51
|
Russell J, Kim SK, Duma J, Nothaft H, Himmel ME, Bomble YJ, Szymanski CM, Westpheling J. Deletion of a single glycosyltransferase in Caldicellulosiruptor bescii eliminates protein glycosylation and growth on crystalline cellulose. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:259. [PMID: 30258493 PMCID: PMC6151902 DOI: 10.1186/s13068-018-1266-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/19/2018] [Indexed: 05/21/2023]
Abstract
Protein glycosylation pathways have been identified in a variety of bacteria and are best understood in pathogens and commensals in which the glycosylation targets are cell surface proteins, such as S layers, pili, and flagella. In contrast, very little is known about the glycosylation of bacterial enzymes, especially those secreted by cellulolytic bacteria. Caldicellulosiruptor bescii secretes several unique synergistic multifunctional biomass-degrading enzymes, notably cellulase A which is largely responsible for this organism's ability to grow on lignocellulosic biomass without the conventional pretreatment. It was recently discovered that extracellular CelA is heavily glycosylated. In this work, we identified an O-glycosyltransferase in the C. bescii chromosome and targeted it for deletion. The resulting mutant was unable to grow on crystalline cellulose and showed no detectable protein glycosylation. Multifunctional biomass-degrading enzymes in this strain were rapidly degraded. With the genetic tools available in C. bescii, this system represents a unique opportunity to study the role of bacterial enzyme glycosylation as well an investigation of the pathway for protein glycosylation in a non-pathogen.
Collapse
Affiliation(s)
- Jordan Russell
- Microbiology Department, University of Georgia, Athens, GA USA
- Genetics Department, University of Georgia, Athens, GA USA
- The BioEnergy Science Center and The Center for Bioenergy Innovation U.S. Department of Energy Office of Science, Oak Ridge, Tennessee USA
| | - Sun-Ki Kim
- Genetics Department, University of Georgia, Athens, GA USA
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546 Republic of Korea
- The BioEnergy Science Center and The Center for Bioenergy Innovation U.S. Department of Energy Office of Science, Oak Ridge, Tennessee USA
| | - Justin Duma
- Microbiology Department, University of Georgia, Athens, GA USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA USA
| | - Harald Nothaft
- Department of Biological Sciences, University of Alberta, Edmonton, AB Canada
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
- The BioEnergy Science Center and The Center for Bioenergy Innovation U.S. Department of Energy Office of Science, Oak Ridge, Tennessee USA
| | - Yannick J. Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
- The BioEnergy Science Center and The Center for Bioenergy Innovation U.S. Department of Energy Office of Science, Oak Ridge, Tennessee USA
| | - Christine M. Szymanski
- Microbiology Department, University of Georgia, Athens, GA USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA USA
| | - Janet Westpheling
- Genetics Department, University of Georgia, Athens, GA USA
- The BioEnergy Science Center and The Center for Bioenergy Innovation U.S. Department of Energy Office of Science, Oak Ridge, Tennessee USA
| |
Collapse
|
52
|
Hoffmann R, Grabińska K, Guan Z, Sessa WC, Neiman AM. Long-Chain Polyprenols Promote Spore Wall Formation in Saccharomyces cerevisiae. Genetics 2017; 207:1371-1386. [PMID: 28978675 PMCID: PMC5714454 DOI: 10.1534/genetics.117.300322] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/03/2017] [Indexed: 11/18/2022] Open
Abstract
Dolichols are isoprenoid lipids of varying length that act as sugar carriers in glycosylation reactions in the endoplasmic reticulum. In Saccharomyces cerevisiae, there are two cis-prenyltransferases that synthesize polyprenol-an essential precursor to dolichol. These enzymes are heterodimers composed of Nus1 and either Rer2 or Srt1. Rer2-Nus1 and Srt1-Nus1 can both generate dolichol in vegetative cells, but srt1∆ cells grow normally while rer2∆ grows very slowly, indicating that Rer2-Nus1 is the primary enzyme used in mitotically dividing cells. In contrast, SRT1 performs an important function in sporulating cells, where the haploid genomes created by meiosis are packaged into spores. The spore wall is a multilaminar structure and SRT1 is required for the generation of the outer chitosan and dityrosine layers of the spore wall. Srt1 specifically localizes to lipid droplets associated with spore walls, and, during sporulation there is an SRT1-dependent increase in long-chain polyprenols and dolichols in these lipid droplets. Synthesis of chitin by Chs3, the chitin synthase responsible for chitosan layer formation, is dependent on the cis-prenyltransferase activity of Srt1, indicating that polyprenols are necessary to coordinate assembly of the spore wall layers. This work shows that a developmentally regulated cis-prenyltransferase can produce polyprenols that function in cellular processes besides protein glycosylation.
Collapse
Affiliation(s)
- Reuben Hoffmann
- Department of Biochemistry and Cell Biology, Stony Brook University, New York 11794-5215
| | - Kariona Grabińska
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520-8066
| | - Ziqiang Guan
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710
| | - William C Sessa
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520-8066
| | - Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, New York 11794-5215
| |
Collapse
|
53
|
Discovery of an O-mannosylation pathway selectively serving cadherins and protocadherins. Proc Natl Acad Sci U S A 2017; 114:11163-11168. [PMID: 28973932 DOI: 10.1073/pnas.1708319114] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cadherin (cdh) superfamily of adhesion molecules carry O-linked mannose (O-Man) glycans at highly conserved sites localized to specific β-strands of their extracellular cdh (EC) domains. These O-Man glycans do not appear to be elongated like O-Man glycans found on α-dystroglycan (α-DG), and we recently demonstrated that initiation of cdh/protocadherin (pcdh) O-Man glycosylation is not dependent on the evolutionary conserved POMT1/POMT2 enzymes that initiate O-Man glycosylation on α-DG. Here, we used a CRISPR/Cas9 genetic dissection strategy combined with sensitive and quantitative O-Man glycoproteomics to identify a homologous family of four putative protein O-mannosyltransferases encoded by the TMTC1-4 genes, which were found to be imperative for cdh and pcdh O-Man glycosylation. KO of all four TMTC genes in HEK293 cells resulted in specific loss of cdh and pcdh O-Man glycosylation, whereas combined KO of TMTC1 and TMTC3 resulted in selective loss of O-Man glycans on specific β-strands of EC domains, suggesting that each isoenzyme serves a different function. In addition, O-Man glycosylation of IPT/TIG domains of plexins and hepatocyte growth factor receptor was not affected in TMTC KO cells, suggesting the existence of yet another O-Man glycosylation machinery. Our study demonstrates that regulation of O-mannosylation in higher eukaryotes is more complex than envisioned, and the discovery of the functions of TMTCs provide insight into cobblestone lissencephaly caused by deficiency in TMTC3.
Collapse
|
54
|
Hernández NV, López-Ramírez LA, Díaz-Jiménez DF, Mellado-Mojica E, Martínez-Duncker I, López MG, Mora-Montes HM. Saccharomyces cerevisiae KTR4 , KTR5 and KTR7 encode mannosyltransferases differentially involved in the N - and O -linked glycosylation pathways. Res Microbiol 2017; 168:740-750. [DOI: 10.1016/j.resmic.2017.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 12/23/2022]
|
55
|
Zatorska E, Gal L, Schmitt J, Bausewein D, Schuldiner M, Strahl S. Cellular Consequences of Diminished Protein O-Mannosyltransferase Activity in Baker's Yeast. Int J Mol Sci 2017; 18:ijms18061226. [PMID: 28598353 PMCID: PMC5486049 DOI: 10.3390/ijms18061226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 01/08/2023] Open
Abstract
O-Mannosylation is a type of protein glycosylation initiated in the endoplasmic reticulum (ER) by the protein O-mannosyltransferase (PMT) family. Despite the vital role of O-mannosylation, its molecular functions and regulation are not fully characterized. To further explore the cellular impact of protein O-mannosylation, we performed a genome-wide screen to identify Saccharomyces cerevisiae mutants with increased sensitivity towards the PMT-specific inhibitor compound R3A-5a. We identified the cell wall and the ER as the cell compartments affected most upon PMT inhibition. Especially mutants with defects in N-glycosylation, biosynthesis of glycosylphosphatidylinositol-anchored proteins and cell wall β-1,6-glucan showed impaired growth when O-mannosylation became limiting. Signaling pathways that counteract cell wall defects and unbalanced ER homeostasis, namely the cell wall integrity pathway and the unfolded protein response, were highly crucial for the cell growth. Moreover, among the most affected mutants, we identified Ost3, one of two homologous subunits of the oligosaccharyltransferase complexes involved in N-glycosylation, suggesting a functional link between the two pathways. Indeed, we identified Pmt2 as a substrate for Ost3 suggesting that the reduced function of Pmt2 in the absence of N-glycosylation promoted sensitivity to the drug. Interestingly, even though S. cerevisiae Pmt1 and Pmt2 proteins are highly similar on the sequence, as well as the structural level and act as a complex, we identified only Pmt2, but not Pmt1, as an Ost3-specific substrate protein.
