51
|
Kinuthia UM, Wolf A, Langmann T. Microglia and Inflammatory Responses in Diabetic Retinopathy. Front Immunol 2020; 11:564077. [PMID: 33240260 PMCID: PMC7681237 DOI: 10.3389/fimmu.2020.564077] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy is a vision-threatening disease affecting neurons and microvasculature of the retina. The development of this disease is associated with the action of inflammatory factors that are connected to the activation of microglial cells, the resident tissue macrophages of the CNS. In the quiescent state, microglial cells help maintain tissue homeostasis in the retina through phagocytosis and control of low-grade inflammation. However, prolonged tissue stress due to hyperglycemia primes microglia to become overly reactive with the concomitant production of pro-inflammatory cytokines and chemokines causing chronic inflammation. In this review, we provide evidence of microglial cell activation and pro-inflammatory molecules associated with the development and progression of diabetic retinopathy. We further highlight innovative animal models that can mimic the disease in humans and discuss strategies in modulating microglial-mediated inflammation as potential therapeutic approaches in managing the disease.
Collapse
Affiliation(s)
- Urbanus Muthai Kinuthia
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
52
|
The Benefits of Flavonoids in Diabetic Retinopathy. Nutrients 2020; 12:nu12103169. [PMID: 33081260 PMCID: PMC7603001 DOI: 10.3390/nu12103169] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR), one of the most common complications of diabetes, is the leading cause of legal blindness among adults of working age in developed countries. After 20 years of diabetes, almost all patients suffering from type I diabetes mellitus and about 60% of type II diabetics have DR. Several studies have tried to identify drugs and therapies to treat DR though little attention has been given to flavonoids, one type of polyphenols, which can be found in high levels mainly in fruits and vegetables, but also in other foods such as grains, cocoa, green tea or even in red wine. Flavonoids have anti-inflammatory, antioxidant and antiviral effects. Since it is known that diabetes induces oxidative stress and inflammation in the retina leading to neuronal death in the early stages of the disease, the use of these compounds can prove to be beneficial in the prevention or treatment of DR. In this review, we summarize the molecular and cellular effects of flavonoids in the diabetic retina.
Collapse
|
53
|
Choroidal and retinal structural, cellular and vascular changes in a rat model of Type 2 diabetes. Biomed Pharmacother 2020; 132:110811. [PMID: 33069967 DOI: 10.1016/j.biopha.2020.110811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence points to inflammation as a key factor in the pathogenesis of diabetic retinopathy (DR). Choroidal changes in diabetes have been reported and several attempts were made to validate in vivo choroidal thickness (CT) as a marker of retinopathy. We aimed to study choroidal and retinal changes associated with retinopathy in an animal model of spontaneous Type 2 diabetes, Goto-Kakizaki (GK) rats. Sclerochoroidal whole mounts and cryosections were prepared from 52-week-old GK and age-matched control Wistar Han rats. CT was measured by optical coherence tomography. Microglia reactivity, pericyte and endothelial cells distribution, and immunoreactivity of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2) were evaluated by immunofluorescence. Choroidal vessels were visualized by direct perfusion with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil). Choroidal vascular density was evaluated by fluorescence microscopy. GK rats had increased CT (58.40 ± 1.15 μm versus 50.90 ± 1.58 μm, p < 0.001), reduced vascular density of the choriocapillaris (CC) (p = 0.045), increased Iba1+ cells density in the outer retina (p = 0.003) and increased VEGFR2 immunoreactivity in most retinal layers (p = 0.021 to 0.037). Choroidal microglial cells and pericytes showed polarity in their distribution, sparing the innermost choroid. This cell-free gap in the inner choroid was more pronounced in GK rats. In summary, GK rats have increased CT with decreased vascular density in the innermost choroid, increased VEGFR2 immunoreactivity in the retina and increased Iba1+ cells density in the outer retina.
Collapse
|
54
|
Yalçındağ FN, Temel E, Şekkeli MZ, Kar İ. Macular structural changes and factors affecting final visual acuity in patients with Behçet uveitis. Graefes Arch Clin Exp Ophthalmol 2020; 259:715-721. [PMID: 33037921 DOI: 10.1007/s00417-020-04958-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To evaluate macular structural changes during the active and remission periods in patients with Behçet uveitis and to further assess the factors affecting final visual acuity. METHODS Clinical records and spectral domain-optical coherence tomography (SD-OCT) findings of patients with Behçet uveitis were retrospectively reviewed. RESULTS Sixty-nine eyes of 35 patients were included in the study. SD-OCT findings in the active uveitis period included epiretinal membrane (ERM) in 26 (37.1%) eyes, ellipsoid zone (EZ) damage in 11 (15.7%), external limiting membrane (ELM) damage in 10 (14.3%), macular atrophy in 6 (8.6%), disruption of retinal pigment epithelium (RPE) in 11 (15.7%), a macular scar in 1 (1.4%), and loss of normal foveal contour appearance in 15 (21.4%). There was macular edema in 23 eyes (32.9%) in the active uveitis period (11 (15.7%) cystoid macular edema, 10 (14.3%) diffuse macular edema, and 7 (10.0%) serous retinal detachment). In the remission period, SD-OCT findings included ERM in 37 (52.9%) eyes, EZ damage in 14 (20%), ELM damage in 14 (20%), macular atrophy in 7 (10%), disruption of RPE in 14 (20.0%), macular scar in 1 (1.4%), and loss of normal foveal contour appearance in 17 (24.3%). The mean central macular thickness in the remission period was significantly lower than in the active uveitis period (p < 0.001). The presence of EZ damage and loss of normal foveal contour appearance in active uveitis period were the independent factors associated with final visual acuity (logMAR) (β = 0.736, p = 0.003; β = 0.682, p = 0.002, respectively). CONCLUSION Ellipsoid zone damage and loss of normal foveal contour appearance are important factors affecting visual acuity in Behçet uveitis.
Collapse
Affiliation(s)
- F Nilüfer Yalçındağ
- Department of Ophthalmology, Faculty of Medicine, Ankara University, Mamak Street, 06620, Ankara, Turkey
| | - Emine Temel
- Department of Ophthalmology, Faculty of Medicine, Ankara University, Mamak Street, 06620, Ankara, Turkey.
| | - Mehmet Zahid Şekkeli
- Department of Ophthalmology, Faculty of Medicine, Ankara University, Mamak Street, 06620, Ankara, Turkey
| | - İrem Kar
- Department of Biostatistics, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
55
|
Retinal pigment epithelial cells secrete miR-202-5p-containing exosomes to protect against proliferative diabetic retinopathy. Exp Eye Res 2020; 201:108271. [PMID: 33007305 DOI: 10.1016/j.exer.2020.108271] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/13/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
Abstract
Previous studies have reported that endothelial-to-mesenchymal transition (EndoMT) contributes to pathological fibrosis in proliferative diabetic retinopathy (PDR). The hypothesis of our study was that exosomes from high glucose (HG)-treated ARPE19 cells reprogram endothelial cell behavior in HG conditions by transferring their genetic contents. Our study showed that ARPE19-derived exosomes were internalized by human umbilical vein endothelial cells (HUVECs). Additionally, miR-202-5p, a miRNA known to target TGFβR2, was enriched in ARPE19-derived exosomes. A dual luciferase reporter assay, qPCR, and western blotting were used to characterize the expression of miR-202-5p and phosphorylation of the TGF/Smad pathway proteins. We showed that miR-202-5p-containing exosomes suppressed HUVEC cell growth, migration, and tube formation. Furthermore, TGFβR2 was confirmed as the target of miR-202-5p. A dual luciferase reporter assay showed that TGFβR2 expression was negatively regulated by miR-202-5p. We also showed that miR-202-5p-containing exosomes suppressed HG-induced EndoMT. These collective results suggested that ARPE-derived exosomes may serve as significant mediators of cell-to-cell crosstalk to suppress EndoMT by transferring miR-202-5p through the TGF/Smad pathway, and may be a potential treatment for PDR patients.
Collapse
|
56
|
Campos A, Campos EJ, Martins J, Rodrigues FSC, Silva R, Ambrósio AF. Inflammatory cells proliferate in the choroid and retina without choroidal thickness change in early Type 1 diabetes. Exp Eye Res 2020; 199:108195. [PMID: 32841650 DOI: 10.1016/j.exer.2020.108195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/13/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Abstract
Increasing evidence points to inflammation as a key factor in the pathogenesis of diabetic retinopathy (DR). Choroidal inflammatory changes in diabetes have been reported and in vivo choroidal thickness (CT) has been searched as a marker of retinopathy with contradictory results. We aimed to investigate the early stages in the retina and choroid in an animal model of Type 1 diabetes. Type 1 diabetes was induced in male Wistar rats via a single i.p. streptozotocin injection. At 8 weeks after disease onset, CT, choroidal vascular density, VEGF and VEGFR2 expression, microglial cell and pericyte distribution were evaluated. Diabetic rats showed no significant change in CT and choroidal vascular density. A widened pericyte-free gap between the retinal pigment epithelium and the choroid was observed in diabetic rats. The immunoreactivity of VEGFR2 was decreased in the retina of diabetic rats, despite no statistically significant difference in the immunoreactivity of VEGF. The density of microglial cells significantly increased in the choroid and retina of diabetic rats. Reactive microglial cells were found to be more abundant in the choroid of diabetic rats. Evidences of the interconnection between the superficial, intermediate, and deep plexuses of the retina were also observed. At early stages, Type 1 diabetes does not affect choroidal thickness and choroidal vascular density. Proliferation and reactivity of microglial cells occurs in the choroidal stroma and the retina. The expression of VEGFR2 decreases in the retina.
Collapse
Affiliation(s)
- António Campos
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Department of Ophthalmology, Centro Hospitalar Leiria EPE, Leiria, Portugal; ciTechCare, Center for Innovative Care and Health Technology, Polytechnic Institute of Leiria, Leiria, Portugal
| | - Elisa J Campos
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal.
| | - João Martins
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal; University of Coimbra, Instituto de Ciências Nucleares Aplicadas à Saúde (ICNAS), Coimbra, Portugal
| | - Flávia S C Rodrigues
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Rufino Silva
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal; Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - António Francisco Ambrósio
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal.
| |
Collapse
|
57
|
Behar-Cohen F, Zhao M, Gelize E, Bousquet E, Daruich A, Alexandre M, Delaunay K, Torriglia A, Berdugo-Polak M, Jaisser F, de Kozak Y, Lassiaz P. Les œdèmes maculaires. Med Sci (Paris) 2020; 36:753-762. [DOI: 10.1051/medsci/2020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
L’œdème maculaire est une augmentation de volume de la macula, zone centrale de la rétine, responsable de l’acuité visuelle. Des symptômes visuels handicapent la vie de millions de patients atteints d’œdème maculaire secondaire à une maladie chronique et parfois aiguë de la rétine. Les protéines qui neutralisent la voie du facteur de croissance de l’endothélium vasculaire (VEGF) ou les glucocorticoïdes, au prix d’injections intraoculaires répétées pendant des années, limitent les symptômes visuels. Mieux comprendre pourquoi et comment l’œdème se forme et comment les molécules thérapeutiques exercent un effet anti-œdémateux permettra de mieux prévenir la survenue de cette complication rétinienne handicapante et cécitante.
Collapse
|
58
|
Chung YR, Lee SY, Kim YH, Byeon HE, Kim JH, Lee K. Hyperreflective foci in diabetic macular edema with serous retinal detachment: association with dyslipidemia. Acta Diabetol 2020; 57:861-866. [PMID: 32114640 DOI: 10.1007/s00592-020-01495-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/04/2020] [Indexed: 10/24/2022]
Abstract
AIMS Hyperreflective foci (HF), detected in the retina of diabetic patients, suggest the presence of microglial activation and migration, while controversies still remain for the origin of HF to be precursors of hard exudates. We investigated the presence of HF and their association with dyslipidemia in serous retinal detachment (SRD)-type diabetic macular edema (DME). METHODS Forty-two eyes in 42 patients with diabetic retinopathy (DR) and 22 eyes in 22 patients with branch retinal vascular occlusion (BRVO) showing macular edema were included in this study. The medical records and OCT findings were retrospectively reviewed in patients with SRD-type DME and compared with those with BRVO. The mean number of HF, the mean choroidal thickness, and lipid profiles were analyzed and compared between groups. RESULTS The mean number of HF was significantly higher in DR group compared to BRVO group. Significant correlation of HF was noted with triglycerides (r = 0.523, P = 0.002). Triglycerides were significantly associated with HF by linear regression (β = 0.012, 95% CI 0.001-0.024, P = 0.034) and remained significantly associated by multiple linear regression (β = 0.014, 95% CI 0.003-0.025, P = 0.014). CONCLUSIONS HF on OCT of DME patients could be indicative of activated microglia. HF are associated with dyslipidemia, especially high triglycerides, suggesting inflammatory reaction from dyslipidemia in diabetic retina.
