51
|
HSP90 as a regulator of extracellular matrix dynamics. Biochem Soc Trans 2021; 49:2611-2625. [PMID: 34913470 DOI: 10.1042/bst20210374] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
The extracellular matrix (ECM) is a dynamic and organised extracellular network assembled from proteins and carbohydrates exported from the cell. The ECM is critical for multicellular life, providing spatial and temporal cellular cues to maintain tissue homeostasis. Consequently, ECM production must be carefully balanced with turnover to ensure homeostasis; ECM dysfunction culminates in disease. Hsp90 is a molecular chaperone central to protein homeostasis, including in the ECM. Intracellular and extracellular Hsp90 isoforms collaborate to regulate the levels and status of proteins in the ECM via multiple mechanisms. In so doing, Hsp90 regulates ECM dynamics, and changes in Hsp90 levels or activity support the development of ECM-related diseases, like cancer and fibrosis. Consequently, Hsp90 levels may have prognostic value, while inhibition of Hsp90 may have therapeutic potential in conditions characterised by ECM dysfunction.
Collapse
|
52
|
Mincham KT, Bruno N, Singanayagam A, Snelgrove RJ. Our evolving view of neutrophils in defining the pathology of chronic lung disease. Immunology 2021; 164:701-721. [PMID: 34547115 PMCID: PMC8561104 DOI: 10.1111/imm.13419] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are critical components of the body's immune response to infection, being loaded with a potent arsenal of toxic mediators and displaying immense destructive capacity. Given the potential of neutrophils to impart extensive tissue damage, it is perhaps not surprising that when augmented these cells are also implicated in the pathology of inflammatory diseases. Prominent neutrophilic inflammation is a hallmark feature of patients with chronic lung diseases such as chronic obstructive pulmonary disease, severe asthma, bronchiectasis and cystic fibrosis, with their numbers frequently associating with worse prognosis. Accordingly, it is anticipated that neutrophils are central to the pathology of these diseases and represent an attractive therapeutic target. However, in many instances, evidence directly linking neutrophils to the pathology of disease has remained somewhat circumstantial and strategies that have looked to reduce neutrophilic inflammation in the clinic have proved largely disappointing. We have classically viewed neutrophils as somewhat crude, terminally differentiated, insular and homogeneous protagonists of pathology. However, it is now clear that this does not do the neutrophil justice, and we now recognize that these cells exhibit heterogeneity, a pronounced awareness of the localized environment and a remarkable capacity to interact with and modulate the behaviour of a multitude of cells, even exhibiting anti-inflammatory, pro-resolving and pro-repair functions. In this review, we discuss evidence for the role of neutrophils in chronic lung disease and how our evolving view of these cells may impact upon our perceived assessment of their contribution to disease pathology and efforts to target them therapeutically.
Collapse
Affiliation(s)
- Kyle T. Mincham
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Nicoletta Bruno
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Aran Singanayagam
- National Heart and Lung InstituteImperial College LondonLondonUK
- Department of Infectious DiseaseImperial College LondonLondonUK
| | | |
Collapse
|
53
|
Zhang Y, Mo Y, Yuan J, Zhang Y, Mo L, Zhang Q. MMP-3 activation is involved in copper oxide nanoparticle-induced epithelial-mesenchymal transition in human lung epithelial cells. Nanotoxicology 2021; 15:1380-1402. [PMID: 35108494 PMCID: PMC9484543 DOI: 10.1080/17435390.2022.2030822] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Copper oxide nanoparticles (Nano-CuO) are widely used in medical and industrial fields and our daily necessities. However, the biosafety assessment of Nano-CuO is far behind their rapid development. Here, we investigated the adverse effects of Nano-CuO on normal human bronchial epithelial BEAS-2B cells, especially determined whether Nano-CuO exposure would cause dysregulation of MMP-3, an important mediator in pulmonary fibrosis, and its potential role in epithelial-mesenchymal transition (EMT). Our results showed that exposure to Nano-CuO, but not Nano-TiO2, caused increased ROS generation, MAPKs activation, and MMP-3 upregulation. Nano-CuO-induced ROS generation was not observed in mitochondrial DNA-depleted BEAS-2B ρ0 cells, indicating that mitochondria may be the main source of Nano-CuO-induced ROS generation. Pretreatment of the cells with ROS scavengers or inhibitors or depleting mitochondrial DNA significantly attenuated Nano-CuO-induced MAPKs activation and MMP-3 upregulation, and pretreatment of cells with MAPKs inhibitors abolished Nano-CuO-induced MMP-3 upregulation, suggesting Nano-CuO-induced MMP-3 upregulation is through Nano-CuO-induced ROS generation and MAPKs activation. In addition, exposure of the cells to Nano-CuO for 48 h resulted in decreased E-cadherin expression and increased expression of vimentin, α-SMA, and fibronectin, which was ameliorated by MMP-3 siRNA transfection, suggesting an important role of MMP-3 in Nano-CuO-induced EMT. Taken together, our study demonstrated that Nano-CuO exposure caused mitochondrial ROS generation, MAPKs activation, and MMP-3 upregulation. Nano-CuO exposure also caused cells to undergo EMT, which was through Nano-CuO-induced dysregulation of ROS/MAPKs/MMP-3 pathway. Our findings will provide further understanding of the potential mechanisms involved in metal nanoparticle-induced various toxic effects including EMT and pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuanbao Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Jiali Yuan
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yue Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Luke Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
54
|
Popovics P, Jain A, Skalitzky KO, Schroeder E, Ruetten H, Cadena M, Uchtmann KS, Vezina CM, Ricke WA. Osteopontin Deficiency Ameliorates Prostatic Fibrosis and Inflammation. Int J Mol Sci 2021; 22:ijms222212461. [PMID: 34830342 PMCID: PMC8617904 DOI: 10.3390/ijms222212461] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Fibrogenic and inflammatory processes in the prostate are linked to the development of lower urinary tract symptoms (LUTS) in men. Our previous studies identified that osteopontin (OPN), a pro-fibrotic cytokine, is abundant in the prostate of men with LUTS, and its secretion is stimulated by inflammatory cytokines potentially to drive fibrosis. This study investigates whether the lack of OPN ameliorates inflammation and fibrosis in the mouse prostate. We instilled uropathogenic E. coli (UTI89) or saline (control) transurethrally to C57BL/6J (WT) or Spp1tm1Blh/J (OPN-KO) mice and collected the prostates one or 8 weeks later. We found that OPN mRNA and protein expression were significantly induced by E. coli-instillation in the dorsal prostate (DP) after one week in WT mice. Deficiency in OPN expression led to decreased inflammation and fibrosis and the prevention of urinary dysfunction after 8 weeks. RNAseq analysis identified that E. coli-instilled WT mice expressed increased levels of inflammatory and fibrotic marker RNAs compared to OPN-KO mice including Col3a1, Dpt, Lum and Mmp3 which were confirmed by RNAscope. Our results indicate that OPN is induced by inflammation and prolongs the inflammatory state; genetic blockade of OPN accelerates recovery after inflammation, including a resolution of prostate fibrosis.
Collapse
Affiliation(s)
- Petra Popovics
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Asha Jain
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kegan O. Skalitzky
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elise Schroeder
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah Ruetten
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark Cadena
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kristen S. Uchtmann
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Chad M. Vezina
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William A. Ricke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
55
|
Yeh CF, Chou C, Yang KC. Mechanotransduction in fibrosis: Mechanisms and treatment targets. CURRENT TOPICS IN MEMBRANES 2021; 87:279-314. [PMID: 34696888 DOI: 10.1016/bs.ctm.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
To perceive and integrate the environmental cues, cells and tissues sense and interpret various physical forces like shear, tensile, and compression stress. Mechanotransduction involves the sensing and translation of mechanical forces into biochemical and mechanical signals to guide cell fate and achieve tissue homeostasis. Disruption of this mechanical homeostasis by tissue injury elicits multiple cellular responses leading to pathological matrix deposition and tissue stiffening, and consequent evolution toward pro-inflammatory/pro-fibrotic phenotypes, leading to tissue/organ fibrosis. This review focuses on the molecular mechanisms linking mechanotransduction to fibrosis and uncovers the potential therapeutic targets to halt or resolve fibrosis.
Collapse
Affiliation(s)
- Chih-Fan Yeh
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Caroline Chou
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan; Washington University in St. Louis, St. Louis, MO, United States
| | - Kai-Chien Yang
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
56
|
Leong E, Bezuhly M, Marshall JS. Distinct Metalloproteinase Expression and Functions in Systemic Sclerosis and Fibrosis: What We Know and the Potential for Intervention. Front Physiol 2021; 12:727451. [PMID: 34512395 PMCID: PMC8432940 DOI: 10.3389/fphys.2021.727451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic debilitating idiopathic disorder, characterized by deposition of excessive extracellular matrix (ECM) proteins such as collagen which leads to fibrosis of the skin and other internal organs. During normal tissue repair and remodeling, the accumulation and turnover of ECM proteins are tightly regulated by the interaction of matrix metalloproteinases (MMPs) and endogenous tissue inhibitors of metalloproteinases (TIMPs). SSc is associated with dysregulation of the activity of these proteolytic and inhibitory proteins within the tissue microenvironment, tipping the balance toward fibrosis. The resultant ECM accumulation further perpetuates tissue stiffness and decreased function, contributing to poor clinical outcomes. Understanding the expression and function of these endogenous enzymes and inhibitors within specific tissues is therefore critical to the development of therapies for SSc. This brief review describes recent advances in our understanding of the functions and mechanisms of ECM remodeling by metalloproteinases and their inhibitors in the skin and lungs affected in SSc. It highlights recent progress on potential candidates for intervention and therapeutic approaches for treating SSc fibrosis.
Collapse
Affiliation(s)
- Edwin Leong
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Michael Bezuhly
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Jean S Marshall
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
57
|
Xiao H, Nguyen RY, LaRanger R, Herzog EL, Mak M. Integrated computational and experimental pipeline for quantifying local cell-matrix interactions. Sci Rep 2021; 11:16465. [PMID: 34385554 PMCID: PMC8361134 DOI: 10.1038/s41598-021-95935-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 07/31/2021] [Indexed: 11/30/2022] Open
Abstract
Cellular interactions with the extracellular matrix (ECM) play a key role in modulating biological processes. While studies have identified key molecular factors of these interactions, the mechanical regulation associated with these interactions is not well characterized. To address this, we present an image analysis platform to analyze time-dependent dynamics observed in lung fibroblasts embedded in a 3D collagen matrix. Combining drug studies with quantitative analysis of cell–matrix interactions, our results are able to provide cellular level quantitative insights for mechanical and biophysical phenomena relevant to cell-ECM interactions. This system overall represents an initial pipeline for understanding cell mechanics in a 3D collagen gel and their implications in a physiologically relevant context.
