51
|
Willis W, Willis E, Kuzmiak-Glancy S, Kras K, Hudgens J, Barakati N, Stern J, Mandarino L. Oxidative phosphorylation K 0.5ADP in vitro depends on substrate oxidative capacity: Insights from a luciferase-based assay to evaluate ADP kinetic parameters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148430. [PMID: 33887230 DOI: 10.1016/j.bbabio.2021.148430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
The K0.5ADP of oxidative phosphorylation (OxPhos) identifies the cytosolic ADP concentration which elicits one-half the maximum OxPhos rate. This kinetic parameter is commonly measured to assess mitochondrial metabolic control sensitivity. Here we describe a luciferase-based assay to evaluate the ADP kinetic parameters of mitochondrial ATP production from OxPhos, adenylate kinase (AK), and creatine kinase (CK). The high sensitivity, reproducibility, and throughput of the microplate-based assay enabled a comprehensive kinetic assessment of all three pathways in mitochondria isolated from mouse liver, kidney, heart, and skeletal muscle. Carboxyatractyloside titrations were also performed with the assay to estimate the flux control strength of the adenine nucleotide translocase (ANT) over OxPhos in human skeletal muscle mitochondria. ANT flux control coefficients were 0.91 ± 0.07, 0.83 ± 0.06, and 0.51 ± 0.07 at ADP concentrations of 6.25, 12.5, and 25 μM, respectively, an [ADP] range which spanned the K0.5ADP. The oxidative capacity of substrate combinations added to drive OxPhos was found to dramatically influence ADP kinetics in mitochondria from several tissues. In mouse skeletal muscle ten different substrate combinations elicited a 7-fold range of OxPhos Vmax, which correlated positively (R2 = 0.963) with K0.5ADP values ranging from 2.3 ± 0.2 μM to 11.9 ± 0.6 μM. We propose that substrate-enhanced capacity to generate the protonmotive force increases the OxPhos K0.5ADP because flux control at ANT increases, thus K0.5ADP rises toward the dissociation constant, KdADP, of ADP-ANT binding. The findings are discussed in the context of top-down metabolic control analysis.
Collapse
Affiliation(s)
- Wayne Willis
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ, United States; Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States.
| | - Elizabeth Willis
- College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Sarah Kuzmiak-Glancy
- Department of Kinesiology, University of Maryland, College Park, MD, United States
| | - Katon Kras
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ, United States
| | - Jamie Hudgens
- College of Pharmacy, Midwestern University, Glendale, AZ, United States
| | - Neusha Barakati
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ, United States
| | - Jennifer Stern
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ, United States; Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| | - Lawrence Mandarino
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ, United States; Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
52
|
A Walk in the Memory, from the First Functional Approach up to Its Regulatory Role of Mitochondrial Bioenergetic Flow in Health and Disease: Focus on the Adenine Nucleotide Translocator. Int J Mol Sci 2021; 22:ijms22084164. [PMID: 33920595 PMCID: PMC8073645 DOI: 10.3390/ijms22084164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022] Open
Abstract
The mitochondrial adenine nucleotide translocator (ANT) plays the fundamental role of gatekeeper of cellular energy flow, carrying out the reversible exchange of ADP for ATP across the inner mitochondrial membrane. ADP enters the mitochondria where, through the oxidative phosphorylation process, it is the substrate of Fo-F1 ATP synthase, producing ATP that is dispatched from the mitochondrion to the cytoplasm of the host cell, where it can be used as energy currency for the metabolic needs of the cell that require energy. Long ago, we performed a method that allowed us to monitor the activity of ANT by continuously detecting the ATP gradually produced inside the mitochondria and exported in the extramitochondrial phase in exchange with externally added ADP, under conditions quite close to a physiological state, i.e., when oxidative phosphorylation takes place. More than 30 years after the development of the method, here we aim to put the spotlight on it and to emphasize its versatile applicability in the most varied pathophysiological conditions, reviewing all the studies, in which we were able to observe what really happened in the cell thanks to the use of the "ATP detecting system" allowing the functional activity of the ANT-mediated ADP/ATP exchange to be measured.