Collapse
Affiliation(s)
- Yoo-Ri Chung
- Department of Ophthalmology, Ajou University School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon, 16499, Korea
| | - Seung Yeop Lee
- Department of Ophthalmology, Ajou University School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon, 16499, Korea
| | - Young Ho Kim
- Department of Ophthalmology, Ajou University School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon, 16499, Korea
| | - Hye-Eun Byeon
- Institute of Medical Science, Ajou University School of Medicine, Suwon, Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Kihwang Lee
- Department of Ophthalmology, Ajou University School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon, 16499, Korea.
| |
Collapse
|
59
|
Abstract
Retinal diseases, such as age-related macular degeneration and diabetic retinopathy, are the leading causes of blindness worldwide. The mainstay of treatment for these blinding diseases remains to be surgery, and the available pharmaceutical therapies on the market are limited, partially owing to various biological barriers in hindering the delivery of therapeutics to the retina. The nanoparticulate drug delivery system confers the capability for delivering therapeutics to the specific ocular targets and, hence, potentially revolutionizes the current treatment landscape of retinal diseases. While the research to date indicates the enormous therapeutics potentials of the nanoparticulate delivery systems, the successful translation of these systems from the bench to bedside is challenging and requires a combined understanding of retinal pathology, physiology of the eye, and particle and formulation designs of nanoparticles. To this end, the review begins with an overview of the most prevalent retinal diseases and related pharmacotherapy. Highlights of the current challenges encountered in ocular drug delivery for each administration route are provided, followed by critical appraisal of various nanoparticulate drug delivery systems for the retinal diseases, including their formulation designs, therapeutic merits, limitations, and future direction. It is believed that a greater understanding of the nano-biointeraction in eyes will lead to the development of more sophisticated drug delivery systems for retinal diseases.
Collapse
Affiliation(s)
- Qingqing Li
- Faculty of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingwen Weng
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Si Nga Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Wai Yip Thomas Lee
- Aptorum Group Limited, Unit 232, 12 Science Park West Avenue, Hong Kong Science Park, Shatin New Town, Hong Kong
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
60
|
Abstract
Patients with diabetes continue to suffer from impaired visual performance before the appearance of overt damage to the retinal microvasculature and later sight-threatening complications. This diabetic retinopathy (DR) has long been thought to start with endothelial cell oxidative stress. Yet newer data surprisingly finds that the avascular outer retina is the primary site of oxidative stress before microvascular histopathology in experimental DR. Importantly, correcting this early oxidative stress is sufficient to restore vision and mitigate the histopathology in diabetic models. However, translating these promising results into the clinic has been stymied by an absence of methods that can measure and optimize anti-oxidant treatment efficacy in vivo. Here, we review imaging approaches that address this problem. In particular, diabetes-induced oxidative stress impairs dark-light regulation of subretinal space hydration, which regulates the distribution of interphotoreceptor binding protein (IRBP). IRBP is a vision-critical, anti-oxidant, lipid transporter, and pro-survival factor. We show how optical coherence tomography can measure subretinal space oxidative stress thus setting the stage for personalizing anti-oxidant treatment and prevention of impactful declines and loss of vision in patients with diabetes.
Collapse
|
61
|
Ogura S, Baldeosingh R, Bhutto IA, Kambhampati SP, Scott McLeod D, Edwards MM, Rais R, Schubert W, Lutty GA. A role for mast cells in geographic atrophy. FASEB J 2020; 34:10117-10131. [PMID: 32525594 DOI: 10.1096/fj.202000807r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs) are the initial responders of innate immunity and their degranulation contribute to various etiologies. While the abundance of MCs in the choroid implies their fundamental importance in the eye, little is known about the significance of MCs and their degranulation in choroid. The cause of geographic atrophy (GA), a progressive dry form of age-related macular degeneration is elusive and there is currently no therapy for this blinding disorder. Here we demonstrate in both human GA and a rat model for GA, that MC degranulation and MC-derived tryptase are central to disease progression. Retinal pigment epithelium degeneration followed by retinal and choroidal thinning, characteristic phenotypes of GA, were driven by continuous choroidal MC stimulation and activation in a slow release fashion in the rat. Genetic manipulation of MCs, pharmacological intervention targeting MC degranulation with ketotifen fumarate or inhibition of MC-derived tryptase with APC 366 prevented all of GA-like phenotypes following MC degranulation in the rat model. Our results demonstrate the fundamental role of choroidal MC involvement in GA disease etiology, and will provide new opportunities for understanding GA pathology and identifying novel therapies targeting MCs.
Collapse
Affiliation(s)
- Shuntaro Ogura
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | | | - Imran A Bhutto
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Siva P Kambhampati
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Donald Scott McLeod
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Malia M Edwards
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Gerard A Lutty
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
62
|
Narnaware SH, Bawankule PK, Raje D. Short-term outcomes of intravitreal dexamethasone in relation to biomarkers in diabetic macular edema. Eur J Ophthalmol 2020; 31:1185-1191. [PMID: 32429696 DOI: 10.1177/1120672120925788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE The purpose of this study was to determine the effects of dexamethasone implant (0.7 mg) on biomarkers such as hyper-reflective dots, external limiting membrane integrity and disorganization of retinal inner layers in treatment-naïve patients, patients who received less than three anti-vascular endothelial growth factor injections and non-responder cases with diabetic macular edema and its effects on edema and visual acuity. METHODS This is a prospective study of treatment-naïve patients, patients who received less than three anti-vascular endothelial growth factor injections and non-responder patients with diabetic macular edema, treated with single dexamethasone implant. Pre- and post-injection-based best-corrected visual acuity, central macular thickness, hyper-reflective dots, external limiting membrane integrity and disorganization of retinal inner layers were assessed. RESULTS A total of 27 diabetic macular edema eyes, including 9 non-responder eyes, 9 eyes which received less than three anti-vascular endothelial growth factor injections and 9 treatment-naïve eyes, were included in this study. Baseline hyper-reflective dots were 22.22 ± 11.76, 30 ± 7.91 and 19.44 ± 8.82 which reduced to 3.33 ± 1.32, 9 ± 8.35 and 8.78 ± 2.53 four months after implant in treatment-naïve patients, patients who received less than three anti-vascular endothelial growth factor injections and non-responder cases, respectively. Baseline central macular thickness was 589.44 ± 175.37, 537 ± 181.81 and 673.11 ± 138.24 and the central macular thickness after dexamethasone implant was 272.11 ± 39.00, 336.44 ± 132.88 and 524.00 ± 200.39 in treatment-naïve patients, patients who received less than three anti-vascular endothelial growth factor injections and non-responder cases, respectively. External limiting membrane integrity was restored in two patients in each group, whereas two patients with disorganization of retinal inner layers in treatment-naïve group showed reorganization of retinal structures after treatment with dexamethasone implant. CONCLUSION Better response to dexamethasone implant in cases with more hyper-reflective dots shows that these hyper-reflective dots can be used as a predictive biomarker. Dexamethasone implant might help in restoring external limiting membrane integrity and resolution of disorganization of retinal inner layers.
Collapse
|
63
|
Naik P, Singh S, Vishwakarma S, Kaur I, Dave VP, Kumar A, Joseph J. Multidrug-Resistant Pseudomonas aeruginosa Evokes Differential Inflammatory Responses in Human Microglial and Retinal Pigment Epithelial Cells. Microorganisms 2020; 8:microorganisms8050735. [PMID: 32423093 PMCID: PMC7285153 DOI: 10.3390/microorganisms8050735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing incidences of multidrug-resistant (MDR) pathogens causing endophthalmitis threaten our ability to treat this condition, and the modulation of inflammatory responses by MDR bacteria is not known. In this study, using human microglia and retinal pigment epithelial (RPE) cells, we compare the inflammatory responses of sensitive (S-PA) and multidrug-resistant (MDR-PA) clinical isolates of Pseudomonas aeruginosa. Infected cells were subjected to qPCR analysis, enzyme-linked immunosorbent assay (ELISA), and immunostaining to assess the expression of inflammatory mediators. Both microglia and RPE cells, challenged with S-PA and MDR-PA, induced a time-dependent expression of inflammatory cytokines. Significant differences were observed in expression levels of Toll-like receptors (TLR) TLR4, TLR5, and TLR9 in microglia cells challenged with MDR-PA vs. S-PA. Similarly, mRNA levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, Interferon (IFN)-γ, and matrix metalloproteinase (MMP)-9 were also higher in MDR-PA-infected cells. At protein levels, upregulation was observed for IL-10 (p = 0.004), IL-8 (p = 0.0006), IL-1β (p = 0.02), and Granulocyte-macrophage colony-stimulating factor (GM-CSF) (p = 0.0006) in cells infected MDR-PA versus S-PA in both microglia and RPE cells; however, the response was delayed in RPE cells. Heatmap and STRING analysis highlighted the existence of a cross-talk between the inflammatory and cytokine-mediated signaling pathways. Our study highlights a differential inflammatory response evoked by MDR vs. sensitive pathogens in retinal cells during endophthalmitis.
Collapse
Affiliation(s)
- Poonam Naik
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana 500034, India;
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India;
| | - Sukhvinder Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, Michigan, MI 48201, USA; (S.S.); (A.K.)
| | - Sushma Vishwakarma
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India;
- Kallam Anji Reddy Molecular Genetics laboratory, Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana 500034, India;
| | - Inderjeet Kaur
- Kallam Anji Reddy Molecular Genetics laboratory, Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana 500034, India;
| | - Vivek Pravin Dave
- Smt. Kannuri Santhamma Centre for vitreoretinal diseases. L V Prasad Eye Institute, Hyderabad, Telangana 500034, India;
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, Michigan, MI 48201, USA; (S.S.); (A.K.)
| | - Joveeta Joseph
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana 500034, India;
- Correspondence: ; Tel.: +91-40-30612517
| |
Collapse
|
64
|
Torm MEW, Belmouhand M, Munch IC, Larsen M, Rothenbuehler SP. Migration of an outer retinal element in a healthy child followed by longitudinal multimodal imaging. Am J Ophthalmol Case Rep 2020; 18:100637. [PMID: 32154438 PMCID: PMC7057146 DOI: 10.1016/j.ajoc.2020.100637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/21/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose To describe the migration of an outer retinal element using longitudinal multimodal imaging. Observations In the retina of a healthy 7-year-old girl, movement of a hyperreflective element of 15 μm extent was seen using optical coherence tomography (OCT), confocal scanning laser ophthalmoscopy (cSLO), and adaptive optics fundus photography (AO). On the OCT B-scan, the element initially appeared at the level of the outer limiting membrane with an umbra reaching the retinal pigment epithelium from where it gradually diminished and disappeared over 33 days. A corresponding disruption of the photoreceptor pattern on AO diminished over 52 days. Conclusions and importance This non-invasive observation of an isolated, cell-sized, migrating element in the human retina was made in vivo in the absence of confounding retinal disease or similar nearby elements. Based on prior preclinical observations we hypothesize that such a migrating element could be a macrophage. The case provides information about the time-scale and resolution needed for the monitoring of infiltrative processes in the retina.
Collapse
Affiliation(s)
- Marie Elise Wistrup Torm
- Department of Ophthalmology, Rigshospitalet, Valdemar Hansens Vej 13, 2600, Glostrup, Denmark
- Corresponding author. Department of Ophthalmology, Rigshospitalet, Valdemar Hansens Vej 13, DK-2600, Glostrup, Denmark.
| | - Mohamed Belmouhand
- Department of Ophthalmology, Rigshospitalet, Valdemar Hansens Vej 13, 2600, Glostrup, Denmark
| | - Inger Christine Munch
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Capital Region, Nordre Fasanvej 57, 2000, Frederiksberg, Denmark
| | - Michael Larsen
- Department of Ophthalmology, Rigshospitalet, Valdemar Hansens Vej 13, 2600, Glostrup, Denmark
- University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Simon Paul Rothenbuehler
- Department of Ophthalmology, Rigshospitalet, Valdemar Hansens Vej 13, 2600, Glostrup, Denmark
- Department of Ophthalmology, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| |
Collapse
|
65
|
Pirani V, Pelliccioni P, De Turris S, Rosati A, Franceschi A, Pasanisi P, Gesuita R, Nicolai M, Mariotti C. Intraocular Inflammation Control and Changes in Retinal and Choroidal Architecture in Refractory Non-Infectious Uveitis Patients after Adalimumab Therapy. J Clin Med 2020; 9:E510. [PMID: 32069898 PMCID: PMC7074084 DOI: 10.3390/jcm9020510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Non-infectious uveitis represents a leading cause of visual impairment, and inflammation control represents a major priority in tackling visual acuity loss due to complications such as macular edema; different immunomodulatory drugs are currently being used, including anti-TNF-alpha Adalimumab. Methods: This was a monocentric observational study of 18 eyes of 18 patients with non-infectious uveitis treated with Adalimumab. The primary endpoint was the control of ocular inflammation. The secondary endpoints included the study of macular and choroidal thickness and architecture, visual acuity, changes in other treatments, and adverse effects. Results: Ocular inflammation was controlled at 12 months for 83.3% of patients. Central macular thickness improved from a median of 229.75 µm at baseline to 213 µm at 12 months, while choroidal thickness decreased by 11.54% at the end of the follow-up. A reduction of vasculitis on fluorescein angiography and of hyperreflective spots on optical coherence tomography was noted. Visual acuity also improved from 0.51 (logMAR) before treatment to 0.24 at more than 12 months (p = 0.01). A total of 11.1% of patients experienced side effects. Conclusion: Our study confirms the efficacy of adalimumab for the control of ocular inflammation, visual acuity preservation, and for corticosteroid sparing.