Collapse
Affiliation(s)
- Ewa Zatorska
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Lihi Gal
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| | - Jaro Schmitt
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Daniela Bausewein
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| | - Sabine Strahl
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
56
|
Cho Y, Yu CY, Nakamura Y, Kanehara K. Arabidopsis dolichol kinase AtDOK1 is involved in flowering time control. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3243-3252. [PMID: 28379398 PMCID: PMC5853391 DOI: 10.1093/jxb/erx095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/27/2017] [Indexed: 06/07/2023]
Abstract
Dolichols are a class of isoprenoids that consist of highly polymerized and unsaturated long-chain isoprenes. They play crucial roles in protein glycosylation including N-glycosylation, because the oligosaccharide is assembled on a lipid carrier, dolichyl diphosphate. Arabidopsis DOLICHOL KINASE 1, AtDOK1 (At3g45040), encodes a functional dolichol kinase that is involved in plant reproductive processes. The expression of AtDOK1 is limited to highly pluripotent cells although protein glycosylation is thought to be required ubiquitously in the entire plant body. In this study, we further explored AtDOK1 functions by creating leaky knockdown mutants of DOK1. We used a microRNA-mediated gene suppression technique because knockout of DOK1 causes lethality. The DOK1 knockdown mutants showed an early flowering phenotype without any remarkable growth defect in vegetative tissues. Indeed, AtDOK1 was highly expressed in emerging shoot apical meristems as well as inflorescence and floral meristems. A subcellular localization study of DOK1 revealed that DOK1 was localized at the endoplasmic reticulum. Our findings suggest that the endoplasmic reticulum-localized catalytically active DOK1 is highly expressed in the meristems and is involved in the control of flowering time, possibly by post-transcriptional regulation including protein glycosylation.
Collapse
Affiliation(s)
- Yueh Cho
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chao-Yuan Yu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yuki Nakamura
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Kazue Kanehara
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Muroran Institute of Technology, Muroran, Japan
| |
Collapse
|
57
|
Halim A, Anonsen JH. Microbial glycoproteomics. Curr Opin Struct Biol 2017; 44:143-150. [PMID: 28365498 DOI: 10.1016/j.sbi.2017.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/24/2017] [Accepted: 03/06/2017] [Indexed: 02/02/2023]
Abstract
Mass spectrometry-based "-omics" technologies are important tools for global and detailed mapping of post-translational modifications. Protein glycosylation is an abundant and important post translational modification widespread throughout all domains of life. Characterization of glycoproteins, including identification of glycan structure and components, their attachment sites and protein carriers, remains challenging. However, recent advances in glycoproteomics, a subbranch that studies and categorizes protein glycosylations, have greatly expanded the known protein glycosylation space and research in this area is rapidly accelerating. Here, we review recent developments in glycoproteomic technologies with a special focus on microbial protein glycosylation.
Collapse
Affiliation(s)
- Adnan Halim
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | - Jan Haug Anonsen
- Center for Integrative Microbial Evolution, The Mass Spectrometry and Proteomics Unit, Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| |
Collapse
|
58
|
Chaffey PK, Guan X, Wang LX, Tan Z. Introduction: General Aspects of the Chemical Biology of Glycoproteins. CHEMICAL BIOLOGY OF GLYCOPROTEINS 2017. [DOI: 10.1039/9781782623823-00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This chapter is meant to serve as an introduction to the remainder of the book by providing general background on the chemical biology of glycoproteins as well as a brief review of the chapters that follow. The purpose here is to introduce some basic concepts common to many forms of glycosylation for those readers who may be unfamiliar with the field. We begin with a discussion of the strategies and methods used to study protein glycosylation. During the overview, an effort is made to highlight a few relevant aspects of chemical glycobiology, including glycoprotein biosynthesis and a brief description of the synthesis and function of glycoproteins. Finally, we have a summary of the contributions from chemical biology over the years. It is our hope that, after reading this introductory chapter, the reader will have a broad view of the chemical glycobiology field as it currently stands and a deeper appreciation for some of the unique ideas that chemical biology brings to the field.
Collapse
Affiliation(s)
- Patrick K. Chaffey
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| | - Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland College Park MD 20742 USA
| | - Zhongping Tan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| |
Collapse
|
59
|
Protein O-Mannosylation in the Murine Brain: Occurrence of Mono-O-Mannosyl Glycans and Identification of New Substrates. PLoS One 2016; 11:e0166119. [PMID: 27812179 PMCID: PMC5094735 DOI: 10.1371/journal.pone.0166119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 10/24/2016] [Indexed: 12/25/2022] Open
Abstract
Protein O-mannosylation is a post-translational modification essential for correct development of mammals. In humans, deficient O-mannosylation results in severe congenital muscular dystrophies often associated with impaired brain and eye development. Although various O-mannosylated proteins have been identified in the recent years, the distribution of O-mannosyl glycans in the mammalian brain and target proteins are still not well defined. In the present study, rabbit monoclonal antibodies directed against the O-mannosylated peptide YAT(α1-Man)AV were generated. Detailed characterization of clone RKU-1-3-5 revealed that this monoclonal antibody recognizes O-linked mannose also in different peptide and protein contexts. Using this tool, we observed that mono-O-mannosyl glycans occur ubiquitously throughout the murine brain but are especially enriched at inhibitory GABAergic neurons and at the perineural nets. Using a mass spectrometry-based approach, we further identified glycoproteins from the murine brain that bear single O-mannose residues. Among the candidates identified are members of the cadherin and plexin superfamilies and the perineural net protein neurocan. In addition, we identified neurexin 3, a cell adhesion protein involved in synaptic plasticity, and inter-alpha-trypsin inhibitor 5, a protease inhibitor important in stabilizing the extracellular matrix, as new O-mannosylated glycoproteins.
Collapse
|
60
|
Mann E, Whitfield C. A widespread three-component mechanism for the periplasmic modification of bacterial glycoconjugates. CAN J CHEM 2016. [DOI: 10.1139/cjc-2015-0594] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The diverse structures of bacterial glycoconjugates are generally established during the early stages of synthesis by the activities of nucleotide sugar-dependent glycosyltransferases active in the cytoplasm. However, in some cases, further modifications of varying complexity occur after the glycoconjugate is exported to the periplasm. These processes are distinguished by the involvement of polyprenyl monosphosphoryl donors and require glycosyltransferases possessing GT-C folds. Established prototypes are found in modifications of some bacterial lipopolysaccharides, where 4-amino-4-deoxy-l-arabinose is added to lipid A and glucose side branches are used to modify O-antigens. Here we review the current understanding of these systems and describe similarities to other periplasmic glycan modifications in bacteria and the N-glycosylation pathway for assembly of eukaryotic glycoproteins.
