51
|
How do cells stiffen? Biochem J 2022; 479:1825-1842. [PMID: 36094371 DOI: 10.1042/bcj20210806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Cell stiffness is an important characteristic of cells and their response to external stimuli. In this review, we survey methods used to measure cell stiffness, summarize stimuli that alter cell stiffness, and discuss signaling pathways and mechanisms that control cell stiffness. Several pathological states are characterized by changes in cell stiffness, suggesting this property can serve as a potential diagnostic marker or therapeutic target. Therefore, we consider the effect of cell stiffness on signaling and growth processes required for homeostasis and dysfunction in healthy and pathological states. Specifically, the composition and structure of the cell membrane and cytoskeleton are major determinants of cell stiffness, and studies have identified signaling pathways that affect cytoskeletal dynamics both directly and by altered gene expression. We present the results of studies interrogating the effects of biophysical and biochemical stimuli on the cytoskeleton and other cellular components and how these factors determine the stiffness of both individual cells and multicellular structures. Overall, these studies represent an intersection of the fields of polymer physics, protein biochemistry, and mechanics, and identify specific mechanisms involved in mediating cell stiffness that can serve as therapeutic targets.
Collapse
|
52
|
Platelets’ Nanomechanics and Morphology in Neurodegenerative Pathologies. Biomedicines 2022; 10:biomedicines10092239. [PMID: 36140340 PMCID: PMC9496241 DOI: 10.3390/biomedicines10092239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The imaging and force–distance curve modes of atomic force microscopy (AFM) are explored to compare the morphological and mechanical signatures of platelets from patients diagnosed with classical neurodegenerative diseases (NDDs) and healthy individuals. Our data demonstrate the potential of AFM to distinguish between the three NDDs—Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD), and normal healthy platelets. The common features of platelets in the three pathologies are reduced membrane surface roughness, area and height, and enhanced nanomechanics in comparison with healthy cells. These changes might be related to general phenomena associated with reorganization in the platelet membrane morphology and cytoskeleton, a key factor for all platelets’ functions. Importantly, the platelets’ signatures are modified to a different extent in the three pathologies, most significant in ALS, less pronounced in PD and the least in AD platelets, which shows the specificity associated with each pathology. Moreover, different degree of activation, distinct pseudopodia and nanocluster formation characterize ALS, PD and AD platelets. The strongest alterations in the biophysical properties correlate with the highest activation of ALS platelets, which reflect the most significant changes in their nanoarchitecture. The specific platelet signatures that mark each of the studied pathologies can be added as novel biomarkers to the currently used diagnostic tools.
Collapse
|
53
|
Senigagliesi B, Samperi G, Cefarin N, Gneo L, Petrosino S, Apollonio M, Caponnetto F, Sgarra R, Collavin L, Cesselli D, Casalis L, Parisse P. Triple negative breast cancer-derived small extracellular vesicles as modulator of biomechanics in target cells. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 44:102582. [PMID: 35817390 DOI: 10.1016/j.nano.2022.102582] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/16/2022] [Accepted: 06/28/2022] [Indexed: 12/14/2022]
Abstract
Extracellular vesicle (EV) mediated communication has recently been proposed as one of the pivotal routes in the development of cancer metastasis. EVs are nano-sized vesicles swapped between cells, carrying a biologically active content that can promote tumor-induced immune suppression, metastasis and angiogenesis. Thus, EVs constitute a potential target in cancer therapy. However, their role in triggering the premetastatic niche and in tumor spreading is still unclear. Here, we focused on the EV ability to modulate the biomechanical properties of target cells, known to play a crucial role in metastatic spreading. To this purpose, we isolated and thoroughly characterized triple-negative breast cancer (TNBC)-derived small EVs. We then evaluated variations in the mechanical properties (cell stiffness, cytoskeleton/nuclear/morphology and Yap activity rearrangements) of non-metastatic breast cancer MCF7 cells upon EV treatment. Our results suggest that TNBC-derived small EVs are able to directly modify MCF7 cells by inducing a decrease in cell stiffness, rearrangements in cytoskeleton, focal adhesions and nuclear/cellular morphology, and an increase in Yap downstream gene expression. Testing the biomechanical response of cells after EV addition might represent a new functional assay in metastatic cancer framework that can be exploited for future application both in diagnosis and in therapy.
Collapse
Affiliation(s)
- Beatrice Senigagliesi
- Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy; Elettra-Sincrotrone Trieste S.C.p.A, Trieste, Italy.
| | | | - Nicola Cefarin
- Istituto Officina dei Materiali Consiglio Nazionale delle Ricerche, Trieste, Italy
| | | | - Sara Petrosino
- Telethon Institute of Genetics and Medicine, Naples, Italy.
| | - Mattia Apollonio
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| | - Licio Collavin
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| | - Daniela Cesselli
- Pathology Department, University Hospital of Udine, Udine, Italy; Department of Medicine, University of Udine, Udine, Italy.
| | | | - Pietro Parisse
- Elettra-Sincrotrone Trieste S.C.p.A, Trieste, Italy; Istituto Officina dei Materiali Consiglio Nazionale delle Ricerche, Trieste, Italy.
| |
Collapse
|
54
|
Gurgul I, Mazuryk O, Stachyra K, Olszanecki R, Lekka M, Łomzik M, Suzenet F, Gros PC, Brindell M. Impact of Polypyridyl Ru Complexes on Angiogenesis-Contribution to Their Antimetastatic Activity. Int J Mol Sci 2022; 23:7708. [PMID: 35887054 PMCID: PMC9323615 DOI: 10.3390/ijms23147708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
The use of polypyridyl Ru complexes to inhibit metastasis is a novel approach, and recent studies have shown promising results. We have reported recently that Ru (II) complexes gathering two 4,7-diphenyl-1,10-phenanthroline (dip) ligands and the one being 2,2'-bipyridine (bpy) or its derivative with a 4-[3-(2-nitro-1H-imidazol-1-yl)propyl (bpy-NitroIm) or 5-(4-{4'-methyl-[2,2'-bipyridine]-4-yl}but-1-yn-1-yl)pyridine-2-carbaldehyde semicarbazone (bpy-SC) moieties can alter the metastatic cascade, among others, by modulating cell adhesion properties. In this work, we show further studies of this group of complexes by evaluating their effect on HMEC-1 endothelial cells. While all the tested complexes significantly inhibited the endothelial cell migration, Ru-bpy additionally interrupted the pseudovessels formation. Functional changes in endothelial cells might arise from the impact of the studied compounds on cell elasticity and expression of proteins (vinculin and paxillin) involved in focal adhesions. Furthermore, molecular studies showed that complexes modulate the expression of cell adhesion molecules, which has been suggested to be one of the factors that mediate the activation of angiogenesis. Based on the performed studies, we can conclude that the investigated polypyridyl Ru (II) complexes can deregulate the functionality of endothelial cells which may lead to the inhibition of angiogenesis.
Collapse
Affiliation(s)
- Ilona Gurgul
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland; (I.G.); (M.Ł.)
| | - Olga Mazuryk
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland; (I.G.); (M.Ł.)
| | - Kamila Stachyra
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Grzegorzecka 16, 31-531 Krakow, Poland; (K.S.); (R.O.)
| | - Rafał Olszanecki
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Grzegorzecka 16, 31-531 Krakow, Poland; (K.S.); (R.O.)
| | - Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland;
| | - Michał Łomzik
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland; (I.G.); (M.Ł.)
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, ul. Tamka 12, 91-403 Łódź, Poland
| | - Franck Suzenet
- Institute of Organic and Analytical Chemistry, University of Orléans, UMR-CNRS 7311, rue de Chartres, BP 6759, CEDEX 2, 45067 Orléans, France;
| | | | - Małgorzata Brindell
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland; (I.G.); (M.Ł.)
| |
Collapse
|
55
|
Mechanical Forces Govern Interactions of Host Cells with Intracellular Bacterial Pathogens. Microbiol Mol Biol Rev 2022; 86:e0009420. [PMID: 35285720 PMCID: PMC9199418 DOI: 10.1128/mmbr.00094-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To combat infectious diseases, it is important to understand how host cells interact with bacterial pathogens. Signals conveyed from pathogen to host, and vice versa, may be either chemical or mechanical. While the molecular and biochemical basis of host-pathogen interactions has been extensively explored, relatively less is known about mechanical signals and responses in the context of those interactions. Nevertheless, a wide variety of bacterial pathogens appear to have developed mechanisms to alter the cellular biomechanics of their hosts in order to promote their survival and dissemination, and in turn many host responses to infection rely on mechanical alterations in host cells and tissues to limit the spread of infection. In this review, we present recent findings on how mechanical forces generated by host cells can promote or obstruct the dissemination of intracellular bacterial pathogens. In addition, we discuss how in vivo extracellular mechanical signals influence interactions between host cells and intracellular bacterial pathogens. Examples of such signals include shear stresses caused by fluid flow over the surface of cells and variable stiffness of the extracellular matrix on which cells are anchored. We highlight bioengineering-inspired tools and techniques that can be used to measure host cell mechanics during infection. These allow for the interrogation of how mechanical signals can modulate infection alongside biochemical signals. We hope that this review will inspire the microbiology community to embrace those tools in future studies so that host cell biomechanics can be more readily explored in the context of infection studies.
Collapse
|
56
|
Zeng Y, Hao J, Zhang J, Jiang L, Youn S, Lu G, Yan D, Kang H, Sun Y, Shung KK, Shen K, Zhou Q. Manipulation and Mechanical Deformation of Leukemia Cells by High-Frequency Ultrasound Single Beam. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1889-1897. [PMID: 35468061 PMCID: PMC9753557 DOI: 10.1109/tuffc.2022.3170074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ultrasound single-beam acoustic tweezer system has attracted increasing attention in the field of biomechanics. Cell biomechanics play a pivotal role in leukemia cell functions. To better understand and compare the cell mechanics of the leukemia cells, herein, we fabricated an acoustic tweezer system in-house connected with a 50-MHz high-frequency cylinder ultrasound transducer. Selected leukemia cells (Jurkat, K562, and MV-411 cells) were cultured, trapped, and manipulated by high-frequency ultrasound single beam, which was transmitted from the ultrasound transducer without contacting any cells. The relative deformability of each leukemia cell was measured, characterized, and compared, and the leukemia cell (Jurkat cell) gaining the highest deformability was highlighted. Our results demonstrate that the high-frequency ultrasound single beam can be utilized to manipulate and characterize leukemia cells, which can be applied to study potential mechanisms in the immune system and cell biomechanics in other cell types.
Collapse
|
57
|
He S, Pang W, Wu X, Yang Y, Li W, Qi H, Yang K, Duan X, Wang Y. Bidirectional Regulation of Cell Mechanical Motion via a Gold Nanorods-Acoustic Streaming System. ACS NANO 2022; 16:8427-8439. [PMID: 35549089 DOI: 10.1021/acsnano.2c02980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cell mechanical motion is a key physiological process that relies on the dynamics of actin filaments. Herein, a localized shear-force system based on gigahertz acoustic streaming (AS) is proposed, which can simultaneously realize intracellular delivery and cellular mechanical regulation. The results demonstrate that gold nanorods (AuNRs) can be delivered into the cytoplasm and even the nuclei of cancer and normal cells within a few minutes by AS stimulation. The delivery efficiency of AS stimulation is four times higher than that of endocytosis. Moreover, AS can effectively promote cytoskeleton assembly, regulate cell stiffness and change cell morphology. Since the inhibitory effect of AuNRs on cytoskeleton assembly, this AuNRs-AS system is able to inhibit or promote cell mechanical motion in a controlled manner by regulating the mechanical properties of cells. The bidirectional regulation of cell motion is further verified via scratch experiments, in which AuNRs-treated cells recover their motion ability through AS stimulation. In particular, the results of AuNRs-AS mechanical regulation on cell are related to the intrinsic properties of cell lines, revealing to more obvious effects on the cells with higher motor capacities. In summary, this acoustic technology has shown superiorities in controllable cell-motion manipulation, indicating its potential in building a multifunctional, integrated cytomechanics regulation platform.