Collapse
Affiliation(s)
- Vittorio Pirani
- Eye Clinic, Polytechnic University of Marche, via Conca 61, 60126 Ancona, Italy; (V.P.); (S.D.T.); (A.R.); (A.F.); (P.P.); (M.N.); (C.M.)
| | - Paolo Pelliccioni
- Eye Clinic, Polytechnic University of Marche, via Conca 61, 60126 Ancona, Italy; (V.P.); (S.D.T.); (A.R.); (A.F.); (P.P.); (M.N.); (C.M.)
| | - Serena De Turris
- Eye Clinic, Polytechnic University of Marche, via Conca 61, 60126 Ancona, Italy; (V.P.); (S.D.T.); (A.R.); (A.F.); (P.P.); (M.N.); (C.M.)
| | - Alessandro Rosati
- Eye Clinic, Polytechnic University of Marche, via Conca 61, 60126 Ancona, Italy; (V.P.); (S.D.T.); (A.R.); (A.F.); (P.P.); (M.N.); (C.M.)
| | - Alessandro Franceschi
- Eye Clinic, Polytechnic University of Marche, via Conca 61, 60126 Ancona, Italy; (V.P.); (S.D.T.); (A.R.); (A.F.); (P.P.); (M.N.); (C.M.)
| | - Pierangelo Pasanisi
- Eye Clinic, Polytechnic University of Marche, via Conca 61, 60126 Ancona, Italy; (V.P.); (S.D.T.); (A.R.); (A.F.); (P.P.); (M.N.); (C.M.)
| | - Rosaria Gesuita
- Centre of Epidemiology and Biostatistics, Polytechnic University of Marche, via Conca 61, 60126 Ancona, Italy;
| | - Michele Nicolai
- Eye Clinic, Polytechnic University of Marche, via Conca 61, 60126 Ancona, Italy; (V.P.); (S.D.T.); (A.R.); (A.F.); (P.P.); (M.N.); (C.M.)
| | - Cesare Mariotti
- Eye Clinic, Polytechnic University of Marche, via Conca 61, 60126 Ancona, Italy; (V.P.); (S.D.T.); (A.R.); (A.F.); (P.P.); (M.N.); (C.M.)
| |
Collapse
|
66
|
Omri S, Tahiri H, Pierre WC, Desjarlais M, Lahaie I, Loiselle SE, Rezende F, Lodygensky G, Hebert TE, Ong H, Chemtob S. Propranolol Attenuates Proangiogenic Activity of Mononuclear Phagocytes: Implication in Choroidal Neovascularization. Invest Ophthalmol Vis Sci 2020; 60:4632-4642. [PMID: 31682714 DOI: 10.1167/iovs.18-25502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Targeting β-adrenergic receptor signaling with propranolol has emerged as a potential candidate to counteract choroidal neovascularization (CNV). Little is known of its effect on macrophages, which play a critical role in CNV. We investigated the effect of propranolol on angiogenic response of mononuclear phagocytes (MPs). Methods The angiogenic effect of propranolol was evaluated in laser-induced CNV model. Mice received intraperitoneal injections of propranolol (6 mg/kg/d) or vehicle. CNV area and inflammatory cells were determined respectively by using lectin staining and an anti-IBA-1 antibody on RPE/choroid flat mounts. Inflammatory gene expression was evaluated by quantitative (q) PCR analysis. Mechanisms of propranolol was studied in MP cell lines J774 and RAW264.7 and in primary peritoneal macrophages. Expression of pro- and antiangiogenic mediators was studied. In addition, effects of propranolol treatment of MPs was assessed on choroidal explant. Results CNV was attenuated by propranolol and concomitantly associated with decreased inflammatory mediators IL-6 and TNFα, albeit with accumulation of (β-adrenoceptor harboring) MPs in the CNV area. Conditioned media from MPs preincubated with propranolol exerted antiangiogenic effects. Treatment of J774 confirmed the attenuation of inflammatory response to propranolol and increased cleaved caspase-3 on choroidal explant. We found that propranolol increased pigment epithelium-derived factor (PEDF) expression in MPs. Trapping of PEDF with an antibody abrogated antiangiogenic effects of propranolol. PEDF was also detected in CNV-associated MPs. Conclusions We hereby show that propranolol confers on MPs antiangiogenic properties by increasing PEDF expression, which complements its effects on vascular tissue resulting in inhibition of choroidal vasoproliferation in inflammatory conditions. The study supports possible use of propranolol as a therapeutic modality for CNV.
Collapse
Affiliation(s)
- Samy Omri
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montreal, Quebec, Canada
| | - Houda Tahiri
- Department of Pharmacology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montreal, Quebec, Canada
| | - Wyston Chadwick Pierre
- Department of Pharmacology, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, Quebec, Canada
| | - Michel Desjarlais
- Department of Pharmacology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montreal, Quebec, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montreal, Quebec, Canada
| | - Sarah-Eve Loiselle
- Department of Biomedical Sciences, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, Quebec, Canada
| | - Flavio Rezende
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montreal, Quebec, Canada
| | - Gregory Lodygensky
- Department of Pediatrics, Faculty of Medicine, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, Quebec, Canada
| | - Terence E Hebert
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Huy Ong
- Faculty of Pharmacy, Université de Montréal, Montreal, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montreal, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, Canada.,Department of Ophthalmology, Université de Montréal, Montreal, Canada.,Department of Pharmacology, Université de Montréal, Montreal, Canada
| |
Collapse
|
67
|
Hachana S, Pouliot M, Couture R, Vaucher E. Diabetes-Induced Inflammation and Vascular Alterations in the Goto-Kakizaki Rat Retina. Curr Eye Res 2020; 45:965-974. [PMID: 31902231 DOI: 10.1080/02713683.2020.1712730] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Diabetic retinopathy is characterized by multiple microcirculatory dysfunctions and angiogenesis resulting from hyperglycemia, oxidative stress, and inflammation. In this study, the retina and retinal pigmented epithelium of non-insulin-dependent diabetic Goto-Kakizaki (GK) rats were examined to detect microvascular alterations, gliosis, macrophage infiltration, lipid deposits, and fibrosis. Emphasis was given to the distribution of kinin B1 receptor (B1R) and vascular endothelial growth factor (VEGF), two major factors in inflammation and angiogenesis. MATERIALS AND METHODS 30-week-old male GK rats and age-matched Wistar rats were used. The retinal vascular bed was examined using ADPase staining. The level of lipid accumulation was graded using triglyceride staining with Oil red O. Macrophage and retinal microglia activation, as well as other markers, were revealed by immunohistochemistry and studied with confocal laser scanning microscopy. RESULTS Abundant lipid deposits were observed in the Bruch's membrane of GK rats. Immunohistochemistry and quantitative analysis showed significantly higher B1R, VEGF, Iba1 (microglia), CD11 (macrophages), fibronectin, and collagen I labeling in the diabetic retina. B1R immunolabeling was detected in the vascular layers of the GK retina. A strong VEGF staining within different retinal cell processes was detected and a pattern of GFAP staining suggested strong Müller cells/astrocytes reactivity. Microgliosis was apparent in the GK retina. A greater tortuosity of the retinal microvessels (an index of endothelial dysfunction) and their increased number were also observed in GK retinas. CONCLUSIONS Data suggest retinal vascular bed alterations in spontaneous type 2 diabetic retinas at 30 weeks. Lipid and collagen accumulation in the retina and choroid, in addition to retinal upregulation of VEGF and B1R, microgliosis, and Müller cell reactivity, may contribute to vascular alterations and inflammatory processes.
Collapse
Affiliation(s)
- Soumaya Hachana
- École d'optométrie, Université de Montréal , Montréal, Québec, Canada.,Département de pharmacologie et physiologie, Université de Montréal , Montréal, Québec, Canada
| | - Mylène Pouliot
- École d'optométrie, Université de Montréal , Montréal, Québec, Canada.,Département de pharmacologie et physiologie, Université de Montréal , Montréal, Québec, Canada
| | - Réjean Couture
- Département de pharmacologie et physiologie, Université de Montréal , Montréal, Québec, Canada
| | - Elvire Vaucher
- École d'optométrie, Université de Montréal , Montréal, Québec, Canada
| |
Collapse
|
68
|
Kim KT, Kim DY, Chae JB. Association between Hyperreflective Foci on Spectral-Domain Optical Coherence Tomography and Early Recurrence of Diabetic Macular Edema after Intravitreal Dexamethasone Implantation. J Ophthalmol 2019; 2019:3459164. [PMID: 31827909 PMCID: PMC6885809 DOI: 10.1155/2019/3459164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/12/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To investigate the associations between hyperreflective foci (HRF) on spectral-domain optical coherence tomography (SD-OCT) and early recurrence of macular edema after intravitreal dexamethasone (DEX) implantation in eyes with refractory diabetic macular edema (DME) to bevacizumab. METHODS Medical records of patients with refractory DME to bevacizumab, who underwent intravitreal DEX implantation and 12-month follow-up, were reviewed. Eyes in which central subfield thickness (CST) increased over 50 μm at 3 months compared with the first month after intravitreal DEX implantation were categorized into the early recurrence group, and the others were categorized into the late recurrence group. Best-corrected visual acuity (BCVA), CST, and number of HRF on SD-OCT were analyzed. RESULTS Twenty-nine eyes of 26 patients (16 eyes in the early recurrence group and 13 eyes in the late recurrence group) were included in this study. The numbers of HRF in entire retina, inner retina, and outer retina at baseline in the early recurrence group (11.38 ± 3.07 in entire retina, 5.44 ± 1.50 in inner retina, 5.94 ± 2.74 in outer retina) were significantly greater than those in the late recurrence group (7.54 ± 3.60 in entire retina, p=0.006; 4.08 ± 1.70 in inner retina, p=0.034; 3.46 ± 2.30 in outer retina, p=0.013). Multivariate logistic regression analysis showed that a higher number of HRF increased the risk of early recurrence after intravitreal DEX implantation (odds ratio in entire retina: 1.518, p=0.012; odds ratio in inner retina: 2.058, p=0.027; odds ratio in outer retina: 1.610, p=0.029). CONCLUSIONS Higher baseline numbers of HRF on SD-OCT may be a predictive indicator of early recurrence of macular edema after intravitreal DEX implantation for DME.
Collapse
Affiliation(s)
- Kyung Tae Kim
- Department of Ophthalmology, Gangneung Asan Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Dong Yoon Kim
- Department of Ophthalmology, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Ju Byung Chae
- Department of Ophthalmology, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
69
|
Fields MA, Del Priore LV, Adelman RA, Rizzolo LJ. Interactions of the choroid, Bruch's membrane, retinal pigment epithelium, and neurosensory retina collaborate to form the outer blood-retinal-barrier. Prog Retin Eye Res 2019; 76:100803. [PMID: 31704339 DOI: 10.1016/j.preteyeres.2019.100803] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023]
Abstract
The three interacting components of the outer blood-retinal barrier are the retinal pigment epithelium (RPE), choriocapillaris, and Bruch's membrane, the extracellular matrix that lies between them. Although previously reviewed independently, this review integrates these components into a more wholistic view of the barrier and discusses reconstitution models to explore the interactions among them. After updating our understanding of each component's contribution to barrier function, we discuss recent efforts to examine how the components interact. Recent studies demonstrate that claudin-19 regulates multiple aspects of RPE's barrier function and identifies a barrier function whereby mutations of claudin-19 affect retinal development. Co-culture approaches to reconstitute components of the outer blood-retinal barrier are beginning to reveal two-way interactions between the RPE and choriocapillaris. These interactions affect barrier function and the composition of the intervening Bruch's membrane. Normal or disease models of Bruch's membrane, reconstituted with healthy or diseased RPE, demonstrate adverse effects of diseased matrix on RPE metabolism. A stumbling block for reconstitution studies is the substrates typically used to culture cells are inadequate substitutes for Bruch's membrane. Together with human stem cells, the alternative substrates that have been designed offer an opportunity to engineer second-generation culture models of the outer blood-retinal barrier.