Collapse
Affiliation(s)
- Evan Mann
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
61
|
He Z, Luo L, Keyhani NO, Yu X, Ying S, Zhang Y. The C-terminal MIR-containing region in the Pmt1 O-mannosyltransferase restrains sporulation and is dispensable for virulence in Beauveria bassiana. Appl Microbiol Biotechnol 2016; 101:1143-1161. [DOI: 10.1007/s00253-016-7894-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/13/2016] [Accepted: 09/25/2016] [Indexed: 12/15/2022]
|
62
|
Yang Y, Zheng N, Wang W, Zhao X, Zhang Y, Han R, Ma L, Zhao S, Li S, Guo T, Zang C, Wang J. N-glycosylation proteomic characterization and cross-species comparison of milk fat globule membrane proteins from mammals. Proteomics 2016; 16:2792-2800. [PMID: 27539975 DOI: 10.1002/pmic.201500361] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 04/09/2016] [Accepted: 08/12/2016] [Indexed: 12/21/2022]
Abstract
Glycosylation of proteins has been implicated in various biological functions and has received much attention; however, glycoprotein components and inter-species complexity have not yet been elucidated fully in milk proteins. N-linked glycosylation sites and glycoproteins in milk fat globule membrane (MFGM) fractions were investigated by combining N-glycosylated peptides enrichment and high-accuracy Q Exactive identification, to map the N-glycoproteome profiles in Holstein and Jersey cows, buffaloes, yaks, goats, camels, horses, and humans. A total of 399 N-glycoproteins with 677 glycosylation sites were identified in the MFGM fractions of the studied mammals. Most glycosylation sites in humans were classified as known and those in the other studied mammals as unknown, according to Swiss-Prot annotations. Functionally, most of the identified glycoproteins were associated with the 'response to stimulus' GO category. N-glycosylated protein components of MFGM fractions from Holstein and Jersey cows, buffaloes, yaks, and goats were more similar to each other compared with those of camels, horses and human. The findings increased the number of known N-glycosylation sites in the milk from dairy animal species, revealed the complexity of the MFGM glycoproteome, and provided useful information to further explore the mechanism of MFGM glycoproteins biosynthesis among the studied mammals.
Collapse
Affiliation(s)
- Yongxin Yang
- Ministry of Agriculture-Milk Risk Assessment Laboratory, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Nan Zheng
- Ministry of Agriculture-Milk Risk Assessment Laboratory, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiyu Wang
- The High School affiliated to Renmin University of China, Beijing, China
| | - Xiaowei Zhao
- Ministry of Agriculture-Milk Risk Assessment Laboratory, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yangdong Zhang
- Ministry of Agriculture-Milk Risk Assessment Laboratory, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rongwei Han
- Ministry of Agriculture-Milk Risk Assessment Laboratory, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Ma
- Ministry of Agriculture-Milk Risk Assessment Laboratory, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengguo Zhao
- Ministry of Agriculture-Milk Risk Assessment Laboratory, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Songli Li
- Ministry of Agriculture-Milk Risk Assessment Laboratory, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tongjun Guo
- Ministry of Agriculture-Milk Risk Assessment Laboratory, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changjiang Zang
- Ministry of Agriculture-Milk Risk Assessment Laboratory, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Ministry of Agriculture-Milk Risk Assessment Laboratory, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
63
|
Lombard J. The multiple evolutionary origins of the eukaryotic N-glycosylation pathway. Biol Direct 2016; 11:36. [PMID: 27492357 PMCID: PMC4973528 DOI: 10.1186/s13062-016-0137-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/26/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The N-glycosylation is an essential protein modification taking place in the membranes of the endoplasmic reticulum (ER) in eukaryotes and the plasma membranes in archaea. It shares mechanistic similarities based on the use of polyisoprenol lipid carriers with other glycosylation pathways involved in the synthesis of bacterial cell wall components (e.g. peptidoglycan and teichoic acids). Here, a phylogenomic analysis was carried out to examine the validity of rival hypotheses suggesting alternative archaeal or bacterial origins to the eukaryotic N-glycosylation pathway. RESULTS The comparison of several polyisoprenol-based glycosylation pathways from the three domains of life shows that most of the implicated proteins belong to a limited number of superfamilies. The N-glycosylation pathway enzymes are ancestral to the eukaryotes, but their origins are mixed: Alg7, Dpm and maybe also one gene of the glycosyltransferase 1 (GT1) superfamily and Stt3 have proteoarchaeal (TACK superphylum) origins; alg2/alg11 may have resulted from the duplication of the original GT1 gene; the lumen glycosyltransferases were probably co-opted and multiplied through several gene duplications during eukaryogenesis; Alg13/Alg14 are more similar to their bacterial homologues; and Alg1, Alg5 and a putative flippase have unknown origins. CONCLUSIONS The origin of the eukaryotic N-glycosylation pathway is not unique and less straightforward than previously thought: some basic components likely have proteoarchaeal origins, but the pathway was extensively developed before the eukaryotic diversification through multiple gene duplications, protein co-options, neofunctionalizations and even possible horizontal gene transfers from bacteria. These results may have important implications for our understanding of the ER evolution and eukaryogenesis. REVIEWERS This article was reviewed by Pr. Patrick Forterre and Dr. Sergei Mekhedov (nominated by Editorial Board member Michael Galperin).
Collapse
Affiliation(s)
- Jonathan Lombard
- National Evolutionary Synthesis Center, 2024 W. Main Street Suite A200, Durham, NC, 27705, USA.
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
64
|
Okada H, Kono K, Neiman AM, Ohya Y. Examination and Disruption of the Yeast Cell Wall. Cold Spring Harb Protoc 2016; 2016:2016/8/pdb.top078659. [PMID: 27480724 DOI: 10.1101/pdb.top078659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The cell wall of Saccharomyces cerevisiae is a complicated extracellular organelle. Although the barrier may seem like a technical nuisance for researchers studying intracellular biomolecules or conditions, the rigid wall is an essential aspect of the yeast cell. Without it, yeast cells are unable to proliferate or carry out their life cycle. The chemical composition of the cell wall and the biosynthetic pathways and signal transduction mechanisms involved in cell wall remodeling have been studied extensively, but many unanswered questions remain. This introduction describes techniques for investigating abnormalities in the cell and spore walls and performing cell wall disruption.
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| | - Keiko Kono
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi Prefecture 467-8601, Japan
| | - Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| |
Collapse
|
65
|
Protein O-mannosylation in the early secretory pathway. Curr Opin Cell Biol 2016; 41:100-8. [DOI: 10.1016/j.ceb.2016.04.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/19/2016] [Accepted: 04/25/2016] [Indexed: 12/30/2022]
|
66
|
Bausewein D, Engel J, Jank T, Schoedl M, Strahl S. Functional Similarities between the Protein O-Mannosyltransferases Pmt4 from Bakers' Yeast and Human POMT1. J Biol Chem 2016; 291:18006-15. [PMID: 27358400 PMCID: PMC5016187 DOI: 10.1074/jbc.m116.739128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Indexed: 11/21/2022] Open
Abstract
Protein O-mannosylation is an essential post-translational modification. It is initiated in the endoplasmic reticulum by a family of protein O-mannosyltransferases that are conserved from yeast (PMTs) to human (POMTs). The degree of functional conservation between yeast and human protein O-mannosyltransferases is uncharacterized. In bakers' yeast, the main in vivo activities are due to heteromeric Pmt1-Pmt2 and homomeric Pmt4 complexes. Here we describe an enzymatic assay that allowed us to monitor Pmt4 activity in vitro. We demonstrate that detergent requirements and acceptor substrates of yeast Pmt4 are different from Pmt1-Pmt2, but resemble that of human POMTs. Furthermore, we mimicked two POMT1 amino acid exchanges (G76R and V428D) that result in severe congenital muscular dystrophies in humans, in yeast Pmt4 (I112R and I435D). In vivo and in vitro analyses showed that general features such as protein stability of the Pmt4 variants were not significantly affected, however, the mutants proved largely enzymatically inactive. Our results demonstrate functional and biochemical similarities between POMT1 and its orthologue from bakers' yeast Pmt4.
