51
|
PGC-1 α, Inflammation, and Oxidative Stress: An Integrative View in Metabolism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1452696. [PMID: 32215168 PMCID: PMC7085407 DOI: 10.1155/2020/1452696] [Citation(s) in RCA: 312] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α is a transcriptional coactivator described as a master regulator of mitochondrial biogenesis and function, including oxidative phosphorylation and reactive oxygen species detoxification. PGC-1α is highly expressed in tissues with high energy demands, and it is clearly associated with the pathogenesis of metabolic syndrome and its principal complications including obesity, type 2 diabetes mellitus, cardiovascular disease, and hepatic steatosis. We herein review the molecular pathways regulated by PGC-1α, which connect oxidative stress and mitochondrial metabolism with inflammatory response and metabolic syndrome. PGC-1α regulates the expression of mitochondrial antioxidant genes, including manganese superoxide dismutase, catalase, peroxiredoxin 3 and 5, uncoupling protein 2, thioredoxin 2, and thioredoxin reductase and thus prevents oxidative injury and mitochondrial dysfunction. Dysregulation of PGC-1α alters redox homeostasis in cells and exacerbates inflammatory response, which is commonly accompanied by metabolic disturbances. During inflammation, low levels of PGC-1α downregulate mitochondrial antioxidant gene expression, induce oxidative stress, and promote nuclear factor kappa B activation. In metabolic syndrome, which is characterized by a chronic low grade of inflammation, PGC-1α dysregulation modifies the metabolic properties of tissues by altering mitochondrial function and promoting reactive oxygen species accumulation. In conclusion, PGC-1α acts as an essential node connecting metabolic regulation, redox control, and inflammatory pathways, and it is an interesting therapeutic target that may have significant benefits for a number of metabolic diseases.
Collapse
|
52
|
Li BX, Zhang H, Liu Y, Li Y, Zheng JJ, Li WX, Feng K, Sun M, Dai SX. Novel pathways of HIV latency reactivation revealed by integrated analysis of transcriptome and target profile of bryostatin. Sci Rep 2020; 10:3511. [PMID: 32103135 PMCID: PMC7044323 DOI: 10.1038/s41598-020-60614-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/12/2020] [Indexed: 01/17/2023] Open
Abstract
The reactivation of HIV latency cell will be necessary to curing HIV infection. Although many latency-reversal agents (LRAs) have proven effective to reactivate the latency cell, there is a lack of any systematic analysis of the molecular targets of these LRAs and related pathways in the context of transcriptome. In this study, we performed an integrated analysis of the target profile of bryostatin and transcriptome of the reactivated CD4+ T cells after exposing to bryostatin. The result showed a distinct gene expression profile between latency cells and bryostatin reactivated cells. We found bryostatin can target multiple types of protein other than only protein kinase C. Functional network analysis of the target profile and differential expressed genes suggested that bryostatin may activate a few novel pathways such as pyrimidine metabolism, purine metabolism and p53 signaling pathway, besides commonly known pathways DNA replication, cell cycle and so on. The results suggest that bryostatin may reactivate the HIV-latent cells through up-regulation of pyrimidine and purine metabolism or through starting the cell-cycle arrest and apoptosis induced by up-regulation of p53 signaling pathway. Our study provides some novel insights into the role of bryostatin and its affected pathways in controlling HIV latency and reactivation.
Collapse
Affiliation(s)
- Bing-Xiang Li
- Institute of Medical Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Kunming, China
| | - Han Zhang
- Institute of Medical Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Kunming, China
| | - Yubin Liu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ya Li
- Yunnan Key Laboratory of Laboratory Medicine, Yunnan Institute of Laboratory Diagnosis, Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Jun-Juan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Wen-Xing Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Kai Feng
- Institute of Medical Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Kunming, China
| | - Ming Sun
- Institute of Medical Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Kunming, China.
| | - Shao-Xing Dai
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
53
|
Carloni S, Balduini W. Simvastatin preconditioning confers neuroprotection against hypoxia-ischemia induced brain damage in neonatal rats via autophagy and silent information regulator 1 (SIRT1) activation. Exp Neurol 2020; 324:113117. [DOI: 10.1016/j.expneurol.2019.113117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/03/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
|
54
|
Zhang F, Peng W, Zhang J, Dong W, Wu J, Wang T, Xie Z. P53 and Parkin co-regulate mitophagy in bone marrow mesenchymal stem cells to promote the repair of early steroid-induced osteonecrosis of the femoral head. Cell Death Dis 2020; 11:42. [PMID: 31959744 PMCID: PMC6971291 DOI: 10.1038/s41419-020-2238-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022]
Abstract
Survival and stemness of bone marrow mesenchymal stem cells (BMSCs) in osteonecrotic areas are especially important in the treatment of early steroid-induced osteonecrosis of the femoral head (ONFH). We had previously used BMSCs to repair early steroid-induced ONFH, but the transplanted BMSCs underwent a great deal of stress-induced apoptosis and aging in the oxidative-stress (OS) microenvironment of the femoral-head necrotic area, which limited their efficacy. Our subsequent studies have shown that under OS, massive accumulation of damaged mitochondria in cells is an important factor leading to stress-induced apoptosis and senescence of BMSCs. The main reason for this accumulation is that OS leads to upregulation of protein 53 (P53), which inhibits mitochondrial translocation of Parkin and activation of Parkin’s E3 ubiquitin ligase, which decreases the level of mitophagy and leads to failure of cells to effectively remove damaged mitochondria. However, P53 downregulation can effectively reverse this process. Therefore, we upregulated Parkin and downregulated P53 in BMSCs. We found that this significantly enhanced mitophagy in BMSCs, decreased the accumulation of damaged mitochondria in cells, effectively resisted stress-induced BMSCs apoptosis and senescence, and improved the effect of BMSCs transplantation on early steroid-induced ONFH.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.,Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Wuxun Peng
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China. .,Guizhou Medical University, Guiyang, Guizhou, 550004, China.
| | - Jian Zhang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.,Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Wentao Dong
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.,Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Jianhua Wu
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.,Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Tao Wang
- Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Zhihong Xie
- Guizhou Medical University, Guiyang, Guizhou, 550004, China
| |
Collapse
|
55
|
Modi J, Menzie-Suderam J, Xu H, Trujillo P, Medley K, Marshall ML, Tao R, Prentice H, Wu JY. Mode of action of granulocyte-colony stimulating factor (G-CSF) as a novel therapy for stroke in a mouse model. J Biomed Sci 2020; 27:19. [PMID: 31907023 PMCID: PMC6943893 DOI: 10.1186/s12929-019-0597-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/27/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The FDA approved drug granulocyte-colony stimulating factor (G-CSF) displays anti-apoptotic and immunomodulatory properties with neurogenesis and angiogenic functions. It is known to demonstrate neuroprotective mechanisms against ischemic global stroke. Autophagy is a method for the degradation of intracellular components and in particular, unrestrained autophagy may lead to uncontrolled digestion of affected neurons as well as neuronal death in cerebral ischemia. Mitochondrial dynamics is vital for the regulation of cell survival and death after cerebral ischemia and an early upstream event in neuronal death is mitochondrial fission. We examined the pro-survival mechanisms of G-CSF against apoptosis resulting from autophagy, mitochondrial stress and endoplasmic reticulum (ER) stress. METHODS Male Swiss Webster mice (20 weeks of age) were subjected to bilateral common carotid artery occlusion (BCAO) for 30 min. After occlusion, mice were injected with G-CSF (50 μg/kg) subcutaneously for 4 days. Behavioral analysis was carried out using the corner test and locomotor activity test before animals were sacrificed on day 4 or day 7. Key proteins in ER stress, autophagy and mitochondrial stress induced apoptosis were analyzed by immunoblotting. RESULTS G-CSF improved neurological deficits and improved behavioral performance on corner and locomotor test. G-CSF binds to G-CSF receptors and its activation leads to upregulation of Akt phosphorylation (P-Akt) which in turn decreases levels of the ER stress sensor, GRP 78 and expression of proteins involved in ER stress apoptosis pathway; ATF6, ATF4, eIF2α, XBP1, Caspase 12 and CHOP. G-CSF treatment significantly decreased Beclin-1, an autophagy marker, and decreased mitochondrial stress biomarkers DRP1 and P53. G-CSF also up-regulated the mitochondrial fusion protein, OPA1 and anti-apoptotic protein Bcl-2 while down-regulating the pro-apoptotic proteins Bax, Bak and PUMA. CONCLUSIONS G-CSF is an endogenous ligand in the CNS that has a dual activity that is beneficial both in reducing acute neuronal degeneration and adding to long-term plasticity after cerebral ischemia. G-CSF treatment exerts neuroprotective effects on damaged neurons through the suppression of the ER stress and mitochondrial stress and maintains cellular homeostasis by decreasing pro-apoptotic proteins and increasing of anti-apoptotic proteins.
Collapse
Affiliation(s)
- Jigar Modi
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
- Center of Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Janet Menzie-Suderam
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Hongyuan Xu
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Paola Trujillo
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Kristen Medley
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | | | - Rui Tao
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Howard Prentice
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA.
- Center of Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA.
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL, 33431, USA.
| | - Jang-Yen Wu
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA.
- Center of Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA.
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL, 33431, USA.
| |
Collapse
|
56
|
Cellular and molecular characterization of multiplex autism in human induced pluripotent stem cell-derived neurons. Mol Autism 2019; 10:51. [PMID: 31893020 PMCID: PMC6936127 DOI: 10.1186/s13229-019-0306-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder with pronounced heritability in the general population. This is largely attributable to the effects of polygenic susceptibility, with inherited liability exhibiting distinct sex differences in phenotypic expression. Attempts to model ASD in human cellular systems have principally involved rare de novo mutations associated with ASD phenocopies. However, by definition, these models are not representative of polygenic liability, which accounts for the vast share of population-attributable risk. Methods Here, we performed what is, to our knowledge, the first attempt to model multiplex autism using patient-derived induced pluripotent stem cells (iPSCs) in a family manifesting incremental degrees of phenotypic expression of inherited liability (absent, intermediate, severe). The family members share an inherited variant of uncertain significance (VUS) in GPD2, a gene that was previously associated with developmental disability but here is insufficient by itself to cause ASD. iPSCs from three first-degree relatives and an unrelated control were differentiated into both cortical excitatory (cExN) and cortical inhibitory (cIN) neurons, and cellular phenotyping and transcriptomic analysis were conducted. Results cExN neurospheres from the two affected individuals were reduced in size, compared to those derived from unaffected related and unrelated individuals. This reduction was, at least in part, due to increased apoptosis of cells from affected individuals upon initiation of cExN neural induction. Likewise, cIN neural progenitor cells from affected individuals exhibited increased apoptosis, compared to both unaffected individuals. Transcriptomic analysis of both cExN and cIN neural progenitor cells revealed distinct molecular signatures associated with affectation, including the misregulation of suites of genes associated with neural development, neuronal function, and behavior, as well as altered expression of ASD risk-associated genes. Conclusions We have provided evidence of morphological, physiological, and transcriptomic signatures of polygenic liability to ASD from an analysis of cellular models derived from a multiplex autism family. ASD is commonly inherited on the basis of additive genetic liability. Therefore, identifying convergent cellular and molecular phenotypes resulting from polygenic and monogenic susceptibility may provide a critical bridge for determining which of the disparate effects of rare highly deleterious mutations might also apply to common autistic syndromes.