Collapse
|
53
|
Jaiquel Baron S, King MS, Kunji ER, Schirris TJ. Characterization of drug-induced human mitochondrial ADP/ATP carrier inhibition. Am J Cancer Res 2021; 11:5077-5091. [PMID: 33859735 PMCID: PMC8039944 DOI: 10.7150/thno.54936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/18/2021] [Indexed: 01/10/2023] Open
Abstract
An increasing number of commonly prescribed drugs are known to interfere with mitochondrial function, causing cellular toxicity, but the underlying mechanisms are largely unknown. Although often not considered, mitochondrial transport proteins form a significant class of potential mitochondrial off-targets. So far, most drug interactions have been reported for the mitochondrial ADP/ATP carrier (AAC), which exchanges cytosolic ADP for mitochondrial ATP. Here, we show inhibition of cellular respiratory capacity by only a subset of the 18 published AAC inhibitors, which questions whether all compound do indeed inhibit such a central metabolic process. This could be explained by the lack of a simple, direct model system to evaluate and compare drug-induced AAC inhibition. Methods: For its development, we have expressed and purified human AAC1 (hAAC1) and applied two approaches. In the first, thermostability shift assays were carried out to investigate the binding of these compounds to human AAC1. In the second, the effect of these compounds on transport was assessed in proteoliposomes with reconstituted human AAC1, enabling characterization of their inhibition kinetics. Results: Of the proposed inhibitors, chebulinic acid, CD-437 and suramin are the most potent with IC50-values in the low micromolar range, whereas another six are effective at a concentration of 100 μM. Remarkably, half of all previously published AAC inhibitors do not show significant inhibition in our assays, indicating that they are false positives. Finally, we show that inhibitor strength correlates with a negatively charged surface area of the inhibitor, matching the positively charged surface of the substrate binding site. Conclusion: Consequently, we have provided a straightforward model system to investigate AAC inhibition and have gained new insights into the chemical compound features important for inhibition. Better evaluation methods of drug-induced inhibition of mitochondrial transport proteins will contribute to the development of drugs with an enhanced safety profile.
Collapse
|
54
|
Kreiter J, Rupprecht A, Škulj S, Brkljača Z, Žuna K, Knyazev DG, Bardakji S, Vazdar M, Pohl EE. ANT1 Activation and Inhibition Patterns Support the Fatty Acid Cycling Mechanism for Proton Transport. Int J Mol Sci 2021; 22:ijms22052490. [PMID: 33801254 PMCID: PMC7958136 DOI: 10.3390/ijms22052490] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 01/26/2023] Open
Abstract
Adenine nucleotide translocase (ANT) is a well-known mitochondrial exchanger of ATP against ADP. In contrast, few studies have shown that ANT also mediates proton transport across the inner mitochondrial membrane. The results of these studies are controversial and lead to different hypotheses about molecular transport mechanisms. We hypothesized that the H+-transport mediated by ANT and uncoupling proteins (UCP) has a similar regulation pattern and can be explained by the fatty acid cycling concept. The reconstitution of purified recombinant ANT1 in the planar lipid bilayers allowed us to measure the membrane current after the direct application of transmembrane potential ΔΨ, which would correspond to the mitochondrial states III and IV. Experimental results reveal that ANT1 does not contribute to a basal proton leak. Instead, it mediates H+ transport only in the presence of long-chain fatty acids (FA), as already known for UCPs. It depends on FA chain length and saturation, implying that FA’s transport is confined to the lipid-protein interface. Purine nucleotides with the preference for ATP and ADP inhibited H+ transport. Specific inhibitors of ATP/ADP transport, carboxyatractyloside or bongkrekic acid, also decreased proton transport. The H+ turnover number was calculated based on ANT1 concentration determined by fluorescence correlation spectroscopy and is equal to 14.6 ± 2.5 s−1. Molecular dynamic simulations revealed a large positively charged area at the protein/lipid interface that might facilitate FA anion’s transport across the membrane. ANT’s dual function—ADP/ATP and H+ transport in the presence of FA—may be important for the regulation of mitochondrial membrane potential and thus for potential-dependent processes in mitochondria. Moreover, the expansion of proton-transport modulating drug targets to ANT1 may improve the therapy of obesity, cancer, steatosis, cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jürgen Kreiter
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria; (J.K.); (A.R.); (K.Ž.); (S.B.)