Collapse
Affiliation(s)
- Daniela Bausewein
- From the Centre for Organismal Studies, Cell Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Jakob Engel
- From the Centre for Organismal Studies, Cell Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Thomas Jank
- From the Centre for Organismal Studies, Cell Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Maria Schoedl
- From the Centre for Organismal Studies, Cell Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Sabine Strahl
- From the Centre for Organismal Studies, Cell Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
67
|
Guo M, Tan L, Nie X, Zhu X, Pan Y, Gao Z. The Pmt2p-Mediated Protein O-Mannosylation Is Required for Morphogenesis, Adhesive Properties, Cell Wall Integrity and Full Virulence of Magnaporthe oryzae. Front Microbiol 2016; 7:630. [PMID: 27199956 PMCID: PMC4852298 DOI: 10.3389/fmicb.2016.00630] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/18/2016] [Indexed: 12/28/2022] Open
Abstract
Protein O-mannosylation is a type of O-glycosylation that is characterized by the addition of mannose residues to target proteins, and is initially catalyzed by evolutionarily conserved protein O-mannosyltransferases (PMTs). In this study, three members of PMT were identified in Magnaporthe oryzae, and the pathogenic roles of MoPmt2, a member of PMT2 subfamily, were analyzed. We found that MoPmt2 is a homolog of Saccharomyces cerevisiae Pmt2 and could complement yeast Pmt2 function in resistance to CFW. Quantitative RT-PCR revealed that MoPmt2 is highly expressed during conidiation, and targeted disruption of MoPmt2 resulted in defects in conidiation and conidia morphology. The MoPmt2 mutants also showed a distinct reduction in fungal growth, which was associated with severe alterations in hyphal polarity. In addition, we found that the MoPmt2 mutants severely reduced virulence on both rice plants and barley leaves. The subsequent examination revealed that the fungal adhesion, conidial germination, CWI and invasive hyphae growth in host cells are responsible for defects on appressorium mediated penetration, and thus attenuated the pathogenicity of MoPmt2 mutants. Taken together, our results suggest that protein O-mannosyltransferase MoPmt2 plays essential roles in fungal growth and development, and is required for the full pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Min Guo
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University Hefei, China
| | - Leyong Tan
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University Hefei, China
| | - Xiang Nie
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University Hefei, China
| | - Xiaolei Zhu
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University Hefei, China
| | - Yuemin Pan
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University Hefei, China
| | - Zhimou Gao
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University Hefei, China
| |
Collapse
|
68
|
Loke I, Kolarich D, Packer NH, Thaysen-Andersen M. Emerging roles of protein mannosylation in inflammation and infection. Mol Aspects Med 2016; 51:31-55. [PMID: 27086127 DOI: 10.1016/j.mam.2016.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 04/10/2016] [Indexed: 02/07/2023]
Abstract
Proteins are frequently modified by complex carbohydrates (glycans) that play central roles in maintaining the structural and functional integrity of cells and tissues in humans and lower organisms. Mannose forms an essential building block of protein glycosylation, and its functional involvement as components of larger and diverse α-mannosidic glycoepitopes in important intra- and intercellular glycoimmunological processes is gaining recognition. With a focus on the mannose-rich asparagine (N-linked) glycosylation type, this review summarises the increasing volume of literature covering human and non-human protein mannosylation, including their structures, biosynthesis and spatiotemporal expression. The review also covers their known interactions with specialised host and microbial mannose-recognising C-type lectin receptors (mrCLRs) and antibodies (mrAbs) during inflammation and pathogen infection. Advances in molecular mapping technologies have recently revealed novel immuno-centric mannose-terminating truncated N-glycans, termed paucimannosylation, on human proteins. The cellular presentation of α-mannosidic glycoepitopes on N-glycoproteins appears tightly regulated; α-mannose determinants are relative rare glycoepitopes in physiological extracellular environments, but may be actively secreted or leaked from cells to transmit potent signals when required. Simultaneously, our understanding of the molecular basis on the recognition of mannosidic epitopes by mrCLRs including DC-SIGN, mannose receptor, mannose binding lectin and mrAb is rapidly advancing, together with the functional implications of these interactions in facilitating an effective immune response during physiological and pathophysiological conditions. Ultimately, deciphering these complex mannose-based receptor-ligand interactions at the detailed molecular level will significantly advance our understanding of immunological disorders and infectious diseases, promoting the development of future therapeutics to improve patient clinical outcomes.
Collapse
Affiliation(s)
- Ian Loke
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
69
|
Neubert P, Halim A, Zauser M, Essig A, Joshi HJ, Zatorska E, Larsen ISB, Loibl M, Castells-Ballester J, Aebi M, Clausen H, Strahl S. Mapping the O-Mannose Glycoproteome in Saccharomyces cerevisiae. Mol Cell Proteomics 2016; 15:1323-37. [PMID: 26764011 PMCID: PMC4824858 DOI: 10.1074/mcp.m115.057505] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 11/17/2022] Open
Abstract
O-Mannosylation is a vital protein modification conserved from fungi to humans. Yeast is a perfect model to study this post-translational modification, because in contrast to mammals O-mannosylation is the only type of O-glycosylation. In an essential step toward the full understanding of protein O-mannosylation we mapped the O-mannose glycoproteome in baker's yeast. Taking advantage of an O-glycan elongation deficient yeast strain to simplify sample complexity, we identified over 500 O-glycoproteins from all subcellular compartments for which over 2300 O-mannosylation sites were mapped by electron-transfer dissociation (ETD)-based MS/MS. In this study, we focus on the 293 O-glycoproteins (over 1900 glycosylation sites identified by ETD-MS/MS) that enter the secretory pathway and are targets of ER-localized protein O-mannosyltransferases. We find that O-mannosylation is not only a prominent modification of cell wall and plasma membrane proteins, but also of a large number of proteins from the secretory pathway with crucial functions in protein glycosylation, folding, quality control, and trafficking. The analysis of glycosylation sites revealed that O-mannosylation is favored in unstructured regions and β-strands. Furthermore, O-mannosylation is impeded in the proximity of N-glycosylation sites suggesting the interplay of these types of post-translational modifications. The detailed knowledge of the target proteins and their O-mannosylation sites opens for discovery of new roles of this essential modification in eukaryotes, and for a first glance on the evolution of different types of O-glycosylation from yeast to mammals.
Collapse
Affiliation(s)
- Patrick Neubert
- From the ‡Centre for Organismal Studies (COS), Department of Cell Chemistry, Heidelberg University, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany
| | - Adnan Halim
- §Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Martin Zauser
- From the ‡Centre for Organismal Studies (COS), Department of Cell Chemistry, Heidelberg University, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany
| | - Andreas Essig
- ¶Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Hiren J Joshi
- §Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Ewa Zatorska
- From the ‡Centre for Organismal Studies (COS), Department of Cell Chemistry, Heidelberg University, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany
| | - Ida Signe Bohse Larsen
- §Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Martin Loibl
- From the ‡Centre for Organismal Studies (COS), Department of Cell Chemistry, Heidelberg University, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany
| | - Joan Castells-Ballester
- From the ‡Centre for Organismal Studies (COS), Department of Cell Chemistry, Heidelberg University, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany
| | - Markus Aebi
- ¶Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Henrik Clausen
- §Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sabine Strahl
- From the ‡Centre for Organismal Studies (COS), Department of Cell Chemistry, Heidelberg University, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany;
| |
Collapse
|
70
|
Abstract
Dynamic cycling of N-Acetylglucosamine (GlcNAc) on serine and threonine residues (O-GlcNAcylation) is an essential process in all eukaryotic cells except yeast, including Saccharomyces cerevisiae and Schizosaccharomyces pombe. O-GlcNAcylation modulates signaling and cellular processes in an intricate interplay with protein phosphorylation and serves as a key sensor of nutrients by linking the hexosamine biosynthetic pathway to cellular signaling. A longstanding conundrum has been how yeast survives without O-GlcNAcylation in light of its similar phosphorylation signaling system. We previously developed a sensitive lectin enrichment and mass spectrometry workflow for identification of the human O-linked mannose (O-Man) glycoproteome and used this to identify a pleothora of O-Man glycoproteins in human cell lines including the large family of cadherins and protocadherins. Here, we applied the workflow to yeast with the aim to characterize the yeast O-Man glycoproteome, and in doing so, we discovered hitherto unknown O-Man glycosites on nuclear, cytoplasmic, and mitochondrial proteins in S. cerevisiae and S. pombe. Such O-Man glycoproteins were not found in our analysis of human cell lines. However, the type of yeast O-Man nucleocytoplasmic proteins and the localization of identified O-Man residues mirror that of the O-GlcNAc glycoproteome found in other eukaryotic cells, indicating that the two different types of O-glycosylations serve the same important biological functions. The discovery opens for exploration of the enzymatic machinery that is predicted to regulate the nucleocytoplasmic O-Man glycosylations. It is likely that manipulation of this type of O-Man glycosylation will have wide applications for yeast bioprocessing.