Collapse
|
57
|
PARP1 Inhibition Augments UVB-Mediated Mitochondrial Changes-Implications for UV-Induced DNA Repair and Photocarcinogenesis. Cancers (Basel) 2019; 12:cancers12010005. [PMID: 31861350 PMCID: PMC7016756 DOI: 10.3390/cancers12010005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 01/02/2023] Open
Abstract
Keratinocytes provide the first line of defense of the human body against carcinogenic ultraviolet (UV) radiation. Acute and chronic UVB-mediated cellular responses were widely studied. However, little is known about the role of mitochondrial regulation in UVB-induced DNA damage. Here, we show that poly (ADP-ribose) polymerase 1 (PARP1) and ataxia-telangiectasia-mutated (ATM) kinase, two tumor suppressors, are important regulators in mitochondrial alterations induced by UVB. Our study demonstrates that PARP inhibition by ABT-888 upon UVB treatment exacerbated cyclobutane pyrimidine dimers (CPD) accumulation, cell cycle block and cell death and reduced cell proliferation in premalignant skin keratinocytes. Furthermore, in human keratinocytes UVB enhanced oxidative phosphorylation (OXPHOS) and autophagy which were further induced upon PARP inhibition. Immunoblot analysis showed that these cellular responses to PARP inhibition upon UVB irradiation strongly alter the phosphorylation level of ATM, adenosine monophosphate-activated kinase (AMPK), p53, protein kinase B (AKT), and mammalian target of rapamycin (mTOR) proteins. Furthermore, chemical inhibition of ATM led to significant reduction in AMPK, p53, AKT, and mTOR activation suggesting the central role of ATM in the UVB-mediated mitochondrial changes. Our results suggest a possible link between UVB-induced DNA damage and metabolic adaptations of mitochondria and reveal the OXPHOS-regulating role of autophagy which is dependent on key metabolic and DNA damage regulators downstream of PARP1 and ATM.
Collapse
|
58
|
Rodkin S, Khaitin A, Pitinova M, Dzreyan V, Guzenko V, Rudkovskii M, Sharifulina S, Uzdensky A. The Localization of p53 in the Crayfish Mechanoreceptor Neurons and Its Role in Axotomy-Induced Death of Satellite Glial Cells Remote from the Axon Transection Site. J Mol Neurosci 2019; 70:532-541. [PMID: 31823284 DOI: 10.1007/s12031-019-01453-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022]
Abstract
Neuron and glia death after axon transection is regulated by various signaling proteins. Protein p53 is a key regulator of diverse cell functions including stress response, DNA repair, proliferation, and apoptosis. We showed that p53 was overexpressed in crayfish ganglia after bilateral axotomy. In the isolated crayfish stretch receptor, a simple natural neuroglial preparation, which consists of a single mechanoreceptor neuron (MRN) enveloped by glial cells, p53 regulated axotomy-induced death of glial cells remote from the axon transection site. In MRN, p53 immunofluorescence was highest in the nucleolus and in the narrow cytoplasmic ring around the nucleus; its levels in the nucleus and cytoplasm were lower. After axotomy, p53 accumulated in the neuronal perikaryon. Its immunofluorescence also increased in the neuronal and glial nuclei. However, p53 immunofluorescence in the most of neuronal nucleoli disappeared. Axotomy-induced apoptosis of remote glial cells increased in the presence of p53 activators WR-1065 and nutlin-3 but reduced by pifithrin-α that inhibits transcriptional activity of p53. Pifithrin-μ that inhibits p53 effect on mitochondria increased axotomy-induced apoptosis of remote glial cells but reduced their necrosis. Therefore, axotomy-induced apoptosis of remote glial cells was associated with p53 effect on transcription processes, whereas glial necrosis was rather associated with transcription-independent p53 effect on mitochondria. Apparently, the fate of remote glial cells in the axotomized crayfish stretch receptor is determined by the balance between different modalities of p53 activity.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia
| | - Andrey Khaitin
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia
| | - Maria Pitinova
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia
| | - Valentina Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia
| | - Valeria Guzenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia
| | - Mikhail Rudkovskii
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia
| | - Svetlana Sharifulina
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia
| | - Anatoly Uzdensky
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia.
| |
Collapse
|
59
|
Cho B, Kim T, Huh YJ, Lee J, Lee YI. Amelioration of Mitochondrial Quality Control and Proteostasis by Natural Compounds in Parkinson's Disease Models. Int J Mol Sci 2019; 20:ijms20205208. [PMID: 31640129 PMCID: PMC6829248 DOI: 10.3390/ijms20205208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
Parkinson’s disease (PD) is a well-known age-related neurodegenerative disorder associated with longer lifespans and rapidly aging populations. The pathophysiological mechanism is a complex progress involving cellular damage such as mitochondrial dysfunction and protein homeostasis. Age-mediated degenerative neurological disorders can reduce the quality of life and also impose economic burdens. Currently, the common treatment is replacement with levodopa to address low dopamine levels; however, this does not halt the progression of PD and is associated with adverse effects, including dyskinesis. In addition, elderly patients can react negatively to treatment with synthetic neuroprotection agents. Recently, natural compounds such as phytochemicals with fewer side effects have been reported as candidate treatments of age-related neurodegenerative diseases. This review focuses on mitochondrial dysfunction, oxidative stress, hormesis, proteostasis, the ubiquitin‒proteasome system, and autophagy (mitophagy) to explain the neuroprotective effects of using natural products as a therapeutic strategy. We also summarize the efforts to use natural extracts to develop novel pharmacological candidates for treatment of age-related PD.
Collapse
Affiliation(s)
- Bongki Cho
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| | - Taeyun Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| | - Yu-Jin Huh
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| | - Yun-Il Lee
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| |
Collapse
|
60
|
Stott SRW, Randle SJ, Al Rawi S, Rowicka PA, Harris R, Mason B, Xia J, Dalley JW, Barker RA, Laman H. Loss of FBXO7 results in a Parkinson's-like dopaminergic degeneration via an RPL23-MDM2-TP53 pathway. J Pathol 2019; 249:241-254. [PMID: 31144295 PMCID: PMC6790581 DOI: 10.1002/path.5312] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
Abstract
The field of Parkinson's disease research has been impeded by the absence of animal models that clearly phenocopy the features of this neurodegenerative condition. Mutations in FBXO7/PARK15 are associated with both sporadic Parkinson's disease and a severe form of autosomal recessive early-onset Parkinsonism. Here we report that conditional deletion of Fbxo7 in the midbrain dopamine neurons results in an early reduction in striatal dopamine levels, together with a slow, progressive loss of midbrain dopamine neurons and onset of locomotor defects. Unexpectedly, a later compensatory response led to a near-full restoration of dopaminergic fibre innervation in the striatum, but nigral cell loss was irreversible. Mechanistically, there was increased expression in the dopamine neurons of FBXO7-interacting protein, RPL23, which is a sensor of ribosomal stress that inhibits MDM2, the negative regulator of p53. A corresponding activated p53 transcriptional signature biased towards pro-apoptotic genes was also observed. These data suggest that the neuroprotective role of FBXO7 involves its suppression of the RPL23-MDM2-p53 axis that promotes cell death in dopaminergic midbrain neurons. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Simon RW Stott
- John van Geest Centre for Brain RepairUniversity of CambridgeCambridgeUK
| | | | - Sara Al Rawi
- Department of PathologyUniversity of CambridgeCambridgeUK
| | | | - Rebecca Harris
- Department of PathologyUniversity of CambridgeCambridgeUK
| | - Bethany Mason
- Department of PathologyUniversity of CambridgeCambridgeUK
| | - Jing Xia
- Behavioural and Clinical Neuroscience Institute and Department of PsychologyUniversity of CambridgeCambridgeUK
| | - Jeffrey W Dalley
- Behavioural and Clinical Neuroscience Institute and Department of PsychologyUniversity of CambridgeCambridgeUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Roger A Barker
- John van Geest Centre for Brain RepairUniversity of CambridgeCambridgeUK
- Wellcome – MRC Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - Heike Laman
- Department of PathologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
61
|
Chiricosta L, Gugliandolo A, Diomede F, Pizzicannella J, Trubiani O, Iori R, Tardiolo G, Guarnieri S, Bramanti P, Mazzon E. Moringin Pretreatment Inhibits the Expression of Genes Involved in Mitophagy in the Stem Cell of the Human Periodontal Ligament. Molecules 2019; 24:molecules24183217. [PMID: 31487916 PMCID: PMC6767209 DOI: 10.3390/molecules24183217] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
Moringin [4-(α-L-rhamnosyloxy) benzyl isothiocyanate] is an isothiocyanate extracted from Moringa oleifera seeds. It is an antioxidant known for several biological properties useful in the treatment of neurodegenerative diseases. Several neurodegenerative disorders such as Parkinson’s and Alzheimer’s diseases are linked to dysfunctional mitochondria due to the resulting increase of Reactive Oxygen Species (ROS). Stem cell-based therapeutic treatments in neurodegenerative diseases provide an alternative strategy aimed to replace the impaired tissue. In this study were investigated the deregulated genes involved in mitophagy in the human periodontal ligament stem cells pretreated with moringin. The RNA-seq study reveals the downregulation of PINK1, with a fold change (FC) of −0.56, such as the genes involved in the phagophore formation (MAP1LC3B FC: −0.73, GABARAP FC: −0.52, GABARAPL1 FC: −0.70, GABARAPL2 FC: −0.39). The moringin pretreatment downregulates the pro−apoptotic gene BAX (−0.66) and upregulates the anti-apoptotic genes BCL2L12 (FC: 1.35) and MCL1 (FC: 0.36). The downregulation of the most of the caspases (CASP1 FC: −1.43, CASP4 FC: −0.18, CASP6 FC: −1.34, CASP7 FC: −0.46, CASP8 FC: −0.65) implies the inactivation of the apoptotic process. Our results suggest that mitochondrial dysfunctions induced by oxidative stress can be inhibited by moringin pretreatment in human periodontal ligament stem cells (hPDLSCs).
Collapse
Affiliation(s)
- Luigi Chiricosta
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Jacopo Pizzicannella
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Renato Iori
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca Agricoltura e Ambiente (CREA-AA), Via di Corticella 133, 40128 Bologna, Italy.
| | - Giuseppe Tardiolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti-Pescara, 66100 Chieti, Italy.
- Center on Aging Science and Translational Medicine (Ce.S.I.-Me.T.), University "G. d'Annunzio", Chieti-Pescara, 66100 Chieti, Italy.
