was a significant predictor of chromosomal instability; thus, interventions that aim to reduce stress may reduce acquired soma-wide chromosomal instability for cancer survivors.
Collapse
Affiliation(s)
- Noran Aboalela
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Debra Lyon
- Family and Community Health Nursing, School of Nursing, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - R. K. Elswick
- Family and Community Health Nursing, School of Nursing, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Debra Lynch Kelly
- Family and Community Health Nursing, School of Nursing, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jenni Brumelle
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Harry D. Bear
- Division of Surgical Oncology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Colleen Jackson-Cook
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|