Collapse
|
71
|
Schjoldager KT, Joshi HJ, Kong Y, Goth CK, King SL, Wandall HH, Bennett EP, Vakhrushev SY, Clausen H. Deconstruction of O-glycosylation--GalNAc-T isoforms direct distinct subsets of the O-glycoproteome. EMBO Rep 2015; 16:1713-22. [PMID: 26566661 PMCID: PMC4693523 DOI: 10.15252/embr.201540796] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/05/2015] [Accepted: 10/16/2015] [Indexed: 12/20/2022] Open
Abstract
GalNAc-type O-glycosylation is found on most proteins trafficking through the secretory pathway in metazoan cells. The O-glycoproteome is regulated by up to 20 polypeptide GalNAc-Ts and the contributions and biological functions of individual GalNAc-Ts are poorly understood. Here, we used a zinc-finger nuclease (ZFN)-directed knockout strategy to probe the contributions of the major GalNAc-Ts (GalNAc-T1 and GalNAc-T2) in liver cells and explore how the GalNAc-T repertoire quantitatively affects the O-glycoproteome. We demonstrate that the majority of the O-glycoproteome is covered by redundancy, whereas distinct subsets of substrates are modified by non-redundant functions of GalNAc-T1 and GalNAc-T2. The non-redundant O-glycoproteome subsets and specific transcriptional responses for each isoform are related to different cellular processes; for the GalNAc-T2 isoform, these support a role in lipid metabolism. The results demonstrate that GalNAc-Ts have different non-redundant glycosylation functions, which may affect distinct cellular processes. The data serves as a comprehensive resource for unique GalNAc-T substrates. Our study provides a new view of the differential regulation of the O-glycoproteome, suggesting that the plurality of GalNAc-Ts arose to regulate distinct protein functions and cellular processes.
Collapse
Affiliation(s)
- Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Yun Kong
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Christoffer K Goth
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Sarah Louise King
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
72
|
Xu C, Ng DTW. Glycosylation-directed quality control of protein folding. Nat Rev Mol Cell Biol 2015; 16:742-52. [PMID: 26465718 DOI: 10.1038/nrm4073] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Membrane-bound and soluble proteins of the secretory pathway are commonly glycosylated in the endoplasmic reticulum. These adducts have many biological functions, including, notably, their contribution to the maturation of glycoproteins. N-linked glycans are of oligomeric structure, forming configurations that provide blueprints to precisely instruct the folding of protein substrates and the quality control systems that scrutinize it. O-linked mannoses are simpler in structure and were recently found to have distinct functions in protein quality control that do not require the complex structure of N-linked glycans. Together, recent studies reveal the breadth and sophistication of the roles of these glycan-directed modifications in protein biogenesis.
Collapse
Affiliation(s)
- Chengchao Xu
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Davis T W Ng
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Duke University-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857
| |
Collapse
|
73
|
García R, Botet J, Rodríguez-Peña JM, Bermejo C, Ribas JC, Revuelta JL, Nombela C, Arroyo J. Genomic profiling of fungal cell wall-interfering compounds: identification of a common gene signature. BMC Genomics 2015; 16:683. [PMID: 26341223 PMCID: PMC4560923 DOI: 10.1186/s12864-015-1879-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/25/2015] [Indexed: 01/01/2023] Open
Abstract
Background The fungal cell wall forms a compact network whose integrity is essential for cell morphology and viability. Thus, fungal cells have evolved mechanisms to elicit adequate adaptive responses when cell wall integrity (CWI) is compromised. Functional genomic approaches provide a unique opportunity to globally characterize these adaptive mechanisms. To provide a global perspective on these CWI regulatory mechanisms, we developed chemical-genomic profiling of haploid mutant budding yeast cells to systematically identify in parallel those genes required to cope with stresses interfering the cell wall by different modes of action: β-1,3 glucanase and chitinase activities (zymolyase), inhibition of β-1,3 glucan synthase (caspofungin) and binding to chitin (Congo red). Results Measurement of the relative fitness of the whole collection of 4786 haploid budding yeast knock-out mutants identified 222 mutants hypersensitive to caspofungin, 154 mutants hypersensitive to zymolyase, and 446 mutants hypersensitive to Congo red. Functional profiling uncovered both common and specific requirements to cope with different cell wall damages. We identified a cluster of 43 genes highly important for the integrity of the cell wall as the common “signature of cell wall maintenance (CWM)”. This cluster was enriched in genes related to vesicular trafficking and transport, cell wall remodeling and morphogenesis, transcription and chromatin remodeling, signal transduction and RNA metabolism. Although the CWI pathway is the main MAPK pathway regulating cell wall integrity, the collaboration with other signal transduction pathways like the HOG pathway and the invasive growth pathway is also required to cope with the cell wall damage depending on the nature of the stress. Finally, 25 mutant strains showed enhanced caspofungin resistance, including 13 that had not been previously identified. Only three of them, wsc1Δ, elo2Δ and elo3Δ, showed a significant decrease in β-1,3-glucan synthase activity. Conclusions This work provides a global perspective about the mechanisms involved in cell wall stress adaptive responses and the cellular functions required for cell wall integrity. The results may be useful to uncover new potential antifungal targets and develop efficient antifungal strategies by combination of two drugs, one targeting the cell wall and the other interfering with the adaptive mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1879-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raúl García
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain.
| | - Javier Botet
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | - José Manuel Rodríguez-Peña
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain.
| | - Clara Bermejo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain.
| | - Juan Carlos Ribas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain. .,Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) / Universidad de Salamanca, 37007, Salamanca, Spain.
| | - José Luis Revuelta
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | - César Nombela
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain.
| | - Javier Arroyo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain.
| |
Collapse
|
74
|
Harries E, Gandía M, Carmona L, Marcos JF. The Penicillium digitatum protein O-mannosyltransferase Pmt2 is required for cell wall integrity, conidiogenesis, virulence and sensitivity to the antifungal peptide PAF26. MOLECULAR PLANT PATHOLOGY 2015; 16:748-761. [PMID: 25640475 PMCID: PMC6638402 DOI: 10.1111/mpp.12232] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The activity of protein O-mannosyltransferases (Pmts) affects the morphogenesis and virulence of fungal pathogens. Recently, PMT genes have been shown to determine the sensitivity of Saccharomyces cerevisiae to the antifungal peptide PAF26. This study reports the identification and characterization of the three Pdpmt genes in the citrus post-harvest pathogen Penicillium digitatum. The Pdpmt genes are expressed during fungal growth and fruit infection, with the highest induction for Pdpmt2. Pdpmt2 complemented the growth defect of the S. cerevisiae Δpmt2 strain. The Pdpmt2 gene mutation in P. digitatum caused pleiotropic effects, including a reduction in fungal growth and virulence, whereas its constitutive expression had no phenotypic effect. The Pdpmt2 null mutants also showed a distinctive colourless phenotype with a strong reduction in the number of conidia, which was associated with severe alterations in the development of conidiophores. Additional effects of the Pdpmt2 mutation were hyphal morphological alterations, increased sensitivity to cell wall-interfering compounds and a blockage of invasive growth. In contrast, the Pdpmt2 mutation increased tolerance to oxidative stress and to the antifungal activity of PAF26. These data confirm the role of protein O-glycosylation in the PAF26-mediated antifungal mechanism present in distantly related fungal species. Important to future crop protection strategies, this study demonstrates that a mutation rendering fungi more resistant to an antifungal peptide results in severe deleterious effects on fungal growth and virulence.