| | - Anne Rupprecht
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria; (J.K.); (A.R.); (K.Ž.); (S.B.)
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Sanja Škulj
- Division of Organic Chemistry and Biochemistry, Rudjer Bošković Institute,10000 Zagreb, Croatia; (S.Š.); (Z.B.); (M.V.)
| | - Zlatko Brkljača
- Division of Organic Chemistry and Biochemistry, Rudjer Bošković Institute,10000 Zagreb, Croatia; (S.Š.); (Z.B.); (M.V.)
| | - Kristina Žuna
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria; (J.K.); (A.R.); (K.Ž.); (S.B.)
| | - Denis G. Knyazev
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria;
| | - Sarah Bardakji
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria; (J.K.); (A.R.); (K.Ž.); (S.B.)
| | - Mario Vazdar
- Division of Organic Chemistry and Biochemistry, Rudjer Bošković Institute,10000 Zagreb, Croatia; (S.Š.); (Z.B.); (M.V.)
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
| | - Elena E. Pohl
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria; (J.K.); (A.R.); (K.Ž.); (S.B.)
- Correspondence:
| |
Collapse
|
55
|
Tang X, Wippel HH, Chavez JD, Bruce JE. Crosslinking mass spectrometry: A link between structural biology and systems biology. Protein Sci 2021; 30:773-784. [PMID: 33594738 DOI: 10.1002/pro.4045] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Protein structure underpins functional roles in all biological processes; therefore, improved understanding of protein structures is of fundamental importance in nearly all biological and biomedical research areas. Traditional techniques such as X-ray crystallography and more recently, cryo-EM, can reveal structural features on isolated proteins/protein complexes at atomic resolution level and have become indispensable tools for structural biology. Crosslinking mass spectrometry (XL-MS), on the other hand, is an emerging technique capable of capturing transient and dynamic information on protein interactions and assemblies in their native environment. The combination of XL-MS with traditional techniques holds potential for bridging the gap between structural biology and systems biology approaches. Such a combination will enable visualization of protein structures and interactions within the crowded macromolecular environment in living systems that can dramatically increase understanding of biological functions. In this review, we first discuss general strategies of XL-MS and then survey recent examples to show how qualitative and quantitative XL-MS studies can be integrated with available protein structural data to better understand biological function at systems level.
Collapse
Affiliation(s)
- Xiaoting Tang
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Helisa H Wippel
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
56
|
Abstract
Members of the mitochondrial carrier family [solute carrier family 25 (SLC25)] transport nucleotides, amino acids, carboxylic acids, fatty acids, inorganic ions, and vitamins across the mitochondrial inner membrane. They are important for many cellular processes, such as oxidative phosphorylation of lipids and sugars, amino acid metabolism, macromolecular synthesis, ion homeostasis, cellular regulation, and differentiation. Here, we describe the functional elements of the transport mechanism of mitochondrial carriers, consisting of one central substrate-binding site and two gates with salt-bridge networks on either side of the carrier. Binding of the substrate during import causes three gate elements to rotate inward, forming the cytoplasmic network and closing access to the substrate-binding site from the intermembrane space. Simultaneously, three core elements rock outward, disrupting the matrix network and opening the substrate-binding site to the matrix side of the membrane. During export, substrate binding triggers conformational changes involving the same elements but operating in reverse.