Collapse
Affiliation(s)
- Hugh Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ryan Y Nguyen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ryan LaRanger
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Erica L Herzog
- Department of Medicine (Pulmonary, Critical Care and Sleep), Yale University School of Medicine, New Haven, CT, USA
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
58
|
Serra R, Bracale UM, Ielapi N, Del Guercio L, Di Taranto MD, Sodo M, Michael A, Faga T, Bevacqua E, Jiritano F, Serraino GF, Mastroroberto P, Provenzano M, Andreucci M. The Impact of Chronic Kidney Disease on Peripheral Artery Disease and Peripheral Revascularization. Int J Gen Med 2021; 14:3749-3759. [PMID: 34326661 PMCID: PMC8315808 DOI: 10.2147/ijgm.s322417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a clinical condition characterized by high morbidity and mortality. Globally, CKD is also increasing in prevalence and incidence. The two principal kidney measures namely estimated glomerular filtration rate (eGFR) and albuminuria have been found to be predictors of renal and cardiovascular (CV) endpoints including peripheral artery disease (PAD). The prevalence of PAD was increased in CKD patients and, particularly, in patients with more severe CKD stages. Despite the fact that revascularization strategies are suitable in CKD patients in similar fashion to non-CKD patients, few CKD patients underwent these procedures. In fact, if it is true that revascularization improves prognosis in PAD patients irrespective of baseline eGFR, it was also demonstrated that CKD patients, who underwent revascularization, were at higher risk for amputations, mortality, re-intervention and perioperative complications. With the present review article, we have examined the association between CKD, PAD and peripheral revascularization highlighting data about epidemiology, pathophysiologic mechanisms, and results from previous observational and intervention studies. We have also examined the future perspectives and challenges of research around the association between CKD and PAD.
Collapse
Affiliation(s)
- Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL), "Magna Graecia" University, Catanzaro, Italy.,Department of Surgical and Medical Sciences, University Magna Graecia of Catanzaro, Viale Europa, Catanzaro, 88100, Italy
| | | | - Nicola Ielapi
- Department of Public Health and Infectious Disease, "Sapienza" University of Rome, Roma, 00185, Italy
| | - Luca Del Guercio
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Maria Donata Di Taranto
- Department of Molecular Medicine and Medical Biotechnology, University Federico II of Naples, Naples, Italy
| | - Maurizio Sodo
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Ashour Michael
- Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Teresa Faga
- Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Egidio Bevacqua
- Department of Experimental and Clinical Medicine, University of Catanzaro, Catanzaro, 88100, Italy
| | - Federica Jiritano
- Department of Experimental and Clinical Medicine, University of Catanzaro, Catanzaro, 88100, Italy
| | | | - Pasquale Mastroroberto
- Department of Experimental and Clinical Medicine, University of Catanzaro, Catanzaro, 88100, Italy
| | - Michele Provenzano
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, Catanzaro, 88100, Italy
| | - Michele Andreucci
- Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| |
Collapse
|
59
|
Yue L, Shi Y, Su X, Ouyang L, Wang G, Ye T. Matrix metalloproteinases inhibitors in idiopathic pulmonary fibrosis: Medicinal chemistry perspectives. Eur J Med Chem 2021; 224:113714. [PMID: 34315043 DOI: 10.1016/j.ejmech.2021.113714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 02/05/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal disease with limited therapeutic options and a particularly poor prognosis. Matrix metalloproteinases (MMPs), promising targets for the treatment of IPF, have been identified as playing a pivotal role in IPF. Although the pathological processes of MMPs and IPF have been verified, there are no MMP inhibitors for the treatment of IPF in the clinic. In this review, we will present the latest developments in MMP inhibitors, including pharmacophores, binding modes, selectivity and optimization strategies. In addition, we will also discuss the future development direction of MMP inhibitors based on emerging tools and techniques.
Collapse
Affiliation(s)
- Lin Yue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yaojie Shi
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xingping Su
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liang Ouyang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Guan Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
60
|
Rostami MR, Bradic M. The derepression of transposable elements in lung cells is associated with the inflammatory response and gene activation in idiopathic pulmonary fibrosis. Mob DNA 2021; 12:14. [PMID: 34108012 PMCID: PMC8191028 DOI: 10.1186/s13100-021-00241-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are repetitive sequences of viral origin that compose almost half of the human genome. These elements are tightly controlled within cells, and if activated, they can cause changes in both gene regulation and immune viral responses that have been associated with several chronic inflammatory diseases in humans. As oxidants are potent activators of TEs, and because oxidative injury is a major risk factor in relation to idiopathic pulmonary fibrosis (IPF), we hypothesized that TEs might be involved in the regulation of gene expression and so contribute to inflammation in cases of IPF. IPF is a fatal lung disease that involves the gradual replacement of the alveolar tissue with fibrotic scars as well as the accumulation of inflammatory cells in the lower respiratory tract. Although IPF is known to occur as a result of the complex interaction between age, environmental risk factors (i.e., oxidative stress) and genetics, the relative contributions of these factors to the disease remain unclear. To determine whether TEs are associated with IPF, we compared the transcriptional profiles of the genes and TEs of lung cells obtained from both healthy donors and IPF patients. RESULTS We quantified TE and gene expression levels using a published bulk RNA-seq dataset containing 24 subjects (16 donors and eight IPF patients), including three lung-cell types per subject, as well as an scRNA-seq dataset concerning 16 subjects (eight donors and eight IPF patients). We found evidence of TE dysregulation in the alveolar type II lung cells and alveolar macrophages of the IPF patients. In addition, the activation of the LINE1 family of elements in IPF is associated with the increased expression of TE cellular regulators (MOV10, IFI16, SAMHD1, and APOBECG3), interferon-stimulating genes (ISG15, IFI6, IFI27, IFI44, and OAS1), chemokines (CX3CL1 and CXCL9), and interleukins (IL15RA). We also propose that TE derepression might be involved in the regulation of previously reported IPF candidate genes (MUC5B, CHL1, SPP1, and MMP7). CONCLUSION Based on our findings, we propose that TE derepression plays an important role in the regulation of gene expression and can also prompt both the recruitment of inflammatory processes and the disruption of the immunological balance, which can lead to chronic inflammation in IPF.
Collapse
Affiliation(s)
- Mahboubeh R Rostami
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Martina Bradic
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA.
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
61
|
Staphylococcus aureus on the effect of expression of MMPs/TIMPs and uPA system in bovine mammary fibroblasts. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:411-419. [DOI: 10.1016/j.jmii.2019.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/19/2019] [Accepted: 09/30/2019] [Indexed: 02/08/2023]
|
62
|
Kreus M, Lehtonen S, Skarp S, Kaarteenaho R. Extracellular matrix proteins produced by stromal cells in idiopathic pulmonary fibrosis and lung adenocarcinoma. PLoS One 2021; 16:e0250109. [PMID: 33905434 PMCID: PMC8078755 DOI: 10.1371/journal.pone.0250109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) and lung cancer share common risk factors, epigenetic and genetic alterations, the activation of similar signaling pathways and poor survival. The aim of this study was to examine the gene expression profiles of stromal cells from patients with IPF and lung adenocarcinoma (ADC) as well as from normal lung. The gene expression levels of cultured stromal cells derived from non-smoking patients with ADC from the tumor (n = 4) and the corresponding normal lung (n = 4) as well as from patients with IPF (n = 4) were investigated with Affymetrix microarrays. The expression of collagen type IV alpha 1 chain, periostin as well as matrix metalloproteinase-1 and -3 in stromal cells and lung tissues were examined with quantitative real-time reverse transcriptase polymerase chain reaction and immunohistochemistry, respectively. Twenty genes were similarly up- or down-regulated in IPF and ADC compared to control, while most of the altered genes in IPF and ADC were differently expressed, including several extracellular matrix genes. Collagen type IV alpha 1 chain as well as matrix metalloproteinases-1 and -3 were differentially expressed in IPF compared to ADC. Periostin was up-regulated in both IPF and ADC in comparison to control. All studied factors were localized by immunohistochemistry in stromal cells within fibroblast foci in IPF and stroma of ADC. Despite the similarities found in gene expressions of IPF and ADC, several differences were also detected, suggesting that the molecular changes occurring in these two lung illnesses are somewhat different.
Collapse
Affiliation(s)
- Mervi Kreus
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
- * E-mail:
| | - Siri Lehtonen
- Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
- Department of Obstetrics and Gynecology, Oulu University Hospital, Oulu, Finland
| | - Sini Skarp
- Northern Finland Birth Cohorts, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Riitta Kaarteenaho
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
63
|
Russell JJ, Grisanti LA, Brown SM, Bailey CA, Bender SB, Chandrasekar B. Reversion inducing cysteine rich protein with Kazal motifs and cardiovascular diseases: The RECKlessness of adverse remodeling. Cell Signal 2021; 83:109993. [PMID: 33781845 DOI: 10.1016/j.cellsig.2021.109993] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022]
Abstract
The Reversion Inducing Cysteine Rich Protein With Kazal Motifs (RECK) is a glycosylphosphatidylinositol (GPI) anchored membrane-bound regulator of matrix metalloproteinases (MMPs). It is expressed throughout the body and plays a role in extracellular matrix (ECM) homeostasis and inflammation. In initial studies, RECK expression was found to be downregulated in various invasive cancers and associated with poor prognostic outcome. Restoring RECK, however, has been shown to reverse the metastatic phenotype. Downregulation of RECK expression is also reported in non-malignant diseases, such as periodontal disease, renal fibrosis, and myocardial fibrosis. As such, RECK induction has therapeutic potential in several chronic diseases. Mechanistically, RECK negatively regulates various matrixins involved in cell migration, proliferation, and adverse remodeling by targeting the expression and/or activation of multiple MMPs, A Disintegrin And Metalloproteinase Domain-Containing Proteins (ADAMs), and A Disintegrin And Metalloproteinase With Thrombospondin Motifs (ADAMTS). Outside of its role in remodeling, RECK has also been reported to exert anti-inflammatory effects. In cardiac diseases, for example, it has been shown to counteract several downstream effectors of Angiotensin II (Ang-II) that play a role in adverse cardiac and vascular remodeling, such as Interleukin-6 (IL-6)/IL-6 receptor (IL-6R)/glycoprotein 130 (IL-6 signal transducer) signaling and Epidermal Growth Factor Receptor (EGFR) transactivation. This review article focuses on the current understanding of the multifunctional effects of RECK and how its downregulation may contribute to adverse cardiovascular remodeling.