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
62
|
Endoplasmic reticulum rather than mitochondria plays a major role in the neuronal apoptosis induced by polybrominated diphenyl ether-153. Toxicol Lett 2019; 311:37-48. [DOI: 10.1016/j.toxlet.2019.04.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 11/17/2022]
|
63
|
Granzotto A, Bomba M, Castelli V, Navarra R, Massetti N, d'Aurora M, Onofrj M, Cicalini I, Del Boccio P, Gatta V, Cimini A, Piomelli D, Sensi SL. Inhibition of de novo ceramide biosynthesis affects aging phenotype in an in vitro model of neuronal senescence. Aging (Albany NY) 2019; 11:6336-6357. [PMID: 31467258 PMCID: PMC6738398 DOI: 10.18632/aging.102191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/10/2019] [Indexed: 12/13/2022]
Abstract
Although aging is considered to be an unavoidable event, recent experimental evidence suggests that the process can be counteracted. Intracellular calcium (Ca2+i) dyshomeostasis, mitochondrial dysfunction, oxidative stress, and lipid dysregulation are critical factors that contribute to senescence-related processes. Ceramides, a pleiotropic class of sphingolipids, are important mediators of cellular senescence, but their role in neuronal aging is still largely unexplored. In this study, we investigated the effects of L-cycloserine (L-CS), an inhibitor of thede novoceramide biosynthesis, on the aging phenotype of cortical neurons cultured for 22 days, a setting employed as anin vitromodel of senescence. Our findings indicate that, compared to control cultures, ‘aged’ neurons display dysregulation of [Ca2+]ilevels, mitochondrial dysfunction, increased generation of reactive oxygen species (ROS), altered synaptic activity as well as the activation of neuronal death-related molecules. Treatment with L-CS positively affected the senescent phenotype, a result associated with recovery of neuronal [Ca2+]isignaling and reduction of mitochondrial dysfunction and ROS generation. The results suggest that thede novoceramide biosynthesis represents a critical intermediate in the molecular and functional cascade leading to neuronal senescence and identify ceramide biosynthesis inhibitors as promising pharmacological tools to decrease age-related neuronal dysfunctions.
Collapse
Affiliation(s)
- Alberto Granzotto
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Manuela Bomba
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Riccardo Navarra
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Noemi Massetti
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Marco d'Aurora
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Psychological, Health and Territorial Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Marco Onofrj
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Ilaria Cicalini
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Pharmacy, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Piero Del Boccio
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Pharmacy, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Valentina Gatta
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Psychological, Health and Territorial Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA.,National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology, Biochemistry and Pharmacology, University of California Irvine, Irvine, CA 92697, USA
| | - Stefano L Sensi
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Departments of Neurology and Pharmacology, Institute for Mind Impairments and Neurological Disorders (iMIND), University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
64
|
Radu AG, Torch S, Fauvelle F, Pernet-Gallay K, Lucas A, Blervaque R, Delmas V, Schlattner U, Lafanechère L, Hainaut P, Tricaud N, Pingault V, Bondurand N, Bardeesy N, Larue L, Thibert C, Billaud M. LKB1 specifies neural crest cell fates through pyruvate-alanine cycling. SCIENCE ADVANCES 2019; 5:eaau5106. [PMID: 31328154 PMCID: PMC6636984 DOI: 10.1126/sciadv.aau5106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/10/2019] [Indexed: 05/08/2023]
Abstract
Metabolic processes underlying the development of the neural crest, an embryonic population of multipotent migratory cells, are poorly understood. Here, we report that conditional ablation of the Lkb1 tumor suppressor kinase in mouse neural crest stem cells led to intestinal pseudo-obstruction and hind limb paralysis. This phenotype originated from a postnatal degeneration of the enteric nervous ganglia and from a defective differentiation of Schwann cells. Metabolomic profiling revealed that pyruvate-alanine conversion is enhanced in the absence of Lkb1. Mechanistically, inhibition of alanine transaminases restored glial differentiation in an mTOR-dependent manner, while increased alanine level directly inhibited the glial commitment of neural crest cells. Treatment with the metabolic modulator AICAR suppressed mTOR signaling and prevented Schwann cell and enteric defects of Lkb1 mutant mice. These data uncover a link between pyruvate-alanine cycling and the specification of glial cell fate with potential implications in the understanding of the molecular pathogenesis of neural crest diseases.
Collapse
Affiliation(s)
- Anca G. Radu
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Sakina Torch
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Florence Fauvelle
- Univ. Grenoble Alpes, INSERM, U1216, Grenoble Institute of Neurosciences GIN, 38000 Grenoble, France
- Univ. Grenoble Alpes, INSERM, US17, MRI facility IRMaGe, 38000 Grenoble, France
| | - Karin Pernet-Gallay
- Univ. Grenoble Alpes, INSERM, U1216, Grenoble Institute of Neurosciences GIN, 38000 Grenoble, France
| | - Anthony Lucas
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Renaud Blervaque
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Véronique Delmas
- Institut Curie, Normal and Pathological Development of Melanocytes, CNRS UMR3347; INSERM U1021; Equipe Labellisée–Ligue Nationale Contre le Cancer, Orsay, France
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics, Univ Grenoble Alpes, 38185 Grenoble, France
- INSERM U1055, 38041 Grenoble France
| | - Laurence Lafanechère
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Pierre Hainaut
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Nicolas Tricaud
- INSERM U1051, Institut des Neurosciences de Montpellier (INM), Université de Montpellier, Montpellier, France
| | | | | | - Nabeel Bardeesy
- Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Lionel Larue
- Institut Curie, Normal and Pathological Development of Melanocytes, CNRS UMR3347; INSERM U1021; Equipe Labellisée–Ligue Nationale Contre le Cancer, Orsay, France
| | - Chantal Thibert
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
- Corresponding author. (M.B.); (C.T.)
| | - Marc Billaud
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
- “Clinical and experimental model of lymphomagenesis” Univ Lyon, Université Claude Bernard Lyon1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon France
- Corresponding author. (M.B.); (C.T.)
| |
Collapse
|
65
|
Radovanović V, Vlainić J, Hanžić N, Ukić P, Oršolić N, Baranović G, Jazvinšćak Jembrek M. Neurotoxic Effect of Ethanolic Extract of Propolis in the Presence of Copper Ions is Mediated through Enhanced Production of ROS and Stimulation of caspase-3/7 Activity. Toxins (Basel) 2019; 11:toxins11050273. [PMID: 31096598 PMCID: PMC6563224 DOI: 10.3390/toxins11050273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022] Open
Abstract
Elevated amounts of copper are considered to be contributing factor in the progression of neurodegenerative diseases as they promote oxidative stress conditions. The aim of our study was to examine the effects of ethanolic extract of propolis (EEP) against copper-induced neuronal damage. In cultured P19 neuronal cells, EEP exacerbated copper-provoked neuronal cell death by increasing the generation of reactive oxygen species (ROS) and through the activation of caspase-3/7 activity. EEP augmented copper-induced up-regulation of p53 and Bax mRNA expressions. Neurotoxic effects of EEP were accompanied by a strong induction of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression and decrease in the expression of c-fos mRNA. SB203580, an inhibitor of p38 mitogen-activated protein kinase (MAPK) prevented detrimental effects of EEP, whereas SP600125, an inhibitor of c-Jun N-terminal kinase (JNK), exacerbated EEP-induced neuronal cell death. Quercetin, a polyphenolic nutraceutical, which is usually present in propolis, was also able to exacerbate copper-induced neuronal death. Our data indicates a pro-oxidative and apoptotic mode of EEP action in the presence of excess copper, wherein ROS/p53/p38 interactions play an important role in death cascades. Our study also pointed out that detailed pharmacological and toxicological studies must be carried out for propolis and other dietary supplements in order to fully recognize the potential adverse effects in specific conditions.
Collapse
Affiliation(s)
- Vedrana Radovanović
- Division of Molecular Medicine, Rudjer Boskovic Institute, 100000 Zagreb, Croatia.
| | - Josipa Vlainić
- Division of Molecular Medicine, Rudjer Boskovic Institute, 100000 Zagreb, Croatia.
| | - Nikolina Hanžić
- Division of Molecular Medicine, Rudjer Boskovic Institute, 100000 Zagreb, Croatia.
| | - Petra Ukić
- Department of Animal Physiology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia.
| | - Nada Oršolić
- Department of Animal Physiology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia.
| | - Goran Baranović
- Division of Organic Chemistry and Biochemistry, Rudjer Boskovic Institute, 10000 Zagreb, Croatia.
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Rudjer Boskovic Institute, 100000 Zagreb, Croatia.
- Department of Psychology, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia.
| |
Collapse
|
66
|
Fakouri NB, Hansen TL, Desler C, Anugula S, Rasmussen LJ. From Powerhouse to Perpetrator-Mitochondria in Health and Disease. BIOLOGY 2019; 8:biology8020035. [PMID: 31083572 PMCID: PMC6627154 DOI: 10.3390/biology8020035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/16/2019] [Accepted: 03/05/2019] [Indexed: 12/22/2022]
Abstract
In this review we discuss the interaction between metabolic stress, mitochondrial dysfunction, and genomic instability. Unrepaired DNA damage in the nucleus resulting from excess accumulation of DNA damages and stalled replication can initiate cellular signaling responses that negatively affect metabolism and mitochondrial function. On the other hand, mitochondrial pathologies can also lead to stress in the nucleus, and cause sensitivity to DNA-damaging agents. These are examples of how hallmarks of cancer and aging are connected and influenced by each other to protect humans from disease.
Collapse
Affiliation(s)
- Nima B Fakouri
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Thomas Lau Hansen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Claus Desler
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Sharath Anugula
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
67
|
Pifithrin-Alpha Reduces Methamphetamine Neurotoxicity in Cultured Dopaminergic Neurons. Neurotox Res 2019; 36:347-356. [DOI: 10.1007/s12640-019-00050-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/26/2019] [Accepted: 04/16/2019] [Indexed: 12/28/2022]
|
68
|
Pfister AS. Emerging Role of the Nucleolar Stress Response in Autophagy. Front Cell Neurosci 2019; 13:156. [PMID: 31114481 PMCID: PMC6503120 DOI: 10.3389/fncel.2019.00156] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy represents a conserved self-digestion program, which allows regulated degradation of cellular material. Autophagy is activated by cellular stress, serum starvation and nutrient deprivation. Several autophagic pathways have been uncovered, which either non-selectively or selectively target the cellular cargo for lysosomal degradation. Autophagy engages the coordinated action of various key regulators involved in the steps of autophagosome formation, cargo targeting and lysosomal fusion. While non-selective (macro)autophagy is required for removal of bulk material or recycling of nutrients, selective autophagy mediates specific targeting of damaged organelles or protein aggregates. By proper action of the autophagic machinery, cellular homeostasis is maintained. In contrast, failure of this fundamental process is accompanied by severe pathophysiological conditions. Hallmarks of neuropathological disorders are for instance accumulated, mis-folded protein aggregates and damaged mitochondria. The nucleolus has been recognized as central hub in the cellular stress response. It represents a sub-nuclear organelle essential for ribosome biogenesis and also functions as stress sensor by mediating cell cycle arrest or apoptosis. Thus, proper nucleolar function is mandatory for cell growth and survival. Here, I highlight the emerging role of nucleolar factors in the regulation of autophagy. Moreover, I discuss the nucleolar stress response as a novel signaling pathway in the context of autophagy, health and disease.