Collapse
Affiliation(s)
- J J Ruprecht
- Medical Research Council Mitochondrial Biology Unit, Keith Peters Building, University of Cambridge, Cambridge CB2 0XY, United Kingdom; ,
| | - E R S Kunji
- Medical Research Council Mitochondrial Biology Unit, Keith Peters Building, University of Cambridge, Cambridge CB2 0XY, United Kingdom; ,
| |
Collapse
|
57
|
Singha UK, Tripathi A, Smith JT, Quinones L, Saha A, Singha T, Chaudhuri M. Novel IM-associated protein Tim54 plays a role in the mitochondrial import of internal signal-containing proteins in Trypanosoma brucei. Biol Cell 2021; 113:39-57. [PMID: 33084070 PMCID: PMC8265390 DOI: 10.1111/boc.202000054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/28/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND The translocase of the mitochondrial inner membrane (TIM) imports most of the nucleus-encoded proteins that are destined for the matrix, inner membrane (IM) and the intermembrane space (IMS). Trypanosoma brucei, the infectious agent for African trypanosomiasis, possesses a unique TIM complex consisting of several novel proteins in association with a relatively conserved protein TbTim17. Tandem affinity purification of the TbTim17 protein complex revealed TbTim54 as a potential component of this complex. RESULTS TbTim54, a trypanosome-specific IMS protein, is peripherally associated with the IM and is present in a protein complex slightly larger than the TbTim17 complex. TbTim54 knockdown (KD) reduced the import of TbTim17 and compromised the integrity of the TbTim17 complex. TbTim54 KD inhibited the in vitro mitochondrial import and assembly of the internal signal-containing mitochondrial carrier proteins MCP3, MCP5 and MCP11 to a greater extent than TbTim17 KD. Furthermore, TbTim54 KD, but not TbTim17 KD, significantly hampered the mitochondrial targeting of ectopically expressed MCP3 and MCP11. These observations along with our previous finding that the mitochondrial import of N-terminal signal-containing proteins like cytochrome oxidase subunit 4 and MRP2 was affected to a greater extent by TbTim17 KD than TbTim54 KD indicating a substrate-specificity of TbTim54 for internal-signal containing mitochondrial proteins. In other organisms, small Tim chaperones in the IMS are known to participate in the translocation of MCPs. We found that TbTim54 can directly interact with at least two of the six known small TbTim proteins, TbTim11 and TbTim13, as well as with the N-terminal domain of TbTim17. CONCLUSION TbTim54 interacts with TbTim17. It also plays a crucial role in the mitochondrial import and complex assembly of internal signal-containing IM proteins in T. brucei. SIGNIFICANCE We are the first to characterise TbTim54, a novel TbTim that is involved primarily in the mitochondrial import of MCPs and TbTim17 in T. brucei.
Collapse
|
58
|
Zhao L, Tang M, Bode AM, Liao W, Cao Y. ANTs and cancer: Emerging pathogenesis, mechanisms, and perspectives. Biochim Biophys Acta Rev Cancer 2020; 1875:188485. [PMID: 33309965 DOI: 10.1016/j.bbcan.2020.188485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/03/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022]
Abstract
Adenine nucleotide translocases (ANTs) are a class of transporters located in the inner mitochondrial membrane that not only couple processes of cellular productivity and energy expenditure, but are also involved in the composition of the mitochondrial membrane permeability transition pore (mPTP). The function of ANTs has been found to be most closely related to their own conformational changes. Notably, as multifunctional proteins, ANTs play a key role in oncogenesis, which provides building blocks for tumor anabolism, control oxidative phosphorylation and glycolysis homeostasis, and govern cell death. Thus, ANTs constitute promising targets for the development of novel anticancer agents. Here, we review the recent findings regarding ANTs and their important mechanisms in cancer, with a focus on the therapeutic potential of targeting ANTs for cancer therapy.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, China; Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, Changsha 410078, China; National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha 410078, China.