Collapse
Affiliation(s)
- Shan He
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yang Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wenjun Li
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Hang Qi
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Kai Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
58
|
Dadhich R, Kapoor S. Lipidomic and Membrane Mechanical Signatures in Triple-Negative Breast Cancer: Scope for Membrane-Based Theranostics. Mol Cell Biochem 2022; 477:2507-2528. [PMID: 35595957 DOI: 10.1007/s11010-022-04459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer associated with poor prognosis, higher grade, and a high rate of metastatic occurrence. Limited therapeutic interventions and the compounding issue of drug resistance in triple-negative breast cancer warrants the discovery of novel therapeutic targets and diagnostic modules. To this view, in addition to proteins, lipids also regulate cellular functions via the formation of membranes that modulate membrane protein function, diffusion, and their localization; thus, orchestrating signaling hot spots enriched in specific lipids/proteins on cell membranes. Lipid deregulation in cancer leads to reprogramming of the membrane dynamics and functions impacting cell proliferation, metabolism, and metastasis, providing exciting starting points for developing lipid-based approaches for treating TNBC. In this review, we provide a detailed account of specific lipidic changes in breast cancer, link the altered lipidome with membrane structure and mechanical properties, and describe how these are linked to subsequent downstream functions implicit in cancer progression, metastasis, and chemoresistance. At the fundamental level, we discuss how the lipid-centric findings in TNBC are providing cues for developing lipid-inspired theranostic strategies while bridging existing gaps in our understanding of the functional involvement of lipid membranes in cancer.
Collapse
Affiliation(s)
- Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India. .,Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8528, Japan.
| |
Collapse
|
59
|
Vakhrusheva A, Murashko A, Trifonova E, Efremov Y, Timashev P, Sokolova O. Role of Actin-binding Proteins in the Regulation of Cellular Mechanics. Eur J Cell Biol 2022; 101:151241. [DOI: 10.1016/j.ejcb.2022.151241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
|
60
|
Kummer D, Steinbacher T, Thölmann S, Schwietzer MF, Hartmann C, Horenkamp S, Demuth S, Peddibhotla SS, Brinkmann F, Kemper B, Schnekenburger J, Brandt M, Betz T, Liashkovich I, Kouzel IU, Shahin V, Corvaia N, Rottner K, Tarbashevich K, Raz E, Greune L, Schmidt MA, Gerke V, Ebnet K. A JAM-A-tetraspanin-αvβ5 integrin complex regulates contact inhibition of locomotion. J Biophys Biochem Cytol 2022; 221:213070. [PMID: 35293964 PMCID: PMC8931538 DOI: 10.1083/jcb.202105147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/16/2021] [Accepted: 01/21/2022] [Indexed: 12/30/2022] Open
Abstract
Contact inhibition of locomotion (CIL) is a process that regulates cell motility upon collision with other cells. Improper regulation of CIL has been implicated in cancer cell dissemination. Here, we identify the cell adhesion molecule JAM-A as a central regulator of CIL in tumor cells. JAM-A is part of a multimolecular signaling complex in which tetraspanins CD9 and CD81 link JAM-A to αvβ5 integrin. JAM-A binds Csk and inhibits the activity of αvβ5 integrin-associated Src. Loss of JAM-A results in increased activities of downstream effectors of Src, including Erk1/2, Abi1, and paxillin, as well as increased activity of Rac1 at cell-cell contact sites. As a consequence, JAM-A-depleted cells show increased motility, have a higher cell-matrix turnover, and fail to halt migration when colliding with other cells. We also find that proper regulation of CIL depends on αvβ5 integrin engagement. Our findings identify a molecular mechanism that regulates CIL in tumor cells and have implications on tumor cell dissemination.
Collapse
Affiliation(s)
- Daniel Kummer
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany,Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
| | - Tim Steinbacher
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Sonja Thölmann
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Mariel Flavia Schwietzer
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Christian Hartmann
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Simone Horenkamp
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Sabrina Demuth
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Swetha S.D. Peddibhotla
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Frauke Brinkmann
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Björn Kemper
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Jürgen Schnekenburger
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Matthias Brandt
- Institute-associated Research Group “Mechanics of Cellular Systems”, Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| | - Timo Betz
- Institute-associated Research Group “Mechanics of Cellular Systems”, Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| | - Ivan Liashkovich
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Ivan U. Kouzel
- Sars International Centre for Marine Molecular Biology University of Bergen Thormøhlensgt, Bergen, Norway
| | - Victor Shahin
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Nathalie Corvaia
- Centre d’Immunologie Pierre Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Klemens Rottner
- Divison of Molecular Cell Biology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany,Molecular Cell Biology Group, Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Erez Raz
- Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany,Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, 48419 Münster, Germany
| | - Lilo Greune
- Institute of Infectiology, ZMBE, University of Münster, Münster, Germany
| | | | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany,Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, 48419 Münster, Germany
| | - Klaus Ebnet
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany,Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany,Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, 48419 Münster, Germany
| |
Collapse
|
61
|
Yu W, Sharma S, Rao E, Rowat AC, Gimzewski JK, Han D, Rao J. Cancer cell mechanobiology: a new frontier for cancer research. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:10-17. [PMID: 39035217 PMCID: PMC11256617 DOI: 10.1016/j.jncc.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022] Open
Abstract
The study of physical and mechanical features of cancer cells, or cancer cell mechanobiology, is a new frontier in cancer research. Such studies may enhance our understanding of the disease process, especially mechanisms associated with cancer cell invasion and metastasis, and may help the effort of developing diagnostic biomarkers and therapeutic drug targets. Cancer cell mechanobiological changes are associated with the complex interplay of activation/inactivation of multiple signaling pathways, which can occur at both the genetic and epigenetic levels, and the interactions with the cancer microenvironment. It has been shown that metastatic tumor cells are more compliant than morphologically similar benign cells in actual human samples. Subsequent studies from us and others further demonstrated that cell mechanical properties are strongly associated with cancer cell invasive and metastatic potential, and thus may serve as a diagnostic marker of detecting cancer cells in human body fluid samples. In this review, we provide a brief narrative of the molecular mechanisms underlying cancer cell mechanobiology, the technological platforms utilized to study cancer cell mechanobiology, the status of cancer cell mechanobiological studies in various cancer types, and the potential clinical applications of cancer cell mechanobiological study in cancer early detection, diagnosis, and treatment.
Collapse
Affiliation(s)
- Weibo Yu
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| | - Shivani Sharma
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| | - Elizabeth Rao
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| | - Amy C. Rowat
- Department of Integrative Biology and Physiology, University of California at Los Angeles, California, USA
| | - James K. Gimzewski
- Department of Chemistry and Biochemistry, University of California at Los Angeles, California, USA
| | - Dong Han
- National Center for Nanoscience and Technology, Beijing, China
| | - Jianyu Rao
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| |
Collapse
|
62
|
Ghosh B, Nishida K, Chandrala L, Mahmud S, Thapa S, Swaby C, Chen S, Khosla AA, Katz J, Sidhaye VK. Epithelial plasticity in COPD results in cellular unjamming due to an increase in polymerized actin. J Cell Sci 2022; 135:jcs258513. [PMID: 35118497 PMCID: PMC8919336 DOI: 10.1242/jcs.258513] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
The airway epithelium is subjected to insults such as cigarette smoke (CS), a primary cause of chronic obstructive pulmonary disease (COPD) and serves as an excellent model to study cell plasticity. Here, we show that both CS-exposed and COPD-patient derived epithelia (CHBE) display quantitative evidence of cellular plasticity, with loss of specialized apical features and a transcriptional profile suggestive of partial epithelial-to-mesenchymal transition (pEMT), albeit with distinct cell motion indicative of cellular unjamming. These injured/diseased cells have an increased fraction of polymerized actin, due to loss of the actin-severing protein cofilin-1. We observed that decreasing polymerized actin restores the jammed state in both CHBE and CS-exposed epithelia, indicating that the fraction of polymerized actin is critical in unjamming the epithelia. Our kinetic energy spectral analysis suggests that loss of cofilin-1 results in unjamming, similar to that seen with both CS exposure and in CHBE cells. The findings suggest that in response to chronic injury, although epithelial cells display evidence of pEMT, their movement is more consistent with cellular unjamming. Inhibitors of actin polymerization rectify the unjamming features of the monolayer. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Baishakhi Ghosh
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Kristine Nishida
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Lakshmana Chandrala
- Department of Mechanical Engineering, Johns Hopkins Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Saborny Mahmud
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Shreeti Thapa
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Carter Swaby
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Si Chen
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Atulya Aman Khosla
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Joseph Katz
- Department of Mechanical Engineering, Johns Hopkins Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Venkataramana K. Sidhaye
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| |
Collapse
|
63
|
Zummo F, Esposito P, Hou H, Wetzl C, Rius G, Tkatchenko R, Guimera A, Godignon P, Prato M, Prats-Alfonso E, Criado A, Scaini D. Bidirectional Modulation of Neuronal Cells Electrical and Mechanical Properties Through Pristine and Functionalized Graphene Substrates. Front Neurosci 2022; 15:811348. [PMID: 35087375 PMCID: PMC8788235 DOI: 10.3389/fnins.2021.811348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
In recent years, the quest for surface modifications to promote neuronal cell interfacing and modulation has risen. This course is justified by the requirements of emerging technological and medical approaches attempting to effectively interact with central nervous system cells, as in the case of brain-machine interfaces or neuroprosthetic. In that regard, the remarkable cytocompatibility and ease of chemical functionalization characterizing surface-immobilized graphene-based nanomaterials (GBNs) make them increasingly appealing for these purposes. Here, we compared the (morpho)mechanical and functional adaptation of rat primary hippocampal neurons when interfaced with surfaces covered with pristine single-layer graphene (pSLG) and phenylacetic acid-functionalized single-layer graphene (fSLG). Our results confirmed the intrinsic ability of glass-supported single-layer graphene to boost neuronal activity highlighting, conversely, the downturn inducible by the surface insertion of phenylacetic acid moieties. fSLG-interfaced neurons showed a significant reduction in spontaneous postsynaptic currents (PSCs), coupled to reduced cell stiffness and altered focal adhesion organization compared to control samples. Overall, we have here demonstrated that graphene substrates, both pristine and functionalized, could be alternatively used to intrinsically promote or depress neuronal activity in primary hippocampal cultures.