Collapse
Affiliation(s)
- Astrid S Pfister
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
69
|
Melo Dos Santos N, de Oliveira GAP, Ramos Rocha M, Pedrote MM, Diniz da Silva Ferretti G, Pereira Rangel L, Morgado-Diaz JA, Silva JL, Rodrigues Pereira Gimba E. Loss of the p53 transactivation domain results in high amyloid aggregation of the Δ40p53 isoform in endometrial carcinoma cells. J Biol Chem 2019; 294:9430-9439. [PMID: 31028175 PMCID: PMC6579457 DOI: 10.1074/jbc.ra119.007566] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/17/2019] [Indexed: 01/18/2023] Open
Abstract
Dysfunctional p53 formation and activity can result from aberrant expression and subcellular localization of distinct p53 isoforms or aggregates. Endometrial carcinoma (EC) is a cancer type in which p53 status is correlated with prognosis, and TP53 mutations are a frequent genetic modification. Here we aimed to evaluate the expression patterns of different p53 isoforms and their contributions to the formation and subcellular localization of p53 amyloid aggregates in both EC and endometrial nontumor cell lines. We found that full-length (fl) p53 and a truncated p53 isoform, Δ40p53, resulting from alternative splicing of exon 2 or alternative initiation of translation at ATG-40, are the predominantly expressed p53 variants in EC cells. However, Δ40p53 was the major p53 isoform in endometrial nontumor cells. Immunofluorescence assays revealed that Δ40p53 is mainly localized to cytoplasmic punctate structures of EC cells, resembling solid-phase structures similar to those found in neurodegenerative pathologies. Using light-scattering kinetics, CD, and transmission EM, we noted that the p53 N-terminal transactivation domain significantly reduces aggregation of the WT p53 DNA-binding domain, confirming the higher aggregation tendency of Δ40p53, which lacks this domain. This is the first report of cytoplasmic Δ40p53 in EC cells being a major component of amyloid aggregates. The differential aggregation properties of p53 isoforms in EC cells may open up new avenues in the development of therapeutic strategies that preferentially target specific p53 isoforms to prevent p53 amyloid aggregate formation.
Collapse
Affiliation(s)
- Nataly Melo Dos Santos
- From the Instituto Nacional de Câncer, Coordenação de Pesquisa, Programa de Oncobiologia Celular e Molecular, Rio de Janeiro, Brazil.,the Universidade Federal Fluminense, Instituto de Humanidades e Saúde, Departamento de Ciências da Natureza, Rio de Janeiro 28895-532, Brazil, and
| | - Guilherme A P de Oliveira
- the Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil.,the Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| | - Murilo Ramos Rocha
- From the Instituto Nacional de Câncer, Coordenação de Pesquisa, Programa de Oncobiologia Celular e Molecular, Rio de Janeiro, Brazil
| | - Murilo M Pedrote
- the Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Giulia Diniz da Silva Ferretti
- the Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Luciana Pereira Rangel
- the Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil.,the Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
| | - José A Morgado-Diaz
- From the Instituto Nacional de Câncer, Coordenação de Pesquisa, Programa de Oncobiologia Celular e Molecular, Rio de Janeiro, Brazil
| | - Jerson L Silva
- the Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil,
| | - Etel Rodrigues Pereira Gimba
- From the Instituto Nacional de Câncer, Coordenação de Pesquisa, Programa de Oncobiologia Celular e Molecular, Rio de Janeiro, Brazil, .,the Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil.,the Universidade Federal Fluminense, Instituto de Humanidades e Saúde, Departamento de Ciências da Natureza, Rio de Janeiro 28895-532, Brazil, and
| |
Collapse
|
70
|
Frisch J, Angenendt A, Hoth M, Prates Roma L, Lis A. STIM-Orai Channels and Reactive Oxygen Species in the Tumor Microenvironment. Cancers (Basel) 2019; 11:E457. [PMID: 30935064 PMCID: PMC6520831 DOI: 10.3390/cancers11040457] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is shaped by cancer and noncancerous cells, the extracellular matrix, soluble factors, and blood vessels. Interactions between the cells, matrix, soluble factors, and blood vessels generate this complex heterogeneous microenvironment. The TME may be metabolically beneficial or unbeneficial for tumor growth, it may favor or not favor a productive immune response against tumor cells, or it may even favor conditions suited to hijacking the immune system for benefitting tumor growth. Soluble factors relevant for TME include oxygen, reactive oxygen species (ROS), ATP, Ca2+, H⁺, growth factors, or cytokines. Ca2+ plays a prominent role in the TME because its concentration is directly linked to cancer cell proliferation, apoptosis, or migration but also to immune cell function. Stromal-interaction molecules (STIM)-activated Orai channels are major Ca2+ entry channels in cancer cells and immune cells, they are upregulated in many tumors, and they are strongly regulated by ROS. Thus, STIM and Orai are interesting candidates to regulate cancer cell fate in the TME. In this review, we summarize the current knowledge about the function of ROS and STIM/Orai in cancer cells; discuss their interdependencies; and propose new hypotheses how TME, ROS, and Orai channels influence each other.
Collapse
Affiliation(s)
- Janina Frisch
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
- Center for Human and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| | - Adrian Angenendt
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| | - Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| | - Leticia Prates Roma
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
- Center for Human and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| | - Annette Lis
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
71
|
Sukumaran NP, Amalraj A, Gopi S. Neuropharmacological and cognitive effects of Bacopa monnieri (L.) Wettst - A review on its mechanistic aspects. Complement Ther Med 2019; 44:68-82. [PMID: 31126578 DOI: 10.1016/j.ctim.2019.03.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
Bacopa monnieri (L.) - (BM) is a perennial, creeping herb which is widely used in traditional ayurvedic medicine as a neural tonic to improve intelligence and memory. Research into the biological effects of this plant has burgeoned in recent years, promising its neuroprotective and memory boosting ability among others. In this context, an extensive literature survey allows an insight into the participation of numerous signaling pathways and oxidative mechanism involved in the mitigation of oxidative stress, along with other indirect mechanisms modulated by bioactive molecules of BM to improve the cognitive action by their synergistic potential and cellular multiplicity mechanism. This multi-faceted review describes the novel mechanisms that underlie the unfounded but long flaunted promises of BM and thereby direct a way to harness this acquired knowledge to develop innovative approaches to manipulate its intracellular pathways.
Collapse
Affiliation(s)
| | - Augustine Amalraj
- R&D Centre, Aurea Biolabs (P) Ltd, Kolenchery, Cochin 682 311, Kerala, India
| | - Sreeraj Gopi
- R&D Centre, Aurea Biolabs (P) Ltd, Kolenchery, Cochin 682 311, Kerala, India.
| |
Collapse
|
72
|
Desler C, Lillenes MS, Tønjum T, Rasmussen LJ. The Role of Mitochondrial Dysfunction in the Progression of Alzheimer's Disease. Curr Med Chem 2019; 25:5578-5587. [PMID: 28618998 PMCID: PMC6446443 DOI: 10.2174/0929867324666170616110111] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 01/02/2017] [Accepted: 01/02/2017] [Indexed: 11/22/2022]
Abstract
The current molecular understanding of Alzheimer's disease (AD) has still not resulted in successful interventions. Mitochondrial dysfunction of the AD brain is currently emerging as a hallmark of this disease. One mitochondrial function often affected in AD is oxidative phosphorylation responsible for ATP production, but also for production of reactive oxygen species (ROS) and for the de novo synthesis of pyrimidines. This paper reviews the role of mitochondrial produced ROS and pyrimidines in the aetiology of AD and their proposed role in oxidative degeneration of macromolecules, synthesis of essential phospholipids and maintenance of mitochondrial viability in the AD brain.
Collapse
Affiliation(s)
- Claus Desler
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Meryl S Lillenes
- Healthy Brain Aging Centre (HBAC), Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Tone Tønjum
- Healthy Brain Aging Centre (HBAC), Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| |
Collapse
|
73
|
Sarni AR, Baroni L. Milk and Parkinson disease: Could galactose be the missing link. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2019. [DOI: 10.3233/mnm-180234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Luciana Baroni
- Primary Care Unit, Northern District, Local Health Unit 2 Marca Trevigiana, Treviso, Italy
| |
Collapse
|
74
|
Kim JI, Lee SY, Park M, Kim SY, Kim JW, Kim SA, Kim BN. Peripheral Mitochondrial DNA Copy Number is Increased in Korean Attention-Deficit Hyperactivity Disorder Patients. Front Psychiatry 2019; 10:506. [PMID: 31379624 PMCID: PMC6656858 DOI: 10.3389/fpsyt.2019.00506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/27/2019] [Indexed: 01/10/2023] Open
Abstract
The involvement of mitochondrial dysfunction in the pathophysiology of attention-deficit hyperactivity disorder (ADHD) has been suggested in several reports. Mitochondrial DNA (mtDNA) copy number as well as methylation of the D-loop region and peroxisome-proliferator-activated receptor γ co-activator-1α (PPARGC1A) are considered biomarkers for mitochondrial dysfunction. We compared the mtDNA copy number and methylation ratio of the D-loop region and PPARGC1A between ADHD patients and controls and also among ADHD subtypes. The present study included 70 subjects with ADHD and 70 age- and gender-matched healthy controls (HCs). We measured the relative mtDNA copy number in peripheral blood cells using quantitative polymerase chain reaction (qPCR), and the methylation ratio was measured using methylation-specific PCR (MSP) after bisulfite conversion. The relative mtDNA copy number was significantly higher in ADHD patients than in HCs (p = 0.028). The mtDNA methylation ratio of PPARGC1A was decreased in ADHD patients compared with HCs (p = 0.008). After adjusting for IQ level, only the mtDNA copy number differed between the ADHD and HCs (p = 0.01). There was a significant difference in the methylation ratio of PPARGC1A among ADHD subtypes. These results suggest the possible involvement of mitochondrial dysfunction in the pathophysiology of ADHD. Further large cohort studies investigating the correlation between clinical markers and biomarkers of mitochondrial dysfunction are warranted.
Collapse
Affiliation(s)
- Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul, South Korea
| | - Soo-Young Lee
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, South Korea
| | - Mira Park
- Department of Preventive Medicine, School of Medicine, Eulji University, Daejeon, South Korea
| | - Si Yeon Kim
- Department of Preventive Medicine, School of Medicine, Eulji University, Daejeon, South Korea
| | - Jae-Won Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, South Korea
| | - Bung-Nyun Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
75
|
Kim W, Ryu J, Kim JE. CCAR2/DBC1 and Hsp60 Positively Regulate Expression of Survivin in Neuroblastoma Cells. Int J Mol Sci 2019; 20:ijms20010131. [PMID: 30609639 PMCID: PMC6337645 DOI: 10.3390/ijms20010131] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022] Open
Abstract
CCAR2 (cell cycle and apoptosis regulator 2) controls a variety of cellular functions; however, its main function is to regulate cell survival and cell death in response to genotoxic and metabolic stresses. Recently, we reported that CCAR2 protects cells from apoptosis following mitochondrial stress, possibly by co-operating with Hsp60. However, it is not clear how CCAR2 and Hsp60 control cell survival and death. Here, we found that depleting CCAR2 and Hsp60 downregulated expression of survivin, a member of the inhibitor of apoptosis (IAP) family. Survivin expression in neuroblastoma tissues and human cancer cell lines correlated positively with expression of CCAR2 and Hsp60. Furthermore, high expression of CCAR2, Hsp60, and survivin was associated with poor survival of neuroblastoma patients. In summary, both CCAR2 and Hsp60 are required for expression of survivin, and both promote cancer cell survival, at least in part, by maintaining survivin expression. Therefore, CCAR2, Hsp60, and survivin are candidate tumor biomarkers and prognostic markers in neuroblastomas.