Collapse
Affiliation(s)
- Jacob J Russell
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America.
| | - Laurel A Grisanti
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America.
| | - Scott M Brown
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America.
| | - Chastidy A Bailey
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America.
| | - Shawn B Bender
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America; Dalton Cardiovascular Center, University of Missouri, Columbia, MO, United States of America.
| | - B Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America; Medicine, University of Missouri School of Medicine, Columbia, MO, United States of America; Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States of America; Dalton Cardiovascular Center, University of Missouri, Columbia, MO, United States of America.
| |
Collapse
|
64
|
Loss of MT1-MMP in Alveolar Epithelial Cells Exacerbates Pulmonary Fibrosis. Int J Mol Sci 2021; 22:ijms22062923. [PMID: 33805743 PMCID: PMC7998872 DOI: 10.3390/ijms22062923] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal age-related lung disease whose pathogenesis involves an aberrant response of alveolar epithelial cells (AEC). Activated epithelial cells secrete mediators that participate in the activation of fibroblasts and the excessive deposition of extracellular matrix proteins. Previous studies indicate that matrix metalloproteinase 14 (MMP14) is increased in the lung epithelium in patients with IPF, however, the role of this membrane-type matrix metalloproteinase has not been elucidated. In this study, the role of Mmp14 was explored in experimental lung fibrosis induced with bleomycin in a conditional mouse model of lung epithelial MMP14-specific genetic deletion. Our results show that epithelial Mmp14 deficiency in mice increases the severity and extension of fibrotic injury and affects the resolution of the lesions. Gain-and loss-of-function experiments with human epithelial cell line A549 demonstrated that cells with a deficiency of MMP14 exhibited increased senescence-associated markers. Moreover, conditioned medium from these cells increased fibroblast expression of fibrotic molecules. These findings suggest a new anti-fibrotic mechanism of MMP14 associated with anti-senescent activity, and consequently, its absence results in impaired lung repair. Increased MMP14 in IPF may represent an anti-fibrotic mechanism that is overwhelmed by the strong profibrotic microenvironment that characterizes this disease.
Collapse
|
65
|
Shenderov K, Collins SL, Powell JD, Horton MR. Immune dysregulation as a driver of idiopathic pulmonary fibrosis. J Clin Invest 2021; 131:143226. [PMID: 33463535 DOI: 10.1172/jci143226] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) affects hundreds of thousands of people worldwide, reducing their quality of life and leading to death from respiratory failure within years of diagnosis. Treatment options remain limited, with only two FDA-approved drugs available in the United States, neither of which reverse the lung damage caused by the disease or prolong the life of individuals with IPF. The only cure for IPF is lung transplantation. In this review, we discuss recent major advances in our understanding of the role of the immune system in IPF that have revealed immune dysregulation as a critical driver of disease pathophysiology. We also highlight ways in which an improved understanding of the immune system's role in IPF may enable the development of targeted immunomodulatory therapies that successfully halt or potentially even reverse lung fibrosis.
Collapse
Affiliation(s)
- Kevin Shenderov
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samuel L Collins
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathan D Powell
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maureen R Horton
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
66
|
Role of various imbalances centered on alveolar epithelial cell/fibroblast apoptosis imbalance in the pathogenesis of idiopathic pulmonary fibrosis. Chin Med J (Engl) 2021; 134:261-274. [PMID: 33522725 PMCID: PMC7846426 DOI: 10.1097/cm9.0000000000001288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There have been recent extensive studies and rapid advancement on the pathogenesis underlying idiopathic pulmonary fibrosis (IPF), and intricate pathogenesis of IPF has been suggested. The purpose of this study was to clarify the logical relationship between these mechanisms. An extensive search was undertaken of the PubMed using the following keywords: “etiology,” “pathogenesis,” “alveolar epithelial cell (AEC),” “fibroblast,” “lymphocyte,” “macrophage,” “epigenomics,” “histone,” acetylation,” “methylation,” “endoplasmic reticulum stress,” “mitochondrial dysfunction,” “telomerase,” “proteases,” “plasminogen,” “epithelial-mesenchymal transition,” “oxidative stress,” “inflammation,” “apoptosis,” and “idiopathic pulmonary fibrosis.” This search covered relevant research articles published up to April 30, 2020. Original articles, reviews, and other articles were searched and reviewed for content; 240 highly relevant studies were obtained after screening. IPF is likely the result of complex interactions between environmental, genetic, and epigenetic factors: environmental exposures affect epigenetic marks; epigenetic processes translate environmental exposures into the regulation of chromatin; epigenetic processes shape gene expression profiles; in turn, an individual's genetic background determines epigenetic marks; finally, these genetic and epigenetic factors act in concert to dysregulate gene expression in IPF lung tissue. The pathogenesis of IPF involves various imbalances including endoplasmic reticulum, telomere length homeostasis, mitochondrial dysfunction, oxidant/antioxidant imbalance, Th1/Th2 imbalance, M1–M2 polarization of macrophages, protease/antiprotease imbalance, and plasminogen activation/inhibition imbalance. These affect each other, promote each other, and ultimately promote AEC/fibroblast apoptosis imbalance directly or indirectly. Excessive AEC apoptosis and impaired apoptosis of fibroblasts contribute to fibrosis. IPF is likely the result of complex interactions between environmental, genetic, and epigenetic factors. The pathogenesis of IPF involves various imbalances centered on AEC/fibroblast apoptosis imbalance.
Collapse
|
67
|
Kadry R, Newsome AS, Somanath PR. Pharmacological Inhibition of MMP3 as a Potential Therapeutic Option for COVID-19 Associated Acute Respiratory Distress Syndrome. Infect Disord Drug Targets 2021; 21:e170721187996. [PMID: 33200717 PMCID: PMC8551813 DOI: 10.2174/1871526520666201116100310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 01/08/2023]
Abstract
The high mortality of coronavirus disease 2019 (COVID-19) patients is due to their progression to cytokine-associated organ injuries, primarily the acute respiratory distress syndrome (ARDS). The uncertainties in the molecular mechanisms leading to the switch from the early virus infection to the advanced stage ARDS is a major gridlock in therapeutic development to reduce mortality. Previous studies in our laboratory have identified matrix metalloprotease-3 (MMP3) as an important mediator of bacterial lipopolysaccharide (LPS)-induced ARDS, particularly in the exudative phase. Our studies have also reported elevated plasma MMP3 activity levels in the ARDS patients and that inhibition of MMP3 can reduce the severity of LPS-induced ARDS in mice. Given these observations, targeting MMP3 could be a potential option to treat COVID-19 patients with ARDS, and measurement of MMP3 activity in the plasma may serve as a biomarker for the early detection of ARDS in COVID-19 patients.
Collapse
Affiliation(s)
- Rana Kadry
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA30912, Georgia
| | - Andrea Sikora Newsome
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA30912, Georgia
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA30912, Georgia
- Georgia Cancer Center, Vascular Biology Center and Department of Medicine, Augusta University, Augusta, GA30912, Georgia
| |
Collapse
|
68
|
Alharthi A, Verma A, Sabbineni H, Adil MS, Somanath PR. Distinct effects of pharmacological inhibition of stromelysin1 on endothelial-to-mesenchymal transition and myofibroblast differentiation. J Cell Physiol 2020; 236:5147-5161. [PMID: 33319933 DOI: 10.1002/jcp.30221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Endothelial-to-mesenchymal transition (EndMT) and fibroblast-to-myofibroblast (FibroMF) differentiation are frequently reported in organ fibrosis. Stromelysin1, a matrix metalloprotease-3 (MMP3) has been indicated in vascular pathologies and organ injuries that often lead to fibrosis. In the current study, we investigated the role of stromelysin1 in EndMT and FibroMF differentiation, which is currently unknown. In our results, whereas TGFβ2 treatment of endothelial cells (ECs) induced EndMT associated with increased expression of stromelysin1 and mesenchymal markers such as α-smooth muscle actin (αSMA), N-cadherin, and activin linked kinase-5 (ALK5), inhibition of stromelysin1 blunted TGFβ2-induced EndMT. In contrast, treatment of NIH-3T3 fibroblasts with TGFβ1 promoted FibroMF differentiation accompanied by increased expression of αSMA, N-cadherin, and ALK5. Intriguingly, stromelysin1 inhibition in TGFβ1-stimulated myofibroblasts further exacerbated fibroproliferation with increased FibroMF marker expression. Gene Expression Omnibus (GEO) data analysis indicated increased stromelysin1 expression associated with EndMT and decreased stromelysin1 expression in human pulmonary fibrosis fibroblasts. In conclusion, our study has identified that EndMT and FibroMF differentiation are reciprocally regulated by stromelysin1.
Collapse
Affiliation(s)
- Ahlam Alharthi
- Department of Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Arti Verma
- Department of Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Harika Sabbineni
- Department of Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Mir S Adil
- Department of Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Payaningal R Somanath
- Department of Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, Georgia, USA.,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
69
|
Connolly E, Morgan DJ, Franklin M, Simpson A, Shah R, Brand OJ, Jagger CP, Casulli J, Mohamed K, Grabiec AM, Hussell T. Neurturin regulates the lung-resident macrophage inflammatory response to viral infection. Life Sci Alliance 2020; 3:3/12/e202000780. [PMID: 33020210 PMCID: PMC7556752 DOI: 10.26508/lsa.202000780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 11/24/2022] Open
Abstract
The neurotrophic factor RET is induced in lung macrophages by viral triggers and activation via its ligand neurturin regulates matrix proteins and cytokines that shape the inflammatory response. Lung-resident macrophages are crucial to the maintenance of health and in the defence against lower respiratory tract infections. Macrophages adapt to local environmental cues that drive their appropriate function; however, this is often dysregulated in many inflammatory lung pathologies. In mucosal tissues, neuro-immune interactions enable quick and efficient inflammatory responses to pathogenic threats. Although a number of factors that influence the antimicrobial response of lung macrophages are known, the role of neuronal factors is less well understood. Here, we show an intricate circuit involving the neurotrophic factor, neurturin (NRTN) on human lung macrophages that dampens pro-inflammatory cytokine release and modulates the type of matrix metalloproteinases produced in response to viral stimuli. This circuit involves type 1 interferon–induced up-regulation of RET that when combined with the glial cell line-derived neurotrophic factor (GDNF) receptor α2 (GFRα2) allows binding to epithelial-derived NRTN. Our research highlights a non-neuronal immunomodulatory role for NRTN and a novel process leading to a specific antimicrobial immune response by human lung-resident macrophages.