Collapse
Affiliation(s)
- Mark A Fields
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA
| | - Lucian V Del Priore
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA
| | - Ron A Adelman
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA
| | - Lawrence J Rizzolo
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA; Department of Surgery, Yale University School of Medicine, PO Box 208062, New Haven, CT, 06520-8062, USA.
| |
Collapse
|
70
|
Massa H, Pipis SY, Adewoyin T, Vergados A, Patra S, Panos GD. Macular edema associated with non-infectious uveitis: pathophysiology, etiology, prevalence, impact and management challenges. Clin Ophthalmol 2019; 13:1761-1777. [PMID: 31571815 PMCID: PMC6750710 DOI: 10.2147/opth.s180580] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/24/2019] [Indexed: 12/20/2022] Open
Abstract
Macular edema (ME) is the most common sight-threatening complication in uveitis. The diagnostic and therapeutic management of the uveitic macular edema (UME) might be challenging due to the complex diagnostic workup and the difficulties physicians face to find the underlying cause, and due to its usually recurrent nature and the fact that it can be refractory to conventional treatment. Some of the mild cases can be treated with topical steroids, which can be combined with non-steroid anti-inflammatory drugs. However, immunomodulators such as methotrexate, tacrolimus, azathioprine, cyclosporine and mycophenolate mofetil together with anti-tumor necrosis factor-α (anti-TNF alpha) monoclonal antibodies such as adalimumab and infliximab, may be required to control the inflammation and the associated ME in refractory cases, or when an underlying disease is present. This review of the literature will focus mostly on the non-infectious UME.
Collapse
Affiliation(s)
- Horace Massa
- Department of Ophthalmology, Geneva University Hospitals, Geneva, Switzerland
| | - Spyros Y Pipis
- Eye Treatment Centre, Whipps Cross University Hospital, Barts Health NHS Trust, London, UK
| | - Temilade Adewoyin
- Eye Treatment Centre, Whipps Cross University Hospital, Barts Health NHS Trust, London, UK
| | - Athanasios Vergados
- Eye Treatment Centre, Whipps Cross University Hospital, Barts Health NHS Trust, London, UK
| | - Sudeshna Patra
- Eye Treatment Centre, Whipps Cross University Hospital, Barts Health NHS Trust, London, UK
| | - Georgios D Panos
- Eye Treatment Centre, Whipps Cross University Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
71
|
Rashid K, Akhtar-Schaefer I, Langmann T. Microglia in Retinal Degeneration. Front Immunol 2019; 10:1975. [PMID: 31481963 PMCID: PMC6710350 DOI: 10.3389/fimmu.2019.01975] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022] Open
Abstract
The retina is a complex tissue with multiple cell layers that are highly ordered. Its sophisticated structure makes it especially sensitive to external or internal perturbations that exceed the homeostatic range. This necessitates the continuous surveillance of the retina for the detection of noxious stimuli. This task is mainly performed by microglia cells, the resident tissue macrophages which confer neuroprotection against transient pathophysiological insults. However, under sustained pathological stimuli, microglial inflammatory responses become dysregulated, often worsening disease pathology. In this review, we provide an overview of recent studies that depict microglial responses in diverse retinal pathologies that have degeneration and chronic immune reactions as key pathophysiological components. We also discuss innovative immunomodulatory therapy strategies that dampen the detrimental immunological responses to improve disease outcome.
Collapse
Affiliation(s)
- Khalid Rashid
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Isha Akhtar-Schaefer
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Cologne, Germany
| |
Collapse
|
72
|
Akhtar-Schäfer I, Wang L, Krohne TU, Xu H, Langmann T. Modulation of three key innate immune pathways for the most common retinal degenerative diseases. EMBO Mol Med 2019; 10:emmm.201708259. [PMID: 30224384 PMCID: PMC6180304 DOI: 10.15252/emmm.201708259] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review highlights the role of three key immune pathways in the pathophysiology of major retinal degenerative diseases including diabetic retinopathy, age‐related macular degeneration, and rare retinal dystrophies. We first discuss the mechanisms how loss of retinal homeostasis evokes an unbalanced retinal immune reaction involving responses of local microglia and recruited macrophages, activity of the alternative complement system, and inflammasome assembly in the retinal pigment epithelium. Presenting these key mechanisms as complementary targets, we specifically emphasize the concept of immunomodulation as potential treatment strategy to prevent or delay vision loss. Promising molecules are ligands for phagocyte receptors, specific inhibitors of complement activation products, and inflammasome inhibitors. We comprehensively summarize the scientific evidence for this strategy from preclinical animal models, human ocular tissue analyses, and clinical trials evolving in the last few years.
Collapse
Affiliation(s)
- Isha Akhtar-Schäfer
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Luping Wang
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Tim U Krohne
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Heping Xu
- Centre for Experimental Medicine, The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany .,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
73
|
Eynard AR, Repossi G. Role of ω3 polyunsaturated fatty acids in diabetic retinopathy: a morphological and metabolically cross talk among blood retina barriers damage, autoimmunity and chronic inflammation. Lipids Health Dis 2019; 18:114. [PMID: 31092270 PMCID: PMC6521493 DOI: 10.1186/s12944-019-1049-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Vision disorders are one of the most serious complications of diabetes mellitus (DM) affecting the quality of life of patients and eventually cause blindness. The ocular lesions in diabetes mellitus are located mainly in the blood vessels and retina layers. Different retina lesions could be grouped under the umbrella term of diabetic retinopathies (DMRP). We propose that one of the main causes in the etiopathogenesis of the DMRP consists of a progressive loss of the selective permeability of blood retinal barriers (BRB). The loss of selective permeability of blood retinal barriers will cause a progressive autoimmune process. Prolonged autoimmune injures in the retinal territory will triggers and maintains a low-grade chronic inflammation process, microvascular alterations, glial proliferation and subsequent fibrosis and worse, progressive apoptosis of the photoreceptor neurons. Patients with long-standing DM disturbances in retinal BRBs suffer of alterations in the enzymatic pathways of polyunsaturated fatty acids (PUFAs), increase release of free radicals and pro-inflammatory molecules and subsequently incremented levels of vascular endothelial growth factor. These facts can produce retinal edema and photoreceptor apoptosis. Experimental, clinical and epidemiological evidences showing that adequate metabolic and alimentary controls and constant practices of healthy life may avoid, retard or make less severe the appearance of DMRP. Considering the high demand for PUFAs ω3 by photoreceptor complexes of the retina, it seems advisable to take fish oil supplements (2 g per day). The cellular, subcellular and molecular basis of the propositions exposed above is developed in this article. Synthesizer drawings the most relevant findings of the ultrastructural pathology, as well as the main metabolic pathways of the PUFAs involved in balance and disbalanced conditions are provided.
Collapse
Affiliation(s)
- Aldo R Eynard
- Instituto de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina.
| | - Gaston Repossi
- Instituto de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina.
| |
Collapse
|
74
|
Abstract
Osteopontin (OPN) is a secreted glycosylated phosphoprotein that influences cell survival, inflammation, migration, and homeostasis after injury. As the role of OPN in the retina remains unclear, this study issue was addressed by aiming to study how the absence of OPN in knock-out mice affects the retina and the influence of age on these effects. The study focused on retinal ganglion cells (RGCs) and glial cells (astrocytes, Müller cells, and resident microglia) in 3- and 20-month-old mice. The number of RGCs in the retina was quantified and the area occupied by astrocytes was measured. In addition, the morphology of Müller cells and microglia was examined in retinal sections. The deficiency in OPN reduces RGC density by 25.09% at 3 months of age and by 60.37% at 20 months of age. The astrocyte area was also reduced by 51.01% in 3-month-old mice and by 57.84% at 20 months of age, although Müller glia and microglia did not seem to be affected by the lack of OPN. This study demonstrates the influence of OPN on astrocytes and RGCs, whereby the absence of OPN in the retina diminishes the area occupied by astrocytes and produces a secondary reduction in the number of RGCs. Accordingly, OPN could be a target to develop therapies to combat neurodegenerative diseases and astrocytes may represent a key mediator of such effects.
Collapse
|
75
|
Ting KK, Zhao Y, Shen W, Coleman P, Yam M, Chan-Ling T, Li J, Moller T, Gillies M, Vadas MA, Gamble JR. Therapeutic regulation of VE-cadherin with a novel oligonucleotide drug for diabetic eye complications using retinopathy mouse models. Diabetologia 2019; 62:322-334. [PMID: 30443753 DOI: 10.1007/s00125-018-4770-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS A major feature of diabetic retinopathy is breakdown of the blood-retinal barrier, resulting in macular oedema. We have developed a novel oligonucleotide-based drug, CD5-2, that specifically increases expression of the key junctional protein involved in barrier integrity in endothelial cells, vascular-endothelial-specific cadherin (VE-cadherin). CD5-2 prevents the mRNA silencing by the pro-angiogenic microRNA, miR-27a. CD5-2 was evaluated in animal models of ocular neovascularisation and vascular leak to determine its potential efficacy for diabetic retinopathy. METHODS CD5-2 was tested in three mouse models of retinal dysfunction: conditional Müller cell depletion, streptozotocin-induced diabetes and oxygen-induced retinopathy. Vascular permeability in the Müller cell-knockout model was assessed by fluorescein angiography. The Evans Blue leakage method was used to determine vascular permeability in streptozotocin- and oxygen-induced retinopathy models. The effects of CD5-2 on retinal neovascularisation, inter-endothelial junctions and pericyte coverage in streptozotocin- and oxygen-induced retinopathy models were determined by staining for isolectin-B4, VE-cadherin and neural/glial antigen 2 (NG2). Blockmir CD5-2 localisation in diseased retina was determined using fluorescent in situ hybridisation. The effects of CD5-2 on VE-cadherin expression and in diabetic retinopathy-associated pathways, such as the transforming growth factor beta (TGF-β) and wingless/integrated (WNT) pathway, were confirmed using western blot of lysates from HUVECs, a mouse brain endothelial cell line and a VE-cadherin null mouse endothelial cell line. RESULTS CD5-2 penetrated the vasculature of the eye in the oxygen-induced retinopathy model. Treatment of diseased mice with CD5-2 resulted in reduced vascular leak in all three animal models, enhanced expression of VE-cadherin in the microvessels of the eye and improved pericyte coverage of the retinal vasculature in streptozotocin-induced diabetic models and oxygen-induced retinopathy models. Further, CD5-2 reduced the activation of retinal microglial cells in the streptozotocin-induced diabetic model. The positive effects of CD5-2 seen in vivo were further confirmed in vitro by increased protein expression of VE-cadherin, SMAD2/3 activity, and platelet-derived growth factor B (PDGF-B). CONCLUSIONS/INTERPRETATION CD5-2 has therapeutic potential for individuals with vascular-leak-associated retinal diseases based on its ease of delivery and its ability to reverse vascular dysfunction and inflammatory aspects in three animal models of retinopathy.
Collapse
Affiliation(s)
- Ka Ka Ting
- Centre for the Endothelium Vascular Biology Program Centenary Institute, The University of Sydney, Locked bag #6, Newtown, NSW, 2042, Australia
| | - Yang Zhao
- Centre for the Endothelium Vascular Biology Program Centenary Institute, The University of Sydney, Locked bag #6, Newtown, NSW, 2042, Australia
| | - Weiyong Shen
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Paul Coleman
- Centre for the Endothelium Vascular Biology Program Centenary Institute, The University of Sydney, Locked bag #6, Newtown, NSW, 2042, Australia
| | - Michelle Yam
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Tailoi Chan-Ling
- Discipline of Anatomy and Histology, School of Medical Sciences Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Jia Li
- Centre for the Endothelium Vascular Biology Program Centenary Institute, The University of Sydney, Locked bag #6, Newtown, NSW, 2042, Australia
| | | | - Mark Gillies
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Mathew A Vadas
- Centre for the Endothelium Vascular Biology Program Centenary Institute, The University of Sydney, Locked bag #6, Newtown, NSW, 2042, Australia.
| | - Jennifer R Gamble
- Centre for the Endothelium Vascular Biology Program Centenary Institute, The University of Sydney, Locked bag #6, Newtown, NSW, 2042, Australia.
| |
Collapse
|
76
|
Chang KC, Shieh B, Petrash JM. Role of aldose reductase in diabetes-induced retinal microglia activation. Chem Biol Interact 2019; 302:46-52. [PMID: 30682331 DOI: 10.1016/j.cbi.2019.01.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/03/2019] [Accepted: 01/22/2019] [Indexed: 01/18/2023]
Abstract
Diabetes-induced hyperglycemia plays a key pathogenic role in degenerative retinal diseases. In diabetic hyperglycemia, aldose reductase (AR) is elevated and linked to the pathogenesis of diabetic retinopathy (DR) and cataract. Retinal microglia (RMG), the resident immune cells in the retina, are thought to contribute to the proinflammatory phenotype in the diabetic eye. However, we have a limited understanding of the potential role of AR expressed in RMG as a mediator of inflammation in the diabetic retina. Glycated proteins accumulate in diabetes, including Amadori-glycated albumin (AGA) which has been shown to induce a proinflammatory phenotype in various tissues. In this study, we investigated the ability of AGA to stimulate inflammatory changes to RMG and macrophages, and whether AR plays a role in this process. In macrophages, treatment with an AR inhibitor (Sorbinil) or genetic knockdown of AR lowered AGA-induced TNF-α secretion (56% and 40%, respectively) as well as cell migration. In a mouse RMG model, AR inhibition attenuated AGA-induced TNF-α secretion and cell migration (67% and 40%, respectively). To further mimic the diabetic milieu in retina, we cultured RMG under conditions of hypoxia and observed the induction of TNF-α and VEGF protein expression. Downregulation of AR in either a pharmacological or genetic manner prevented hypoxia-induced TNF-α and VEGF expression. In our animal study, increased numbers of RMG observed in streptozotocin (STZ)-induced diabetic retina was substantially lower when diabetes was induced in AR knockout mice. Thus, in vitro and in vivo studies demonstrated that AR is involved in diabetes-induced RMG activation, providing a rationale for targeting AR as a therapeutic strategy for DR.