Collapse
Affiliation(s)
- Francesca Zummo
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Pietro Esposito
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Huilei Hou
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastián, Spain
| | - Cecilia Wetzl
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastián, Spain
| | - Gemma Rius
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain
| | - Raphaela Tkatchenko
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain
| | - Anton Guimera
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Philippe Godignon
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastián, Spain
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Basque Foundation for Science (IKERBASQUE), Bilbao, Spain
| | - Elisabet Prats-Alfonso
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- *Correspondence: Elisabet Prats-Alfonso,
| | - Alejandro Criado
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastián, Spain
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, A Coruña, Spain
- Alejandro Criado,
| | - Denis Scaini
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
- Nanomedicine Research Laboratory, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Denis Scaini,
| |
Collapse
|
64
|
Scherer KM, Mascheroni L, Carnell GW, Wunderlich LCS, Makarchuk S, Brockhoff M, Mela I, Fernandez-Villegas A, Barysevich M, Stewart H, Suau Sans M, George CL, Lamb JR, Kaminski-Schierle GS, Heeney JL, Kaminski CF. SARS-CoV-2 nucleocapsid protein adheres to replication organelles before viral assembly at the Golgi/ERGIC and lysosome-mediated egress. SCIENCE ADVANCES 2022; 8:eabl4895. [PMID: 34995113 PMCID: PMC10954198 DOI: 10.1126/sciadv.abl4895] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Despite being the target of extensive research efforts due to the COVID-19 (coronavirus disease 2019) pandemic, relatively little is known about the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication within cells. We investigate and characterize the tightly orchestrated virus assembly by visualizing the spatiotemporal dynamics of the four structural SARS-CoV-2 proteins at high resolution. The nucleoprotein is expressed first and accumulates around folded endoplasmic reticulum (ER) membranes in convoluted layers that contain viral RNA replication foci. We find that, of the three transmembrane proteins, the membrane protein appears at the Golgi apparatus/ER-to-Golgi intermediate compartment before the spike and envelope proteins. Relocation of a lysosome marker toward the assembly compartment and its detection in transport vesicles of viral proteins confirm an important role of lysosomes in SARS-CoV-2 egress. These data provide insights into the spatiotemporal regulation of SARS-CoV-2 assembly and refine the current understanding of SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Katharina M. Scherer
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Luca Mascheroni
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - George W. Carnell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Lucia C. S. Wunderlich
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | - Marius Brockhoff
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Ioanna Mela
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Ana Fernandez-Villegas
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Max Barysevich
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Hazel Stewart
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Maria Suau Sans
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Jacob R. Lamb
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | - Jonathan L. Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| |
Collapse
|
65
|
Konar M, Ghosh D, Samanta S, Govindaraju T. Combating amyloid-induced cellular toxicity and stiffness by designer peptidomimetics. RSC Chem Biol 2022; 3:220-226. [PMID: 35360886 PMCID: PMC8827053 DOI: 10.1039/d1cb00235j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Amyloid beta (Aβ) aggregation species-associated cellular stress instigates cytotoxicity and adverse cellular stiffness in neuronal cells. The study and modulation of these adverse effects demand immediate attention to tackle Alzheimer's disease (AD). We present a de novo design, synthesis and evaluation of Aβ14-23 peptidomimetics with cyclic dipeptide (CDP) units at defined positions. Our study identified AkdNMC with CDP units at the middle, N- and C-termini as a potent candidate to understand and ameliorate Aβ aggregation-induced cellular toxicity and adverse stiffness. Aβ14-23 peptidomimetics incorporated with cyclic dipeptide-based unnatural amino acid at defined positions serve as potential candidates to understand and ameliorate amyloid-induced cellular toxicity and physio-mechanical anomalies.![]()
Collapse
Affiliation(s)
- Mouli Konar
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Debasis Ghosh
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Sourav Samanta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
66
|
Senigagliesi B, Bedolla DE, Birarda G, Zanetti M, Lazzarino M, Vaccari L, Parisse P, Casalis L. Subcellular elements responsive to the biomechanical activity of triple-negative breast cancer-derived small extracellular vesicles. Biomol Concepts 2022; 13:322-333. [PMID: 36482512 DOI: 10.1515/bmc-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) stands out for its aggressive, fast spread, and highly metastatic behavior and for being unresponsive to the classical hormonal therapy. It is considered a disease with a poor prognosis and limited treatment options. Among the mechanisms that contribute to TNBC spreading, attention has been recently paid to small extracellular vesicles (sEVs), nano-sized vesicles that by transferring bioactive molecules to recipient cells play a crucial role in the intercellular communication among cancer, healthy cells, and tumor microenvironment. In particular, TNBC-derived sEVs have been shown to alter proliferation, metastasis, drug resistance, and biomechanical properties of target cells. To shed light on the molecular mechanisms involved in sEVs mediation of cell biomechanics, we investigated the effects of sEVs on the main subcellular players, i.e., cell membrane, cytoskeleton, and nuclear chromatin organization. Our results unveiled that TNBC-derived sEVs are able to promote the formation and elongation of cellular protrusions, soften the cell body, and induce chromatin decondensation in recipient cells. In particular, our data suggest that chromatin decondensation is the main cause of the global cell softening. The present study added new details and unveiled a novel mechanism of activity of the TNBC-derived sEVs, providing information for the efficient translation of sEVs to cancer theranostics.
Collapse
Affiliation(s)
- Beatrice Senigagliesi
- Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy.,Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | - Diana E Bedolla
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy.,Area Science Park, Padriciano 99, Trieste, Italy
| | | | - Michele Zanetti
- Istituto Officina dei Materiali Consiglio Nazionale delle Ricerche, CNR-IOM, Trieste, Italy.,Department of Physics, University of Trieste, Trieste, Italy
| | - Marco Lazzarino
- Istituto Officina dei Materiali Consiglio Nazionale delle Ricerche, CNR-IOM, Trieste, Italy
| | - Lisa Vaccari
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | - Pietro Parisse
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy.,Istituto Officina dei Materiali Consiglio Nazionale delle Ricerche, CNR-IOM, Trieste, Italy
| | | |
Collapse
|
67
|
Lei K, Kurum A, Kaynak M, Bonati L, Han Y, Cencen V, Gao M, Xie YQ, Guo Y, Hannebelle MTM, Wu Y, Zhou G, Guo M, Fantner GE, Sakar MS, Tang L. Cancer-cell stiffening via cholesterol depletion enhances adoptive T-cell immunotherapy. Nat Biomed Eng 2021; 5:1411-1425. [PMID: 34873307 PMCID: PMC7612108 DOI: 10.1038/s41551-021-00826-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023]
Abstract
Malignant transformation and tumour progression are associated with cancer-cell softening. Yet how the biomechanics of cancer cells affects T-cell-mediated cytotoxicity and thus the outcomes of adoptive T-cell immunotherapies is unknown. Here we show that T-cell-mediated cancer-cell killing is hampered for cortically soft cancer cells, which have plasma membranes enriched in cholesterol, and that cancer-cell stiffening via cholesterol depletion augments T-cell cytotoxicity and enhances the efficacy of adoptive T-cell therapy against solid tumours in mice. We also show that the enhanced cytotoxicity against stiffened cancer cells is mediated by augmented T-cell forces arising from an increased accumulation of filamentous actin at the immunological synapse, and that cancer-cell stiffening has negligible influence on: T-cell-receptor signalling, production of cytolytic proteins such as granzyme B, secretion of interferon gamma and tumour necrosis factor alpha, and Fas-receptor-Fas-ligand interactions. Our findings reveal a mechanical immune checkpoint that could be targeted therapeutically to improve the effectiveness of cancer immunotherapies.
Collapse
Affiliation(s)
- Kewen Lei
- Institute of Materials Science and Engineering, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Armand Kurum
- Institute of Materials Science and Engineering, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Murat Kaynak
- Institute of Mechanical Engineering, EPFL, Lausanne, Switzerland
| | - Lucia Bonati
- Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Yulong Han
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Min Gao
- Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Yu-Qing Xie
- Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Yugang Guo
- Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | | | - Yangping Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Guanyu Zhou
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Mahmut Selman Sakar
- Institute of Mechanical Engineering, EPFL, Lausanne, Switzerland
- Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Li Tang
- Institute of Materials Science and Engineering, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Bioengineering, EPFL, Lausanne, Switzerland.
| |
Collapse
|
68
|
Hu W, Zhang Y, Fei P, Zhang T, Yao D, Gao Y, Liu J, Chen H, Lu Q, Mudianto T, Zhang X, Xiao C, Ye Y, Sun Q, Zhang J, Xie Q, Wang PH, Wang J, Li Z, Lou J, Chen W. Mechanical activation of spike fosters SARS-CoV-2 viral infection. Cell Res 2021; 31:1047-1060. [PMID: 34465913 PMCID: PMC8406658 DOI: 10.1038/s41422-021-00558-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to initiate viral entry in a complex biomechanical environment. Here, we reveal that tensile force, generated by bending of the host cell membrane, strengthens spike recognition of ACE2 and accelerates the detachment of spike's S1 subunit from the S2 subunit to rapidly prime the viral fusion machinery. Mechanistically, such mechano-activation is fulfilled by force-induced opening and rotation of spike's receptor-binding domain to prolong the bond lifetime of spike/ACE2 binding, up to 4 times longer than that of SARS-S binding with ACE2 under 10 pN force application, and subsequently by force-accelerated S1/S2 detachment which is up to ~103 times faster than that in the no-force condition. Interestingly, the SARS2-S D614G mutant, a more infectious variant, shows 3-time stronger force-dependent ACE2 binding and 35-time faster force-induced S1/S2 detachment. We also reveal that an anti-S1/S2 non-RBD-blocking antibody that was derived from convalescent COVID-19 patients with potent neutralizing capability can reduce S1/S2 detachment by 3 × 106 times under force. Our study sheds light on the mechano-chemistry of spike activation and on developing a non-RBD-blocking but S1/S2-locking therapeutic strategy to prevent SARS2 invasion.
Collapse
Affiliation(s)
- Wei Hu
- grid.13402.340000 0004 1759 700XDepartment of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Yong Zhang
- grid.9227.e0000000119573309Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Panyu Fei
- grid.13402.340000 0004 1759 700XDepartment of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XSchool of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang China
| | - Tongtong Zhang
- grid.13402.340000 0004 1759 700XDepartment of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XDepartment of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Danmei Yao
- grid.13402.340000 0004 1759 700XDepartment of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Yufei Gao
- grid.13402.340000 0004 1759 700XDepartment of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XSchool of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang China
| | - Jia Liu
- grid.240324.30000 0001 2109 4251Department of Pathology, New York University Grossman School of Medicine, New York, NY USA ,grid.137628.90000 0004 1936 8753The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY USA
| | - Hui Chen
- grid.9227.e0000000119573309Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qiao Lu
- grid.240324.30000 0001 2109 4251Department of Pathology, New York University Grossman School of Medicine, New York, NY USA ,grid.137628.90000 0004 1936 8753The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY USA
| | - Tenny Mudianto
- grid.240324.30000 0001 2109 4251Department of Pathology, New York University Grossman School of Medicine, New York, NY USA
| | - Xinrui Zhang
- grid.13402.340000 0004 1759 700XDepartment of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Chuxuan Xiao
- grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the MOE Frontier Science Center for Brain Science & Brain-machine Integration, State Key Laboratory for Modern Optical Instrumentation Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang China
| | - Yang Ye
- grid.9227.e0000000119573309Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Qiming Sun
- grid.13402.340000 0004 1759 700XDepartment of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Jing Zhang
- grid.27255.370000 0004 1761 1174Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong China
| | - Qi Xie
- grid.494629.40000 0004 8008 9315Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, Zhejiang China
| | - Pei-Hui Wang
- grid.27255.370000 0004 1761 1174Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong China
| | - Jun Wang
- grid.240324.30000 0001 2109 4251Department of Pathology, New York University Grossman School of Medicine, New York, NY USA ,grid.137628.90000 0004 1936 8753The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY USA
| | - Zhenhai Li
- grid.39436.3b0000 0001 2323 5732Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai, China
| | - Jizhong Lou
- grid.9227.e0000000119573309Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.508040.9Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong China
| | - Wei Chen
- grid.13402.340000 0004 1759 700XDepartment of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the MOE Frontier Science Center for Brain Science & Brain-machine Integration, State Key Laboratory for Modern Optical Instrumentation Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XZhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang China
| |
Collapse
|
69
|
Cytoskeletal Actin Structure in Osteosarcoma Cells Determines Metastatic Phenotype via Regulating Cell Stiffness, Migration, and Transmigration. Curr Issues Mol Biol 2021; 43:1255-1266. [PMID: 34698103 PMCID: PMC8928956 DOI: 10.3390/cimb43030089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor. The cause of death due to osteosarcoma is typically a consequence of metastasis to the lung. Controlling metastasis leads to improved prognosis for osteosarcoma patients. The cell stiffness of several tumor types is involved in metastatic potential; however, it is unclear whether the metastatic potential of osteosarcoma depends on cell stiffness. In this study, we analyzed the cell stiffness of the low metastatic Dunn cell line and its highly metastatic LM8 subline, and compared actin organization, cell proliferation, and metastasis. Actin cytoskeleton, polymerization, stiffness, and other cellular properties were analyzed. The organization of the actin cytoskeleton was evaluated by staining F-actin with Alexa Fluor 488 phalloidin. Cell stiffness was measured using Atomic Force Microscopy (AFM). Cell proliferation, migration, invasion, and adhesion were also evaluated. All experiments were performed using mouse osteosarcoma cell lines cultured in the absence and presence of cytochalasin. In LM8 cells, actin polymerization was strongly suppressed and actin levels were significantly lower than in Dunn cells. Stiffness evaluation revealed that LM8 cells were significantly softer than Dunn. Young’s modulus images showed more rigid fibrillar structures were present in Dunn cells than in LM8 cells. LM8 cells also exhibited a significantly higher proliferation. The migration and invasion potential were also higher in LM8 cells, whereas the adhesion potential was higher in Dunn cells. The administration of cytochalasin resulted in actin filament fragmentation and decreased actin staining intensity and cell stiffness in both LM8 and Dunn cells. Cells with high metastatic potential exhibited lower actin levels and cell stiffness than cells with low metastatic potential. The metastatic phenotype is highly correlated to actin status and cell stiffness in osteosarcoma cells. These results suggest that evaluation of actin dynamics and cell stiffness is an important quantitative diagnostic parameter for predicting metastatic potential. We believe that these parameters represent new reliable quantitative indicators that can facilitate the development of new drugs against metastasis.