Collapse
Affiliation(s)
- Emma Connolly
- The Lydia Becker Institute for Immunology and Inflammation, The University of Manchester, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research, The University of Manchester, Manchester, UK
| | - David J Morgan
- The Lydia Becker Institute for Immunology and Inflammation, The University of Manchester, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research, The University of Manchester, Manchester, UK
| | - Miriam Franklin
- The Lydia Becker Institute for Immunology and Inflammation, The University of Manchester, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research, The University of Manchester, Manchester, UK
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Rajesh Shah
- Department of Thoracic Surgery, University Hospital of South Manchester, Manchester, UK
| | - Oliver J Brand
- The Lydia Becker Institute for Immunology and Inflammation, The University of Manchester, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research, The University of Manchester, Manchester, UK
| | - Christopher P Jagger
- The Lydia Becker Institute for Immunology and Inflammation, The University of Manchester, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research, The University of Manchester, Manchester, UK
| | - Joshua Casulli
- The Lydia Becker Institute for Immunology and Inflammation, The University of Manchester, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research, The University of Manchester, Manchester, UK
| | - Karishma Mohamed
- The Lydia Becker Institute for Immunology and Inflammation, The University of Manchester, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research, The University of Manchester, Manchester, UK
| | - Aleksander M Grabiec
- Manchester Collaborative Centre for Inflammation Research, The University of Manchester, Manchester, UK
| | - Tracy Hussell
- The Lydia Becker Institute for Immunology and Inflammation, The University of Manchester, Manchester, UK .,Manchester Collaborative Centre for Inflammation Research, The University of Manchester, Manchester, UK
| |
Collapse
|
70
|
Elevated S100A9 expression in chronic rhinosinusitis coincides with elevated MMP production and proliferation in vitro. Sci Rep 2020; 10:16350. [PMID: 33005006 PMCID: PMC7530678 DOI: 10.1038/s41598-020-73480-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/17/2020] [Indexed: 12/28/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a common condition associated with inflammation and tissue remodeling of the nose and paranasal sinuses, frequently occurring with nasal polyps and allergies. Here we investigate inflammation and the protease profile in nasal tissues and plasma from control non-CRS patients and CRS patients. Gene expression for several cytokines, proteases, and antiproteases was quantified in nasal tissue from non-CRS and CRS subjects with nasal polyps. Elevated expression of S100A9, IL1A, MMP3, MMP7, MMP11, MMP25, MMP28, and CTSK was observed in tissue from CRS subjects with nasal polyps compared to control tissue. Tissue protein analysis confirmed elevated levels of these targets compared to controls, and increased MMP3 and MMP7 observed in CRS subjects with nasal polyps compared to CRS subjects without polyps. Plasma concentrations of MMP3 and MMP7 were elevated in the CRS groups compared to controls. The nasal cell line, CCL-30, was exposed to S100A9 protein, resulting in increased MMP3, MMP7, and CTSK gene expression and elevated proliferation. Silencing MMP3 significantly reduced S100A9-mediated cell proliferation. Therefore, the elevated expression of S100A9 and MMPs are observed in CRS nasal tissue and S100A9 stimulated MMP3 responses to contribute to elevated nasal cell proliferation.
Collapse
|
71
|
Aschner Y, Nelson M, Brenner M, Roybal H, Beke K, Meador C, Foster D, Correll KA, Reynolds PR, Anderson K, Redente EF, Matsuda J, Riches DWH, Groshong SD, Pozzi A, Sap J, Wang Q, Rajshankar D, McCulloch CAG, Zemans RL, Downey GP. Protein tyrosine phosphatase-α amplifies transforming growth factor-β-dependent profibrotic signaling in lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2020; 319:L294-L311. [PMID: 32491951 PMCID: PMC7473933 DOI: 10.1152/ajplung.00235.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 04/06/2020] [Accepted: 04/25/2020] [Indexed: 01/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, often fatal, fibrosing lung disease for which treatment remains suboptimal. Fibrogenic cytokines, including transforming growth factor-β (TGF-β), are central to its pathogenesis. Protein tyrosine phosphatase-α (PTPα) has emerged as a key regulator of fibrogenic signaling in fibroblasts. We have reported that mice globally deficient in PTPα (Ptpra-/-) were protected from experimental pulmonary fibrosis, in part via alterations in TGF-β signaling. The goal of this study was to determine the lung cell types and mechanisms by which PTPα controls fibrogenic pathways and whether these pathways are relevant to human disease. Immunohistochemical analysis of lungs from patients with IPF revealed that PTPα was highly expressed by mesenchymal cells in fibroblastic foci and by airway and alveolar epithelial cells. To determine whether PTPα promotes profibrotic signaling pathways in lung fibroblasts and/or epithelial cells, we generated mice with conditional (floxed) Ptpra alleles (Ptpraf/f). These mice were crossed with Dermo1-Cre or with Sftpc-CreERT2 mice to delete Ptpra in mesenchymal cells and alveolar type II cells, respectively. Dermo1-Cre/Ptpraf/f mice were protected from bleomycin-induced pulmonary fibrosis, whereas Sftpc-CreERT2/Ptpraf/f mice developed pulmonary fibrosis equivalent to controls. Both canonical and noncanonical TGF-β signaling and downstream TGF-β-induced fibrogenic responses were attenuated in isolated Ptpra-/- compared with wild-type fibroblasts. Furthermore, TGF-β-induced tyrosine phosphorylation of TGF-β type II receptor and of PTPα were attenuated in Ptpra-/- compared with wild-type fibroblasts. The phenotype of cells genetically deficient in PTPα was recapitulated with the use of a Src inhibitor. These findings suggest that PTPα amplifies profibrotic TGF-β-dependent pathway signaling in lung fibroblasts.
Collapse
Affiliation(s)
- Yael Aschner
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Meghan Nelson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Matthew Brenner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Helen Roybal
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Keriann Beke
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Carly Meador
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Daniel Foster
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Kelly A Correll
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Paul R Reynolds
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Kelsey Anderson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado
| | - Elizabeth F Redente
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado
- Veterans Affairs Eastern Colorado Heath Care System, Denver, Colorado
| | - Jennifer Matsuda
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
| | - David W H Riches
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado
- Veterans Affairs Eastern Colorado Heath Care System, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado
| | - Steve D Groshong
- Division of Pathology, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Ambra Pozzi
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Veterans Affairs Medical Center, Nashville, Tennessee
| | - Jan Sap
- Epigenetics and Cell Fate, Université Paris, Paris, France
| | - Qin Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Dhaarmini Rajshankar
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Rachel L Zemans
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Gregory P Downey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
- Department of Pediatrics, National Jewish Health, Denver, Colorado
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado
| |
Collapse
|
72
|
Xu J, Xu X, Jiang L, Dua K, Hansbro PM, Liu G. SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis. Respir Res 2020; 21:182. [PMID: 32664949 PMCID: PMC7359430 DOI: 10.1186/s12931-020-01445-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome (SARS)-CoV-2-induced coronavirus disease-2019 (COVID-19) is a pandemic disease that affects > 2.8 million people worldwide, with numbers increasing dramatically daily. However, there is no specific treatment for COVID-19 and much remains unknown about this disease. Angiotensin-converting enzyme (ACE)2 is a cellular receptor of SARS-CoV-2. It is cleaved by type II transmembrane serine protease (TMPRSS)2 and disintegrin and metallopeptidase domain (ADAM)17 to assist viral entry into host cells. Clinically, SARS-CoV-2 infection may result in acute lung injury and lung fibrosis, but the underlying mechanisms of COVID-19 induced lung fibrosis are not fully understood. METHODS The networks of ACE2 and its interacting molecules were identified using bioinformatic methods. Their gene and protein expressions were measured in human epithelial cells after 24 h SARS-CoV-2 infection, or in existing datasets of lung fibrosis patients. RESULTS We confirmed the binding of SARS-CoV-2 and ACE2 by bioinformatic analysis. TMPRSS2, ADAM17, tissue inhibitor of metalloproteinase (TIMP)3, angiotensinogen (AGT), transformation growth factor beta (TGFB1), connective tissue growth factor (CTGF), vascular endothelial growth factor (VEGF) A and fibronectin (FN) were interacted with ACE2, and the mRNA and protein of these molecules were expressed in lung epithelial cells. SARS-CoV-2 infection increased ACE2, TGFB1, CTGF and FN1 mRNA that were drivers of lung fibrosis. These changes were also found in lung tissues from lung fibrosis patients. CONCLUSIONS Therefore, SARS-CoV-2 binds with ACE2 and activates fibrosis-related genes and processes to induce lung fibrosis.
Collapse
Affiliation(s)
- Jincheng Xu
- School of Stomatology, Bengbu Medical College, Bengbu, 2033, Anhui, China
| | - Xiaoyue Xu
- School of Public Health and Community Medicine, Faculty of Medicine, University of New South Wales, Kensington, 233000, NSW, Australia
- Faculty of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Lina Jiang
- School of Stomatology, Bengbu Medical College, Bengbu, 2033, Anhui, China
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Centre for Inflammation, Centenary Institute, Camperdown, NSW, 2050, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Camperdown, NSW, 2050, Australia
- School of Life Science, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute, Camperdown, NSW, 2050, Australia.
- School of Life Science, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
73
|
Makatsariya AD, Slukhanchuk EV, Bitsadze VO, Khizroeva JKH, Tretyakova MV, Tsibizova VI, Elalamy I, Gris JC, Grandone E, Makatsariya NA, Mashkova T. Thrombotic microangiopathy, DIC-syndrome and COVID-19: link with pregnancy prothrombotic state. J Matern Fetal Neonatal Med 2020; 35:2536-2544. [PMID: 32627622 DOI: 10.1080/14767058.2020.1786811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For last months, humanity has faced a formidable unknown enemy, which is presented as a new coronavirus infection. Despite the fact that the causative agents of new diseases appear at a certain frequency and that the virus SARS-CoV-2 has certain common properties with its predecessors, at the moment we are dealing with a new unknown pathogenesis of the development of severe complications in patients with risk factors. A final understanding of pathological process mechanisms is the goal of the scientific community. Summarizing research data from different countries, it became obvious that in severe cases of viral infection, we are dealing with a combination of the systemic inflammatory response syndrome, disseminated intravascular coagulation and thrombotic microangiopathy (TMA). Thrombotic microangiopathy is represented by a group of different conditions in which thrombocytopenia, hemolytic anemia, and multiple organ failure occur. The article reflects the main types of TMA, pathogenesis and principles of therapy. The main participants in the process are described in detail, including the von Willebrand factor and ADAMTS-13. Based on the knowledge available, as well as new data obtained from patients with COVID-19, we proposed possible models for the implementation of conditions such as sepsis, TMA, and DIC in patients with severe new coronavirus infection. Through a deeper understanding of pathogenesis, it will be possible to develop more effective diagnosis and therapy.