Collapse
Affiliation(s)
- Kun-Che Chang
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Biehuoy Shieh
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - J Mark Petrash
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
77
|
Mehta N, Tsui E, Lee GD, Dedania V, Modi Y. Imaging Biomarkers in Diabetic Retinopathy and Diabetic Macular Edema. Int Ophthalmol Clin 2018; 59:241-262. [PMID: 30585929 DOI: 10.1097/iio.0000000000000249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
78
|
Modified cells as potential ocular drug delivery systems. Drug Discov Today 2018; 24:1621-1626. [PMID: 30562585 DOI: 10.1016/j.drudis.2018.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/21/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022]
Abstract
Drug delivery to ocular targets is problematic, especially in retinal disease treatment. Therefore, targeted drug delivery, prolonged drug action, and minimally invasive treatments are needed. In this review, we describe cell technologies for drug delivery. These technologies are based on genetic engineering and nongenetic-based approaches for cell modification. In principle, cell technologies enable targeted delivery, long drug action, and minimally invasive administration, but they have only been sparsely studied for ocular drug delivery. Herein, these technologies are discussed in the ocular context.
Collapse
|
79
|
Gucciardo E, Loukovaara S, Salven P, Lehti K. Lymphatic Vascular Structures: A New Aspect in Proliferative Diabetic Retinopathy. Int J Mol Sci 2018; 19:ijms19124034. [PMID: 30551619 PMCID: PMC6321212 DOI: 10.3390/ijms19124034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/28/2022] Open
Abstract
Diabetic retinopathy (DR) is the most common diabetic microvascular complication and major cause of blindness in working-age adults. According to the level of microvascular degeneration and ischemic damage, DR is classified into non-proliferative DR (NPDR), and end-stage, proliferative DR (PDR). Despite advances in the disease etiology and pathogenesis, molecular understanding of end-stage PDR, characterized by ischemia- and inflammation-associated neovascularization and fibrosis, remains incomplete due to the limited availability of ideal clinical samples and experimental research models. Since a great portion of patients do not benefit from current treatments, improved therapies are essential. DR is known to be a complex and multifactorial disease featuring the interplay of microvascular, neurodegenerative, metabolic, genetic/epigenetic, immunological, and inflammation-related factors. Particularly, deeper knowledge on the mechanisms and pathophysiology of most advanced PDR is critical. Lymphatic-like vessel formation coupled with abnormal endothelial differentiation and progenitor cell involvement in the neovascularization associated with PDR are novel recent findings which hold potential for improved DR treatment. Understanding the underlying mechanisms of PDR pathogenesis is therefore crucial. To this goal, multidisciplinary approaches and new ex vivo models have been developed for a more comprehensive molecular, cellular and tissue-level understanding of the disease. This is the first step to gain the needed information on how PDR can be better evaluated, stratified, and treated.
Collapse
Affiliation(s)
- Erika Gucciardo
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Sirpa Loukovaara
- Unit of Vitreoretinal Surgery, Ophthalmology, University of Helsinki and Helsinki University Hospital, FI-00014 Helsinki, Finland.
| | - Petri Salven
- Department of Pathology, University of Helsinki and Helsinki University Hospital, FI-00014 Helsinki, Finland.
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland.
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, SE-17165 Stockholm, Sweden.
| |
Collapse
|
80
|
Spectral domain optical coherence tomography as an adjunctive tool for screening Behçet uveitis. PLoS One 2018; 13:e0208254. [PMID: 30533014 PMCID: PMC6289405 DOI: 10.1371/journal.pone.0208254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 11/14/2018] [Indexed: 11/30/2022] Open
Abstract
Background This study investigated the association of central macular thickness (CMT) and macular volume (MV) with severity of Behçet uveitis in the absence of macular edema (ME). Methods This retrospective, interventional study included a total 131 treatment-naïve Behçet patients with varying degree of uveitis in the absence of ME. The mean CMT and MV were obtained by spectral domain optical coherence tomography (SD ODT). The patients were classified according to the anatomical classification of Behçet uveitis. The main outcome measure was comparison of mean CMT and MV with the types of Behçet uveitis. Results Sixty patients (45.8%) with no uveitis, 41 patients (31.3%) with anterior uveitis, 18 patients (13.7%) with posterior uveitis, and 12 patients (9.2%) with panuveitis. The mean CMT were 261.6±22.2 μm in no uveitis, 268.1±17.8 μm in anterior uveitis, 306.4±32.9 μm in posterior uveitis, and 300.4±44.0 μm in panuveitis (P < 0.001). The mean MV was 8.7±0.3 mm3 in those without uveitis, 8.8±0.3 mm3 in anterior uveitis, 9.9±1.1 mm3 in those with posterior uveitis, and 9.7±0.4 mm3 in panuveitis (P < 0.001). Types of Behçet uveitis was the only significant factor correlated with the mean CMT (B = 18.170, β = 0.408, P < 0.001) and the mean MV (B = 0.328, β = 0.652, P < 0.001). Conclusions The mean CMT and MV were significantly thicker in the Behçet uveitis with posterior involvement. SD OCT can be used for an adjunctive tool for screening Behçet uveitis, especially for the presence of posterior involvement.
Collapse
|
81
|
Kokona D, Ebneter A, Escher P, Zinkernagel MS. Colony-stimulating factor 1 receptor inhibition prevents disruption of the blood-retina barrier during chronic inflammation. J Neuroinflammation 2018; 15:340. [PMID: 30541565 PMCID: PMC6292111 DOI: 10.1186/s12974-018-1373-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Microglia-associated inflammation is closely related to the pathogenesis of various retinal diseases such as uveitis and diabetic retinopathy, which are associated with increased vascular permeability. In this study, we investigated the effect of systemic lipopolysaccharide (LPS) exposure to activation and proliferation of retinal microglia /macrophages. METHODS Balb/c and Cx3cr1gfp/+ mice were challenged with LPS (1 mg/kg) daily for four consecutive days. For microglia depletion, mice were treated with colony-stimulating factor 1 receptor (CSF-1R) inhibitor PLX5622 1 week before the first LPS challenge and until the end of the experiment. In vivo imaging of the retina was performed on days 4 and 7 after the first LPS challenge, using optical coherence tomography and fluorescein angiography. Flow cytometry analysis, retinal whole mount, and retinal sections were used to investigate microglia and macrophage infiltration and proliferation after LPS challenge. Cytokines were analyzed in the blood as well as in the retina. Data analysis was performed using unpaired t tests, repeated measures one-way ANOVA, or ordinary one-way ANOVA followed by Tukey's post hoc analysis. Kruskal-Wallis test followed by Dunn's multiple comparison tests was used for the analysis of non-normally distributed data. RESULTS Repeated LPS challenge led to activation and proliferation of retinal microglia, infiltration of monocyte-derived macrophages into the retina, and breakdown of the blood-retina barrier (BRB) accompanied by accumulation of sub-retinal fluid. Using in vivo imaging, we show that the breakdown of the BRB is highly reproducible but transitory. Acute but not chronic systemic exposure to LPS triggered a robust release of inflammatory mediators in the retina with minimal effects in the blood plasma. Inhibition of the CSF-1R by PLX5622 resulted in depletion of retinal microglia, suppression of cytokine production in the retina, and prevention of BRB breakdown. CONCLUSIONS These findings suggest that microglia/macrophages play an important role in the pathology of retinal disorders characterized by breakdown of the BRB, and suppression of their activation may be a potential therapeutic target for such retinopathies.
Collapse
Affiliation(s)
- Despina Kokona
- Department of Ophthalmology, Inselspital, Bern University Hospital, and University of Bern, CH-3010, Bern, Switzerland.,Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Andreas Ebneter
- Department of Ophthalmology, Inselspital, Bern University Hospital, and University of Bern, CH-3010, Bern, Switzerland.,Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Pascal Escher
- Department of Ophthalmology, Inselspital, Bern University Hospital, and University of Bern, CH-3010, Bern, Switzerland.,Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, and University of Bern, CH-3010, Bern, Switzerland. .,Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.
| |
Collapse
|
82
|
Jo DH, Yun JH, Cho CS, Kim JH, Kim JH, Cho CH. Interaction between microglia and retinal pigment epithelial cells determines the integrity of outer blood-retinal barrier in diabetic retinopathy. Glia 2018; 67:321-331. [PMID: 30444022 DOI: 10.1002/glia.23542] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 12/27/2022]
Abstract
Inner and outer blood-retinal barriers (BRBs), mainly composed of retinal endothelial cells and retinal pigment epithelial (RPE) cells, respectively, maintain the integrity of the retinal tissues. In this study, we aimed to investigate the mechanisms of the outer BRB disruption regarding the interaction between RPE and microglia. In mice with high-fat diet-induced obesity and streptozotocin-induced hyperglycemia, microglia accumulated on the RPE layer, as in those after intravitreal injection of interleukin (IL)-6, which is elevated in ocular fluids of patients with diabetic retinopathy. Although IL-6 did not directly affect the levels of zonula occludens (ZO)-1 and occludin in RPE cells, IL-6 increased VEGFA mRNA in RPE cells to recruit microglial cells. In microglial cells, IL-6 upregulated the mRNA levels of MCP1, MIP1A, and MIP1B, to amplify the recruitment of microglial cells. In this manner, IL-6 modulated RPE and microglial cells to attract microglial cells on RPE cells. Furthermore, IL-6-treated microglial cells produced and secreted tumor necrosis factor (TNF)-α, which activated NF-κB and decreased the levels of ZO-1 in RPE cells. As STAT3 inhibition reversed the effects of IL-6-treated microglial cells on the RPE monolayer in vitro, it reduced the recruitment of microglial cells and the production of TNF-α in RPE tissues in streptozotocin-treated mice. Taken together, IL-6-treated RPE and microglial cells amplified the recruitment of microglial cells and IL-6-treated microglial cells produced TNF-α to disrupt the outer BRB in diabetic retinopathy.
Collapse
Affiliation(s)
- Dong Hyun Jo
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jang-Hyuk Yun
- Vascular Microenvironment Laboratory, Department of Pharmacology and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang Sik Cho
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Hyoung Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jeong Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chung-Hyun Cho
- Vascular Microenvironment Laboratory, Department of Pharmacology and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
83
|
Demircan A, Ozkaya A, Alkin Z, Kemer B, Yesilkaya C, Demir G. Comparison of the effect of ranibizumab and dexamethasone implant on serous retinal detachment in diabetic macular edema. J Fr Ophtalmol 2018; 41:733-738. [PMID: 30213609 DOI: 10.1016/j.jfo.2018.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/08/2018] [Accepted: 03/15/2018] [Indexed: 11/17/2022]
Abstract
PURPOSE To compare the efficacy of intravitreal ranibizumab (IVR) and intravitreal dexamethasone implant (IDI) on neurosensory retinal detachment (SRD) associated with diabetic macular edema (DME) in the early treatment period. METHODS This was a retrospective, interventional, case-control study. After three monthly loading doses of IVR or an initial IDI injection, the changes in best-corrected visual acuity (BCVA), central macular thickness (CMT) on OCT, and presence and height of SRD were evaluated. RESULTS The IVR and IDI groups consisted of 101 and 35 eyes, respectively. The mean changes in CMT in the IVR and IDI groups were 204.4±176.6 and 311.4±163, respectively (P<0.001). The mean changes in SRD height in the IVR and IDI groups were 133.6±92.1 and 168.6±103.9μm, respectively. The decrease in SRD height was significantly greater in the IDI group than in the IVR group (P=0.002). The SRD resolved completely in 72.2% and 71.4% of the patients in the IVR and IDI groups, respectively (P=0.9). CONCLUSION The mean reduction in CMT and SRD height was greater in the IDI group than in the IVR group. There was a negative correlation between baseline best-corrected visual acuity (BCVA) and SRD height and also between BCVA and CMT.