Collapse
|
70
|
Paradiso F, Serpelloni S, Francis LW, Taraballi F. Mechanical Studies of the Third Dimension in Cancer: From 2D to 3D Model. Int J Mol Sci 2021; 22:10098. [PMID: 34576261 PMCID: PMC8472581 DOI: 10.3390/ijms221810098] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
From the development of self-aggregating, scaffold-free multicellular spheroids to the inclusion of scaffold systems, 3D models have progressively increased in complexity to better mimic native tissues. The inclusion of a third dimension in cancer models allows researchers to zoom out from a significant but limited cancer cell research approach to a wider investigation of the tumor microenvironment. This model can include multiple cell types and many elements from the extracellular matrix (ECM), which provides mechanical support for the tissue, mediates cell-microenvironment interactions, and plays a key role in cancer cell invasion. Both biochemical and biophysical signals from the extracellular space strongly influence cell fate, the epigenetic landscape, and gene expression. Specifically, a detailed mechanistic understanding of tumor cell-ECM interactions, especially during cancer invasion, is lacking. In this review, we focus on the latest achievements in the study of ECM biomechanics and mechanosensing in cancer on 3D scaffold-based and scaffold-free models, focusing on each platform's level of complexity, up-to-date mechanical tests performed, limitations, and potential for further improvements.
Collapse
Affiliation(s)
- Francesca Paradiso
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA; (F.P.); (S.S.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea, Wales SA2 8PP, UK;
| | - Stefano Serpelloni
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA; (F.P.); (S.S.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
| | - Lewis W. Francis
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea, Wales SA2 8PP, UK;
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA; (F.P.); (S.S.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
| |
Collapse
|
71
|
Shen X, Hu L, Li Z, Wang L, Pang X, Wen CY, Tang B. Extracellular Calcium Ion Concentration Regulates Chondrocyte Elastic Modulus and Adhesion Behavior. Int J Mol Sci 2021; 22:ijms221810034. [PMID: 34576195 PMCID: PMC8468569 DOI: 10.3390/ijms221810034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022] Open
Abstract
Extracellular calcium ion concentration levels increase in human osteoarthritic (OA) joints and contribute to OA pathogenesis. Given the fact that OA is a mechanical problem, the effect of the extracellular calcium level ([Ca2+]) on the mechanical behavior of primary human OA chondrocytes remains to be elucidated. Here, we measured the elastic modulus and cell–ECM adhesion forces of human primary chondrocytes with atomic force microscopy (AFM) at different extracellular calcium ion concentration ([Ca2+]) levels. With the [Ca2+] level increasing from the normal baseline level, the elastic modulus of chondrocytes showed a trend of an increase and a subsequent decrease at the level of [Ca2+], reaching 2.75 mM. The maximum increment of the elastic modulus of chondrocytes is a 37% increase at the peak point. The maximum unbinding force of cell-ECM adhesion increased by up to 72% at the peak point relative to the baseline level. qPCR and immunofluorescence also indicated that dose-dependent changes in the expression of myosin and integrin β1 due to the elevated [Ca2+] may be responsible for the variations in cell stiffness and cell-ECM adhesion. Scratch assay showed that the chondrocyte migration ability was modulated by cell stiffness and cell-ECM adhesion: as chondrocyte’s elastic modulus and cell-ECM adhesion force increased, the migration speed of chondrocytes decreased. Taken together, our results showed that [Ca2+] could regulate chondrocytes stiffness and cell-ECM adhesion, and consequently, influence cell migration, which is critical in cartilage repair.
Collapse
Affiliation(s)
- Xingyu Shen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (X.S.); (L.H.)
| | - Liqiu Hu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (X.S.); (L.H.)
| | - Zhen Li
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China;
| | - Liyun Wang
- Center for Biomechanical Research, Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA;
| | - Xiangchao Pang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Chun-Yi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China;
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (X.S.); (L.H.)
- Correspondence:
| |
Collapse
|
72
|
Integrin α5 mediates intrinsic cisplatin resistance in three-dimensional nasopharyngeal carcinoma spheroids via the inhibition of phosphorylated ERK /caspase-3 induced apoptosis. Exp Cell Res 2021; 406:112765. [PMID: 34358523 DOI: 10.1016/j.yexcr.2021.112765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/17/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023]
Abstract
Nasopharyngeal carcinoma (NPC) originates in the nasopharynx epithelium. Although concurrent chemoradiation therapy followed by chemotherapy is considered as an effective treatment, there is substantial drug resistance in locally advanced NPC patients. One major contributor to the chemoresistance includes aberrant expression of cell adhesion molecules, such as integrin α and β subunits, giving rise to cell adhesion-mediated drug resistance. Thus, the aim of this study was to investigate the effect of integrin α5 on the development of intrinsic cisplatin resistance in NPC and the associated underlying mechanisms using in vitro three-dimensional (3D) spheroid models, as well as induced cisplatin-resistant NPC (NPCcisR). We demonstrated that established 3D highly- (5-8F) and lowly- (6-10B) metastatic NPC spheroids overexpressed integrin α5 and aggravated their resistance to cisplatin. Besides, enhanced integrin α5 resulted in substantially reduced growth, corresponding to G0/G1 and G2/M cell cycle arrest. In addition, 5-8FcisR and 6-10BcisR cells in 3D forms synergistically strengthened endurance of their spheroids to cisplatin treatment as observed by increased resistance index (RI) and decreased apoptosis. Mechanistically, the aberrantly expressed integrin α5 decreased drug susceptibility in NPC spheroids by inactivating ERK and inhibition of caspase-3 inducing apoptosis. Furthermore, the effect of integrin α5 inducing intrinsic resistance was verified via treatment with ATN-161, a peptide inhibitor for integrin α5β1. The results showed dramatic reduction in integrin α5 expression, reversal of ERK phosphorylation and caspase-3 cleavage, together with elevated cisplatin sensitivity, indicating regulation of innate drug resistance via integrin α5. Taken together, our findings suggest that integrin α5 could act as a promising target to enhance the chemotherapeutic sensitivity in NPC.
Collapse
|
73
|
Li M, Xi N, Liu L. Hierarchical micro-/nanotopography for tuning structures and mechanics of cells probed by atomic force microscopy. IEEE Trans Nanobioscience 2021; 20:543-553. [PMID: 34242170 DOI: 10.1109/tnb.2021.3096056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Extracellular matrix plays an important role in regulating the behaviors of cells, and utilizing matrix physics to control cell fate has been a promising way for cell and tissue engineering. However, the nanoscale situations taking place during the topography-regulated cell-matrix interactions are still not fully understood to the best of our knowledge. The invention of atomic force microscopy (AFM) provides a powerful tool to characterize the structures and properties of living biological systems under aqueous conditions with unprecedented spatial resolution. In this work, with the use of AFM, structural and mechanical dynamics of individual cells grown on micro-/nanotopographical surface were revealed. First, the microgroove patterned silicon substrates were fabricated by photolithography. Next, nanogranular topography was formed on microgroove substrates by cell culture medium protein deposition, which was visualized by in situ AFM imaging. The micro-/nanotopographical substrates were then used to grow two types of cells (3T3 cell or MCF-7 cell). AFM morphological imaging and mechanical measurements were applied to characterize the changes of cells grown on the micro-/nanotopographical substrates. The experimental results showed the significant alterations in cellular structures and cellular mechanics caused by micro-/nanotopography. The study provides a novel way based on AFM to unveil the native nanostructures and mechanical properties of cell-matrix interfaces with high spatial resolution in liquids, which will have potential impacts on the studies of topography-tuned cell behaviors.
Collapse
|
74
|
Suganuma M, Rawangkan A, Wongsirisin P, Kobayashi N, Matsuzaki T, Yoshikawa HY, Watanabe T. Stiffening of Cancer Cell Membranes Is a Key Biophysical Mechanism of Primary and Tertiary Cancer Prevention with Green Tea Polyphenols. Chem Pharm Bull (Tokyo) 2021; 68:1123-1130. [PMID: 33268644 DOI: 10.1248/cpb.c20-00300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the past 30 years, research of green tea polyphenols, especially (-)-epigallocatechin gallate (EGCG), has revealed that consumption of green tea is a practical and effective primary cancer prevention method for the general population. More recently, we believe that green tea polyphenols are beneficial for tertiary cancer prevention using green tea alone or combined with anticancer drugs because EGCG has the potential to inhibit metastatic progression and stemness, and enhance antitumor immunity. In an effort to identify a common underlying mechanism responsible for EGCG's multifunctional effects on various molecular targets, we studied the biophysical effects of EGCG on cell stiffness using atomic force microscopy. We found that EGCG acts to stiffen the membranes of cancer cells, leading to inhibition of signaling pathways of various receptors. Stiffening of membranes with EGCG inhibited AXL receptor tyrosine kinase, a stimulator of cell softening, motility and stemness, and expression of programmed cell death-ligand 1. This review covers the following: i) primary cancer prevention using EGCG or green tea, ii) tertiary cancer prevention by combining EGCG and anticancer drugs, iii) inhibition of metastasis with EGCG by stiffening the cell membrane, iv) inhibition of AXL receptor tyrosine kinase, a stimulator of cell softening and motility, with EGCG, v) inhibition of stemness properties with EGCG, and vi) EGCG as an alternative chemical immune checkpoint inhibitor. Development of new drugs that enhance stiffening of cancer cell membranes may be an effective strategy for tertiary cancer prevention and treatment.