Collapse
Affiliation(s)
- A D Makatsariya
- Obstetrics and Gynecology, The First I.M. Sechenov Moscow State Medical University, (Sechenov University), Moscow, Russia
| | - E V Slukhanchuk
- Head of Gynecology Unit, Petrovsky National Research Center of Surgery, Moscow, Russia
| | - V O Bitsadze
- Obstetrics and Gynecology, The First I.M. Sechenov Moscow State Medical University, (Sechenov University), Moscow, Russia
| | - J K H Khizroeva
- Obstetrics and Gynecology, The First I.M. Sechenov Moscow State Medical University, (Sechenov University), Moscow, Russia
| | - M V Tretyakova
- Gynecology Department, «Medical Center» LLC, Moscow, Russia
| | - V I Tsibizova
- Almazov National Medical Research Centre, Saint Petersburg, Health Ministry of Russian Federation, Saint Petersburg, Russia
| | - I Elalamy
- Obstetrics and Gynecology, The First I.M. Sechenov Moscow State Medical University, (Sechenov University), Moscow, Russia.,Director of Hematology Department of Thrombosis Center, Medicine Sorbonne University, Paris, France
| | - J-C Gris
- Obstetrics and Gynecology, The First I.M. Sechenov Moscow State Medical University, (Sechenov University), Moscow, Russia.,University Montpellier, Montpellier, France
| | - E Grandone
- Obstetrics and Gynecology, The First I.M. Sechenov Moscow State Medical University, (Sechenov University), Moscow, Russia.,Hemostasis and Thrombosis Unit, Fondazione I.R.C.C.S. "Casa Sollievo della Sofferenza", Puglia, Italy
| | - N A Makatsariya
- Obstetrics and Gynecology, The First I.M. Sechenov Moscow State Medical University, (Sechenov University), Moscow, Russia
| | - T Mashkova
- Obstetrics and Gynecology, The First I.M. Sechenov Moscow State Medical University, (Sechenov University), Moscow, Russia
| |
Collapse
|
74
|
Roque W, Boni A, Martinez-Manzano J, Romero F. A Tale of Two Proteolytic Machines: Matrix Metalloproteinases and the Ubiquitin-Proteasome System in Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21113878. [PMID: 32485920 PMCID: PMC7312171 DOI: 10.3390/ijms21113878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/19/2023] Open
Abstract
Pulmonary fibrosis is a chronic and progressive lung disease characterized by the activation of fibroblasts and the irreversible deposition of connective tissue matrices that leads to altered pulmonary architecture and physiology. Multiple factors have been implicated in the pathogenesis of lung fibrosis, including genetic and environmental factors that cause abnormal activation of alveolar epithelial cells, leading to the development of complex profibrotic cascade activation and extracellular matrix (ECM) deposition. One class of proteinases that is thought to be important in the regulation of the ECM are the matrix metalloproteinases (MMPs). MMPs can be up- and down- regulated in idiopathic pulmonary fibrosis (IPF) lungs and their role depends upon their location and function. Furthermore, alterations in the ubiquitin-proteosome system (UPS), a major intracellular protein degradation complex, have been described in aging and IPF lungs. UPS alterations could potentially lead to the abnormal accumulation and deposition of ECM. A better understanding of the specific roles MMPs and UPS play in the pathophysiology of pulmonary fibrosis could potentially drive to the development of novel biomarkers that can be as diagnostic and therapeutic targets. In this review, we describe how MMPs and UPS alter ECM composition in IPF lungs and mouse models of pulmonary fibrosis, thereby influencing the alveolar epithelial and mesenchymal cell behavior. Finally, we discuss recent findings that associate MMPs and UPS interplay with the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Willy Roque
- Department of Medicine, Rutgers—New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA; (W.R.); (A.B.)
| | - Alexandra Boni
- Department of Medicine, Rutgers—New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA; (W.R.); (A.B.)
| | - Jose Martinez-Manzano
- Brigham and Women’s Hospital—Pulmonary and Critical Care Medicine, Boston, MA 02115, USA;
| | - Freddy Romero
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care and the Center for Translational Medicine, The Jane & Leonard Korman Respiratory Institute, Philadelphia, PA 19107, USA
- Correspondence:
| |
Collapse
|
75
|
Todd JL, Vinisko R, Liu Y, Neely ML, Overton R, Flaherty KR, Noth I, Newby LK, Lasky JA, Olman MA, Hesslinger C, Leonard TB, Palmer SM, Belperio JA. Circulating matrix metalloproteinases and tissue metalloproteinase inhibitors in patients with idiopathic pulmonary fibrosis in the multicenter IPF-PRO Registry cohort. BMC Pulm Med 2020; 20:64. [PMID: 32171287 PMCID: PMC7071646 DOI: 10.1186/s12890-020-1103-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/28/2020] [Indexed: 11/12/2022] Open
Abstract
Background Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) play important roles in the turnover of extracellular matrix and in the pathogenesis of idiopathic pulmonary fibrosis (IPF). This study aimed to determine the utility of circulating MMPs and TIMPs in distinguishing patients with IPF from controls and to explore associations between MMPs/TIMPs and measures of disease severity in patients with IPF. Methods The IPF cohort (n = 300) came from the IPF-PRO Registry, an observational multicenter registry of patients with IPF that was diagnosed or confirmed at the enrolling center in the past 6 months. Controls (n = 100) without known lung disease came from a population-based registry. Generalized linear models were used to compare circulating concentrations of MMPs 1, 2, 3, 7, 8, 9, 12, and 13 and TIMPs 1, 2, and 4 between patients with IPF and controls, and to investigate associations between circulating levels of these proteins and measures of IPF severity. Multivariable models were fit to identify the MMP/TIMPs that best distinguished patients with IPF from controls. Results All the MMP/TIMPs analyzed were present at significantly higher levels in patients with IPF compared with controls except for TIMP2. Multivariable analyses selected MMP8, MMP9 and TIMP1 as top candidates for distinguishing patients with IPF from controls. Higher concentrations of MMP7, MMP12, MMP13 and TIMP4 were significantly associated with lower diffusion capacity of the lung for carbon monoxide (DLCO) % predicted and higher composite physiologic index (worse disease). MMP9 was associated with the composite physiologic index. No MMP/TIMPs were associated with forced vital capacity % predicted. Conclusions Circulating MMPs and TIMPs were broadly elevated among patients with IPF. Select MMP/TIMPs strongly associated with measures of disease severity. Our results identify potential MMP/TIMP targets for further development as disease-related biomarkers.
Collapse
Affiliation(s)
- Jamie L Todd
- Duke Clinical Research Institute, Durham, NC, USA. .,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Duke University Medical Center, DUMC Box 103002, Durham, NC, 27710, USA.
| | - Richard Vinisko
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Yi Liu
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Megan L Neely
- Duke Clinical Research Institute, Durham, NC, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Duke University Medical Center, DUMC Box 103002, Durham, NC, 27710, USA
| | | | - Kevin R Flaherty
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Imre Noth
- University of Virginia, Charlottesville, VA, USA
| | - L Kristin Newby
- Duke Clinical Research Institute, Durham, NC, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Duke University Medical Center, DUMC Box 103002, Durham, NC, 27710, USA.,Duke Clinical & Translational Science Institute, Durham, NC, USA
| | - Joseph A Lasky
- School of Medicine, Tulane University, New Orleans, LA, USA
| | - Mitchell A Olman
- Department of Inflammation and Immunity and Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - Scott M Palmer
- Duke Clinical Research Institute, Durham, NC, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Duke University Medical Center, DUMC Box 103002, Durham, NC, 27710, USA
| | - John A Belperio
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
76
|
Otoupalova E, Smith S, Cheng G, Thannickal VJ. Oxidative Stress in Pulmonary Fibrosis. Compr Physiol 2020; 10:509-547. [PMID: 32163196 DOI: 10.1002/cphy.c190017] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress has been linked to various disease states as well as physiological aging. The lungs are uniquely exposed to a highly oxidizing environment and have evolved several mechanisms to attenuate oxidative stress. Idiopathic pulmonary fibrosis (IPF) is a progressive age-related disorder that leads to architectural remodeling, impaired gas exchange, respiratory failure, and death. In this article, we discuss cellular sources of oxidant production, and antioxidant defenses, both enzymatic and nonenzymatic. We outline the current understanding of the pathogenesis of IPF and how oxidative stress contributes to fibrosis. Further, we link oxidative stress to the biology of aging that involves DNA damage responses, loss of proteostasis, and mitochondrial dysfunction. We discuss the recent findings on the role of reactive oxygen species (ROS) in specific fibrotic processes such as macrophage polarization and immunosenescence, alveolar epithelial cell apoptosis and senescence, myofibroblast differentiation and senescence, and alterations in the acellular extracellular matrix. Finally, we provide an overview of the current preclinical studies and clinical trials targeting oxidative stress in fibrosis and potential new strategies for future therapeutic interventions. © 2020 American Physiological Society. Compr Physiol 10:509-547, 2020.
Collapse
Affiliation(s)
- Eva Otoupalova
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sam Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guangjie Cheng
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
77
|
Matrix Metalloproteinases Retain Soluble FasL-mediated Resistance to Cell Death in Fibrotic-Lung Myofibroblasts. Cells 2020; 9:cells9020411. [PMID: 32053892 PMCID: PMC7072292 DOI: 10.3390/cells9020411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022] Open
Abstract
A prominent feature of obstructed tissue regeneration following injury in general, and fibrotic lung tissue in particular, is fibroblast proliferation and accumulation. The Fas/FasL apoptotic pathway has been shown to be involved in human idiopathic pulmonary fibrosis (IPF) and bleomycin-induced lung fibrosis in rodents. We previously showed that in normal injury repair, myofibroblasts' accumulation is followed by their decline by FasL+ T cell-induced cell death. In pathological lung fibrosis, myofibroblasts resist cell death and accumulate. Like other members of the tumor necrosis factor (TNF) family, membrane-bound FasL can be cleaved from the cell surface to generate a soluble form (sFasL). Metalloproteinases (MMPs) are known to convert the membrane-bound form of FasL to sFasL. MMP-7 knockout (KO) mice were shown to be protected from bleomycin (BLM)-induced lung fibrosis. In this study, we detected increased levels of sFasL in their blood serum, as in the lungs of patients with IPF, and IPF-lung myofibroblast culture medium. In this study, using an MMP-inhibitor, we showed that sFasL is decreased in cultures of IPF-lung myofibroblasts and BLM-treated lung myofibroblasts, and in the blood serum of MMP-7KO mice. Moreover, resistant fibrotic-lung myofibroblasts, from the lungs of humans with IPF and of BLM-treated mice, became susceptible to T-cell induced cell death in a co-culture following MMP-inhibition- vs. control-treatment or BLM-treated MMP-7KO vs. wild-type mice, respectively. sFasL may be an unrecognized mechanism for MMP-7-mediated decreased tissue regeneration following injury and the evolution of lung fibrosis.
Collapse
|
78
|
Matrix metalloproteinase: An upcoming therapeutic approach for idiopathic pulmonary fibrosis. Pharmacol Res 2020; 152:104591. [PMID: 31837390 DOI: 10.1016/j.phrs.2019.104591] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/26/2023]
|
79
|
Selman M, Pardo A. The leading role of epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis. Cell Signal 2020; 66:109482. [DOI: 10.1016/j.cellsig.2019.109482] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
|
80
|
Provenzano M, Andreucci M, Garofalo C, Faga T, Michael A, Ielapi N, Grande R, Sapienza P, de Franciscis S, Mastroroberto P, Serra R. The Association of Matrix Metalloproteinases with Chronic Kidney Disease and Peripheral Vascular Disease: A Light at the End of the Tunnel? Biomolecules 2020; 10:E154. [PMID: 31963569 PMCID: PMC7022805 DOI: 10.3390/biom10010154] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
: Chronic Kidney Disease (CKD) represents a risk factor for fatal and nonfatal cardiovascular (CV) events, including peripheral vascular disease (PVD). This occurs because CKD encompasses several factors that lead to poor prognoses, mainly due to a reduction of the estimated glomerular filtration rate (eGFR), the presence of proteinuria, and the uremic inflammatory milieu. The matrix metalloproteinases (MMPs) are a group of zinc-containing endopeptidases implicated in extracellular matrix (ECM) remodeling, a systemic process in tissue homeostasis. MMPs play an important role in cell differentiation, angiogenesis, inflammation, and vascular damage. Our aim was to review the published evidence regarding the association between MMPs, PVD, and CKD to find possible common pathophysiological mechanisms. MMPs favor ECM deposition through the glomeruli, and start the shedding of cellular junctions and epithelial-mesenchymal transition in the renal tubules. MMP-2 and -9 have also been associated with the presence of systemic vascular damage, since they exert a pro-inflammatory and proatherosclerotic actions. An imbalance of MMPs was found in the context of PVD, where MMPs are predictors of poor prognoses in patients who underwent lower extremity revascularization. MMP circulating levels are increased in both conditions, i.e., that of CKD and PVD. A possible pathogenic link between these conditions is represented by the enhanced production of transforming growth factor-β that worsens vascular calcifications and atherosclerosis and the development of proteinuria in patients with increased levels of MMPs. Proteinuria has been recognized as a marker of systemic vascular damage, and this may explain in part the increase in CV risk that is manifest in patients with CKD and PVD. In conclusion, MMPs can be considered a useful tool by which to stratify CV risk in patients with CKD and PVD. Further studies are needed to investigate the causal-relationships between MMPs, CKD, and PVD, and to optimize their prognostic and predictive (in response to treatments) roles.