Collapse
Affiliation(s)
- Wootae Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Jaewook Ryu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
76
|
Xu J, Jackson CW, Khoury N, Escobar I, Perez-Pinzon MA. Brain SIRT1 Mediates Metabolic Homeostasis and Neuroprotection. Front Endocrinol (Lausanne) 2018; 9:702. [PMID: 30532738 PMCID: PMC6265504 DOI: 10.3389/fendo.2018.00702] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
Sirtuins are evolutionarily conserved proteins that use nicotinamide adenine dinucleotide (NAD+) as a co-substrate in their enzymatic reactions. There are seven proteins (SIRT1-7) in the human sirtuin family, among which SIRT1 is the most conserved and characterized. SIRT1 in the brain, in particular, within the hypothalamus, plays crucial roles in regulating systemic energy homeostasis and circadian rhythm. Apart from this, SIRT1 has also been found to mediate beneficial effects in neurological diseases. In this review, we will first summarize how SIRT1 in the brain relates to obesity, type 2 diabetes, and circadian synchronization, and then we discuss the neuroprotective roles of brain SIRT1 in the context of cerebral ischemia and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jing Xu
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Charlie W. Jackson
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Nathalie Khoury
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Iris Escobar
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Miguel A. Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
77
|
Wang L, Heckmann BL, Yang X, Long H. Osteoblast autophagy in glucocorticoid-induced osteoporosis. J Cell Physiol 2018; 234:3207-3215. [PMID: 30417506 DOI: 10.1002/jcp.27335] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/10/2018] [Indexed: 02/05/2023]
Abstract
Administration of glucocorticoids is an effective strategy for treating many inflammatory and autoimmune diseases. However, glucocorticoid treatment can have adverse effects on bone, leading to glucocorticoid-induced osteoporosis (GIO), the most common form of secondary osteoporosis. Although the pathogenesis of GIO has been studied for decades, over the past ten years the autophagy machinery has been implicated as a novel mechanism. Autophagy in osteoblasts, osteocytes, and osteoclasts plays a critical role in the maintenance of bone homeostasis. Herein, we specifically discuss how osteoblast autophagy responds to glucocorticoids and its role in the development of GIO.
Collapse
Affiliation(s)
- Lufei Wang
- Oral and Craniofacial Biomedicine Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xianrui Yang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Hu Long
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
78
|
Câmara ML, Almeida TB, de Santi F, Rodrigues BM, Cerri PS, Beltrame FL, Sasso-Cerri E. Fluoxetine-induced androgenic failure impairs the seminiferous tubules integrity and increases ubiquitin carboxyl-terminal hydrolase L1 (UCHL1): Possible androgenic control of UCHL1 in germ cell death? Biomed Pharmacother 2018; 109:1126-1139. [PMID: 30551363 DOI: 10.1016/j.biopha.2018.10.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/28/2018] [Accepted: 10/09/2018] [Indexed: 12/21/2022] Open
Abstract
The selective serotonin reuptake inhibitor fluoxetine has been used for the treatment of depression. Although sexual disorders have been reported in male patients, few studies have demonstrated the fluoxetine effect on the reproductive histophysiology, and the target of this antidepressant in testes is unknown. We evaluated the impact of short-term treatment with fluoxetine on the adult rat testes, focusing on steroidogenesis by Leydig cells (LC) and androgen-dependent testicular parameters, including Sertoli cells (SC) and peritubular myoid cells (PMC). Since UCHL1 (ubiquitincarboxyl-terminal hydrolase L1) seems to control spermatogenesis, the immunoexpression of this hydrolase was also analyzed. Adult male rats received 20 mg/kg BW of fluoxetine (FG) or saline (CG) for eleven days. In historesin-embedded testis sections, the seminiferous tubule (ST) and epithelial (Ep) areas, and the LC nuclear diameter (LCnu) were measured. The number of abnormal ST, androgen-dependent ST, SC and PMC was quantified. Testicular β-tubulin levels and peritubular actin immunofluorescence were evaluated. Serum testosterone levels (STL) and steroidogenesis by 17β-HSD6 immunofluorescence were analyzed, and either UCHL1-immunolabeled or TUNEL-positive germ cells were quantified. In FG, abnormal ST frequency increased whereas ST and Ep areas, androgen-dependent ST number, LCnu, 17β-HSD6 activity and STL reduced significantly. TUNEL-positive PMC and SC was related to decreased number of these cells and reduction in peritubular actin and β-tubulin levels. In FG, uncommon UCHL1-immunoexpression was found in spermatocytes and spermatids, and the number of UCHL1-immunolabeled and TUNEL-positive germ cells increased in this group. These findings indicate that LC may be a fluoxetine target in testes, impairing PMC-SC integrity and disturbing spermatogenesis. The increase of UCHL1 in the damaged tubules associated with high incidence of cell death confirms that this hydrolase regulates germ cell death and may be controlled by androgens. The fertility in association with the androgenic status of patients treated with fluoxetine should be carefully evaluated.
Collapse
Affiliation(s)
- Marina L Câmara
- Dental School of São Paulo State University, Department of Morphology, Araraquara, Brazil
| | - Talita B Almeida
- Dental School of São Paulo State University, Department of Morphology, Araraquara, Brazil
| | - Fabiane de Santi
- Federal University of São Paulo, Department of Morphology and Genetics, São Paulo, Brazil
| | - Beatriz M Rodrigues
- Dental School of São Paulo State University, Department of Morphology, Araraquara, Brazil
| | - Paulo S Cerri
- Dental School of São Paulo State University, Department of Morphology, Araraquara, Brazil
| | - Flávia L Beltrame
- Federal University of São Paulo, Department of Morphology and Genetics, São Paulo, Brazil
| | - Estela Sasso-Cerri
- Dental School of São Paulo State University, Department of Morphology, Araraquara, Brazil.
| |
Collapse
|
79
|
Dehghani A, Karatas H, Can A, Erdemli E, Yemisci M, Eren-Kocak E, Dalkara T. Nuclear expansion and pore opening are instant signs of neuronal hypoxia and can identify poorly fixed brains. Sci Rep 2018; 8:14770. [PMID: 30282977 PMCID: PMC6170374 DOI: 10.1038/s41598-018-32878-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/11/2018] [Indexed: 11/09/2022] Open
Abstract
The initial phase of neuronal death is not well characterized. Here, we show that expansion of the nuclear membrane without losing its integrity along with peripheralization of chromatin are immediate signs of neuronal injury. Importantly, these changes can be identified with commonly used nuclear stains and used as markers of poor perfusion-fixation. Although frozen sections are widely used, no markers are available to ensure that the observed changes were not confounded by perfusion-induced hypoxia/ischemia. Moreover, HMGB1 was immediately released and p53 translocated to mitochondria in hypoxic/ischemic neurons, whereas nuclear pore complex inhibitors prevented the nuclear changes, identifying novel neuroprotection targets.
Collapse
Affiliation(s)
- Anisa Dehghani
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, 06100, Turkey
| | - Hulya Karatas
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, 06100, Turkey
| | - Alp Can
- Ankara University, School of Medicine, Department of Histology and Embryology, Ankara, 06100, Turkey
| | - Esra Erdemli
- Ankara University, School of Medicine, Department of Histology and Embryology, Ankara, 06100, Turkey
| | - Muge Yemisci
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, 06100, Turkey.,Hacettepe University, Faculty of Medicine, Department of Neurology, Ankara, 06100, Turkey
| | - Emine Eren-Kocak
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, 06100, Turkey.,Hacettepe University, Faculty of Medicine, Department of Psychiatry, Ankara, 06100, Turkey
| | - Turgay Dalkara
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, 06100, Turkey. .,Hacettepe University, Faculty of Medicine, Department of Neurology, Ankara, 06100, Turkey.
| |
Collapse
|
80
|
Jazvinšćak Jembrek M, Slade N, Hof PR, Šimić G. The interactions of p53 with tau and Aß as potential therapeutic targets for Alzheimer’s disease. Prog Neurobiol 2018; 168:104-127. [DOI: 10.1016/j.pneurobio.2018.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/04/2018] [Accepted: 05/01/2018] [Indexed: 12/24/2022]
|
81
|
Choudhury P, Kumar S, Singh A, Kumar A, Kaur N, Sanyasi S, Chawla S, Goswami C, Goswami L. Hydroxyethyl methacrylate grafted carboxy methyl tamarind (CMT-g-HEMA) polysaccharide based matrix as a suitable scaffold for skin tissue engineering. Carbohydr Polym 2018; 189:87-98. [DOI: 10.1016/j.carbpol.2018.01.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 01/18/2023]
|
82
|
Zearalenone Promotes Cell Proliferation or Causes Cell Death? Toxins (Basel) 2018; 10:toxins10050184. [PMID: 29724047 PMCID: PMC5983240 DOI: 10.3390/toxins10050184] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 02/06/2023] Open
Abstract
Zearalenone (ZEA), one of the mycotoxins, exerts different mechanisms of toxicity in different cell types at different doses. It can not only stimulate cell proliferation but also inhibit cell viability, induce cell apoptosis, and cause cell death. Thus, the objective of this review is to summarize the available mechanisms and current evidence of what is known about the cell proliferation or cell death induced by ZEA. An increasing number of studies have suggested that ZEA promoted cell proliferation attributing to its estrogen-like effects and carcinogenic properties. What’s more, many studies have indicated that ZEA caused cell death via affecting the distribution of the cell cycle, stimulating oxidative stress and inducing apoptosis. In addition, several studies have revealed that autophagy and some antioxidants can reverse the damage or cell death induced by ZEA. This review thoroughly summarized the metabolic process of ZEA and the molecular mechanisms of ZEA stimulating cell proliferation and cell death. It concluded that a low dose of ZEA can exert estrogen-like effects and carcinogenic properties, which can stimulate the proliferation of cells. While, in addition, a high dose of ZEA can cause cell death through inducing cell cycle arrest, oxidative stress, DNA damage, mitochondrial damage, and apoptosis.
Collapse
|
83
|
Gene expression changes in the retina after systemic administration of aldosterone. Jpn J Ophthalmol 2018; 62:499-507. [PMID: 29713904 DOI: 10.1007/s10384-018-0595-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 04/02/2018] [Indexed: 01/24/2023]
Abstract
PURPOSE Retinal ganglion cell (RGC) loss associated with thinning of the retinal nerve fiber layer without elevated intraocular pressure (IOP) occurs after the systemic administration of aldosterone. Since it is important to determine the mechanism of cell death independent of the IOP, we examined gene expression changes in the retina after the systemic administration of aldosterone. METHODS Following subcutaneous implantation of an osmotic minipump into the mid-scapular region of rats, we administered an 80 μg/kg/day dose of aldosterone. Differences in the gene expression in the retina between normal rats and aldosterone-treated rats were investigated using microarrays. Real-time PCR was used to confirm the differential expression. RESULTS Analysis of the microarray data sets revealed the upregulation of 24 genes and the downregulation of 24 genes of key apoptosis-specific genes. Real-time PCR revealed 4 genes (Cdkn1a, Tbox5, Pf4, Vdr) were upregulated while 12 genes (Acvr1c, Asns, Bard1, Card9, Crh, Fcgr1a, Inhba, Kcnh8, Lck, Phlda1, Ptprc, Sh3rf1) were downregulated. CONCLUSIONS Significant increases and decreases were noted in several genes after the systemic administration of aldosterone. Further studies will need to be undertaken in order to definitively clarify the role of these genes in the eyes of animals with normal-tension glaucoma.