Collapse
Affiliation(s)
- A Demircan
- University of Health Sciences, Beyoglu Eye Training and Research Hospital, Bereketzade Cami Sok. No. 2 Beyoglu, Istanbul, Turkey.
| | - A Ozkaya
- University of Health Sciences, Beyoglu Eye Training and Research Hospital, Bereketzade Cami Sok. No. 2 Beyoglu, Istanbul, Turkey
| | - Z Alkin
- University of Health Sciences, Beyoglu Eye Training and Research Hospital, Bereketzade Cami Sok. No. 2 Beyoglu, Istanbul, Turkey
| | - B Kemer
- University of Health Sciences, Beyoglu Eye Training and Research Hospital, Bereketzade Cami Sok. No. 2 Beyoglu, Istanbul, Turkey
| | - C Yesilkaya
- University of Health Sciences, Beyoglu Eye Training and Research Hospital, Bereketzade Cami Sok. No. 2 Beyoglu, Istanbul, Turkey
| | - G Demir
- University of Health Sciences, Beyoglu Eye Training and Research Hospital, Bereketzade Cami Sok. No. 2 Beyoglu, Istanbul, Turkey
| |
Collapse
|
84
|
Narayanan R, Stewart MW, Chhablani J, Panchal B, Pappuru RR, Das T, Jalali S, Ali MH. Baseline morphological characteristics as predictors of final visual acuity in patients with branch retinal vein occlusions: MARVEL report no. 3. Indian J Ophthalmol 2018; 66:1291-1294. [PMID: 30127143 PMCID: PMC6113821 DOI: 10.4103/ijo.ijo_342_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose: To determine the predictive values of baseline optical coherence tomography (OCT) abnormalities on 12-month visual acuity changes in eyes with macular edema (ME) caused by branch retinal vein occlusions (BRVO). Methods: We performed a post hoc analysis of data from 75 participants in the 12-month MARVEL trial. OCT abnormalities at baseline, including ganglion cell layer cystoid spaces (GCL), intraretinal hyper-reflective dots, and central subfield thickness (CST), were correlated with improvements in visual acuity and the number of anti-vascular endothelial growth factor injections required using a multivariate regression model. Results: Eyes with baseline CST > 500 μm had greater visual gains compared to those with CST <500 μm (+21.09 vs +16.08 letters, P = 0.04). Eyes with hyper-reflective dots (+13.97 vs +19.93 letters, P = 0.02), and GCL cysts (+9.8 vs +18.9, P = 0.003) had inferior gains in visual acuity. Neurosensory macular detachments at the baseline did not affect gains in visual acuity. Ninety percent of the gain in visual acuity was recorded after two injections and was maintained until month 12. Conclusion: Baseline OCT of <500 μm, hyper-reflective dots, and GCL cystoid spaces are associated with poorer gains in visual acuity. Most of the visual gain occurs after two injections.
Collapse
Affiliation(s)
- Raja Narayanan
- Smt Kanuri Santhamma Center for Vitreoretinal Diseases, L V Prasad Eye Institute; Image Reading Center, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Michael W Stewart
- Department of Ophthalmology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jay Chhablani
- Smt Kanuri Santhamma Center for Vitreoretinal Diseases, L V Prasad Eye Institute; Image Reading Center, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Bhavik Panchal
- Smt Kanuri Santhamma Center for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Rajeev Reddy Pappuru
- Smt Kanuri Santhamma Center for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, Telangana, India; Department of Ophthalmology, Mayo Clinic, Jacksonville, Florida, USA
| | - Taraprasad Das
- Smt Kanuri Santhamma Center for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Subhadra Jalali
- Smt Kanuri Santhamma Center for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - M Hasnat Ali
- Department of Biostatistics, L V Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
85
|
Caolo V, Roblain Q, Lecomte J, Carai P, Peters L, Cuijpers I, Robinson EL, Derks K, Sergeys J, Noël A, Jones EAV, Moons L, Heymans S. Resistance to retinopathy development in obese, diabetic and hypertensive ZSF1 rats: an exciting model to identify protective genes. Sci Rep 2018; 8:11922. [PMID: 30093686 PMCID: PMC6085379 DOI: 10.1038/s41598-018-29812-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the major complications of diabetes, which eventually leads to blindness. Up to date, no animal model has yet shown all the co-morbidities often observed in DR patients. Here, we investigated whether obese 42 weeks old ZSF1 rat, which spontaneously develops diabetes, hypertension and obesity, would be a suitable model to study DR. Although arteriolar tortuosity increased in retinas from obese as compared to lean (hypertensive only) ZSF1 rats, vascular density pericyte coverage, microglia number, vascular morphology and retinal thickness were not affected by diabetes. These results show that, despite high glucose levels, obese ZSF1 rats did not develop DR. Such observations prompted us to investigate whether the expression of genes, possibly able to contain DR development, was affected. Accordingly, mRNA sequencing analysis showed that genes (i.e. Npy and crystallins), known to have a protective role, were upregulated in retinas from obese ZSF1 rats. Lack of retina damage, despite obesity, hypertension and diabetes, makes the 42 weeks of age ZSF1 rats a suitable animal model to identify genes with a protective function in DR. Further characterisation of the identified genes and downstream pathways could provide more therapeutic targets for the treat DR.
Collapse
Affiliation(s)
- Vincenza Caolo
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium.
| | - Quentin Roblain
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Julie Lecomte
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Paolo Carai
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium
| | - Linsey Peters
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Ilona Cuijpers
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium.,Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Emma Louise Robinson
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Kasper Derks
- Department of Genetics and Cell Biology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Jurgen Sergeys
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Stephane Heymans
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium.,Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,The Netherlands Heart Institute, Nl-HI, Utrecht, The Netherlands
| |
Collapse
|
86
|
Natoli R, Mason E, Jiao H, Chuah A, Patel H, Fernando N, Valter K, Wells CA, Provis J, Rutar M. Dynamic Interplay of Innate and Adaptive Immunity During Sterile Retinal Inflammation: Insights From the Transcriptome. Front Immunol 2018; 9:1666. [PMID: 30073000 PMCID: PMC6058037 DOI: 10.3389/fimmu.2018.01666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/04/2018] [Indexed: 01/09/2023] Open
Abstract
The pathogenesis of many retinal degenerations, such as age-related macular degeneration (AMD), is punctuated by an ill-defined network of sterile inflammatory responses. The delineation of innate and adaptive immune milieu among the broad leukocyte infiltrate, and the gene networks, which construct these responses, are poorly described in the eye. Using photo-oxidative damage in a rodent model of subretinal inflammation, we employed a novel RNA-sequencing framework to map the global gene network signature of retinal leukocytes. This revealed a previously uncharted interplay of adaptive immunity during subretinal inflammation, including prolonged enrichment of myeloid and lymphocyte migration, antigen presentation, and the alternative arm of the complement cascade involving Factor B. We demonstrate Factor B-deficient mice are protected against macrophage infiltration and subretinal inflammation. Suppressing the drivers of retinal leukocyte proliferation, or their capacity to elicit complement responses, may help preserve retinal structure and function during sterile inflammation in diseases such as AMD.
Collapse
Affiliation(s)
- Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Elizabeth Mason
- The Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia
| | - Haihan Jiao
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Aaron Chuah
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Hardip Patel
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Krisztina Valter
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Christine A Wells
- The Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia
| | - Jan Provis
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Matt Rutar
- The Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
87
|
Rathnasamy G, Foulds WS, Ling EA, Kaur C. Retinal microglia - A key player in healthy and diseased retina. Prog Neurobiol 2018; 173:18-40. [PMID: 29864456 DOI: 10.1016/j.pneurobio.2018.05.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/09/2018] [Accepted: 05/29/2018] [Indexed: 01/04/2023]
Abstract
Microglia, the resident immune cells of the brain and retina, are constantly engaged in the surveillance of their surrounding neural tissue. During embryonic development they infiltrate the retinal tissues and participate in the phagocytosis of redundant neurons. The contribution of microglia in maintaining the purposeful and functional histo-architecture of the adult retina is indispensable. Within the retinal microenvironment, robust microglial activation is elicited by subtle changes caused by extrinsic and intrinsic factors. When there is a disturbance in the cell-cell communication between microglia and other retinal cells, for example in retinal injury, the activated microglia can manifest actions that can be detrimental. This is evidenced by activated microglia secreting inflammatory mediators that can further aggravate the retinal injury. Microglial activation as a harbinger of a variety of retinal diseases is well documented by many studies. In addition, a change in the microglial phenotype which may be associated with aging, may predispose the retina to age-related diseases. In light of the above, the focus of this review is to highlight the role played by microglia in the healthy and diseased retina, based on findings of our own work and from that of others.
Collapse
Affiliation(s)
- Gurugirijha Rathnasamy
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore; Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, United States
| | - Wallace S Foulds
- Singapore Eye Research Institute Level 6, The Academia, Discovery Tower, 20 College Road, 169856, Singapore; University of Glasgow, Glasgow, Scotland, G12 8QQ, United Kingdom
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore
| | - Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore.
| |
Collapse
|
88
|
Abdel-Halim M, Abadi AH, Engel M. Design and synthesis of novel 1,3,5-triphenyl pyrazolines as potential anti-inflammatory agents through allosteric inhibition of protein kinase Czeta (PKCζ). MEDCHEMCOMM 2018; 9:1076-1082. [PMID: 30108997 PMCID: PMC6072096 DOI: 10.1039/c8md00100f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/25/2018] [Indexed: 01/01/2023]
Abstract
Much light has been shed on the vital role of protein kinase Czeta (PKCζ) in NF-κB activation and the potential use of PKCζ inhibitors as anti-inflammatory agents. We previously reported a series of 1,3,5-trisubstituted pyrazolines as potent and selective allosteric inhibitors of PKCζ; in that series of compounds, the phenolic OH at the 5-phenyl was essential for binding to the PKCζ PIF pocket. In the present study, we surprisingly found that replacing it by a halogen and at the same time moving the OH to the 3-phenyl still resulted in active compounds. An extension of this class of compounds with a new focused library is presented herein, where the phenolic OH at the 5-phenyl, which was reported to be an irreplaceable feature for activity, was moved to the 3-phenyl and replaced by halogen. The new set of compounds maintained the same level of potency against PKCζ and selectivity against PKC isoforms, and showed reduced potency against the PIF pocket mutant PKCζ[Val297Leu]. Of note, the repositioning of the key functional groups resulted in a marked enhancement of cellular potency. One of the most potent new PKCζ inhibitors, 2h, was able to suppress NO production in RAW 264.7 macrophage cells with 8 times higher efficacy than the previous series, and inhibited the NF-κB transcriptional activity in U937 cells with a sub-micromolar IC50.
Collapse
Affiliation(s)
- Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy and Biotechnology , German University in Cairo , Cairo 11835 , Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy and Biotechnology , German University in Cairo , Cairo 11835 , Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry , Saarland University , Campus C2.3 , D-66123 Saarbrücken , Germany . ; http://www.pharmmedchem.de ; ; Tel: +49 681 302 70312
| |
Collapse
|
89
|
Alves MRP, Boia R, Campos EJ, Martins J, Nunes S, Madeira MH, Santiago AR, Pereira FC, Reis F, Ambrósio AF, Baptista FI. Subtle thinning of retinal layers without overt vascular and inflammatory alterations in a rat model of prediabetes. Mol Vis 2018; 24:353-366. [PMID: 29853770 PMCID: PMC5957544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 05/16/2018] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Diabetic retinopathy is a neurovascular disease characterized by increased permeability of the blood-retinal barrier, changes in the neural components of the retina, and low-grade chronic inflammation. Diabetic retinopathy is a major complication of diabetes; however, the impact of a prediabetic state on the retina remains to be elucidated. The aim of this study was to assess possible early retinal changes in prediabetic rats, by evaluating changes in the integrity of the blood-retinal barrier, the retinal structure, neural markers, and inflammatory mediators. METHODS Several parameters were analyzed in the retinas of Wistar rats that drank high sucrose (HSu; 35% sucrose solution during 9 weeks, the prediabetic animal model) and were compared with those of age-matched controls. The permeability of the blood-retinal barrier was assessed with the Evans blue assay, and the content of the tight junction proteins and neural markers with western blotting. Optical coherence tomography was used to evaluate retinal thickness. Cell loss at the ganglion cell layer was assessed with terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) assay and by evaluating the immunoreactivity of the Brn3a transcription factor. To assess retinal neuroinflammation, the mRNA expression and protein levels of inducible nitric oxide synthase isoform (iNOS), interleukin-1 beta (IL-1β), and tumor necrosis factor (TNF) were evaluated. Iba1 and MHC-II immunoreactivity and translocator protein (TSPO) mRNA levels were assessed to study the microglial number and activation state. RESULTS The thickness of the inner retinal layers of the HSu-treated animals decreased. Nevertheless, no apoptotic cells were observed, and no changes in retinal neural markers were detected in the retinas of the HSu-treated animals. No changes were detected in the permeability of the blood-retinal barrier, as well as the tight junction protein content between the HSu-treated rats and the controls. In addition, the inflammatory parameters remained unchanged in the retina despite the tendency for an increase in the number of retinal microglial cells. CONCLUSIONS In a prediabetic rat model, the retinal structure is affected by the thinning of the inner layers, without overt vascular and inflammatory alterations. The results suggest neuronal dysfunction (thinning of the inner retina) that may precede or anticipate the vascular and inflammatory changes. Subtle structural changes might be viewed as early disturbances in an evolving disease, suggesting that preventive strategies (such as the modification of diet habits) could be applied at this stage, before the progression toward irreversible dysfunction and damage to the retina.