Collapse
Affiliation(s)
- Eleonora Harries
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), CSIC, Avda, Agustín Escardino-7, Paterna, 46980, Valencia, Spain
| | - Mónica Gandía
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), CSIC, Avda, Agustín Escardino-7, Paterna, 46980, Valencia, Spain
| | - Lourdes Carmona
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), CSIC, Avda, Agustín Escardino-7, Paterna, 46980, Valencia, Spain
| | - Jose F Marcos
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), CSIC, Avda, Agustín Escardino-7, Paterna, 46980, Valencia, Spain
| |
Collapse
|
75
|
Cui HJ, Liu XG, McCormick M, Wasko BM, Zhao W, He X, Yuan Y, Fang BX, Sun XR, Kennedy BK, Suh Y, Zhou ZJ, Kaeberlein M, Feng WL. PMT1 deficiency enhances basal UPR activity and extends replicative lifespan of Saccharomyces cerevisiae. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9788. [PMID: 25936926 PMCID: PMC4417673 DOI: 10.1007/s11357-015-9788-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
Pmt1p is an important member of the protein O-mannosyltransferase (PMT) family of enzymes, which participates in the endoplasmic reticulum (ER) unfolded protein response (UPR), an important pathway for alleviating ER stress. ER stress and the UPR have been implicated in aging and age-related diseases in several organisms; however, a possible role for PMT1 in determining lifespan has not been previously described. In this study, we report that deletion of PMT1 increases replicative lifespan (RLS) in the budding yeast Saccharomyces cerevisiae, while overexpression of PMT1 (PMT1-OX) reduces RLS. Relative to wild-type and PMT1-OX strains, the pmt1Δ strain had enhanced HAC1 mRNA splicing and elevated expression levels of UPR target genes. Furthermore, the increased RLS of the pmt1Δ strain could be completely abolished by deletion of either IRE1 or HAC1, two upstream modulators of the UPR. The double deletion strains pmt1Δhac1Δ and pmt1Δire1Δ also displayed generally reduced transcription of UPR target genes. Collectively, our results suggest that PMT1 deficiency enhances basal activity of the ER UPR and extends the RLS of yeast mother cells through a mechanism that requires both IRE1 and HAC1.
Collapse
Affiliation(s)
- Hong-Jing Cui
- />Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No. 1, Yixueyuan Road, Chongqing, 400016 People’s Republic of China
| | - Xin-Guang Liu
- />Institute of Aging Research, Guangdong Medical College, Dongguan, 523808 People’s Republic of China
- />Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, 523808 People’s Republic of China
| | - Mark McCormick
- />Buck Institute for Research on Aging, Novato, CA 98945 USA
| | - Brian M. Wasko
- />Department of Pathology, University of Washington, Seattle, WA 98159 USA
| | - Wei Zhao
- />Institute of Aging Research, Guangdong Medical College, Dongguan, 523808 People’s Republic of China
- />Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, 523808 People’s Republic of China
| | - Xin He
- />Institute of Aging Research, Guangdong Medical College, Dongguan, 523808 People’s Republic of China
- />Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, 523808 People’s Republic of China
| | - Yuan Yuan
- />Institute of Aging Research, Guangdong Medical College, Dongguan, 523808 People’s Republic of China
- />Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, 523808 People’s Republic of China
| | - Bing-Xiong Fang
- />Institute of Aging Research, Guangdong Medical College, Dongguan, 523808 People’s Republic of China
- />Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, 523808 People’s Republic of China
| | - Xue-Rong Sun
- />Institute of Aging Research, Guangdong Medical College, Dongguan, 523808 People’s Republic of China
- />Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, 523808 People’s Republic of China
| | - Brian K. Kennedy
- />Institute of Aging Research, Guangdong Medical College, Dongguan, 523808 People’s Republic of China
- />Buck Institute for Research on Aging, Novato, CA 98945 USA
| | - Yousin Suh
- />Institute of Aging Research, Guangdong Medical College, Dongguan, 523808 People’s Republic of China
- />Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Zhong-Jun Zhou
- />Institute of Aging Research, Guangdong Medical College, Dongguan, 523808 People’s Republic of China
- />Department of Biochemistry, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, Hong Kong
| | - Matt Kaeberlein
- />Institute of Aging Research, Guangdong Medical College, Dongguan, 523808 People’s Republic of China
- />Department of Pathology, University of Washington, Seattle, WA 98159 USA
| | - Wen-Li Feng
- />Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No. 1, Yixueyuan Road, Chongqing, 400016 People’s Republic of China
| |
Collapse
|
76
|
Xu C, Ng DT. O-mannosylation: The other glycan player of ER quality control. Semin Cell Dev Biol 2015; 41:129-34. [DOI: 10.1016/j.semcdb.2015.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 01/07/2023]
|
77
|
Congenital disorders of glycosylation: a concise chart of glycocalyx dysfunction. Trends Biochem Sci 2015; 40:377-84. [PMID: 25840516 DOI: 10.1016/j.tibs.2015.03.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/26/2015] [Accepted: 03/04/2015] [Indexed: 12/28/2022]
Abstract
Glycosylation is a ubiquitous modification of lipids and proteins. Despite the essential contribution of glycoconjugates to the viability of all living organisms, diseases of glycosylation in humans have only been identified over the past few decades. The recent development of next-generation DNA sequencing techniques has accelerated the pace of discovery of novel glycosylation defects. The description of multiple mutations across glycosylation pathways not only revealed tremendous diversity in functional impairments, but also pointed to phenotypic similarities, emphasizing the interconnected flow of substrates underlying glycan assembly. The current list of 100 known glycosylation disorders provides an overview of the significance of glycosylation in human development and physiology.
Collapse
|
78
|
Dubé AK, Bélanger M, Gagnon-Arsenault I, Bourbonnais Y. N-terminal entrance loop of yeast Yps1 and O-glycosylation of substrates are determinant factors controlling the shedding activity of this GPI-anchored endopeptidase. BMC Microbiol 2015; 15:50. [PMID: 25886139 PMCID: PMC4353680 DOI: 10.1186/s12866-015-0380-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/10/2015] [Indexed: 11/19/2022] Open
Abstract
Background S. cerevisiae Yps1 is the prototypical aspartic endopeptidase of the fungal yapsin family. This glycosylphosphatidylinositol (GPI) anchored enzyme was recently shown to be involved in the shedding of the GPI proteins Utr2, Gas1 and itself. It was also proposed to be part of a novel quality control mechanism that eliminates excess and/or misfolded GPI proteins. What regulates its shedding activity at the cell surface is however poorly understood. Yps1 is initially synthesized as a zymogen requiring proteolytic activation to remove a pro-peptide and further processing within a large insertion loop (N-entrance loop) generates a two-subunit endopeptidase. To investigate the role of this loop on its shedding activity, which typically takes place within Ser/Thr-rich domains, it was replaced with the short peptide found at the analogous position in Yps3. We also tested whether O-glycosylation might protect against proteolytic processing by Yps1. Results We show here that replacement of the N-entrance loop (N-ent loop) of Yps1 generates a single chain endopeptidase that undergoes partial (pH 6.0) or complete (pH 3.0) pro-peptide removal. At both pH, the shedding activity of the chimeric endopeptidase (Yps1-DL) toward Gas1 and itself is strongly and drastically increased, respectively. A direct correlation between endoproteolytic cleavage of this loop in native Yps1 and its shedding is observed. The Yps1-dependent shedding of two model GPI proteins (Gas1 and Yps1) is also stimulated by the absence of the O-mannosyltransferases, Pmt4 and Pmt2 respectively, involved in O-glycosylation of their Ser/Thr-rich domains. Under these conditions, some Yps1-independent shedding is also observed. Conclusions Partial pro-peptide removal is essential to produce a functional Yps1 endopeptidase. The Yps1 N-ent loop plays a major role in regulating the shedding activity of the endopeptidase, most likely by limiting access to the active site, and its cleavage in native Yps1 is associated with its shedding. O-glycosylation protects against Yps1-dependent and -independent shedding of GPI proteins. It is postulated that hypoglycosylation of cell surface proteins, which may occur for misfolded proteins that escaped the ER-associated degradation, might target their elimination through shedding by Yps1 and possibly other yapsin members.