Collapse
|
84
|
Ramos-Araque ME, Rodriguez C, Vecino R, Cortijo Garcia E, de Lera Alfonso M, Sanchez Barba M, Colàs-Campàs L, Purroy F, Arenillas JF, Almeida A, Delgado-Esteban M. The Neuronal Ischemic Tolerance Is Conditioned by the Tp53 Arg72Pro Polymorphism. Transl Stroke Res 2018; 10:204-215. [PMID: 29687302 PMCID: PMC6421278 DOI: 10.1007/s12975-018-0631-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023]
Abstract
Cerebral preconditioning (PC) confers endogenous brain protection after stroke. Ischemic stroke patients with a prior transient ischemic attack (TIA) may potentially be in a preconditioned state. Although PC has been associated with the activation of pro-survival signals, the mechanism by which preconditioning confers neuroprotection is not yet fully clarified. Recently, we have described that PC-mediated neuroprotection against ischemic insult is promoted by p53 destabilization, which is mediated by its main regulator MDM2. Moreover, we have previously described that the human Tp53 Arg72Pro single nucleotide polymorphism (SNP) controls susceptibility to ischemia-induced neuronal apoptosis and governs the functional outcome of patients after stroke. Here, we studied the contribution of the human Tp53 Arg72Pro SNP on PC-induced neuroprotection after ischemia. Our results showed that cortical neurons expressing the Pro72-p53 variant exhibited higher PC-mediated neuroprotection as compared with Arg72-p53 neurons. PC prevented ischemia-induced nuclear and cytosolic p53 stabilization in Pro72-p53 neurons. However, PC failed to prevent mitochondrial p53 stabilization, which occurs in Arg72-p53 neurons after ischemia. Furthermore, PC promoted neuroprotection against ischemia by controlling the p53/active caspase-3 pathway in Pro72-p53, but not in Arg72-p53 neurons. Finally, we found that good prognosis associated to TIA within 1 month prior to ischemic stroke was restricted to patients harboring the Pro72 allele. Our findings demonstrate that the Tp53 Arg72Pro SNP controls PC-promoted neuroprotection against a subsequent ischemic insult by modulating mitochondrial p53 stabilization and then modulates TIA-induced ischemic tolerance.
Collapse
Affiliation(s)
- Maria E Ramos-Araque
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain
| | - Cristina Rodriguez
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain
| | - Rebeca Vecino
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain
| | - Elisa Cortijo Garcia
- Stroke Unit, Department of Neurology, University Hospital of Valladolid, University of Valladolid, Valladolid, Spain
| | - Mercedes de Lera Alfonso
- Stroke Unit, Department of Neurology, University Hospital of Valladolid, University of Valladolid, Valladolid, Spain
| | - Mercedes Sanchez Barba
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
- Department of Statistics, University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | | | - Francisco Purroy
- Clinical Neurosciences Group, IRBLleida. UdL, Lleida, Spain
- Stroke Unit, University Hospital Arnau de Vilanova, Lleida, Spain
| | - Juan F Arenillas
- Stroke Unit, Department of Neurology, University Hospital of Valladolid, University of Valladolid, Valladolid, Spain
- Neurovascular Research Laboratory (i3), Instituto de Biología y Genética Molecular, Universidad de Valladolid, CSIC, Valladolid, Spain
| | - Angeles Almeida
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain
| | - Maria Delgado-Esteban
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain.
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain.
| |
Collapse
|
85
|
Zhang Q, Chen ZS, An Y, Liu H, Hou Y, Li W, Lau KF, Koon AC, Ngo JCK, Chan HYE. A peptidylic inhibitor for neutralizing expanded CAG RNA-induced nucleolar stress in polyglutamine diseases. RNA (NEW YORK, N.Y.) 2018; 24:486-498. [PMID: 29295891 PMCID: PMC5855950 DOI: 10.1261/rna.062703.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Polyglutamine (polyQ) diseases are a class of progressive neurodegenerative disorders characterized by the expression of both expanded CAG RNA and misfolded polyQ protein. We previously reported that the direct interaction between expanded CAG RNA and nucleolar protein nucleolin (NCL) impedes preribosomal RNA (pre-rRNA) transcription, and eventually triggers nucleolar stress-induced apoptosis in polyQ diseases. Here, we report that a 21-amino acid peptide, named "beta-structured inhibitor for neurodegenerative diseases" (BIND), effectively suppresses toxicity induced by expanded CAG RNA. When administered to a cell model, BIND potently inhibited cell death induced by expanded CAG RNA with an IC50 value of ∼0.7 µM. We showed that the function of BIND is dependent on Glu2, Lys13, Gly14, Ile18, Glu19, and Phe20. BIND treatment restored the subcellular localization of nucleolar marker protein and the expression level of pre-45s rRNA Through isothermal titration calorimetry analysis, we demonstrated that BIND suppresses nucleolar stress via a direct interaction with CAG RNA in a length-dependent manner. The mean binding constants (KD) of BIND to SCA2CAG22 , SCA2CAG42 , SCA2CAG55 , and SCA2CAG72 RNA are 17.28, 5.60, 4.83, and 0.66 µM, respectively. In vivo, BIND ameliorates retinal degeneration and climbing defects, and extends the lifespan of Drosophila expressing expanded CAG RNA. These effects suggested that BIND can suppress neurodegeneration in diverse polyQ disease models in vivo and in vitro without exerting observable cytotoxic effect. Our results collectively demonstrated that BIND is an effective inhibitor of expanded CAG RNA-induced toxicity in polyQ diseases.
Collapse
Affiliation(s)
- Qian Zhang
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Zhefan Stephen Chen
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Ying An
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Haizhen Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Yonghui Hou
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Wen Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Alex Chun Koon
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| |
Collapse
|
86
|
Redox control in cancer development and progression. Mol Aspects Med 2018; 63:88-98. [PMID: 29501614 DOI: 10.1016/j.mam.2018.02.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 02/07/2023]
Abstract
Cancer is the leading cause of death worldwide after cardiovascular diseases. This has been the case for the last few decades despite there being an increase in the number of cancer treatments. One reason for the apparent lack of drug effectiveness might be, at least in part, due to unspecificity for tumors; which often leads to substantial side effects. One way to improve the treatment of cancer is to increase the specificity of the treatment in accordance with the concept of individualized medicine. This will help to prevent further progression of an existing cancer or even to reduce the tumor burden. Alternatively it would be much more attractive and efficient to prevent the development of cancer in the first place. Therefore, it is important to understand the risk factors and the mechanisms of carcinogenesis in detail. One such risk factor, often associated with tumorigenesis and tumor progression, is an increased abundance of reactive oxygen species (ROS) arising from an imbalance of ROS-producing and -eliminating components. A surplus of ROS can induce oxidative damage of macromolecules including proteins, lipids and DNA. In contrast, ROS are essential for an adequate signal transduction and are known to regulate crucial cellular processes like cellular quiescence, differentiation and even apoptosis. Therefore, regulated ROS-formation at physiological levels can inhibit tumor formation and progression. With this review we provide an overview on the current knowledge of redox control in cancer development and progression.
Collapse
|
87
|
Neuroprotective effects of pifithrin-α against traumatic brain injury in the striatum through suppression of neuroinflammation, oxidative stress, autophagy, and apoptosis. Sci Rep 2018; 8:2368. [PMID: 29402897 PMCID: PMC5799311 DOI: 10.1038/s41598-018-19654-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Abstract
Cortical and hippocampal neuronal damages caused by traumatic brain injury (TBI) are associated with motor and cognitive impairments; however, only little attention paid to the striatal damage. It is known that the p53 tumor-suppressor transcription factor participated in TBI-induced secondary brain damage. We investigated how the p53 inactivator pifithrin (PFT)-α affected TBI-induced striatal neuronal damage at 24 h post-injury. Sprague-Dawley rats subjected to a controlled cortical impact were used as TBI models. We observed that p53 mRNA significantly increased, whereas p53 protein expression was distributed predominantly in neurons but not in glia cells in striatum after TBI. PFT-α improved motor deficit following TBI. PFT-α suppressed TBI-induced striatal glial activation and expression of proinflammatory cytokines. PFT-α alleviated TBI-induced oxidative damage TBI induced autophagy was evidenced by increased protein expression of Beclin-1 and shift of microtubule-associated light chain (LC)3-I to LC3-II, and decreased p62. These effects were reduced by PFT-α. Post-injury PFT-α treatment reduced the number of degenerating (FJC-positive) and apoptotic neurons. Our results suggest that PFT-α may provide neuroprotective effects via p53-dependent or -independent mechanisms depending on the cell type and timing after the TBI and can possibly be developed into a novel therapy to ameliorate TBI-induced neuronal damage.
Collapse
|
88
|
Xu X, Jiang R, Gong P, Liu Q, Chen Y, Hou S, Yuan D, Shi J, Lan Q. Up-regulation of FOS-like antigen 1 contributes to neuronal apoptosis in the cortex of rat following traumatic brain injury. Metab Brain Dis 2018; 33:115-125. [PMID: 29080084 DOI: 10.1007/s11011-017-0129-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/09/2017] [Indexed: 12/29/2022]
Abstract
Neuronal apoptosis is an important process of secondary brain injury which is induced by neurochemical signaling cascades after traumatic brain injury (TBI). Present study was designed to investigate whether FOS-like antigen 1 (Fra-1) is involved in the neuronal apoptosis. Western blot analysis and immunohistochemistry in a rat TBI model revealed a significant increase in the expression of Fra-1 in the ipsilateral brain cortex, which was in parallel with increase in the expression of active caspase-3. With immunofluorescence double-labeling, Fra-1 was colocalized with active caspase-3 and with NeuN, a neuronal marker. In an in vitro cell injury model, H2O2 exposure induced cell apoptosis and reduced cell viability and at the same time, a similar increased expression of active caspase-3, p53 and Fra-1 was found in PC12 cells. Down-regulation of Fra-1 through transfection with Fra-1 siRNA remarkably elevated cell viability, reduced the expression of active caspase-3 and p53, and decreased apoptosis of PC12 cells after H2O2 exposure. Taken together, present findings suggest that Fra-1 may be involved in the induction of neuronal apoptosis through up-regulating p53 signaling pathway and that this action may contribute to the secondary neuropathological process after TBI.
Collapse
Affiliation(s)
- Xide Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Suzhou University, 1055 Sanxiang Road, Suzhou, Jiangsu Province, 215000, China
| | - Rui Jiang
- Department of Neurosurgery, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province, 226001, China
| | - Peipei Gong
- Department of Neurosurgery, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province, 226001, China
| | - Qianqian Liu
- Department of Neurosurgery, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province, 226001, China
| | - Yinan Chen
- Department of Neurosurgery, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province, 226001, China
| | - Shiqiang Hou
- Department of Neurosurgery, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province, 226001, China
| | - Debin Yuan
- Department of Neurosurgery, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province, 226001, China
| | - Jiansheng Shi
- Department of Neurology, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province, 226001, China.