Collapse
Affiliation(s)
- Mariana R. P. Alves
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Raquel Boia
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Elisa J. Campos
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - João Martins
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Sara Nunes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Maria H. Madeira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Santiago
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal,Association for Innovation and Biomedical Research on Light (AIBILI), Coimbra, Portugal
| | - Frederico C. Pereira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - António F. Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal,Association for Innovation and Biomedical Research on Light (AIBILI), Coimbra, Portugal
| | - Filipa I. Baptista
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
90
|
Chaurasia SS, Lim RR, Parikh BH, Wey YS, Tun BB, Wong TY, Luu CD, Agrawal R, Ghosh A, Mortellaro A, Rackoczy E, Mohan RR, Barathi VA. The NLRP3 Inflammasome May Contribute to Pathologic Neovascularization in the Advanced Stages of Diabetic Retinopathy. Sci Rep 2018; 8:2847. [PMID: 29434227 PMCID: PMC5809448 DOI: 10.1038/s41598-018-21198-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR) is a retinal microvascular disease characterized by inflammatory and angiogenic pathways. In this study, we evaluated NLRP3 inflammasome in a double transgenic mouse model, Akimba (Ins2 Akita xVEGF+/-), which demonstrates hyperglycemia, vascular hyperpermeability and neovascularization seen in the proliferative DR. Retinal structural integrity, vascular leakage and function were examined by fundus photography, fluorescein angiography, optical coherence tomography, retinal flat mounts, laser speckle flowgraphy (LSFG), and electroretinography in Akimba and its parental strains, Akita (Ins2 Akita ) and Kimba (trVEGF029) mice. Inflammatory mechanisms involving NLRP3 inflammasome were investigated using real time-PCR, immunohistochemistry, ELISA and western blots. We observed an increased vascular leakage, reduced retinal thickness, and function in Akimba retina. Also, Akimba retina depicts decreased relative flow volume measured by LSFG. Most importantly, high levels of IL-1β along with increased NLRP3, ASC, and Caspase-1 at mRNA and protein levels were observed in Akimba retina. However, the in vivo functional role remains undefined. In conclusion, increased activation of macroglia (GFAP), microglia (Iba-1 and OX-42) and perivascular macrophages (F4/80 and CD14) together with pro-inflammatory (IL-1β and IL-6) and pro-angiogenic markers (PECAM-1, ICAM-1, VEGF, Flt-1, and Flk-1), suggested a critical role for NLRP3 inflammasome in the Akimba mouse model depicting advanced stages of DR pathogenesis.
Collapse
Affiliation(s)
- Shyam S Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, MO, USA.
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA.
- Ophthalmology, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.
| | - Rayne R Lim
- Ocular Immunology and Angiogenesis Lab, Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, MO, USA
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Ophthalmology, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Bhav H Parikh
- Translational Pre-Clinical Model Platform, Singapore Eye Research Institute, Singapore, Singapore
| | - Yeo Sia Wey
- Translational Pre-Clinical Model Platform, Singapore Eye Research Institute, Singapore, Singapore
| | - Bo Bo Tun
- Translational Pre-Clinical Model Platform, Singapore Eye Research Institute, Singapore, Singapore
| | - Tien Yin Wong
- Translational Pre-Clinical Model Platform, Singapore Eye Research Institute, Singapore, Singapore
- The Ophthalmology & Visual Sciences Academic Clinical Program, DUKE-NUS Graduate Medical School, Singapore, Singapore
| | - Chi D Luu
- Centre for Eye Research Australia, Department of Surgery (Ophthalmology), University of Melbourne, Melbourne, Australia
| | - Rupesh Agrawal
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | | | - Alessandra Mortellaro
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Elizabeth Rackoczy
- Centre for Ophthalmology and Visual Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Rajiv R Mohan
- Ocular Immunology and Angiogenesis Lab, Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, MO, USA
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Ophthalmology, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
- Mason Eye Institute, University of Missouri, Columbia, MO, USA
| | - Veluchamy A Barathi
- Translational Pre-Clinical Model Platform, Singapore Eye Research Institute, Singapore, Singapore
- The Ophthalmology & Visual Sciences Academic Clinical Program, DUKE-NUS Graduate Medical School, Singapore, Singapore
| |
Collapse
|
91
|
Yu X, Liu Q, Wang X, Liu H, Wang Y. 7,8-Dihydroxyflavone ameliorates high-glucose induced diabetic apoptosis in human retinal pigment epithelial cells by activating TrkB. Biochem Biophys Res Commun 2018; 495:922-927. [DOI: 10.1016/j.bbrc.2017.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
|
92
|
Bihoreau MT, Dumas ME, Lathrop M, Gauguier D. Genomic regulation of type 2 diabetes endophenotypes: Contribution from genetic studies in the Goto-Kakizaki rat. Biochimie 2017; 143:56-65. [DOI: 10.1016/j.biochi.2017.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/20/2017] [Indexed: 11/30/2022]
|
93
|
Quercetin Mitigates Inflammatory Responses Induced by Vascular Endothelial Growth Factor in Mouse Retinal Photoreceptor Cells through Suppression of Nuclear Factor Kappa B. Int J Mol Sci 2017; 18:ijms18112497. [PMID: 29165402 PMCID: PMC5713462 DOI: 10.3390/ijms18112497] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 12/12/2022] Open
Abstract
Retinal vascular endothelial growth factor (VEGF) increased by neovascularization is well known as a pathogenic factor in ocular neovascular diseases. However, it is still unclear how retinal neurons are damaged by VEGF. The aims of this study are to demonstrate the inflammatory protein expression regulated by VEGF using mouse photoreceptor-derived cells and the protective effect of quercetin against VEGF-induced inflammatory response. Expression and phosphorylation of protein and expression of mRNA were detected by immunoblot and reverse transcriptase polymerase chain reaction. VEGF-induced degradation of limiting membrane and translocation of nuclear factor kappa B (NF-κB) were analyzed by immunocytochemistry. VEGF treatment activated angiogenic signaling pathway in photoreceptor cells. In addition, adhesion molecules and matrix metalloproteinases were increased in VEGF-treated photoreceptor cells. All these events were reversed by quercetin. Zona occludins-1 and β-catenin decreased by VEGF were recovered by quercetin. NF-κB signaling pathway regulated by VEGF through phosphorylations of mitogen-activated protein kinases (MAPK) and protein kinase B (Akt) was suppressed by quercetin. These results suggest that quercetin suppressed VEGF-induced excessive inflammatory response in retinal photoreceptor cells by inactivation of NF-κB signals through inhibition of MAPKs and Akt. These data may provide a basic information for development of pharmaceuticals or nutraceuticals for treatment of retinal diseases caused by excessive VEGF.
Collapse
|
94
|
Mechanisms of macular edema: Beyond the surface. Prog Retin Eye Res 2017; 63:20-68. [PMID: 29126927 DOI: 10.1016/j.preteyeres.2017.10.006] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/24/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
Macular edema consists of intra- or subretinal fluid accumulation in the macular region. It occurs during the course of numerous retinal disorders and can cause severe impairment of central vision. Major causes of macular edema include diabetes, branch and central retinal vein occlusion, choroidal neovascularization, posterior uveitis, postoperative inflammation and central serous chorioretinopathy. The healthy retina is maintained in a relatively dehydrated, transparent state compatible with optimal light transmission by multiple active and passive systems. Fluid accumulation results from an imbalance between processes governing fluid entry and exit, and is driven by Starling equation when inner or outer blood-retinal barriers are disrupted. The multiple and intricate mechanisms involved in retinal hydro-ionic homeostasis, their molecular and cellular basis, and how their deregulation lead to retinal edema, are addressed in this review. Analyzing the distribution of junction proteins and water channels in the human macula, several hypotheses are raised to explain why edema forms specifically in the macular region. "Pure" clinical phenotypes of macular edema, that result presumably from a single causative mechanism, are detailed. Finally, diabetic macular edema is investigated, as a complex multifactorial pathogenic example. This comprehensive review on the current understanding of macular edema and its mechanisms opens perspectives to identify new preventive and therapeutic strategies for this sight-threatening condition.
Collapse
|
95
|
Foxp3 + Tregs are recruited to the retina to repair pathological angiogenesis. Nat Commun 2017; 8:748. [PMID: 28963474 PMCID: PMC5622066 DOI: 10.1038/s41467-017-00751-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 07/25/2017] [Indexed: 02/03/2023] Open
Abstract
Neovascular retinopathies are major causes of vision loss; yet treatments to prevent the condition are inadequate. The role of regulatory T cells in neovascular retinopathy is unknown. Here we show that in retinopathy regulatory T cells are transiently increased in lymphoid organs and the retina, but decline when neovascularization is established. The decline is prevented following regulatory T cells expansion with an IL-2/anti-IL-2 mAb complex or the adoptive transfer of regulatory T cells. Further, both approaches reduce vasculopathy (vaso-obliteration, neovascularization, vascular leakage) and alter the activation of Tmem119+ retinal microglia. Our in vitro studies complement these findings, showing that retinal microglia co-cultured with regulatory T cells exhibit a reduction in co-stimulatory molecules and pro-inflammatory mediators that is attenuated by CTLA-4 blockade. Collectively, we demonstrate that regulatory T cells are recruited to the retina and, when expanded in number, repair the vasculature. Manipulation of regulatory T cell numbers is a previously unrecognized, and promising avenue for therapies to prevent blinding neovascular retinopathies. The local immune responses in the eye are attenuated to preserve sight. Surprisingly, Deliyanti et al. show that regulatory T cells (Tregs) take an active role in protecting the eye from neovascularization in oxygen-induced retinopathy, and that interventions that augment the retinal Treg numbers reduce neovascular retinopathy in mice.
Collapse
|
96
|
Rothschild PR, Salah S, Berdugo M, Gélizé E, Delaunay K, Naud MC, Klein C, Moulin A, Savoldelli M, Bergin C, Jeanny JC, Jonet L, Arsenijevic Y, Behar-Cohen F, Crisanti P. ROCK-1 mediates diabetes-induced retinal pigment epithelial and endothelial cell blebbing: Contribution to diabetic retinopathy. Sci Rep 2017; 7:8834. [PMID: 28821742 PMCID: PMC5562711 DOI: 10.1038/s41598-017-07329-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/23/2017] [Indexed: 12/18/2022] Open
Abstract
In diabetic retinopathy, the exact mechanisms leading to retinal capillary closure and to retinal barriers breakdown remain imperfectly understood. Rho-associated kinase (ROCK), an effector of the small GTPase Rho, involved in cytoskeleton dynamic regulation and cell polarity is activated by hyperglycemia. In one year-old Goto Kakizaki (GK) type 2 diabetic rats retina, ROCK-1 activation was assessed by its cellular distribution and by phosphorylation of its substrates, MYPT1 and MLC. In both GK rat and in human type 2 diabetic retinas, ROCK-1 is activated and associated with non-apoptotic membrane blebbing in retinal vessels and in retinal pigment epithelium (RPE) that respectively form the inner and the outer barriers. Activation of ROCK-1 induces focal vascular constrictions, endoluminal blebbing and subsequent retinal hypoxia. In RPE cells, actin cytoskeleton remodeling and membrane blebs in RPE cells contributes to outer barrier breakdown. Intraocular injection of fasudil, significantly reduces both retinal hypoxia and RPE barrier breakdown. Diabetes-induced cell blebbing may contribute to ischemic maculopathy and represent an intervention target.