Collapse
Affiliation(s)
- Alexandre K Dubé
- Département de biochimie, microbiologie et bio-informatique, Institut de biologie intégrative et des systèmes and Regroupement PROTEO, Université Laval, Québec, QC, Canada.
| | - Marc Bélanger
- Département de biochimie, microbiologie et bio-informatique, Institut de biologie intégrative et des systèmes and Regroupement PROTEO, Université Laval, Québec, QC, Canada.
| | - Isabelle Gagnon-Arsenault
- Département de biochimie, microbiologie et bio-informatique, Institut de biologie intégrative et des systèmes and Regroupement PROTEO, Université Laval, Québec, QC, Canada.
| | - Yves Bourbonnais
- Département de biochimie, microbiologie et bio-informatique, Institut de biologie intégrative et des systèmes and Regroupement PROTEO, Université Laval, Québec, QC, Canada.
| |
Collapse
|
79
|
Abstract
While yeast are lower eukaryotic organisms, they share many common features and biological processes with higher eukaryotes. As such, yeasts have been used as model organisms to facilitate our understanding of such features and processes. To this end, a large number of powerful genetic tools have been developed to investigate and manipulate these organisms. Going hand-in-hand with these genetic tools is the ability to efficiently scale up the fermentation of these organisms, thus making them attractive hosts for the production of recombinant proteins. A key feature of producing recombinant proteins in yeast is that these proteins can be readily secreted into the culture supernatant, simplifying any downstream processing. A consequence of this secretion is that the proteins typically pass through the secretory pathway, during which they may be exposed to various posttranslational modifications. The addition of glycans is one such modification. Unfortunately, while certain aspects of glycosylation are shared between lower and higher eukaryotes, significant differences exist. Over the last two decades much research has focused on engineering the glycosylation pathways of yeast to more closely resemble those of higher eukaryotes, particularly those of humans for the production of therapeutic proteins. In the current review we shall highlight some of the key achievements in yeast glyco-engineering which have led to humanization of both the N- and O-linked glycosylation pathways.
Collapse
|
80
|
Lee DJ, Bahn YS, Kim HJ, Chung SY, Kang HA. Unraveling the novel structure and biosynthetic pathway of O-linked glycans in the Golgi apparatus of the human pathogenic yeast Cryptococcus neoformans. J Biol Chem 2014; 290:1861-73. [PMID: 25477510 DOI: 10.1074/jbc.m114.607705] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cryptococcus neoformans is an encapsulated basidiomycete causing cryptococcosis in immunocompromised humans. The cell surface mannoproteins of C. neoformans were reported to stimulate the host T-cell response and to be involved in fungal pathogenicity; however, their O-glycan structure is uncharacterized. In this study, we performed a detailed structural analysis of the O-glycans attached to cryptococcal mannoproteins using HPLC combined with exoglycosidase treatment and showed that the major C. neoformans O-glycans were short manno-oligosaccharides that were connected mostly by α1,2-linkages but connected by an α1,6-linkage at the third mannose residue. Comparison of the O-glycan profiles from wild-type and uxs1Δ mutant strains strongly supports the presence of minor O-glycans carrying a xylose residue. Further analyses of C. neoformans mutant strains identified three mannosyltransferase genes involved in O-glycan extensions in the Golgi. C. neoformans KTR3, the only homolog of the Saccharomyces cerevisiae KRE2/MNT1 family genes, was shown to encode an α1,2-mannosyltransferase responsible for the addition of the second mannose residue via an α1,2-linkage to the major O-glycans. C. neoformans HOC1 and HOC3, homologs of the Saccharomyces cerevisiae OCH1 family genes, were shown to encode α1,6-mannosyltransferases that can transfer the third mannose residue, via an α1,6-linkage, to minor O-glycans containing xylose and to major O-glycans without xylose, respectively. Moreover, the C. neoformans ktr3Δ mutant strain, which displayed increased sensitivity to SDS, high salt, and high temperature, showed attenuated virulence in a mouse model of cryptococcosis, suggesting that the extended structure of O-glycans is required for cell integrity and full pathogenicity of C. neoformans.
Collapse
Affiliation(s)
- Dong-Jik Lee
- From the Department of Life Science, Center for Fungal Pathogenesis, and
| | - Yong-Sun Bahn
- the Department of Biotechnology, Center for Fungal Pathogenesis, Yonsei University, Seoul 120-749, Korea
| | - Hong-Jin Kim
- the College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea and
| | - Seung-Yeon Chung
- From the Department of Life Science, Center for Fungal Pathogenesis, and
| | - Hyun Ah Kang
- From the Department of Life Science, Center for Fungal Pathogenesis, and
| |
Collapse
|
81
|
Up against the wall: is yeast cell wall integrity ensured by mechanosensing in plasma membrane microdomains? Appl Environ Microbiol 2014; 81:806-11. [PMID: 25398859 DOI: 10.1128/aem.03273-14] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Yeast cell wall integrity (CWI) signaling serves as a model of the regulation of fungal cell wall synthesis and provides the basis for the development of antifungal drugs. A set of five membrane-spanning sensors (Wsc1 to Wsc3, Mid2, and Mtl1) detect cell surface stress and commence the signaling pathway upon perturbations of either the cell wall structure or the plasma membrane. We here summarize the latest advances in the structure/function relationship primarily of the Wsc1 sensor and critically review the evidence that it acts as a mechanosensor. The relevance and physiological significance of the information obtained for the function of the other CWI sensors, as well as expected future developments, are discussed.
Collapse
|
82
|
Sharma V, Ichikawa M, Freeze HH. Mannose metabolism: more than meets the eye. Biochem Biophys Res Commun 2014; 453:220-8. [PMID: 24931670 PMCID: PMC4252654 DOI: 10.1016/j.bbrc.2014.06.021] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/04/2014] [Indexed: 12/29/2022]
Abstract
Mannose is a simple sugar with a complex life. It is a welcome therapy for genetic and acquired human diseases, but it kills honeybees and blinds baby mice. It could cause diabetic complications. Mannose chemistry, metabolism, and metabolomics in cells, tissues and mammals can help explain these multiple systemic effects. Mannose has good, bad or ugly outcomes depending on its steady state levels and metabolic flux. This review describes the role of mannose at cellular level and its impact on organisms.
Collapse
Affiliation(s)
- Vandana Sharma
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | - Mie Ichikawa
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Hudson H Freeze
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
83
|
Yoneda A, Kuo HWD, Ishihara M, Azadi P, Yu SM, Ho THD. Glycosylation variants of a β-glucosidase secreted by a Taiwanese fungus, Chaetomella raphigera, exhibit variant-specific catalytic and biochemical properties. PLoS One 2014; 9:e106306. [PMID: 25180973 PMCID: PMC4152272 DOI: 10.1371/journal.pone.0106306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/05/2014] [Indexed: 11/20/2022] Open
Abstract
Cellulosic biomass is an abundant and promising energy source. To make cellulosic biofuels competitive against conventional fuels, conversion of rigid plant materials into sugars must become efficient and cost-effective. During cellulose degradation, cellulolytic enzymes generate cellobiose (β-(1→4)-glucose dimer) molecules, which in turn inhibit such enzymes by negative feedback. β-Glucosidases (BGLs) cleave cellobiose into glucose monomers, assisting overall cellulolytic activities. Therefore, BGLs are essential for efficient conversion of cellulosic biomass into biofuels, and it is important to characterize newly isolated BGLs for useful traits. Here, we report our discovery that the indigenous Taiwanese fungus Chaetomella raphigera strain D2 produces two molecular weight variants of a single BGL, D2-BGL (shortened to “D2”), which differ in O-glycosylation. The more extensively O-glycosylated form of native D2 (nD2L) has increased activity toward the natural substrate, cellobiose, compared to the less O-glycosylated form (nD2S). nD2L is more stable at 60°C, in acidic pH, and in the presence of the ionic detergent sodium dodecyl sulfate than nD2S. Furthermore, unlike nD2S, nD2L does not display substrate inhibition by an artificial substrate p-nitrophenyl glucopyranoside (pNPG), and the glucose feedback inhibition kinetics of nD2L is competitive (while it is non-competitive for nD2S), suggesting that these two glycovariants of D2 bind substrates differently. Interestingly, D2 produced in a heterologous system, Pichia pastoris, closely mimics properties of nD2S. Our studies suggest that O-glycosylation of D2 is important in determining its catalytic and biochemical properties.