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Suzhou University, 1055 Sanxiang Road, Suzhou, Jiangsu Province, 215000, China.
| |
Collapse
|
89
|
Mettang M, Reichel SN, Lattke M, Palmer A, Abaei A, Rasche V, Huber-Lang M, Baumann B, Wirth T. IKK2/NF-κB signaling protects neurons after traumatic brain injury. FASEB J 2018; 32:1916-1932. [PMID: 29187362 PMCID: PMC5893169 DOI: 10.1096/fj.201700826r] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of death in young adults. After the initial injury, a poorly understood secondary phase, including a strong inflammatory response determines the final outcome of TBI. The inhibitor of NF-κB kinase (IKK)/NF-κB signaling system is the key regulator of inflammation and also critically involved in regulation of neuronal survival and synaptic plasticity. We addressed the neuron-specific function of IKK2/NF-κB signaling pathway in TBI using an experimental model of closed-head injury (CHI) in combination with mouse models allowing conditional regulation of IKK/NF-κB signaling in excitatory forebrain neurons. We found that repression of IKK2/NF-κB signaling in neurons increases the acute posttraumatic mortality rate, worsens the neurological outcome, and promotes neuronal cell death by apoptosis, thus resulting in enhanced proinflammatory gene expression. As a potential mechanism, we identified elevated levels of the proapoptotic mediators Bax and Bad and enhanced expression of stress response genes. This phenotype is also observed when neuronal IKK/NF-κB activity is inhibited just before CHI. In contrast, neuron-specific activation of IKK/NF-κB signaling does not alter the TBI outcome. Thus, this study demonstrates that physiological neuronal IKK/NF-κB signaling is necessary and sufficient to protect neurons from trauma consequences.-Mettang, M., Reichel, S. N., Lattke, M., Palmer, A., Abaei, A., Rasche, V., Huber-Lang, M., Baumann, B., Wirth, T. IKK2/NF-κB signaling protects neurons after traumatic brain injury.
Collapse
Affiliation(s)
- Melanie Mettang
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| | | | - Michael Lattke
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany.,Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Annette Palmer
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| | - Alireza Abaei
- Core Facility Small Animal Magnetic Resonance Imaging, Ulm University, Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal Magnetic Resonance Imaging, Ulm University, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| | - Bernd Baumann
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| |
Collapse
|
90
|
Inhibition of JAK1 by microRNA-708 promotes SH-SY5Y neuronal cell survival after oxygen and glucose deprivation and reoxygenation. Neurosci Lett 2018; 664:43-50. [DOI: 10.1016/j.neulet.2017.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
|
91
|
Zwezdaryk K, Sullivan D, Saifudeen Z. The p53/Adipose-Tissue/Cancer Nexus. Front Endocrinol (Lausanne) 2018; 9:457. [PMID: 30158901 PMCID: PMC6104444 DOI: 10.3389/fendo.2018.00457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Obesity and the resultant metabolic complications have been associated with an increased risk of cancer. In addition to the systemic metabolic disturbances in obesity that are associated with cancer initiation and progression, the presence of adipose tissue in the tumor microenvironment (TME) contributes significantly to malignancy through direct cell-cell interaction or paracrine signaling. This chronic inflammatory state can be maintained by p53-associated mechanisms. Increased p53 levels that are observed in obesity exacerbate the release of inflammatory cytokines that fuel cancer initiation and progression. Dysregulated adipose tissue signaling from the TME can reprogram tumor cell metabolism. The links between p53, cellular metabolism and adipose tissue dysfunction and how they relate to cancer, will be presented in this review.
Collapse
Affiliation(s)
- Kevin Zwezdaryk
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- *Correspondence: Kevin Zwezdaryk
| | - Deborah Sullivan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- Deborah Sullivan
| | - Zubaida Saifudeen
- Department of Pediatrics, Section of Nephrology, Tulane University School of Medicine, New Orleans, LA, United States
- Zubaida Saifudeen
| |
Collapse
|
92
|
Wnuk A, Kajta M. Steroid and Xenobiotic Receptor Signalling in Apoptosis and Autophagy of the Nervous System. Int J Mol Sci 2017; 18:ijms18112394. [PMID: 29137141 PMCID: PMC5713362 DOI: 10.3390/ijms18112394] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022] Open
Abstract
Apoptosis and autophagy are involved in neural development and in the response of the nervous system to a variety of insults. Apoptosis is responsible for cell elimination, whereas autophagy can eliminate the cells or keep them alive, even in conditions lacking trophic factors. Therefore, both processes may function synergistically or antagonistically. Steroid and xenobiotic receptors are regulators of apoptosis and autophagy; however, their actions in various pathologies are complex. In general, the estrogen (ER), progesterone (PR), and mineralocorticoid (MR) receptors mediate anti-apoptotic signalling, whereas the androgen (AR) and glucocorticoid (GR) receptors participate in pro-apoptotic pathways. ER-mediated neuroprotection is attributed to estrogen and selective ER modulators in apoptosis- and autophagy-related neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases, stroke, multiple sclerosis, and retinopathies. PR activation appeared particularly effective in treating traumatic brain and spinal cord injuries and ischemic stroke. Except for in the retina, activated GR is engaged in neuronal cell death, whereas MR signalling appeared to be associated with neuroprotection. In addition to steroid receptors, the aryl hydrocarbon receptor (AHR) mediates the induction and propagation of apoptosis, whereas the peroxisome proliferator-activated receptors (PPARs) inhibit this programmed cell death. Most of the retinoid X receptor-related xenobiotic receptors stimulate apoptotic processes that accompany neural pathologies. Among the possible therapeutic strategies based on targeting apoptosis via steroid and xenobiotic receptors, the most promising are the selective modulators of the ER, AR, AHR, PPARγ agonists, flavonoids, and miRNAs. The prospective therapies to overcome neuronal cell death by targeting autophagy via steroid and xenobiotic receptors are much less recognized.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| | - Małgorzata Kajta
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| |
Collapse
|
93
|
Koronowski KB, Khoury N, Saul I, Loris ZB, Cohan CH, Stradecki-Cohan HM, Dave KR, Young JI, Perez-Pinzon MA. Neuronal SIRT1 (Silent Information Regulator 2 Homologue 1) Regulates Glycolysis and Mediates Resveratrol-Induced Ischemic Tolerance. Stroke 2017; 48:3117-3125. [PMID: 29018134 PMCID: PMC5654689 DOI: 10.1161/strokeaha.117.018562] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Resveratrol, at least in part via SIRT1 (silent information regulator 2 homologue 1) activation, protects against cerebral ischemia when administered 2 days before injury. However, it remains unclear if SIRT1 activation must occur, and in which brain cell types, for the induction of neuroprotection. We hypothesized that neuronal SIRT1 is essential for resveratrol-induced ischemic tolerance and sought to characterize the metabolic pathways regulated by neuronal Sirt1 at the cellular level in the brain. METHODS We assessed infarct size and functional outcome after transient 60 minute middle cerebral artery occlusion in control and inducible, neuronal-specific SIRT1 knockout mice. Nontargeted primary metabolomics analysis identified putative SIRT1-regulated pathways in brain. Glycolytic function was evaluated in acute brain slices from adult mice and primary neuronal-enriched cultures under ischemic penumbra-like conditions. RESULTS Resveratrol-induced neuroprotection from stroke was lost in neuronal Sirt1 knockout mice. Metabolomics analysis revealed alterations in glucose metabolism on deletion of neuronal Sirt1, accompanied by transcriptional changes in glucose metabolism machinery. Furthermore, glycolytic ATP production was impaired in acute brain slices from neuronal Sirt1 knockout mice. Conversely, resveratrol increased glycolytic rate in a SIRT1-dependent manner and under ischemic penumbra-like conditions in vitro. CONCLUSIONS Our data demonstrate that resveratrol requires neuronal SIRT1 to elicit ischemic tolerance and identify a novel role for SIRT1 in the regulation of glycolytic function in brain. Identification of robust neuroprotective mechanisms that underlie ischemia tolerance and the metabolic adaptations mediated by SIRT1 in brain are crucial for the translation of therapies in cerebral ischemia and other neurological disorders.
Collapse
Affiliation(s)
- Kevin B Koronowski
- From the Cerebral Vascular Disease Research Laboratories (K.B.K., N.K., I.S., C.H.C., H.M.S.-C., K.R.D., M.A.P.-P.), Department of Neurology (K.B.K., N.K., I.S., C.H.C., H.M.S.-C., K.R.D., M.A.P.-P.), The Miami Project to Cure Paralysis (Z.B.L.), Department of Neurological Surgery (Z.B.L.), John P. Hussman Institute for Human Genomics (J.I.Y.) and Department of Human Genetics (J.I.Y.), University of Miami Leonard M. Miller School of Medicine, FL
| | - Nathalie Khoury
- From the Cerebral Vascular Disease Research Laboratories (K.B.K., N.K., I.S., C.H.C., H.M.S.-C., K.R.D., M.A.P.-P.), Department of Neurology (K.B.K., N.K., I.S., C.H.C., H.M.S.-C., K.R.D., M.A.P.-P.), The Miami Project to Cure Paralysis (Z.B.L.), Department of Neurological Surgery (Z.B.L.), John P. Hussman Institute for Human Genomics (J.I.Y.) and Department of Human Genetics (J.I.Y.), University of Miami Leonard M. Miller School of Medicine, FL
| | - Isabel Saul
- From the Cerebral Vascular Disease Research Laboratories (K.B.K., N.K., I.S., C.H.C., H.M.S.-C., K.R.D., M.A.P.-P.), Department of Neurology (K.B.K., N.K., I.S., C.H.C., H.M.S.-C., K.R.D., M.A.P.-P.), The Miami Project to Cure Paralysis (Z.B.L.), Department of Neurological Surgery (Z.B.L.), John P. Hussman Institute for Human Genomics (J.I.Y.) and Department of Human Genetics (J.I.Y.), University of Miami Leonard M. Miller School of Medicine, FL
| | - Zachary B Loris
- From the Cerebral Vascular Disease Research Laboratories (K.B.K., N.K., I.S., C.H.C., H.M.S.-C., K.R.D., M.A.P.-P.), Department of Neurology (K.B.K., N.K., I.S., C.H.C., H.M.S.-C., K.R.D., M.A.P.-P.), The Miami Project to Cure Paralysis (Z.B.L.), Department of Neurological Surgery (Z.B.L.), John P. Hussman Institute for Human Genomics (J.I.Y.) and Department of Human Genetics (J.I.Y.), University of Miami Leonard M. Miller School of Medicine, FL
| | - Charles H Cohan
- From the Cerebral Vascular Disease Research Laboratories (K.B.K., N.K., I.S., C.H.C., H.M.S.-C., K.R.D., M.A.P.-P.), Department of Neurology (K.B.K., N.K., I.S., C.H.C., H.M.S.-C., K.R.D., M.A.P.-P.), The Miami Project to Cure Paralysis (Z.B.L.), Department of Neurological Surgery (Z.B.L.), John P. Hussman Institute for Human Genomics (J.I.Y.) and Department of Human Genetics (J.I.Y.), University of Miami Leonard M. Miller School of Medicine, FL
| | - Holly M Stradecki-Cohan
- From the Cerebral Vascular Disease Research Laboratories (K.B.K., N.K., I.S., C.H.C., H.M.S.-C., K.R.D., M.A.P.-P.), Department of Neurology (K.B.K., N.K., I.S., C.H.C., H.M.S.-C., K.R.D., M.A.P.-P.), The Miami Project to Cure Paralysis (Z.B.L.), Department of Neurological Surgery (Z.B.L.), John P. Hussman Institute for Human Genomics (J.I.Y.) and Department of Human Genetics (J.I.Y.), University of Miami Leonard M. Miller School of Medicine, FL
| | - Kunjan R Dave
- From the Cerebral Vascular Disease Research Laboratories (K.B.K., N.K., I.S., C.H.C., H.M.S.-C., K.R.D., M.A.P.-P.), Department of Neurology (K.B.K., N.K., I.S., C.H.C., H.M.S.-C., K.R.D., M.A.P.-P.), The Miami Project to Cure Paralysis (Z.B.L.), Department of Neurological Surgery (Z.B.L.), John P. Hussman Institute for Human Genomics (J.I.Y.) and Department of Human Genetics (J.I.Y.), University of Miami Leonard M. Miller School of Medicine, FL
| | - Juan I Young
- From the Cerebral Vascular Disease Research Laboratories (K.B.K., N.K., I.S., C.H.C., H.M.S.-C., K.R.D., M.A.P.-P.), Department of Neurology (K.B.K., N.K., I.S., C.H.C., H.M.S.-C., K.R.D., M.A.P.-P.), The Miami Project to Cure Paralysis (Z.B.L.), Department of Neurological Surgery (Z.B.L.), John P. Hussman Institute for Human Genomics (J.I.Y.) and Department of Human Genetics (J.I.Y.), University of Miami Leonard M. Miller School of Medicine, FL
| | - Miguel A Perez-Pinzon
- From the Cerebral Vascular Disease Research Laboratories (K.B.K., N.K., I.S., C.H.C., H.M.S.-C., K.R.D., M.A.P.-P.), Department of Neurology (K.B.K., N.K., I.S., C.H.C., H.M.S.-C., K.R.D., M.A.P.-P.), The Miami Project to Cure Paralysis (Z.B.L.), Department of Neurological Surgery (Z.B.L.), John P. Hussman Institute for Human Genomics (J.I.Y.) and Department of Human Genetics (J.I.Y.), University of Miami Leonard M. Miller School of Medicine, FL.