Collapse
Affiliation(s)
- Masami Suganuma
- Graduate School of Science and Engineering, Saitama University.,Research Institute for Clinical Oncology, Saitama Cancer Center
| | - Anchalee Rawangkan
- Graduate School of Science and Engineering, Saitama University.,Research Institute for Clinical Oncology, Saitama Cancer Center
| | - Pattama Wongsirisin
- Graduate School of Science and Engineering, Saitama University.,Research Institute for Clinical Oncology, Saitama Cancer Center
| | | | | | | | | |
Collapse
|
75
|
Contractility, focal adhesion orientation, and stress fiber orientation drive cancer cell polarity and migration along wavy ECM substrates. Proc Natl Acad Sci U S A 2021; 118:2021135118. [PMID: 34031242 DOI: 10.1073/pnas.2021135118] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Contact guidance is a powerful topographical cue that induces persistent directional cell migration. Healthy tissue stroma is characterized by a meshwork of wavy extracellular matrix (ECM) fiber bundles, whereas metastasis-prone stroma exhibit less wavy, more linear fibers. The latter topography correlates with poor prognosis, whereas more wavy bundles correlate with benign tumors. We designed nanotopographic ECM-coated substrates that mimic collagen fibril waveforms seen in tumors and healthy tissues to determine how these nanotopographies may regulate cancer cell polarization and migration machineries. Cell polarization and directional migration were inhibited by fibril-like wave substrates above a threshold amplitude. Although polarity signals and actin nucleation factors were required for polarization and migration on low-amplitude wave substrates, they did not localize to cell leading edges. Instead, these factors localized to wave peaks, creating multiple "cryptic leading edges" within cells. On high-amplitude wave substrates, retrograde flow from large cryptic leading edges depolarized stress fibers and focal adhesions and inhibited cell migration. On low-amplitude wave substrates, actomyosin contractility overrode the small cryptic leading edges and drove stress fiber and focal adhesion orientation along the wave axis to mediate directional migration. Cancer cells of different intrinsic contractility depolarized at different wave amplitudes, and cell polarization response to wavy substrates could be tuned by manipulating contractility. We propose that ECM fibril waveforms with sufficiently high amplitude around tumors may serve as "cell polarization barriers," decreasing directional migration of tumor cells, which could be overcome by up-regulation of tumor cell contractility.
Collapse
|
76
|
Pulling the springs of a cell by single-molecule force spectroscopy. Emerg Top Life Sci 2021; 5:77-87. [PMID: 33284963 DOI: 10.1042/etls20200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022]
Abstract
The fundamental unit of the human body comprises of the cells which remain embedded in a fibrillar network of extracellular matrix proteins which in turn provides necessary anchorage the cells. Tissue repair, regeneration and reprogramming predominantly involve a traction force mediated signalling originating in the ECM and travelling deep into the cell including the nucleus via circuitry of spring-like filamentous proteins like microfilaments or actin, intermediate filaments and microtubules to elicit a response in the form of mechanical movement as well as biochemical changes. The 'springiness' of these proteins is highlighted in their extension-contraction behaviour which is manifested as an effect of differential traction force. Atomic force microscope (AFM) provides the magic eye to visualize and quantify such force-extension/indentation events in these filamentous proteins as well as in whole cells. In this review, we have presented a summary of the current understanding and advancement of such measurements by AFM based single-molecule force spectroscopy in the context of cytoskeletal and nucleoskeletal proteins which act in tandem to facilitate mechanotransduction.
Collapse
|
77
|
Microfluidic Assessment of Drug Effects on Physical Properties of Androgen Sensitive and Non-Sensitive Prostate Cancer Cells. MICROMACHINES 2021; 12:mi12050532. [PMID: 34067167 PMCID: PMC8151345 DOI: 10.3390/mi12050532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022]
Abstract
The identification and treatment of androgen-independent prostate cancer are both challenging and significant. In this work, high-throughput deformability cytometry was employed to assess the effects of two anti-cancer drugs, docetaxel and enzalutamide, on androgen-sensitive prostate cancer cells (LNCaP) and androgen-independent prostate cancer cells (PC-3), respectively. The quantified results show that PC-3 and LNCaP present not only different intrinsic physical properties but also different physical responses to the same anti-cancer drug. PC-3 cells possess greater stiffness and a smaller size than LNCaP cells. As the docetaxel concentration increases, PC-3 cells present an increase in stiffness and size, but LNCaP cells only present an increase in stiffness. As the enzalutamide concentration increases, PC-3 cells present no physical changes but LNCaP cells present changes in both cell size and deformation. These results demonstrated that cellular physical properties quantified by the deformability cytometry are effective indicators for identifying the androgen-independent prostate cancer cells from androgen-sensitive prostate cancer cells and evaluating drug effects on these two types of prostate cancer.
Collapse
|
78
|
Cell Cytoskeleton and Stiffness Are Mechanical Indicators of Organotropism in Breast Cancer. BIOLOGY 2021; 10:biology10040259. [PMID: 33805866 PMCID: PMC8064360 DOI: 10.3390/biology10040259] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/23/2022]
Abstract
Simple Summary Cancer cell dissemination exhibits organ preference or organotropism. Although the influence of intrinsic biochemical factors on organotropism has been intensely studied, little is known about the roles of mechanical properties of metastatic cancer cells. Our study suggests that there may be a correlation between cell cytoskeleton/stiffness and organotropism. We find that the cytoskeleton and stiffness of breast cancer cell subpopulations with different metastatic preference match the mechanics of the metastasized organs. The modification of cell cytoskeleton significantly influences the organotropism-related gene expression pattern and mechanoresponses on soft substrates which mimic brain tissue stiffness. These findings highlight the key role of cell cytoskeleton in specific organ metastasis, which may not only reflect but also impact the metastatic organ preference. Abstract Tumor metastasis involves the dissemination of tumor cells from the primary lesion to other organs and the subsequent formation of secondary tumors, which leads to the majority of cancer-related deaths. Clinical findings show that cancer cell dissemination is not random but exhibits organ preference or organotropism. While intrinsic biochemical factors of cancer cells have been extensively studied in organotropism, much less is known about the role of cell cytoskeleton and mechanics. Herein, we demonstrate that cell cytoskeleton and mechanics are correlated with organotropism. The result of cell stiffness measurements shows that breast cancer cells with bone tropism are much stiffer with enhanced F-actin, while tumor cells with brain tropism are softer with lower F-actin than their parental cells. The difference in cellular stiffness matches the difference in the rigidity of their metastasized organs. Further, disrupting the cytoskeleton of breast cancer cells with bone tropism not only elevates the expressions of brain metastasis-related genes but also increases cell spreading and proliferation on soft substrates mimicking the stiffness of brain tissue. Stabilizing the cytoskeleton of cancer cells with brain tropism upregulates bone metastasis-related genes while reduces the mechanoadaptation ability on soft substrates. Taken together, these findings demonstrate that cell cytoskeleton and biophysical properties of breast cancer subpopulations correlate with their metastatic preference in terms of gene expression pattern and mechanoadaptation ability, implying the potential role of cell cytoskeleton in organotropism.
Collapse
|
79
|
Emig R, Knodt W, Krussig MJ, Zgierski-Johnston CM, Gorka O, Groß O, Kohl P, Ravens U, Peyronnet R. Piezo1 Channels Contribute to the Regulation of Human Atrial Fibroblast Mechanical Properties and Matrix Stiffness Sensing. Cells 2021; 10:cells10030663. [PMID: 33809739 PMCID: PMC8002259 DOI: 10.3390/cells10030663] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
The mechanical environment of cardiac cells changes continuously and undergoes major alterations during diseases. Most cardiac diseases, including atrial fibrillation, are accompanied by fibrosis which can impair both electrical and mechanical function of the heart. A key characteristic of fibrotic tissue is excessive accumulation of extracellular matrix, leading to increased tissue stiffness. Cells are known to respond to changes in their mechanical environment, but the molecular mechanisms underlying this ability are incompletely understood. We used cell culture systems and hydrogels with tunable stiffness, combined with advanced biophysical and imaging techniques, to elucidate the roles of the stretch-activated channel Piezo1 in human atrial fibroblast mechano-sensing. Changing the expression level of Piezo1 revealed that this mechano-sensor contributes to the organization of the cytoskeleton, affecting mechanical properties of human embryonic kidney cells and human atrial fibroblasts. Our results suggest that this response is independent of Piezo1-mediated ion conduction at the plasma membrane, and mediated in part by components of the integrin pathway. Further, we show that Piezo1 is instrumental for fibroblast adaptation to changes in matrix stiffness, and that Piezo1-induced cell stiffening is transmitted in a paracrine manner to other cells by a signaling mechanism requiring interleukin-6. Piezo1 may be a new candidate for targeted interference with cardiac fibroblast function.
Collapse
Affiliation(s)
- Ramona Emig
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; (R.E.); (W.K.); (M.J.K.); (C.M.Z.-J.); (P.K.); (U.R.)
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Wiebke Knodt
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; (R.E.); (W.K.); (M.J.K.); (C.M.Z.-J.); (P.K.); (U.R.)
| | - Mario J. Krussig
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; (R.E.); (W.K.); (M.J.K.); (C.M.Z.-J.); (P.K.); (U.R.)
| | - Callum M. Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; (R.E.); (W.K.); (M.J.K.); (C.M.Z.-J.); (P.K.); (U.R.)
| | - Oliver Gorka
- Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (O.G.); (O.G.)
| | - Olaf Groß
- Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (O.G.); (O.G.)
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; (R.E.); (W.K.); (M.J.K.); (C.M.Z.-J.); (P.K.); (U.R.)
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; (R.E.); (W.K.); (M.J.K.); (C.M.Z.-J.); (P.K.); (U.R.)
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; (R.E.); (W.K.); (M.J.K.); (C.M.Z.-J.); (P.K.); (U.R.)
- Correspondence:
| |
Collapse
|
80
|
The distribution of liver cancer stem cells correlates with the mechanical heterogeneity of liver cancer tissue. Histochem Cell Biol 2021; 156:47-58. [PMID: 33710418 DOI: 10.1007/s00418-021-01979-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
The survival of cancer stem cells is usually limited to a specific tumor microenvironment, and this microenvironment plays a vital role in the development of tumors. The mechanical properties of the microenvironment differ in different regions of solid tumors. However, in solid tumors, whether the distribution of cancer stem cells relates to the mechanical microenvironment of different regions is still unclear. In this study, we undertook a biophysical and biochemical assessment of the changes in the mechanical properties of liver tissue during the progression of liver cancer and explored the distribution of liver cancer stem cells in liver cancer tissues. Our analysis confirmed previous observations that the stiffness of liver tissue gradually increased with the progress of fibrosis. In liver cancer tissues, we found obvious mechanical heterogeneity: the core of the tumor was soft, the invasive front tissue was the hardest, and the para-cancer tissue was in an intermediate state. Interestingly, the greatest number of liver cancer stem cells was found in the invasive front part of the tumor. We finally established that stroma stiffness correlated with the number of liver cancer stem cells. These findings indicate that the distribution of liver cancer stem cells correlates with the mechanical heterogeneity of liver cancer tissue. This result provides a theoretical basis for the development of targeted therapies against the mechanical microenvironment of liver cancer stem cells.
Collapse
|
81
|
Hwang S, Lee PCW, Shin DM, Hong JH. Modulated Start-Up Mode of Cancer Cell Migration Through Spinophilin-Tubular Networks. Front Cell Dev Biol 2021; 9:652791. [PMID: 33768098 PMCID: PMC7985070 DOI: 10.3389/fcell.2021.652791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/09/2021] [Indexed: 11/26/2022] Open
Abstract
Spinophilin (SPL) is a multifunctional actin-binding scaffolding protein. Although increased research on SPL in cancer biology has revealed a tumor suppressive role, its modulation in cancer biology, and oncological relevance remains elusive. Thus, we determined the role of SPL in the modulation of the junctional network and cellular migration in A549 lung cancer cell line. Knockdown of SPL promoted cancer cell invasion in agarose spot and scratch wound assays. Attenuation of SPL expression also enhanced invadopodia, as revealed by enhanced vinculin spots, and enhanced sodium bicarbonate cotransporter NBC activity without enhancing membranous expression of NBCn1. Disruption of the tubular structure with nocodazole treatment revealed enhanced SPL expression and reduced NBC activity and A549 migration. SPL-mediated junctional modulation and tubular stability affected bicarbonate transporter activity in A549 cells. The junctional modulatory function of SPL in start-up migration, such as remodeling of tight junctions, enhanced invadopodia, and increased NBC activity, revealed here would support fundamental research and the development of an initial target against lung cancer cell migration.