Collapse
Affiliation(s)
- Michele Provenzano
- Department of Health Sciences, Renal Unit, “Magna Graecia” University, 88100 Catanzaro, Italy; (M.P.); (M.A.); (T.F.); (A.M.)
| | - Michele Andreucci
- Department of Health Sciences, Renal Unit, “Magna Graecia” University, 88100 Catanzaro, Italy; (M.P.); (M.A.); (T.F.); (A.M.)
| | - Carlo Garofalo
- Division of Nephrology, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy;
| | - Teresa Faga
- Department of Health Sciences, Renal Unit, “Magna Graecia” University, 88100 Catanzaro, Italy; (M.P.); (M.A.); (T.F.); (A.M.)
| | - Ashour Michael
- Department of Health Sciences, Renal Unit, “Magna Graecia” University, 88100 Catanzaro, Italy; (M.P.); (M.A.); (T.F.); (A.M.)
| | - Nicola Ielapi
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy; (N.I.); (S.d.F.)
- Department of Public Health and Infectious Disease, “Sapienza” University of Rome, 00185 Rome, Italy
- Department of Radiology, Vibo Valentia Hospital, 89900 Vibo Valentia, Italy
| | - Raffaele Grande
- Department of Surgery “P. Valdoni”, “Sapienza” University of Rome, 00161 Rome, Italy; (R.G.); (P.S.)
| | - Paolo Sapienza
- Department of Surgery “P. Valdoni”, “Sapienza” University of Rome, 00161 Rome, Italy; (R.G.); (P.S.)
| | - Stefano de Franciscis
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy; (N.I.); (S.d.F.)
- Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Pasquale Mastroroberto
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, 88100 Catanzaro, Italy;
| | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy; (N.I.); (S.d.F.)
- Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy
| |
Collapse
|
81
|
Chuang HM, Chen YS, Harn HJ. The Versatile Role of Matrix Metalloproteinase for the Diverse Results of Fibrosis Treatment. Molecules 2019; 24:molecules24224188. [PMID: 31752262 PMCID: PMC6891433 DOI: 10.3390/molecules24224188] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a type of chronic organ failure, resulting in the excessive secretion of extracellular matrix (ECM). ECM protects wound tissue from infection and additional injury, and is gradually degraded during wound healing. For some unknown reasons, myofibroblasts (the cells that secrete ECM) do not undergo apoptosis; this is associated with the continuous secretion of ECM and reduced ECM degradation even during de novo tissue formation. Thus, matrix metalloproteinases (MMPs) are considered to be a potential target of fibrosis treatment because they are the main groups of ECM-degrading enzymes. However, MMPs participate not only in ECM degradation but also in the development of various biological processes that show the potential to treat diseases such as stroke, cardiovascular diseases, and arthritis. Therefore, treatment involving the targeting of MMPs might impede typical functions. Here, we evaluated the links between these MMP functions and possible detrimental effects of fibrosis treatment, and also considered possible approaches for further applications.
Collapse
Affiliation(s)
- Hong-Meng Chuang
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan; (H.-M.C.); (Y.-S.C.)
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Yu-Shuan Chen
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan; (H.-M.C.); (Y.-S.C.)
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Horng-Jyh Harn
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan; (H.-M.C.); (Y.-S.C.)
- Department of Pathology, Hualien Tzu Chi Hospital & Tzu Chi University, Hualien 970, Taiwan
- Correspondence: ; Tel.: +03-8561825 (ext. 15615)
| |
Collapse
|
82
|
Peripheral blood proteomic profiling of idiopathic pulmonary fibrosis biomarkers in the multicentre IPF-PRO Registry. Respir Res 2019; 20:227. [PMID: 31640794 PMCID: PMC6805665 DOI: 10.1186/s12931-019-1190-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/20/2019] [Indexed: 01/28/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease for which diagnosis and management remain challenging. Defining the circulating proteome in IPF may identify targets for biomarker development. We sought to quantify the circulating proteome in IPF, determine differential protein expression between subjects with IPF and controls, and examine relationships between protein expression and markers of disease severity. Methods This study involved 300 patients with IPF from the IPF-PRO Registry and 100 participants without known lung disease. Plasma collected at enrolment was analysed using aptamer-based proteomics (1305 proteins). Linear regression was used to determine differential protein expression between participants with IPF and controls and associations between protein expression and disease severity measures (percent predicted values for forced vital capacity [FVC] and diffusion capacity of the lung for carbon monoxide [DLco]; composite physiologic index [CPI]). Multivariable models were fit to select proteins that best distinguished IPF from controls. Results Five hundred fifty one proteins had significantly different levels between IPF and controls, of which 47 showed a |log2(fold-change)| > 0.585 (i.e. > 1.5-fold difference). Among the proteins with the greatest difference in levels in patients with IPF versus controls were the glycoproteins thrombospondin 1 and von Willebrand factor and immune-related proteins C-C motif chemokine ligand 17 and bactericidal permeability-increasing protein. Multivariable classification modelling identified nine proteins that, when considered together, distinguished IPF versus control status with high accuracy (area under receiver operating curve = 0.99). Among participants with IPF, 14 proteins were significantly associated with FVC % predicted, 23 with DLco % predicted, 14 with CPI. Four proteins (roundabout homolog-2, spondin-1, polymeric immunoglobulin receptor, intercellular adhesion molecule 5) demonstrated the expected relationship across all three disease severity measures. When considered in pathways analyses, proteins associated with the presence or severity of IPF were enriched in pathways involved in platelet and haemostatic responses, vascular or platelet derived growth factor signalling, immune activation, and extracellular matrix organisation. Conclusions Patients with IPF have a distinct circulating proteome and can be distinguished using a nine-protein profile. Several proteins strongly associate with disease severity. The proteins identified may represent biomarker candidates and implicate pathways for further investigation. Trial registration ClinicalTrials.gov (NCT01915511).
Collapse
|
83
|
Abstract
Fibrosis is the abnormal deposition of extracellular matrix, which can lead to organ dysfunction, morbidity, and death. The disease burden caused by fibrosis is substantial, and there are currently no therapies that can prevent or reverse fibrosis. Metabolic alterations are increasingly recognized as an important pathogenic process that underlies fibrosis across many organ types. As a result, metabolically targeted therapies could become important strategies for fibrosis reduction. Indeed, some of the pathways targeted by antifibrotic drugs in development - such as the activation of transforming growth factor-β and the deposition of extracellular matrix - have metabolic implications. This Review summarizes the evidence to date and describes novel opportunities for the discovery and development of drugs for metabolic reprogramming, their associated challenges, and their utility in reducing fibrosis. Fibrotic therapies are potentially relevant to numerous common diseases such as cirrhosis, non-alcoholic steatohepatitis, chronic renal disease, heart failure, diabetes, idiopathic pulmonary fibrosis, and scleroderma.
Collapse
|
84
|
Vu TN, Chen X, Foda HD, Smaldone GC, Hasaneen NA. Interferon-γ enhances the antifibrotic effects of pirfenidone by attenuating IPF lung fibroblast activation and differentiation. Respir Res 2019; 20:206. [PMID: 31511015 PMCID: PMC6737625 DOI: 10.1186/s12931-019-1171-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 08/23/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) pathogenesis involves multiple pathways, and combined antifibrotic therapy is needed for future IPF therapy. Inhaled interferon-γ (IFN-γ) was recently shown to be safe and without systemic effects in patients with IPF. AIM To examine the in vitro effects of individual and combined treatment with IFN-γ and pirfenidone (PFD) on normal and IPF fibroblast activation and extracellular matrix remodeling after TGF-β1 and PDGF-BB stimulation. METHODS IPF and normal human lung fibroblasts (NHLF) were treated with IFN-γ, PFD or a combination of both drugs in the presence of either TGF-β1 or PDGF-BB. The effects of TGF-β1 and PDGF-BB treatment on cell viability, proliferation, differentiation and migration were examined. The expression of collagen 1, matrix metalloproteinases (MMPs) and tissue inhibitors of MMP (TIMPs) was analyzed using qPCR, Western blotting and gelatin zymography. Total collagen content in conditioned media was also measured using a Sircol assay. RESULTS Compared to that of PFD, the effect of IFN-γ in downregulating normal and IPF lung fibroblast differentiation to myofibroblasts in response to TGF-β1 was more potent. Importantly, the combination of IFN-γ and PFD had a possibly synergistic/additive effect in inhibiting the TGF-β1- and PDGF-BB-induced proliferation, migration and differentiation of normal and IPF lung fibroblasts. Furthermore, both drugs reversed TGF-β1-induced effects on MMP-1, - 2, - 3, - 7, and - 9, while only PFD promoted TIMP-1 and-2 expression and release. CONCLUSIONS Our findings demonstrate that the antifibrotic effects of IFN-γ and PFD on normal and IPF lung fibroblasts are different and complementary. Combination therapy with inhaled IFN-γ and PFD in IPF is promising and should be further explored in IPF clinical trials.