Collapse
Affiliation(s)
- Aki Yoneda
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Hsion-Wen David Kuo
- Department of Environmental Science and Engineering, Tunghai University, Taichung, Taiwan, Republic of China
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
- Agricultural Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan, Republic of China
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Tuan-hua David Ho
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Agricultural Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan, Republic of China
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan, Republic of China
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
84
|
Ligand heterogeneity of the cysteine protease binding protein family in the parasitic protist Entamoeba histolytica. Int J Parasitol 2014; 44:625-35. [DOI: 10.1016/j.ijpara.2014.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 01/08/2023]
|
85
|
Fabre E, Hurtaux T, Fradin C. Mannosylation of fungal glycoconjugates in the Golgi apparatus. Curr Opin Microbiol 2014; 20:103-10. [DOI: 10.1016/j.mib.2014.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 04/29/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
|
86
|
Meehl MA, Stadheim TA. Biopharmaceutical discovery and production in yeast. Curr Opin Biotechnol 2014; 30:120-7. [PMID: 25014890 DOI: 10.1016/j.copbio.2014.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/15/2014] [Accepted: 06/08/2014] [Indexed: 01/02/2023]
Abstract
The selection of an expression platform for recombinant biopharmaceuticals is often centered upon suitable product titers and critical quality attributes, including post-translational modifications. Although notable differences between microbial, yeast, plant, and mammalian host systems exist, recent advances have greatly mitigated any inherent liabilities of yeasts. Yeast expression platforms are important to both the supply of marketed biopharmaceuticals and the pipelines of novel therapeutics. In this review, recent advances in yeast-based expression of biopharmaceuticals will be discussed. The advantages of using glycoengineered yeast as a production host and in the discovery space will be illustrated. These advancements, in turn, are transforming yeast platforms from simple production systems to key technological assets in the discovery and selection of biopharmaceutical lead candidates.
Collapse
Affiliation(s)
- Michael A Meehl
- GlycoFi, Biologics Research, Merck & Co., Inc., 16 Cavendish Court, Lebanon, NH 03766, USA
| | - Terrance A Stadheim
- GlycoFi, Biologics Research, Merck & Co., Inc., 16 Cavendish Court, Lebanon, NH 03766, USA.
| |
Collapse
|
87
|
Kriangkripipat T, Momany M. Aspergillus nidulans Pmts form heterodimers in all pairwise combinations. FEBS Open Bio 2014; 4:335-41. [PMID: 24936400 PMCID: PMC4055783 DOI: 10.1016/j.fob.2014.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 11/30/2022] Open
Abstract
Eukaryotic protein O-mannosyltransferases (Pmts) are divided into three subfamilies (Pmt1, Pmt2, and Pmt4) and activity of Pmts in yeasts and animals requires assembly into complexes. In Saccharomyces cerevisiae, Pmt1 and Pmt2 form a heteromeric complex and Pmt 4 forms a homomeric complex. The filamentous fungus Aspergillus nidulans has three Pmts: PmtA (subfamily 2), PmtB (subfamily 1), and PmtC (subfamily 4). In this study we show that A. nidulans Pmts form heteromeric complexes in all possible pairwise combinations and that PmtC forms homomeric complexes. We also show that MsbA, an ortholog of a Pmt4-modified protein, is not modified by PmtC.
Collapse
Affiliation(s)
| | - Michelle Momany
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
88
|
Solís D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, Smetana K, Gabius HJ. A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim Biophys Acta Gen Subj 2014; 1850:186-235. [PMID: 24685397 DOI: 10.1016/j.bbagen.2014.03.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/13/2014] [Accepted: 03/18/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND The most demanding challenge in research on molecular aspects within the flow of biological information is posed by the complex carbohydrates (glycan part of cellular glycoconjugates). How the 'message' encoded in carbohydrate 'letters' is 'read' and 'translated' can only be unraveled by interdisciplinary efforts. SCOPE OF REVIEW This review provides a didactic step-by-step survey of the concept of the sugar code and the way strategic combination of experimental approaches characterizes structure-function relationships, with resources for teaching. MAJOR CONCLUSIONS The unsurpassed coding capacity of glycans is an ideal platform for generating a broad range of molecular 'messages'. Structural and functional analyses of complex carbohydrates have been made possible by advances in chemical synthesis, rendering production of oligosaccharides, glycoclusters and neoglycoconjugates possible. This availability facilitates to test the glycans as ligands for natural sugar receptors (lectins). Their interaction is a means to turn sugar-encoded information into cellular effects. Glycan/lectin structures and their spatial modes of presentation underlie the exquisite specificity of the endogenous lectins in counterreceptor selection, that is, to home in on certain cellular glycoproteins or glycolipids. GENERAL SIGNIFICANCE Understanding how sugar-encoded 'messages' are 'read' and 'translated' by lectins provides insights into fundamental mechanisms of life, with potential for medical applications.
Collapse
Affiliation(s)
- Dolores Solís
- Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 07110 Bunyola, Mallorca, Illes Baleares, Spain.
| | - Nicolai V Bovin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul Miklukho-Maklaya 16/10, 117871 GSP-7, V-437, Moscow, Russian Federation.
| | - Anthony P Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Jesús Jiménez-Barbero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Antonio Romero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| | - Karel Smetana
- Charles University, 1st Faculty of Medicine, Institute of Anatomy, U nemocnice 3, 128 00 Prague 2, Czech Republic.
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 München, Germany.
| |
Collapse
|
89
|
Comparison of the anti-amyloidogenic effect of O-mannosylation, O-galactosylation, and O-GalNAc glycosylation. Carbohydr Res 2014; 387:46-53. [DOI: 10.1016/j.carres.2014.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/28/2014] [Accepted: 01/30/2014] [Indexed: 01/24/2023]
|
90
|
Loibl M, Wunderle L, Hutzler J, Schulz BL, Aebi M, Strahl S. Protein O-mannosyltransferases associate with the translocon to modify translocating polypeptide chains. J Biol Chem 2014; 289:8599-611. [PMID: 24519942 DOI: 10.1074/jbc.m113.543116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-Mannosylation and N-glycosylation are essential protein modifications that are initiated in the endoplasmic reticulum (ER). Protein translocation across the ER membrane and N-glycosylation are highly coordinated processes that take place at the translocon-oligosaccharyltransferase (OST) complex. In analogy, it was assumed that protein O-mannosyltransferases (PMTs) also act at the translocon, however, in recent years it turned out that prolonged ER residence allows O-mannosylation of un-/misfolded proteins or slow folding intermediates by Pmt1-Pmt2 complexes. Here, we reinvestigate protein O-mannosylation in the context of protein translocation. We demonstrate the association of Pmt1-Pmt2 with the OST, the trimeric Sec61, and the tetrameric Sec63 complex in vivo by co-immunoprecipitation. The coordinated interplay between PMTs and OST in vivo is further shown by a comprehensive mass spectrometry-based analysis of N-glycosylation site occupancy in pmtΔ mutants. In addition, we established a microsomal translation/translocation/O-mannosylation system. Using the serine/threonine-rich cell wall protein Ccw5 as a model, we show that PMTs efficiently mannosylate proteins during their translocation into microsomes. This in vitro system will help to unravel mechanistic differences between co- and post-translocational O-mannosylation.
Collapse
Affiliation(s)
- Martin Loibl
- From the Centre for Organismal Studies (COS), Cell Chemistry, Heidelberg University, 69120 Heidelberg, Germany and
| | | | | | | | | | | |
Collapse
|
91
|
Li L, Liu Y, Wan Y, Li Y, Chen X, Zhao W, Wang PG. Efficient enzymatic synthesis of guanosine 5'-diphosphate-sugars and derivatives. Org Lett 2013; 15:5528-30. [PMID: 24117142 DOI: 10.1021/ol402585c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An N-acetylhexosamine 1-kinase from Bifidobacterium infantis (NahK_15697), a guanosine 5'-diphosphate (GDP)-mannose pyrophosphorylase from Pyrococcus furiosus (PFManC), and an Escherichia coli inorganic pyrophosphatase (EcPpA) were used efficiently for a one-pot three-enzyme synthesis of GDP-mannose, GDP-glucose, their derivatives, and GDP-talose. This study represents the first facile and efficient enzymatic synthesis of GDP-sugars and derivatives starting from monosaccharides and derivatives.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University , Tianjin 300071, China, Center for Diagnostics & Therapeutics and Department of Chemistry, Georgia State University , Atlanta, Georgia 30303, United States, and Department of Chemistry, University of California , Davis, One Shields Avenue, Davis, California 95616, United States
| | | | | | | | | | | | | |
Collapse
|