Collapse
Affiliation(s)
- Soyoung Hwang
- Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Dong Min Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea.,Department of Health Sciences and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon, South Korea
| |
Collapse
|
82
|
Lee H, Bonin K, Guthold M. Human mammary epithelial cells in a mature, stratified epithelial layer flatten and stiffen compared to single and confluent cells. Biochim Biophys Acta Gen Subj 2021; 1865:129891. [PMID: 33689830 DOI: 10.1016/j.bbagen.2021.129891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/07/2021] [Accepted: 03/03/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND The epithelium forms a protective barrier against external biological, chemical and physical insults. So far, AFM-based, micro-mechanical measurements have only been performed on single cells and confluent cells, but not yet on cells in mature layers. METHODS Using a combination of atomic force, fluorescence and confocal microscopy, we determined the changes in stiffness, morphology and actin distribution of human mammary epithelial cells (HMECs) as they transition from single cells to confluency to a mature layer. RESULTS Single HMECs have a tall, round (planoconvex) morphology, have actin stress fibers at the base, have diffuse cortical actin, and have a stiffness of 1 kPa. Confluent HMECs start to become flatter, basal actin stress fibers start to disappear, and actin accumulates laterally where cells abut. Overall stiffness is still 1 kPa with two-fold higher stiffness in the abutting regions. As HMECs mature and form multilayered structures, cells on apical surfaces become flatter (apically more level), wider, and seven times stiffer (mean, 7 kPa) than single and confluent cells. The main drivers of these changes are actin filaments, as cells show strong actin accumulation in the regions where cells adjoin, and in the apical regions. CONCLUSIONS HMECs stiffen, flatten and redistribute actin upon transiting from single cells to mature, confluent layers. GENERAL SIGNIFICANCE Our findings advance the understanding of breast ductal morphogenesis and mechanical homeostasis.
Collapse
Affiliation(s)
- Hyunsu Lee
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Keith Bonin
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Martin Guthold
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA.
| |
Collapse
|
83
|
Malthiery E, Chouaib B, Hernandez-Lopez AM, Martin M, Gergely C, Torres JH, Cuisinier FJ, Collart-Dutilleul PY. Effects of green light photobiomodulation on Dental Pulp Stem Cells: enhanced proliferation and improved wound healing by cytoskeleton reorganization and cell softening. Lasers Med Sci 2021; 36:437-445. [PMID: 32621128 DOI: 10.1007/s10103-020-03092-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 06/28/2020] [Indexed: 02/08/2023]
Abstract
Photobiomodulation (PBM) has been shown to improve cell proliferation and cell migration. Many cell types have been investigated, with most studies using deep penetrating red light irradiation. Considering the interest of surface biostimulation of oral mesenchymal cells after surgical wound, the present study aimed to assess green light irradiation effects on Dental Pulp Stem Cells' (DPSC) proliferation and migration. To understand the mechanisms underlying these effects, we investigated cytoskeleton organization and subsequent cell shape and stiffness. A 532-nm wavelength Nd:YAG laser (30 mW) was applied between 30 and 600 s on DPSC in vitro. Cell proliferation was analyzed at 24, 48, and 72 h after irradiation, by cell counting and enzymatic activity quantification (paranitrophenylphosphate phosphatase (pNPP) test). A wound healing assay was used to study cell migration after irradiation. Effects of PBM on cytoskeleton organization and cell shape were assessed by actin filaments staining. Elasticity changes after irradiation were quantified in terms of Young's modulus measured using Atomic Force Microscopy (AFM) force spectroscopy. Green light significantly improved DPSC proliferation with a maximal effect obtained after 300-s irradiation (energy fluence 5 J/cm2). This irradiation had a significant impact on cell migration, improving wound healing after 24 h. These results were concomitant with a decrease of cells' Young's modulus after irradiation. This cell softening was explained by actin cytoskeleton reorganization, with diminution of cell circularity and more abundant pseudopodia. This study highlights the interest of green laser PMB for the proliferation and migration of mesenchymal stem cells, with encouraging results for clinical application, especially for surgical wound healing procedures.
Collapse
Affiliation(s)
- Eve Malthiery
- LBN, University Montpellier, 545 Av Pr JL Viala, 34193 CEDEX 4, Montpellier, France
| | - Batoul Chouaib
- LBN, University Montpellier, 545 Av Pr JL Viala, 34193 CEDEX 4, Montpellier, France
| | - Ana María Hernandez-Lopez
- LBN, University Montpellier, 545 Av Pr JL Viala, 34193 CEDEX 4, Montpellier, France
- Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Marta Martin
- L2C, CNRS, University Montpellier, Montpellier, France
| | | | - Jacques-Henri Torres
- LBN, University Montpellier, 545 Av Pr JL Viala, 34193 CEDEX 4, Montpellier, France
| | - Frédéric J Cuisinier
- LBN, University Montpellier, 545 Av Pr JL Viala, 34193 CEDEX 4, Montpellier, France
| | | |
Collapse
|
84
|
Cell mechanics characteristics of anti-HER2 modified PPy@GNPs and its photothermal treatment of SKOV-3 cells. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
85
|
Methods for Studying Endometrial Pathology and the Potential of Atomic Force Microscopy in the Research of Endometrium. Cells 2021; 10:cells10020219. [PMID: 33499261 PMCID: PMC7911798 DOI: 10.3390/cells10020219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/21/2023] Open
Abstract
The endometrium lines the uterine cavity, enables implantation of the embryo, and provides an environment for its development and growth. Numerous methods, including microscopic and immunoenzymatic techniques, have been used to study the properties of the cells and tissue of the endometrium to understand changes during, e.g., the menstrual cycle or implantation. Taking into account the existing state of knowledge on the endometrium and the research carried out using other tissues, it can be concluded that the mechanical properties of the tissue and its cells are crucial for their proper functioning. This review intends to emphasize the potential of atomic force microscopy (AFM) in the research of endometrium properties. AFM enables imaging of tissues or single cells, roughness analysis, and determination of the mechanical properties (Young’s modulus) of single cells or tissues, or their adhesion. AFM has been previously shown to be useful to derive force maps. Combining the information regarding cell mechanics with the alternations of cell morphology or gene/protein expression provides deeper insight into the uterine pathology. The determination of the elastic modulus of cells in pathological states, such as cancer, has been proved to be useful in diagnostics.
Collapse
|
86
|
Lyubitelev AV, Kirpichnikov MP, Studitsky VM. The Role of Linker Histones in Carcinogenesis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
87
|
Abdallah M, Nagarajan S, Martin M, Tamer M, Faour WH, Bassil M, Cuisinier FJG, Gergely C, Varga B, Pall O, Miele P, Balme S, El Tahchi M, Bechelany M. Enhancement of Podocyte Attachment on Polyacrylamide Hydrogels with Gelatin-Based Polymers. ACS APPLIED BIO MATERIALS 2020; 3:7531-7539. [PMID: 35019494 DOI: 10.1021/acsabm.0c00734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biological activities of cells such as survival and differentiation processes are mainly maintained by a specific extracellular matrix (ECM). Hydrogels have recently been employed successfully in tissue engineering applications. In particular, scaffolds made of gelatin methacrylate-based hydrogels (GelMA) showed great potential due to their biocompatibility, biofunctionality, and low mechanical strength. The development of a hydrogel having tunable and appropriate mechanical properties as well as chemical and biological cues was the aim of this work. A synthetic and biological hybrid hydrogel was developed to mimic the biological and mechanical properties of native ECM. A combination of gelatin methacrylate and acrylamide (GelMA-AAm)-based hydrogels was studied, and it showed tunable mechanical properties upon changing the polymer concentrations. Different GelMA-AAm samples were prepared and studied by varying the concentrations of GelMA and AAm (AAm2.5% + GelMA3%, AAm5% + GelMA3%, and AAm5% + GelMA5%). The swelling behavior, biodegradability, physicochemical and mechanical properties of GelMA-AAm were also characterized. The results showed a variation of swelling capability and a tunable elasticity ranging from 4.03 to 24.98 kPa depending on polymer concentrations. Moreover, the podocyte cell morphology, cytoskeleton reorganization and differentiation were evaluated as a function of GelMA-AAm mechanical properties. We concluded that the AAm2.5% + GelMA3% hydrogel sample having an elasticity of 4.03 kPa can mimic the native kidney glomerular basement membrane (GBM) elasticity and allow podocyte cell attachment without the functionalization of the gel surface with adhesion proteins compared to synthetic hydrogels (PAAm). This work will further enhance the knowledge of the behavior of podocyte cells to understand their biological properties in both healthy and diseased states.
Collapse
Affiliation(s)
- Maya Abdallah
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier 34095, France
| | - Sakthivel Nagarajan
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier 34095, France
| | - Marta Martin
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier 34095, France
| | - Marleine Tamer
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier 34095, France
| | - Wissam H Faour
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Maria Bassil
- Faculty of Sciences II, Department of Physics, Biomaterials and Intelligent Materials Research Laboratory (LBMI), Lebanese University, Beirut, Lebanon
| | - Frederic J G Cuisinier
- Laboratoire de Bioingénierie et Nanosciences, Université de Montpellier, Montpellier, France
| | - Csilla Gergely
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier 34095, France
| | - Bela Varga
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier 34095, France
| | - Orsolya Pall
- Laboratoire de Bioingénierie et Nanosciences, Université de Montpellier, Montpellier, France
| | - Philippe Miele
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier 34095, France
| | - Sebastien Balme
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier 34095, France
| | - Mario El Tahchi
- Faculty of Sciences II, Department of Physics, Biomaterials and Intelligent Materials Research Laboratory (LBMI), Lebanese University, Beirut, Lebanon
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier 34095, France
| |
Collapse
|
88
|
Effect of Substrate Stiffness on Physicochemical Properties of Normal and Fibrotic Lung Fibroblasts. MATERIALS 2020; 13:ma13204495. [PMID: 33050502 PMCID: PMC7600549 DOI: 10.3390/ma13204495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
The presented research aims to verify whether physicochemical properties of lung fibroblasts, modified by substrate stiffness, can be used to discriminate between normal and fibrotic cells from idiopathic pulmonary fibrosis (IPF). The impact of polydimethylsiloxane (PDMS) substrate stiffness on the physicochemical properties of normal (LL24) and IPF-derived lung fibroblasts (LL97A) was examined in detail. The growth and elasticity of cells were assessed using fluorescence microscopy and atomic force microscopy working in force spectroscopy mode, respectively. The number of fibroblasts, as well as their shape and the arrangement, strongly depends on the mechanical properties of the substrate. Moreover, normal fibroblasts remain more rigid as compared to their fibrotic counterparts, which may indicate the impairments of IPF-derived fibroblasts induced by the fibrosis process. The chemical properties of normal and IPF-derived lung fibroblasts inspected using time-of-flight secondary ion mass spectrometry, and analyzed complexly with principal component analysis (PCA), show a significant difference in the distribution of cholesterol and phospholipids. Based on the observed distinctions between healthy and fibrotic cells, the mechanical properties of cells may serve as prospective diagnostic biomarkers enabling fast and reliable identification of idiopathic pulmonary fibrosis (IPF).