Collapse
Affiliation(s)
- Tuong N Vu
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Stony Brook Medicine, Health Science Center, State University of New York at Stony Brook, HSC T17 Room 040, Stony Brook, NY, 11794-8172, USA
| | - Xuesong Chen
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Stony Brook Medicine, Health Science Center, State University of New York at Stony Brook, HSC T17 Room 040, Stony Brook, NY, 11794-8172, USA
| | - Hussein D Foda
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Stony Brook Medicine, Health Science Center, State University of New York at Stony Brook, HSC T17 Room 040, Stony Brook, NY, 11794-8172, USA.,Department of Medicine and Research, VAMC Northport, Stony Brook, NY, USA
| | - Gerald C Smaldone
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Stony Brook Medicine, Health Science Center, State University of New York at Stony Brook, HSC T17 Room 040, Stony Brook, NY, 11794-8172, USA
| | - Nadia A Hasaneen
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Stony Brook Medicine, Health Science Center, State University of New York at Stony Brook, HSC T17 Room 040, Stony Brook, NY, 11794-8172, USA. .,Department of Medicine and Research, VAMC Northport, Stony Brook, NY, USA.
| |
Collapse
|
85
|
Affiliation(s)
- Tsukasa Oshima
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Katsuhito Fujiu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo.,Department of Advanced Cardiology, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
86
|
Liu G, Cooley MA, Jarnicki AG, Borghuis T, Nair PM, Tjin G, Hsu AC, Haw TJ, Fricker M, Harrison CL, Jones B, Hansbro NG, Wark PA, Horvat JC, Argraves WS, Oliver BG, Knight DA, Burgess JK, Hansbro PM. Fibulin-1c regulates transforming growth factor-β activation in pulmonary tissue fibrosis. JCI Insight 2019; 5:124529. [PMID: 31343988 DOI: 10.1172/jci.insight.124529] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue remodeling/fibrosis is a major feature of all fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). It is underpinned by accumulating extracellular matrix (ECM) proteins. Fibulin-1c (Fbln1c) is a matricellular ECM protein associated with lung fibrosis in both humans and mice, and stabilizes collagen formation. Here we discovered that Fbln1c was increased in the lung tissues of IPF patients and experimental bleomycin-induced pulmonary fibrosis. Fbln1c-deficient (-/-) mice had reduced pulmonary remodeling/fibrosis and improved lung function after bleomycin challenge. Fbln1c interacted with fibronectin, periostin and tenascin-c in collagen deposits following bleomycin challenge. In a novel mechanism of fibrosis Fbln1c bound to latent transforming growth factor (TGF)-β binding protein-1 (LTBP1) to induce TGF-β activation, and mediated downstream Smad3 phosphorylation/signaling. This process increased myofibroblast numbers and collagen deposition. Fbln1 and LTBP1 co-localized in lung tissues from IPF patients. Thus, Fbln1c may be a novel driver of TGF-β-induced fibrosis involving LTBP1 and may be an upstream therapeutic target.
Collapse
Affiliation(s)
- Gang Liu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centenary Institute, Sydney, New South Wales, Australia
| | - Marion A Cooley
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, Georgia, USA
| | - Andrew G Jarnicki
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Theo Borghuis
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Prema M Nair
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Gavin Tjin
- Woolcock Institute of Medical Research, Discipline of Pharmacology, the University of Sydney, Sydney, New South Wales, Australia
| | - Alan C Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Celeste L Harrison
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Bernadette Jones
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centenary Institute, Sydney, New South Wales, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - W Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Woolcock Institute of Medical Research, Discipline of Pharmacology, the University of Sydney, Sydney, New South Wales, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Department of Pathology and Medical Biology, Groningen, Netherlands.,Woolcock Institute of Medical Research, Discipline of Pharmacology, the University of Sydney, Sydney, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centenary Institute, Sydney, New South Wales, Australia
| |
Collapse
|
87
|
Scott LE, Weinberg SH, Lemmon CA. Mechanochemical Signaling of the Extracellular Matrix in Epithelial-Mesenchymal Transition. Front Cell Dev Biol 2019; 7:135. [PMID: 31380370 PMCID: PMC6658819 DOI: 10.3389/fcell.2019.00135] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022] Open
Abstract
Epithelial-Mesenchymal Transition (EMT) is a critical process in embryonic development in which epithelial cells undergo a transdifferentiation into mesenchymal cells. This process is essential for tissue patterning and organization, and it has also been implicated in a wide array of pathologies. While the intracellular signaling pathways that regulate EMT are well-understood, there is increasing evidence that the mechanical properties and composition of the extracellular matrix (ECM) also play a key role in regulating EMT. In turn, EMT drives changes in the mechanics and composition of the ECM, creating a feedback loop that is tightly regulated in healthy tissues, but is often dysregulated in disease. Here we present a review that summarizes our understanding of how ECM mechanics and composition regulate EMT, and how in turn EMT alters ECM mechanics and composition.
Collapse
Affiliation(s)
- Lewis E Scott
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Seth H Weinberg
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Christopher A Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
88
|
Theocharis AD, Manou D, Karamanos NK. The extracellular matrix as a multitasking player in disease. FEBS J 2019; 286:2830-2869. [PMID: 30908868 DOI: 10.1111/febs.14818] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/06/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
Extracellular matrices (ECMs) are highly specialized and dynamic three-dimensional (3D) scaffolds into which cells reside in tissues. ECM is composed of a variety of fibrillar components, such as collagens, fibronectin, and elastin, and non-fibrillar molecules as proteoglycans, hyaluronan, and glycoproteins including matricellular proteins. These macromolecular components are interconnected forming complex networks that actively communicate with cells through binding to cell surface receptors and/or matrix effectors. ECMs exert diverse roles, either providing tissues with structural integrity and mechanical properties essential for tissue functions or regulating cell phenotype and functions to maintain tissue homeostasis. ECM molecular composition and structure vary among tissues, and is markedly modified during normal tissue repair as well as during the progression of various diseases. Actually, abnormal ECM remodeling occurring in pathologic circumstances drives disease progression by regulating cell-matrix interactions. The importance of matrix molecules to normal tissue functions is also highlighted by mutations in matrix genes that give rise to genetic disorders with diverse clinical phenotypes. In this review, we present critical and emerging issues related to matrix assembly in tissues and the multitasking roles for ECM in diseases such as osteoarthritis, fibrosis, cancer, and genetic diseases. The mechanisms underlying the various matrix-based diseases are also discussed. Research focused on the highly dynamic 3D ECM networks will help to discover matrix-related causative abnormalities of diseases as well as novel diagnostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| |
Collapse
|
89
|
Cryptotanshinone Ameliorates Radiation-Induced Lung Injury in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1908416. [PMID: 30915142 PMCID: PMC6402207 DOI: 10.1155/2019/1908416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 02/07/2023]
Abstract
Cryptotanshinone (CTS) was reported to repress a variety of systemic inflammation and alleviate cardiac fibrosis, but it is still unclear whether CTS could prevent radiation-induced lung injury (RILI). Here, we investigated the effects and underlying mechanisms of CTS on a RILI rat model. Our data revealed that CTS could efficiently preserve pulmonary function in RILI rats and reduce early pulmonary inflammation infiltration elicited, along with marked decreased levels of IL-6 and IL-10. Moreover, we found that CTS is superior to prednisone in attenuating collagen deposition and pulmonary fibrosis, in parallel with a marked drop of HYP (a collagen indicator) and α-SMA (a myofibroblast marker). Mechanistically, CTS inhibited profibrotic signals TGF-β1 and NOX-4 expressions, while enhancing the levels of antifibrotic enzyme MMP-1 in lung tissues. It is noteworthy that CTS treatment, in consistent with trichrome staining analysis, exhibited a clear advantage over PND in enhancing MMP-1 levels. However, CTS exhibited little effect on CTGF activation and on COX-2 suppression. Finally, CTS treatment significantly mitigated the radiation-induced activation of CCL3 and its receptor CCR1. In summary, CTS treatment could attenuate RILI, especially pulmonary fibrosis, in rats. The regulation on production and release of inflammatory or fibrotic factors IL-6, IL-10, TGF-β1, NOX-4, and MMP-1, especially MMP-1 and inhibition on CCL3/CCR1 activation, may partly attribute to its attenuating RILI effect.
Collapse
|
90
|
Evaluation of Cyclin D1 as a Discriminatory Immunohistochemical Biomarker for Idiopathic Pulmonary Fibrosis. Appl Immunohistochem Mol Morphol 2019; 27:e11-e15. [DOI: 10.1097/pai.0000000000000692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
91
|
Evolving Genomics of Pulmonary Fibrosis. Respir Med 2019. [DOI: 10.1007/978-3-319-99975-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
92
|
Hewlett JC, Kropski JA, Blackwell TS. Idiopathic pulmonary fibrosis: Epithelial-mesenchymal interactions and emerging therapeutic targets. Matrix Biol 2018; 71-72:112-127. [PMID: 29625182 PMCID: PMC6146058 DOI: 10.1016/j.matbio.2018.03.021] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/11/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic disease of the lung that is marked by progressive decline in pulmonary function and ultimately respiratory failure. Genetic and environmental risk factors have been identified that indicate injury to, and dysfunction of the lung epithelium is central to initiating the pathogenic process. Following injury to the lung epithelium, growth factors, matrikines and extracellular matrix driven signaling together activate a variety of repair pathways that lead to inflammatory cell recruitment, fibroblast proliferation and expansion of the extracellular matrix, culminating in tissue fibrosis. This tissue fibrosis then leads to changes in the biochemical and biomechanical properties of the extracellular matrix, which potentiate profibrotic mechanisms through a "feed-forward cycle." This review provides an overview of the interactions of the pathogenic mechanisms of IPF with a focus on epithelial-mesenchymal crosstalk and the extracellular matrix as a therapeutic target for idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Justin C Hewlett
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Veterans Affairs Medical Center, Nashville, TN, United States.
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Veterans Affairs Medical Center, Nashville, TN, United States; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
93
|
Chambers DM, Moretti L, Zhang JJ, Cooper SW, Chambers DM, Santangelo PJ, Barker TH. LEM domain-containing protein 3 antagonizes TGFβ-SMAD2/3 signaling in a stiffness-dependent manner in both the nucleus and cytosol. J Biol Chem 2018; 293:15867-15886. [PMID: 30108174 DOI: 10.1074/jbc.ra118.003658] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/31/2018] [Indexed: 12/28/2022] Open
Abstract
Transforming growth factor-β (TGFβ) signaling through SMAD2/3 is an important driver of pathological fibrosis in multiple organ systems. TGFβ signaling and extracellular matrix (ECM) stiffness form an unvirtuous pathological circuit in which matrix stiffness drives activation of latent TGFβ, and TGFβ signaling then drives cellular stress and ECM synthesis. Moreover, ECM stiffness also appears to sensitize cells to exogenously activated TGFβ through unknown mechanisms. Here, using human fibroblasts, we explored the effect of ECM stiffness on a putative inner nuclear membrane protein, LEM domain-containing protein 3 (LEMD3), which is physically connected to the cell's actin cytoskeleton and inhibits TGFβ signaling. We showed that LEMD3-SMAD2/3 interactions are inversely correlated with ECM stiffness and TGFβ-driven luciferase activity and that LEMD3 expression is correlated with the mechanical response of the TGFβ-driven luciferase reporter. We found that actin polymerization but not cellular stress or LEMD3-nuclear-cytoplasmic couplings were necessary for LEMD3-SMAD2/3 interactions. Intriguingly, LEMD3 and SMAD2/3 frequently interacted in the cytosol, and we discovered LEMD3 was proteolytically cleaved into protein fragments. We confirmed that a consensus C-terminal LEMD3 fragment binds SMAD2/3 in a stiffness-dependent manner throughout the cell and is sufficient for antagonizing SMAD2/3 signaling. Using human lung biopsies, we observed that these nuclear and cytosolic interactions are also present in tissue and found that fibrotic tissues exhibit locally diminished and cytoplasmically shifted LEMD3-SMAD2/3 interactions, as noted in vitro Our work reveals novel LEMD3 biology and stiffness-dependent regulation of TGFβ by LEMD3, providing a novel target to antagonize pathological TGFβ signaling.