Collapse
Affiliation(s)
- Pierre-Raphaël Rothschild
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Sawsen Salah
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Marianne Berdugo
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Emmanuelle Gélizé
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Kimberley Delaunay
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Marie-Christine Naud
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Christophe Klein
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Alexandre Moulin
- Department of Ophthalmology of University of Lausanne 1000 Lausanne, Jules Gonin Hospital, Lausanne, Switzerland
| | - Michèle Savoldelli
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Ciara Bergin
- Department of Ophthalmology of University of Lausanne 1000 Lausanne, Jules Gonin Hospital, Lausanne, Switzerland
| | - Jean-Claude Jeanny
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Laurent Jonet
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Yvan Arsenijevic
- Department of Ophthalmology of University of Lausanne 1000 Lausanne, Jules Gonin Hospital, Lausanne, Switzerland
| | - Francine Behar-Cohen
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France. .,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France. .,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France. .,Department of Ophthalmology, Assistance Publique-Hopitaux de Paris, Hôtel-Dieu de Paris Hospital, 75004, Paris, France. .,INSERM U1138 Team 17, Le Centre de Recherches des Cordeliers (CRC), 75006, Paris, France. .,University of Lausanne, Lausanne, Switzerland.
| | - Patricia Crisanti
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
97
|
Vujosevic S, Torresin T, Bini S, Convento E, Pilotto E, Parrozzani R, Midena E. Imaging retinal inflammatory biomarkers after intravitreal steroid and anti-VEGF treatment in diabetic macular oedema. Acta Ophthalmol 2017; 95:464-471. [PMID: 27775223 DOI: 10.1111/aos.13294] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/16/2016] [Indexed: 01/05/2023]
Abstract
PURPOSE To evaluate changes of specific retinal imaging biomarkers [intraretinal hyper-reflective retinal spots: HRS ; subfoveal neuroretinal detachment: SND; and increased foveal autofluorescence: IFAF after intravitreal steroid or anti-vascular endothelial growth factor treatment in diabetic macular oedema (DME)] as possible indicators of retinal inflammatory condition. METHODS Retrospective analysis of images and clinical charts of 49 eyes (49 patients) with DME treated with intravitreal dexamethasone (dexamethasone, 23 eyes) or intravitreal ranibizumab (ranibizumab, 26 eyes). All patients had fundus colour photograph, spectral domain optical coherence tomography (SD OCT) and fundus autofluorescence (FAF), best-corrected visual acuity (BCVA) and microperimetry recorded before and 1 month after the end of treatment. Central macular thickness (CMT), number of HRS and presence of SND were evaluated by SD OCT. Fundus autofluorescence images were evaluated for area of (IFAF). Retinal sensitivity within 4° and 12° from fovea was quantified by microperimetry. Changes in morphologic and functional parameters were assessed, and correlation was performed by Pearson's correlation. RESULTS Best-corrected visual acuity and CMT improved in all patients, (p < 0.05, for both groups). Mean number of HRS decreased after both treatments (p < 0.0001). Subfoveal neuroretinal detachment resolved in 85.7% dexamethasone-treated eyes (p = 0.014) and in 50% ranibizumab-treated eyes (p = 0.025). Mean IFAF area decreased in both groups, (p < 0.0001, for both). A significantly higher decrease in CMT was observed in dexamethasone- versus ranibizumab-treated eyes, (p = 0.032). In dexamethasone group, higher number of HRS at baseline and larger IFAF were correlated with higher increase in retinal sensitivity; eyes with SND at baseline had major decrease in CMT versus those without SND, (p = 0.003). CONCLUSION Higher number of HRS, larger area of IFAF and presence of SND may indicate a prevalent inflammatory condition in DME with specific response to targeted treatment.
Collapse
Affiliation(s)
- Stela Vujosevic
- Department of Ophthalmology; University of Padova; Padova Italy
| | | | - Silvia Bini
- Department of Ophthalmology; University of Padova; Padova Italy
| | - Enrica Convento
- Department of Ophthalmology; University of Padova; Padova Italy
| | | | | | - Edoardo Midena
- Department of Ophthalmology; University of Padova; Padova Italy
- Fondazione G. B. Bietti; IRCCS; Roma Italy
| |
Collapse
|
98
|
Campos A, Campos EJ, Martins J, Ambrósio AF, Silva R. Viewing the choroid: where we stand, challenges and contradictions in diabetic retinopathy and diabetic macular oedema. Acta Ophthalmol 2017; 95:446-459. [PMID: 27545332 DOI: 10.1111/aos.13210] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/18/2016] [Indexed: 02/01/2023]
Abstract
Diabetic macular oedema (DMO) is the leading cause of vision loss in the working-age population. Blood-retinal barrier (BRB) dysfunction in diabetic retinopathy (DR), mainly at the level of the retinal vessels, has long been related with leakage and fluid accumulation, leading to macular oedema. However, the nourishment of the macula is provided by the choroid and a diabetic choroidopathy has been described. Therefore, there has been a growing interest in studying the role of the choroid in the pathophysiology of DR and DMO, mainly by optical coherence tomography (OCT). Nevertheless, there are conflicting results in the different studies. We summarize the results from the available studies, describe the limitations and confounding factors and discuss future procedures to avoid bias.
Collapse
Affiliation(s)
- António Campos
- Faculty of Medicine; Institute for Biomedical Imaging and Life Sciences (IBILI); University of Coimbra; Coimbra Portugal
- CNC.IBILI; University of Coimbra; Coimbra Portugal
- Department of Ophthalmology; Leiria Hospital; Leiria Portugal
| | - Elisa J. Campos
- Faculty of Medicine; Institute for Biomedical Imaging and Life Sciences (IBILI); University of Coimbra; Coimbra Portugal
- CNC.IBILI; University of Coimbra; Coimbra Portugal
| | - João Martins
- Faculty of Medicine; Institute for Biomedical Imaging and Life Sciences (IBILI); University of Coimbra; Coimbra Portugal
- CNC.IBILI; University of Coimbra; Coimbra Portugal
| | - António Francisco Ambrósio
- Faculty of Medicine; Institute for Biomedical Imaging and Life Sciences (IBILI); University of Coimbra; Coimbra Portugal
- CNC.IBILI; University of Coimbra; Coimbra Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI); Coimbra Portugal
| | - Rufino Silva
- Faculty of Medicine; Institute for Biomedical Imaging and Life Sciences (IBILI); University of Coimbra; Coimbra Portugal
- CNC.IBILI; University of Coimbra; Coimbra Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI); Coimbra Portugal
- Ophthalmology Department; Centro Hospitalar Universitário de Coimbra (CHUC); Coimbra Portugal
| |
Collapse
|
99
|
Samra YA, Saleh HM, Hussein KA, Elsherbiny NM, Ibrahim AS, Elmasry K, Fulzele S, El-Shishtawy MM, Eissa LA, Al-Shabrawey M, Liou GI. Adenosine Deaminase-2-Induced Hyperpermeability in Human Retinal Vascular Endothelial Cells Is Suppressed by MicroRNA-146b-3p. Invest Ophthalmol Vis Sci 2017; 58:933-943. [PMID: 28170537 PMCID: PMC5300249 DOI: 10.1167/iovs.16-19782] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We recently demonstrated that adenosine deaminase-2 (ADA2) contributes to diabetic retinopathy (DR) via up-regulating the production of inflammatory cytokines in macrophages. Also, microRNA (miR)-146b-3p has the ability to inhibit ADA2. The goal of this study was to investigate the potential role of ADA2 and therapeutic benefit of miR-146b-3p in retinal inflammation and endothelial barrier dysfunction during diabetes. Methods Adenosine deaminase-2 activity was determined by colorimetric method in diabetic human vitreous. Human monocyte cell line U937 was differentiated into macrophages and then treated with amadori glycated albumin (AGA), and conditioned medium (CM) was used to assess the changes in ADA2 activity and TNF-α and IL-6 levels by ELISA. Also, macrophages were transfected with miR-146b-3p before treatment with AGA. Permeability of human retinal endothelial cells (hRECs) was assessed by electric cell-substrate impedance sensing (ECIS) after treatment with macrophage CM. Zonula occludens (ZO)-1 was examined by immuno-fluorescence in hRECs. Leukocyte adhesion was assessed in hRECs by measuring myeloperoxidase (MPO) activity and intercellular adhesion molecule-1 (ICAM-1) expression. Results Adenosine deaminase-2 activity was significantly increased in diabetic human vitreous. ADA2 activity and TNF-α and IL-6 levels were significantly increased in human macrophages by AGA treatment. Amadori glycated albumin–treated macrophage CM significantly increased hREC permeability, disrupted ZO-1 pattern, and increased leukocyte adhesion to hRECs through up-regulating ICAM-1. All these changes were reversed by miR-146b-3p. Conclusions Adenosine deaminase-2 is implicated in breakdown of the blood–retinal barrier (BRB) in DR through macrophages-derived cytokines. Therefore, inhibition of ADA2 by miR-146b-3p might be a useful tool to preserve BRB function in DR.
Collapse
Affiliation(s)
- Yara A Samra
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt 2Department of Ophthalmology and The Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Heba M Saleh
- Department of Oral Biology/Anatomy, Dental College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Khaled A Hussein
- Department of Oral Biology/Anatomy, Dental College of Georgia, Augusta University, Augusta, Georgia, United States 4Department of Oral Medicine and Surgery, Oral and Dental Research Division, National Research Centre, Cairo, Egypt
| | - Nehal M Elsherbiny
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt 3Department of Oral Biology/Anatomy, Dental College of Georgia, Augusta University, Augusta, Georgia, United States 5Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmed S Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt 3Department of Oral Biology/Anatomy, Dental College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Khaled Elmasry
- Department of Oral Biology/Anatomy, Dental College of Georgia, Augusta University, Augusta, Georgia, United States 6Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States 7Department of Anatomy, Faculty of Medicine, Mansoura University, Egypt
| | - Sadanand Fulzele
- Department of Orthopedics, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | | | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed Al-Shabrawey
- Department of Ophthalmology and The Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia, United States 3Department of Oral Biology/Anatomy, Dental College of Georgia, Augusta University, Augusta, Georgia, United States 6Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States 7Department of Anatomy, Faculty of Medicine, Mansoura University, Egypt
| | - Gregory I Liou
- Department of Ophthalmology and The Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
100
|
Hammoum I, Benlarbi M, Dellaa A, Szabó K, Dékány B, Csaba D, Almási Z, Hajdú RI, Azaiz R, Charfeddine R, Lukáts Á, Ben Chaouacha-Chekir R. Study of retinal neurodegeneration and maculopathy in diabetic Meriones shawi: A particular animal model with human-like macula. J Comp Neurol 2017; 525:2890-2914. [PMID: 28542922 DOI: 10.1002/cne.24245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 12/16/2022]
Abstract
The purpose of this work was to evaluate a potentially useful animal model, Meriones shawi (M.sh)-developing metabolic X syndrome, diabetes and possessing a visual streak similar to human macula-in the study of diabetic retinopathy and diabetic macular edema (DME). Type 2 diabetes (T2D) was induced by high fat diet administration in M.sh. Body weights, blood glucose levels were monitored throughout the study. Diabetic retinal histopathology was evaluated 3 and 7 months after diabetes induction. Retinal thickness was measured, retinal cell types were labeled by immunohistochemistry and the number of stained elements were quantified. Apoptosis was determined with TUNEL assay. T2D induced progressive changes in retinal histology. A significant decrease of retinal thickness and glial reactivity was observed without an increase in apoptosis rate. Photoreceptor outer segment degeneration was evident, with a significant decrease in the number of all cones and M-cone subtype, but-surprisingly-an increase in S-cones. Damage of the pigment epithelium was also confirmed. A decrease in the number and labeling intensity of parvalbumin- and calretinin-positive amacrine cells and a loss of ganglion cells was detected. Other cell types showed no evident alterations. No DME-like condition was noticed even after 7 months. M.sh could be a useful model to study the evolution of diabetic retinal pathology and to identify the role of hypertension and dyslipidemia in the development of the reported alterations. Longer follow up would be needed to evaluate the potential use of the visual streak in modeling human macular diseases.
Collapse
Affiliation(s)
- Imane Hammoum
- Laboratory of Physiopathology, Food and Biomolecules (PAB), department of Biotechnology, High Institute of Biotechnology of Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Sidi Thabet, Tunisia.,Faculty of Sciences of Tunis, El Manar University (UTM), Tunis, Tunisia
| | - Maha Benlarbi
- Laboratory of Physiopathology, Food and Biomolecules (PAB), department of Biotechnology, High Institute of Biotechnology of Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Sidi Thabet, Tunisia
| | - Ahmed Dellaa
- Laboratory of Physiopathology, Food and Biomolecules (PAB), department of Biotechnology, High Institute of Biotechnology of Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Sidi Thabet, Tunisia
| | - Klaudia Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Bulcsú Dékány
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Dávid Csaba
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Almási
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rozina I Hajdú
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rached Azaiz
- UNIMED Pharmaceutical Industry, Industrial area Kalaa Kebira, Sousse, Tunisia
| | - Ridha Charfeddine
- UNIMED Pharmaceutical Industry, Industrial area Kalaa Kebira, Sousse, Tunisia
| | - Ákos Lukáts
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rafika Ben Chaouacha-Chekir
- Laboratory of Physiopathology, Food and Biomolecules (PAB), department of Biotechnology, High Institute of Biotechnology of Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Sidi Thabet, Tunisia
| |
Collapse
|