Collapse
|
89
|
Lu Z, Wang Z, Li D. Application of atomic force microscope in diagnosis of single cancer cells. BIOMICROFLUIDICS 2020; 14:051501. [PMID: 32922587 PMCID: PMC7474552 DOI: 10.1063/5.0021592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Changes in mechanical properties of cells are closely related to a variety of diseases. As an advanced technology on the micro/nano scale, atomic force microscopy is the most suitable tool for information acquisition of living cells in human body fluids. AFMs are able to measure and characterize the mechanical properties of cells which can be used as effective markers to distinguish between different cell types and cells in different states (benign or cancerous). Therefore, they can be employed to obtain additional information to that obtained via the traditional biochemistry methods for better identifying and diagnosing cancer cells for humans, proposing better treatment methods and prognosis, and unravelling the pathogenesis of the disease. In this report, we review the use of AFMs in cancerous tissues, organs, and cancer cells cultured in vitro to obtain cellular mechanical properties, demonstrate and summarize the results of AFMs in cancer biology, and look forward to possible future applications and the direction of development.
Collapse
Affiliation(s)
- Zhengcheng Lu
- JR3CN and IRAC, University of Bedfordshire, Luton LU1 3JU, United Kingdom
| | - Zuobin Wang
- Authors to whom correspondence should be addressed: and
| | - Dayou Li
- JR3CN and IRAC, University of Bedfordshire, Luton LU1 3JU, United Kingdom
| |
Collapse
|
90
|
Huang H, Dai C, Shen H, Gu M, Wang Y, Liu J, Chen L, Sun L. Recent Advances on the Model, Measurement Technique, and Application of Single Cell Mechanics. Int J Mol Sci 2020; 21:E6248. [PMID: 32872378 PMCID: PMC7504142 DOI: 10.3390/ijms21176248] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Since the cell was discovered by humans, it has been an important research subject for researchers. The mechanical response of cells to external stimuli and the biomechanical response inside cells are of great significance for maintaining the life activities of cells. These biomechanical behaviors have wide applications in the fields of disease research and micromanipulation. In order to study the mechanical behavior of single cells, various cell mechanics models have been proposed. In addition, the measurement technologies of single cells have been greatly developed. These models, combined with experimental techniques, can effectively explain the biomechanical behavior and reaction mechanism of cells. In this review, we first introduce the basic concept and biomechanical background of cells, then summarize the research progress of internal force models and experimental techniques in the field of cell mechanics and discuss the latest mechanical models and experimental methods. We summarize the application directions of cell mechanics and put forward the future perspectives of a cell mechanics model.
Collapse
Affiliation(s)
| | | | | | | | | | - Jizhu Liu
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China; (H.H.); (C.D.); (H.S.); (M.G.); (Y.W.); (L.S.)
| | - Liguo Chen
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China; (H.H.); (C.D.); (H.S.); (M.G.); (Y.W.); (L.S.)
| | | |
Collapse
|
91
|
Eldawud R, Wagner A, Dong C, Gupta N, Rojanasakul Y, O'Doherty G, Stueckle TA, Dinu CZ. Potential antitumor activity of digitoxin and user-designed analog administered to human lung cancer cells. Biochim Biophys Acta Gen Subj 2020; 1864:129683. [PMID: 32679249 DOI: 10.1016/j.bbagen.2020.129683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/19/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cardiac glycosides (CGs), such as digitoxin, are traditionally used for treatment of congestive heart failure; recently they also gained attention for their anticancer properties. Previous studies showed that digitoxin and a synthetic L-sugar monosaccharide analog treatment decreases cancer cell proliferation, increases apoptosis, and pro-adhesion abilities; however, no reports are available on their potential to alter lung cancer cell cytoskeleton structure and reduce migratory ability. Herein, we investigated the anticancer effects of digitoxin and its analog, digitoxigenin-α-L-rhamnoside (D6MA), to establish whether cytoskeleton reorganization and reduced motility are drug-induced cellular outcomes. METHODS We treated non-small cell lung carcinoma cells (NSCLCs) with sub-therapeutic, therapeutic, and toxic concentrations of digitoxin and D6MA respectively, followed by both single point and real-time assays to evaluate changes in cellular gene and protein expression, adhesion, elasticity, and migration. RESULTS Digitoxin and D6MA induced a decrease in matrix metalloproteinases expression via altered focal adhesion signaling and a suppression of the phosphoinositide 3-kinases / protein kinase B pathway which lead to enhanced adhesion, altered elasticity, and reduced motility of NSCLCs. Global gene expression analysis identified dose-dependent changes to nuclear factor kappa-light-chain-enhancer, epithelial tumor, and microtubule dynamics signaling. CONCLUSIONS Our study demonstrates that digitoxin and D6MA can target antitumor signaling pathways to alter NSCLC cytoskeleton and migratory ability to thus potentially reduce their tumorigenicity. SIGNIFICANCE Discovering signaling pathways that control cancer's cell phenotype and how such pathways are affected by CG treatment will potentially allow for active usage of synthetic CG analogs as therapeutic agents in advanced lung conditions.
Collapse
Affiliation(s)
- Reem Eldawud
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Alixandra Wagner
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Chenbo Dong
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Neha Gupta
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Yon Rojanasakul
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - George O'Doherty
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Todd A Stueckle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
92
|
Jaumouillé V, Waterman CM. Physical Constraints and Forces Involved in Phagocytosis. Front Immunol 2020; 11:1097. [PMID: 32595635 PMCID: PMC7304309 DOI: 10.3389/fimmu.2020.01097] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023] Open
Abstract
Phagocytosis is a specialized process that enables cellular ingestion and clearance of microbes, dead cells and tissue debris that are too large for other endocytic routes. As such, it is an essential component of tissue homeostasis and the innate immune response, and also provides a link to the adaptive immune response. However, ingestion of large particulate materials represents a monumental task for phagocytic cells. It requires profound reorganization of the cell morphology around the target in a controlled manner, which is limited by biophysical constraints. Experimental and theoretical studies have identified critical aspects associated with the interconnected biophysical properties of the receptors, the membrane, and the actin cytoskeleton that can determine the success of large particle internalization. In this review, we will discuss the major physical constraints involved in the formation of a phagosome. Focusing on two of the most-studied types of phagocytic receptors, the Fcγ receptors and the complement receptor 3 (αMβ2 integrin), we will describe the complex molecular mechanisms employed by phagocytes to overcome these physical constraints.
Collapse
Affiliation(s)
- Valentin Jaumouillé
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
93
|
Raudenska M, Balvan J, Fojtu M, Gumulec J, Masarik M. Unexpected therapeutic effects of cisplatin. Metallomics 2020; 11:1182-1199. [PMID: 31098602 DOI: 10.1039/c9mt00049f] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cisplatin is a widely used chemotherapeutic agent that is clinically approved to fight both carcinomas and sarcomas. It has relatively high efficiency in treating ovarian cancers and metastatic testicular cancers. It is generally accepted that the major mechanism of cisplatin anti-cancer action is DNA damage. However, cisplatin is also effective in metastatic cancers and should, therefore, affect slow-cycling cancer stem cells in some way. In this review, we focused on the alternative effects of cisplatin that can support a good therapeutic response. First, attention was paid to the effects of cisplatin at the cellular level such as changes in intracellular pH and cellular mechanical properties. Alternative cellular targets of cisplatin, and the effects of cisplatin on cancer cell metabolism and ER stress were also discussed. Furthermore, the impacts of cisplatin on the tumor microenvironment and in the whole organism context were reviewed. In this review, we try to reveal possible causes of the unexpected effectiveness of this anti-cancer drug.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Michaela Fojtu
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Jaromir Gumulec
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, CZ-252 50 Vestec, Czech Republic
| |
Collapse
|
94
|
Carapeto AP, Vitorino MV, Santos JD, Ramalho SS, Robalo T, Rodrigues MS, Farinha CM. Mechanical Properties of Human Bronchial Epithelial Cells Expressing Wt- and Mutant CFTR. Int J Mol Sci 2020; 21:ijms21082916. [PMID: 32326361 PMCID: PMC7216210 DOI: 10.3390/ijms21082916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). A single recessive mutation, the deletion of phenylalanine 508 (F508del), causes severe CF and resides on 70% of mutant chromosomes. Disorganization of the actin cytoskeleton has been previously reported in relation to the CF phenotype. In this work, we aimed to understand this alteration by means of Atomic Force Microscopy and Force Feedback Microscopy investigation of mechanical properties of cystic fibrosis bronchial epithelial (CFBE) cells stably transduced with either wild type (wt-) or F508del-CFTR. We show here that the expression of mutant CFTR causes a decrease in the cell’s apparent Young modulus as compared to the expression of the wt protein.
Collapse
Affiliation(s)
- Ana P. Carapeto
- BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.P.C.); (M.V.V.); (J.D.S.); (S.S.R.); (T.R.)
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Miguel V. Vitorino
- BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.P.C.); (M.V.V.); (J.D.S.); (S.S.R.); (T.R.)
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - João D. Santos
- BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.P.C.); (M.V.V.); (J.D.S.); (S.S.R.); (T.R.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Sofia S. Ramalho
- BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.P.C.); (M.V.V.); (J.D.S.); (S.S.R.); (T.R.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Tiago Robalo
- BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.P.C.); (M.V.V.); (J.D.S.); (S.S.R.); (T.R.)
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Mário S. Rodrigues
- BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.P.C.); (M.V.V.); (J.D.S.); (S.S.R.); (T.R.)
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: (M.S.R.); (C.M.F.)
| | - Carlos M. Farinha
- BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.P.C.); (M.V.V.); (J.D.S.); (S.S.R.); (T.R.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: (M.S.R.); (C.M.F.)
| |
Collapse
|
95
|
Nath S, Pigula M, Khan AP, Hanna W, Ruhi MK, Dehkordy FM, Pushpavanam K, Rege K, Moore K, Tsujita Y, Conrad C, Inci F, del Carmen MG, Franco W, Celli JP, Demirci U, Hasan T, Huang HC, Rizvi I. Flow-induced Shear Stress Confers Resistance to Carboplatin in an Adherent Three-Dimensional Model for Ovarian Cancer: A Role for EGFR-Targeted Photoimmunotherapy Informed by Physical Stress. J Clin Med 2020; 9:jcm9040924. [PMID: 32231055 PMCID: PMC7230263 DOI: 10.3390/jcm9040924] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
A key reason for the persistently grim statistics associated with metastatic ovarian cancer is resistance to conventional agents, including platinum-based chemotherapies. A major source of treatment failure is the high degree of genetic and molecular heterogeneity, which results from significant underlying genomic instability, as well as stromal and physical cues in the microenvironment. Ovarian cancer commonly disseminates via transcoelomic routes to distant sites, which is associated with the frequent production of malignant ascites, as well as the poorest prognosis. In addition to providing a cell and protein-rich environment for cancer growth and progression, ascitic fluid also confers physical stress on tumors. An understudied area in ovarian cancer research is the impact of fluid shear stress on treatment failure. Here, we investigate the effect of fluid shear stress on response to platinum-based chemotherapy and the modulation of molecular pathways associated with aggressive disease in a perfusion model for adherent 3D ovarian cancer nodules. Resistance to carboplatin is observed under flow with a concomitant increase in the expression and activation of the epidermal growth factor receptor (EGFR) as well as downstream signaling members mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) and extracellular signal-regulated kinase (ERK). The uptake of platinum by the 3D ovarian cancer nodules was significantly higher in flow cultures compared to static cultures. A downregulation of phospho-focal adhesion kinase (p-FAK), vinculin, and phospho-paxillin was observed following carboplatin treatment in both flow and static cultures. Interestingly, low-dose anti-EGFR photoimmunotherapy (PIT), a targeted photochemical modality, was found to be equally effective in ovarian tumors grown under flow and static conditions. These findings highlight the need to further develop PIT-based combinations that target the EGFR, and sensitize ovarian cancers to chemotherapy in the context of flow-induced shear stress.