Collapse
Affiliation(s)
- Dwight M Chambers
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332
| | - Leandro Moretti
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, and
| | - Jennifer J Zhang
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332
| | - Spencer W Cooper
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332
| | - Davis M Chambers
- the College of Arts and Sciences, Georgia State University, Atlanta, Georgia 30303
| | - Philip J Santangelo
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332
| | - Thomas H Barker
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, and
| |
Collapse
|
94
|
Vukmirovic M, Kaminski N. Impact of Transcriptomics on Our Understanding of Pulmonary Fibrosis. Front Med (Lausanne) 2018; 5:87. [PMID: 29670881 PMCID: PMC5894436 DOI: 10.3389/fmed.2018.00087] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/20/2018] [Indexed: 12/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal fibrotic lung disease characterized by aberrant remodeling of the lung parenchyma with extensive changes to the phenotypes of all lung resident cells. The introduction of transcriptomics, genome scale profiling of thousands of RNA transcripts, caused a significant inversion in IPF research. Instead of generating hypotheses based on animal models of disease, or biological plausibility, with limited validation in humans, investigators were able to generate hypotheses based on unbiased molecular analysis of human samples and then use animal models of disease to test their hypotheses. In this review, we describe the insights made from transcriptomic analysis of human IPF samples. We describe how transcriptomic studies led to identification of novel genes and pathways involved in the human IPF lung such as: matrix metalloproteinases, WNT pathway, epithelial genes, role of microRNAs among others, as well as conceptual insights such as the involvement of developmental pathways and deep shifts in epithelial and fibroblast phenotypes. The impact of lung and transcriptomic studies on disease classification, endotype discovery, and reproducible biomarkers is also described in detail. Despite these impressive achievements, the impact of transcriptomic studies has been limited because they analyzed bulk tissue and did not address the cellular and spatial heterogeneity of the IPF lung. We discuss new emerging technologies and applications, such as single-cell RNAseq and microenvironment analysis that may address cellular and spatial heterogeneity. We end by making the point that most current tissue collections and resources are not amenable to analysis using the novel technologies. To take advantage of the new opportunities, we need new efforts of sample collections, this time focused on access to all the microenvironments and cells in the IPF lung.
Collapse
Affiliation(s)
- Milica Vukmirovic
- Section of Pulmonary, Critical Care and Sleep Medicine, Precision Pulmonary Medicine Center (P2MED), Yale University School of Medicine, New Haven, CT, United States
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Precision Pulmonary Medicine Center (P2MED), Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
95
|
Afratis NA, Klepfish M, Karamanos NK, Sagi I. The apparent competitive action of ECM proteases and cross-linking enzymes during fibrosis: Applications to drug discovery. Adv Drug Deliv Rev 2018; 129:4-15. [PMID: 29627371 DOI: 10.1016/j.addr.2018.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/11/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
Progressive loss of organ function in most organs is associated with fibrosis, a tissue state associated with abnormal matrix buildup. If highly progressive, the fibrotic process eventually leads to organ failure and death. Fibrosis is a basic connective tissue lesion defined by the increase in the amount of fibrillar extracellular matrix (ECM) components in a tissue or organ. In addition, intrinsic changes in important structural cells can induce the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix-producing myofibroblasts. ECM enzymes belonging to the family of matrix metalloproteinases (MMPs) and lysyl oxidases (LOXs) play a crucial role in ECM remodeling and regeneration. MMPs have a catalytic role in degradation of ECM, whereas LOX/LOXLs mediate ECM, especially collagen, cross-linking and stiffening. Importantly, enzymes from both families are elevated during the fibrotic response to tissue injury and its resolution. Yet, the apparent molecular competition or antagonistic activities of these enzyme families during the various stages of fibrosis is often overlooked. In this review, we discuss the diverse roles of MMPs and LOX/LOXL2 in chronic organ fibrosis. Finally, we review contemporary therapeutic strategies for fibrosis treatment, based on neutralization of MMP and LOX activity, as well as the development of novel drug delivery approaches.
Collapse
Affiliation(s)
- Nikolaos A Afratis
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mordehay Klepfish
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26500, Greece
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
96
|
Fibrosis: Lessons from OMICS analyses of the human lung. Matrix Biol 2018; 68-69:422-434. [PMID: 29567123 DOI: 10.1016/j.matbio.2018.03.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 12/30/2022]
Abstract
In recent decades there has been a significant shift in our understanding of idiopathic pulmonary fibrosis (IPF), a progressive and lethal disorder. While initially much of the mechanistic understanding was derived from hypotheses generated from animal models of disease, in recent decades new insights derived from humans with IPF have taken precedence. This is mainly because of the establishment of large collections of IPF lung tissues and patient cohorts, and the emergence of high throughput profiling technologies collectively termed 'omics' technologies based on their shared suffix. In this review we describe impacts of 'omics' analyses of human IPF samples on our understanding of the disease. In particular, we discuss the results of genomics and transcriptomics studies, as well as proteomics, epigenomics and metabolomics. We then describe how these findings can be integrated in a modified paradigm of human idiopathic pulmonary fibrosis, that introduces the 'hallmarks of aging' as a central theme in the IPF lung. This allows resolution of all the disparate cellular and molecular features in IPF, from the central role of epithelial cells, through the dramatic phenotypic alterations observed in fibroblasts and the numerous aberrations that inflammatory cells exhibit. We end with reiterating a call for renewed efforts to collect and analyze carefully characterized human tissues, in ways that would facilitate implementation of novel technologies for high resolution single cell omics profiling.
Collapse
|
97
|
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a devastating chronic, progressive and irreversible disease that remains refractory to current therapies. Matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the development of pulmonary fibrosis since decades. Coagulation signalling deregulation, which influences several key inflammatory and fibro-proliferative responses, is also essential in IPF pathogenesis, and a growing body of evidence indicates that Protease-Activated Receptors (PARs) inhibition in IPF may be promising for future evaluation. Therefore, proteases and anti-proteases aroused great biomedical interest over the past years, owing to the identification of their potential roles in lung fibrosis. During these last decades, numerous other proteases and anti-proteases have been studied in lung fibrosis, such as matriptase, Human airway trypsin-like protease (HAT), Hepatocyte growth factor activator (HGFA)/HGFA activator inhibitor (HAI) system, Plasminogen activator inhibitor (PAI)-1, Protease nexine (PN)-1, cathepsins, calpains, and cystatin C. Herein, we provide a general overview of the proteases and anti-proteases unbalance during lung fibrogenesis and explore potential therapeutics for IPF.
Collapse
|
98
|
Afratis NA, Selman M, Pardo A, Sagi I. Emerging insights into the role of matrix metalloproteases as therapeutic targets in fibrosis. Matrix Biol 2018; 68-69:167-179. [PMID: 29428229 DOI: 10.1016/j.matbio.2018.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 01/18/2023]
Abstract
Fibrosis is the extensive accumulation and buildup of extracellular matrix components, especially fibrillar collagens, during wound healing in response to tissue injury. During all individual stages of fibrosis ECM proteases, mainly matrix metalloproteinases, have diverse roles. The functional role of MMPs and their endogenous inhibitors are differentiated among their family members, and according to the different stages of fibrosis. MMPs levels are elevated in several inflammatory and non-inflammatory fibrotic tissues contributing to the development, progression or resolution of the disease, whereas in other tissues their expression levels can be diminished or be stable to the baseline. The biological roles of MMPs during fibrosis are not fully resolved, but they seem to differ according the specific member of the family, the affected tissue and the stage of the fibrotic response. Remarkably, some members of the family exhibit profibrotic actions while other function as antifibrotic molecules. Diverse animal models indicate that MMPs are contributing in processes related to immunity, tissue repair and ECM turnover, providing significant impact on mechanisms related to fibrosis. For that purpose, these proteases are considered as pharmacological targets and new biological drugs have been developed in order to treat fibrosis.
Collapse
Affiliation(s)
- Nikolaos A Afratis
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, CDMX 14080, Mexico
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónma de México, CDMX 04510, Mexico
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
99
|
Roach KM, Sutcliffe A, Matthews L, Elliott G, Newby C, Amrani Y, Bradding P. A model of human lung fibrogenesis for the assessment of anti-fibrotic strategies in idiopathic pulmonary fibrosis. Sci Rep 2018; 8:342. [PMID: 29321510 PMCID: PMC5762721 DOI: 10.1038/s41598-017-18555-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 12/14/2017] [Indexed: 11/29/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with limited therapeutic options. KCa3.1 ion channels play a critical role in TGFβ1-dependent pro-fibrotic responses in human lung myofibroblasts. We aimed to develop a human lung parenchymal model of fibrogenesis and test the efficacy of the selective KCa3.1 blocker senicapoc. 2 mm3 pieces of human lung parenchyma were cultured for 7 days in DMEM ± TGFβ1 (10 ng/ml) and pro-fibrotic pathways examined by RT-PCR, immunohistochemistry and collagen secretion. Following 7 days of culture with TGFβ1, 41 IPF- and fibrosis-associated genes were significantly upregulated. Immunohistochemical staining demonstrated increased expression of ECM proteins and fibroblast-specific protein after TGFβ1-stimulation. Collagen secretion was significantly increased following TGFβ1-stimulation. These pro-fibrotic responses were attenuated by senicapoc, but not by dexamethasone. This 7 day ex vivo model of human lung fibrogenesis recapitulates pro-fibrotic events evident in IPF and is sensitive to KCa3.1 channel inhibition. By maintaining the complex cell-cell and cell-matrix interactions of human tissue, and removing cross-species heterogeneity, this model may better predict drug efficacy in clinical trials and accelerate drug development in IPF. KCa3.1 channels are a promising target for the treatment of IPF.
Collapse
Affiliation(s)
- Katy M Roach
- Institute for Lung Health, Respiratory Medicine, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.
| | - Amanda Sutcliffe
- Institute for Lung Health, Respiratory Medicine, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Laura Matthews
- Institute for Lung Health, Respiratory Medicine, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Gill Elliott
- Institute for Lung Health, Respiratory Medicine, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Chris Newby
- Institute for Lung Health, Respiratory Medicine, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Yassine Amrani
- Institute for Lung Health, Respiratory Medicine, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Peter Bradding
- Institute for Lung Health, Respiratory Medicine, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| |
Collapse
|
100
|
Abstract
Fibrosis is the excessive accumulation of extracellular matrix that often occurs as a wound healing response to repeated or chronic tissue injury, and may lead to the disruption of organ architecture and loss of function. Although fibrosis was previously thought to be irreversible, recent evidence indicates that certain circumstances permit the resolution of fibrosis when the underlying causes of injury are eradicated. The mechanism of fibrosis resolution encompasses degradation of the fibrotic extracellular matrix as well as elimination of fibrogenic myofibroblasts through their adaptation of various cell fates, including apoptosis, senescence, dedifferentiation, and reprogramming. In this Review, we discuss the present knowledge and gaps in our understanding of how matrix degradation is regulated and how myofibroblast cell fates can be manipulated, areas that may identify potential therapeutic approaches for fibrosis.
Collapse
|