| |
Collapse
|
94
|
Energetic mitochondrial failing in vitiligo and possible rescue by cardiolipin. Sci Rep 2017; 7:13663. [PMID: 29057950 PMCID: PMC5654478 DOI: 10.1038/s41598-017-13961-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022] Open
Abstract
Vitiligo is characterized by death or functional defects of epidermal melanocytes through still controversial pathogenic process. Previously, we showed that mitochondria-driven pre-senescent phenotype diminishes the capability of vitiligo melanocytes to cope with stressful stimuli. In the current study, we investigated markers of mitochondrial energy metabolism including the PGC1a axis, and then we determined the index of mitochondrial impairment using a cytomic approach. We found in cultured epidermal vitiligo melanocytes, compared to healthy ones, low ATP, increased proton leakage, and altered expression of several glycolytic enzymes (hexokinase II, pyruvic dehydrogenase kinase 1 and pyruvic kinase M2), We suggest that the low ATP production may be sufficient in steady-state conditions but it is unable to cover further needs. We also found in vitiligo melanocyrtes hyper-activation of the PGC1α axis, finalized to counteract the energy defect. Cytomic analysis, supported by MitoTracker Red pattern and ex-vivo immunohistochemistry, suggested an increased mitochondrial mass, possibly useful to ensure the essential ATP level. Finally, pharmacological cardiolipin stabilization reverted the energetic impairment, confirming the initial mitochondrial role. In conclusion, we report new insight in the pathogenetic mechanism of viitligo and indicate that the mitochondrial failure rescue by cardiolipin manipulation may be a new intriguing target in treatment development.
Collapse
|
95
|
A brain-targeting lipidated peptide for neutralizing RNA-mediated toxicity in Polyglutamine Diseases. Sci Rep 2017; 7:12077. [PMID: 28935901 PMCID: PMC5608758 DOI: 10.1038/s41598-017-11695-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/29/2017] [Indexed: 01/11/2023] Open
Abstract
Polyglutamine (PolyQ) diseases are progressive neurodegenerative disorders caused by both protein- and RNA-mediated toxicities. We previously showed that a peptidyl inhibitor, P3, which binds directly to expanded CAG RNA can inhibit RNA-induced nucleolar stress and suppress RNA-induced neurotoxicity. Here we report a N-acetylated and C-amidated derivative of P3, P3V8, that showed a more than 20-fold increase in its affinity for expanded CAG RNA. The P3V8 peptide also more potently alleviated expanded RNA-induced cytotoxicity in vitro, and suppressed polyQ neurodegeneration in Drosophila with no observed toxic effects. Further N-palmitoylation of P3V8 (L1P3V8) not only significantly improved its cellular uptake and stability, but also facilitated its systemic exposure and brain uptake in rats via intranasal administration. Our findings demonstrate that concomitant N-acetylation, C-amidation and palmitoylation of P3 significantly improve both its bioactivity and pharmacological profile. L1P3V8 possesses drug/lead-like properties that can be further developed into a lead inhibitor for the treatment of polyQ diseases.
Collapse
|
96
|
Thiamine antagonists trigger p53-dependent apoptosis in differentiated SH-SY5Y cells. Sci Rep 2017; 7:10632. [PMID: 28878400 PMCID: PMC5587765 DOI: 10.1038/s41598-017-10878-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/16/2017] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidences suggest that p53 is a key coordinator of cellular events triggered by oxidative stress often associated with the impairment in thiamine metabolism and its functions. However, there are limited data regarding the pursuant feedback between p53 transactivation and thiamine homeostasis. Impairment in thiamine metabolism can be induced experimentally via interference with the thiamine uptake and/or inhibition of the thiamin pyrophosphate–dependent enzymes using thiamine antagonists - amprolium (AM), oxythiamine (OT) or pyrithiamine (PT). We found that exposure of neuronally differentiated SH-SY5Y cells to AM, OT and PT triggered upregulation of p53 gene expression, post-translational modification of p53 via phosphorylation and activation of p53 DNA-binding activity. Phosphorylation of p53 at Ser20 was equally efficient in upregulation of thiamine transporter 1 (THTR1) by all antagonists. However, induction of the expressions of the pyruvate dehydrogenase E1 component subunit beta (PDHB) and oxoglutarate dehydrogenase (OGDH) required dual phosphorylation of p53 at Ser9 and Ser20, seen in cells treated with PT and OT. Moreover, pretreatment of the cells with a decoy oligonucleotide carrying wild-type p53-response element markedly attenuated OT-induced THTR1, PDHB and OGDH gene expression suggesting an important role of p53 in transactivation of these genes. Finally, analysis of gene and metabolic networks showed that OT triggers cell apoptosis through the p53-dependent intrinsic pathway.
Collapse
|
97
|
Stress-Induced Sleep After Exposure to Ultraviolet Light Is Promoted by p53 in Caenorhabditis elegans. Genetics 2017; 207:571-582. [PMID: 28754659 DOI: 10.1534/genetics.117.300070] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 07/24/2017] [Indexed: 12/31/2022] Open
Abstract
Stress-induced sleep (SIS) in Caenorhabditis elegans is important for restoration of cellular homeostasis and is a useful model to study the function and regulation of sleep. SIS is triggered when epidermal growth factor (EGF) activates the ALA neuron, which then releases neuropeptides to promote sleep. To further understand this behavior, we established a new model of SIS using irradiation by ultraviolet C (UVC) light. While UVC irradiation requires ALA signaling and leads to a sleep state similar to that induced by heat and other stressors, it does not induce the proteostatic stress seen with heat exposure. Based on the known genotoxic effects of UVC irradiation, we tested two genes, atl-1 and cep-1, which encode proteins that act in the DNA damage response pathway. Loss-of-function mutants of atl-1 had no defect in UVC-induced SIS but a partial loss-of-function mutant of cep-1, gk138, had decreased movement quiescence following UVC irradiation. Germline ablation experiments and tissue-specific RNA interference experiments showed that cep-1 is required somatically in neurons for its effect on SIS. The cep-1(gk138) mutant suppressed body movement quiescence controlled by EGF, indicating that CEP-1 acts downstream or in parallel to ALA activation to promote quiescence in response to ultraviolet light.
Collapse
|
98
|
Abstract
p53 is best identified as a tumor suppressor for its transcriptional control of genes involved in cell cycle progression and apoptosis. Beyond its irrefutable involvement in restraining unchecked cell proliferation, research over the past several years has indicated a requirement for p53 function in sustaining normal development. Here I summarize the role of p53 in embryonic development, with a focus on knowledge gained from p53 loss and overexpression during kidney development. In contrast to its classical role in suppressing proliferative pathways, p53 positively regulates nephron progenitor cell (NPC) renewal. Emerging evidence suggests p53 may control cell fate decisions by preserving energy metabolism homeostasis of progenitors in the nephrogenic niche. Maintaining a critical level of p53 function appears to be a prerequisite for optimal nephron endowment. Defining the molecular networks targeted by p53 in the NPC may well provide new targets not only for regenerative medicine but also for cancer treatment.
Collapse
Affiliation(s)
- Zubaida Saifudeen
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University School of Medicine, 1430 Tulane Avenue, SL37, New Orleans, LA, 70112, USA.
| |
Collapse
|
99
|
Hollis F, Kanellopoulos AK, Bagni C. Mitochondrial dysfunction in Autism Spectrum Disorder: clinical features and perspectives. Curr Opin Neurobiol 2017. [PMID: 28628841 DOI: 10.1016/j.conb.2017.05.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Autism Spectrum Disorder (ASD) is a prototypic pervasive developmental disorder characterized by social interaction, and communication deficits, repetitive, stereotypic patterns of behavior, and impairments in language and development. Clinical studies have identified mitochondrial disturbances at the levels of DNA, activity, complexes, oxidative stress, and metabolites in blood and urine of ASD patients. However, these observations from postmortem brains or peripheral tissues do not provide a direct link between autism and mitochondria. The synaptic abnormality of autistic patients has not been investigated yet. Here we review the findings of clinical studies investigating mitochondrial involvement in ASD patients, focusing particularly on the brain and the limitations and future directions needed in order to fully understand the role of mitochondria in ASD pathology.
Collapse
Affiliation(s)
- Fiona Hollis
- University of Lausanne, Department of Fundamental Neuroscience, Lausanne, Switzerland
| | | | - Claudia Bagni
- University of Lausanne, Department of Fundamental Neuroscience, Lausanne, Switzerland; University of Rome Tor Vergata, Department of Biomedicine and Prevention, Rome, Italy.
| |
Collapse
|
100
|
Choy KR, Watters DJ. Neurodegeneration in ataxia-telangiectasia: Multiple roles of ATM kinase in cellular homeostasis. Dev Dyn 2017; 247:33-46. [PMID: 28543935 DOI: 10.1002/dvdy.24522] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is characterized by neuronal degeneration, cancer, diabetes, immune deficiency, and increased sensitivity to ionizing radiation. A-T is attributed to the deficiency of the protein kinase coded by the ATM (ataxia-telangiectasia mutated) gene. ATM is a sensor of DNA double-strand breaks (DSBs) and signals to cell cycle checkpoints and the DNA repair machinery. ATM phosphorylates numerous substrates and activates many cell-signaling pathways. There has been considerable debate about whether a defective DNA damage response is causative of the neurological aspects of the disease. In proliferating cells, ATM is localized mainly in the nucleus; however, in postmitotic cells such as neurons, ATM is mostly cytoplasmic. Recent studies reveal an increasing number of roles for ATM in the cytoplasm, including activation by oxidative stress. ATM associates with organelles including mitochondria and peroxisomes, both sources of reactive oxygen species (ROS), which have been implicated in neurodegenerative diseases and aging. ATM is also associated with synaptic vesicles and has a role in regulating cellular homeostasis and autophagy. The cytoplasmic roles of ATM provide a new perspective on the neurodegenerative process in A-T. This review will examine the expanding roles of ATM in cellular homeostasis and relate these functions to the complex A-T phenotype. Developmental Dynamics 247:33-46, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kay Rui Choy
- School of Natural Sciences, Griffith University, Brisbane, Queensland, Australia
| | - Dianne J Watters
- School of Natural Sciences, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|