Collapse
Affiliation(s)
- Shubhankar Nath
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.N.); (M.P.); (A.P.K.); (M.K.R.); (F.M.D.); (K.M.); (Y.T.); (W.F.); (T.H.)
| | - Michael Pigula
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.N.); (M.P.); (A.P.K.); (M.K.R.); (F.M.D.); (K.M.); (Y.T.); (W.F.); (T.H.)
| | - Amjad P. Khan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.N.); (M.P.); (A.P.K.); (M.K.R.); (F.M.D.); (K.M.); (Y.T.); (W.F.); (T.H.)
| | - William Hanna
- Department of Physics, College of Science and Mathematics, University of Massachusetts at Boston, Boston, MA 02125, USA; (W.H.); (J.P.C.)
| | - Mustafa Kemal Ruhi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.N.); (M.P.); (A.P.K.); (M.K.R.); (F.M.D.); (K.M.); (Y.T.); (W.F.); (T.H.)
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC 27599, USA
| | - Farzaneh Mahmoodpoor Dehkordy
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.N.); (M.P.); (A.P.K.); (M.K.R.); (F.M.D.); (K.M.); (Y.T.); (W.F.); (T.H.)
| | - Karthik Pushpavanam
- School for Engineering of Matter, Transport and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA; (K.P.); (K.R.)
| | - Kaushal Rege
- School for Engineering of Matter, Transport and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA; (K.P.); (K.R.)
| | - Kaitlin Moore
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.N.); (M.P.); (A.P.K.); (M.K.R.); (F.M.D.); (K.M.); (Y.T.); (W.F.); (T.H.)
| | - Yujiro Tsujita
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.N.); (M.P.); (A.P.K.); (M.K.R.); (F.M.D.); (K.M.); (Y.T.); (W.F.); (T.H.)
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Christina Conrad
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (H.-C.H.)
| | - Fatih Inci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology School of Medicine Stanford University, Palo Alto, CA 94304, USA; (F.I.); (U.D.)
| | - Marcela G. del Carmen
- Division of Gynecologic Oncology, Vincent Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Walfre Franco
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.N.); (M.P.); (A.P.K.); (M.K.R.); (F.M.D.); (K.M.); (Y.T.); (W.F.); (T.H.)
| | - Jonathan P. Celli
- Department of Physics, College of Science and Mathematics, University of Massachusetts at Boston, Boston, MA 02125, USA; (W.H.); (J.P.C.)
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology School of Medicine Stanford University, Palo Alto, CA 94304, USA; (F.I.); (U.D.)
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.N.); (M.P.); (A.P.K.); (M.K.R.); (F.M.D.); (K.M.); (Y.T.); (W.F.); (T.H.)
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (H.-C.H.)
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Imran Rizvi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.N.); (M.P.); (A.P.K.); (M.K.R.); (F.M.D.); (K.M.); (Y.T.); (W.F.); (T.H.)
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Correspondence:
| |
Collapse
|
96
|
Zhu P, Hawkins J, Linthicum WH, Wang M, Li N, Zhou N, Wen Q, Timme-Laragy A, Song X, Sun Y. Heavy Metal Exposure Leads to Rapid Changes in Cellular Biophysical Properties. ACS Biomater Sci Eng 2020; 6:1965-1976. [PMID: 33455329 DOI: 10.1021/acsbiomaterials.9b01640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Biophysical properties of cells, such as cell mechanics, cell shape, and cell migration, are emerging hallmarks for characterizing various cell functions. Conversely, disruptions to these biophysical properties may be used as reliable indicators of disruptions to cell homeostasis, such as in the case of chemical-induced toxicity. In this study, we demonstrate that treatment of lead(II) nitrate and cadmium nitrate leads to dosage-dependent changes in a collection of biophysical properties, including cellular traction forces, focal adhesions, mechanical stiffness, cell shape, migration speed, permeability, and wound-healing efficacy in mammalian cells. As those changes appear within a few hours after the treatment with a trace amount of lead/cadmium, our results highlight the promise of using biophysical properties to screen environmental chemicals to identify potential toxicants and establish dose response curves. Our systematic and quantitative characterization of the rapid changes in cytoskeletal structure and cell functions upon heavy metal treatment may inspire new research on the mechanisms of toxicity.
Collapse
Affiliation(s)
- Peiran Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.,Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | | | - Will Hamilton Linthicum
- Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Menglin Wang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.,Department of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui Province, China
| | | | - Nanjia Zhou
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.,Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Qi Wen
- Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | | | - Xiaofei Song
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | | |
Collapse
|
97
|
Kruger TM, Bell KJ, Lansakara TI, Tivanski AV, Doorn JA, Stevens LL. A Soft Mechanical Phenotype of SH-SY5Y Neuroblastoma and Primary Human Neurons Is Resilient to Oligomeric Aβ(1-42) Injury. ACS Chem Neurosci 2020; 11:840-850. [PMID: 32058688 DOI: 10.1021/acschemneuro.9b00401] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aggregated amyloid beta (Aβ) is widely reported to cause neuronal dystrophy and toxicity through multiple pathways: oxidative stress, disrupting calcium homeostasis, and cytoskeletal dysregulation. The neuro-cytoskeleton is a dynamic structure that reorganizes to maintain cell homeostasis in response to varying soluble and physical cues presented from the extracellular matrix (ECM). Due this relationship between cell health and the ECM, we hypothesize that amyloid toxicity may be directly influenced by physical changes to the ECM (stiffness and dimensionality) through mechanosensitive pathways, and while previous studies demonstrated that Aβ can distort focal adhesion signaling with pathological consequences, these studies do not address the physical contribution from a physiologically relevant matrix. To test our hypothesis that physical cues can adjust Aβ toxicity, SH-SY5Y human neuroblastoma and primary human cortical neurons were plated on soft and stiff, 2D polyacrylamide matrices or suspended in 3D collagen gels. Each cell culture was exposed to escalating concentrations of oligomeric or fibrillated Aβ(1-42) with MTS viability and lactate dehydrogenase toxicity assessed. Actin restructuring was further monitored in live cells by atomic force microscopy nanoindentation, and our results demonstrate that increasing either matrix stiffness or exposure to oligomeric Aβ promotes F-actin polymerization and cell stiffening, while mature Aβ fibrils yielded no apparent cell stiffening and minor toxicity. Moreover, the rounded, softer mechanical phenotype displayed by cells plated onto a compliant matrix also demonstrated a resilience to oligomeric Aβ as noted by a significant recovery of viability when compared to same-dosed cells plated on traditional tissue culture plastic. This recovery was reproduced pharmacologically through inhibiting actin polymerization with cytochalasin D prior to Aβ exposure. These studies indicate that the cell-ECM interface can modify amyloid toxicity in neurons and the matrix-mediated pathways that promote this protection may offer unique targets in amyloid pathologies like Alzheimer's disease.
Collapse
Affiliation(s)
- Terra M. Kruger
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Kendra J. Bell
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | | | - Alexei V. Tivanski
- Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Jonathan A. Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Lewis L. Stevens
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
98
|
Massey AE, Doxtater KA, Yallapu MM, Chauhan SC. Biophysical changes caused by altered MUC13 expression in pancreatic cancer cells. Micron 2020; 130:102822. [PMID: 31927412 DOI: 10.1016/j.micron.2019.102822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal cancers in the United States. This is partly due to the difficulty in early detection of this disease as well as poor therapeutic responses to currently available regimens. Our previous reports suggest that mucin 13 (MUC13, a transmembrane mucin common to gastrointestinal cells) is aberrantly expressed in this disease state, and has been implicated with a worsened prognosis and an enhanced metastatic potential in PanCa. However, virtually no information currently exists to describe the biophysical ramifications of this protein. METHODS To demonstrate the biophysical effect of MUC13 in PanCa, we generated overexpressing and knockdown model cell lines for PanCa and subsequently subjected them to various biophysical experiments using atomic force microscopy (AFM) and cellular aggregation studies. RESULTS AFM-based nanoindentation data showed significant biophysical effects with MUC13 modulation in PanCa cells. The overexpression of MUC13 in Panc-1 cells led to an expected decrease in modulus, and a corresponding decrease in adhesion. With MUC13 knockdown, HPAF-II cells exhibited an increased modulus and adhesion. These results were confirmed with altered cell-cell adhesion as seen with aggregation assays. CONCLUSIONS MUC13 led to significant biophysical changes in PanCa cells and which exhibited characteristic phenotypic changes in cells demonstrated in previous work from our lab. This work gives insight into the use of biophysical measurements that could be used to help diagnose or monitor cancers as well as determine the effects of genetic alterations at a mechanical level.
Collapse
Affiliation(s)
- Andrew E Massey
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, United States
| | - Kyle A Doxtater
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, United States
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, United States; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, United States
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, United States; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, United States.
| |
Collapse
|
99
|
Abstract
Phagocytosis is a specialized process that enables cellular ingestion and clearance of microbes, dead cells and tissue debris that are too large for other endocytic routes. As such, it is an essential component of tissue homeostasis and the innate immune response, and also provides a link to the adaptive immune response. However, ingestion of large particulate materials represents a monumental task for phagocytic cells. It requires profound reorganization of the cell morphology around the target in a controlled manner, which is limited by biophysical constraints. Experimental and theoretical studies have identified critical aspects associated with the interconnected biophysical properties of the receptors, the membrane, and the actin cytoskeleton that can determine the success of large particle internalization. In this review, we will discuss the major physical constraints involved in the formation of a phagosome. Focusing on two of the most-studied types of phagocytic receptors, the Fcγ receptors and the complement receptor 3 (αMβ2 integrin), we will describe the complex molecular mechanisms employed by phagocytes to overcome these physical constraints.
Collapse
Affiliation(s)
- Valentin Jaumouillé
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
100
|
Kim H, Ishibashi K, Okada T, Nakamura C. Mechanical Property Changes in Breast Cancer Cells Induced by Stimulation with Macrophage Secretions in Vitro. MICROMACHINES 2019; 10:E738. [PMID: 31671643 PMCID: PMC6915679 DOI: 10.3390/mi10110738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 01/16/2023]
Abstract
The contribution of secretions from tumor-associated macrophage (TAM)-like cells to the stimulation of mechanical property changes in murine breast cancer cells was studied using an in vitro model system. A murine breast cancer cell line (FP10SC2) was stimulated by adding macrophage (J774.2) cultivation medium containing stimulation molecules secreted from the macrophages, and changes in mechanical properties were compared before and after stimulation. As a result, cell elasticity decreased, degradation ability of the extracellular matrix increased, and the expression of plakoglobin was upregulated. These results indicate that cancer cell malignancy is upregulated by this stimulation. Moreover, changes in intercellular adhesion strengths between pairs of cancer cells were measured before and after stimulation using atomic force microscopy (AFM). The maximum force required to separate cells was increased by stimulation with the secreted factors. These results indicate the possibility that TAMs cause changes in the mechanical properties of cancer cells in tumor microenvironments, and in vitro measurements of mechanical property changes in cancer cells will be useful to study interactions between cells in tumor microenvironments.
Collapse
Affiliation(s)
- Hyonchol Kim
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan.
| | - Kenta Ishibashi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan.
| | - Tomoko Okada
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Chikashi Nakamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|