| |
Collapse
|
59
|
A Single Cysteine Residue in the Translocation Pathway of the Mitosomal ADP/ATP Carrier from Cryptosporidium parvum Confers a Broad Nucleotide Specificity. Int J Mol Sci 2020; 21:ijms21238971. [PMID: 33255957 PMCID: PMC7730227 DOI: 10.3390/ijms21238971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Cryptosporidiumparvum is a clinically important eukaryotic parasite that causes the disease cryptosporidiosis, which manifests with gastroenteritis-like symptoms. The protist has mitosomes, which are organelles of mitochondrial origin that have only been partially characterized. The genome encodes a highly reduced set of transport proteins of the SLC25 mitochondrial carrier family of unknown function. Here, we have studied the transport properties of one member of the C. parvum carrier family, demonstrating that it resembles the mitochondrial ADP/ATP carrier of eukaryotes. However, this carrier has a broader substrate specificity for nucleotides, transporting adenosine, thymidine, and uridine di- and triphosphates in contrast to its mitochondrial orthologues, which have a strict substrate specificity for ADP and ATP. Inspection of the putative translocation pathway highlights a cysteine residue, which is a serine in mitochondrial ADP/ATP carriers. When the serine residue is replaced by cysteine or larger hydrophobic residues in the yeast mitochondrial ADP/ATP carrier, the substrate specificity becomes broad, showing that this residue is important for nucleotide base selectivity in ADP/ATP carriers.
Collapse
|
60
|
Drosophila melanogaster Mitochondrial Carriers: Similarities and Differences with the Human Carriers. Int J Mol Sci 2020; 21:ijms21176052. [PMID: 32842667 PMCID: PMC7504413 DOI: 10.3390/ijms21176052] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial carriers are a family of structurally related proteins responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. The in silico analysis of the Drosophila melanogaster genome has highlighted the presence of 48 genes encoding putative mitochondrial carriers, but only 20 have been functionally characterized. Despite most Drosophila mitochondrial carrier genes having human homologs and sharing with them 50% or higher sequence identity, D. melanogaster genes display peculiar differences from their human counterparts: (1) in the fruit fly, many genes encode more transcript isoforms or are duplicated, resulting in the presence of numerous subfamilies in the genome; (2) the expression of the energy-producing genes in D. melanogaster is coordinated from a motif known as Nuclear Respiratory Gene (NRG), a palindromic 8-bp sequence; (3) fruit-fly duplicated genes encoding mitochondrial carriers show a testis-biased expression pattern, probably in order to keep a duplicate copy in the genome. Here, we review the main features, biological activities and role in the metabolism of the D. melanogaster mitochondrial carriers characterized to date, highlighting similarities and differences with their human counterparts. Such knowledge is very important for obtaining an integrated view of mitochondrial function in D. melanogaster metabolism.
Collapse
|
61
|
Zhang Y, Fernie AR. On the Detection and Functional Significance of the Protein-Protein Interactions of Mitochondrial Transport Proteins. Biomolecules 2020; 10:E1107. [PMID: 32722450 PMCID: PMC7464641 DOI: 10.3390/biom10081107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Protein-protein assemblies are highly prevalent in all living cells. Considerable evidence has recently accumulated suggesting that particularly transient association/dissociation of proteins represent an important means of regulation of metabolism. This is true not only in the cytosol and organelle matrices, but also at membrane surfaces where, for example, receptor complexes, as well as those of key metabolic pathways, are common. Transporters also frequently come up in lists of interacting proteins, for example, binding proteins that catalyze the production of their substrates or that act as relays within signal transduction cascades. In this review, we provide an update of technologies that are used in the study of such interactions with mitochondrial transport proteins, highlighting the difficulties that arise in their use for membrane proteins and discussing our current understanding of the biological function of such interactions.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
62
|
Chavez JD, Tang X, Campbell MD, Reyes G, Kramer PA, Stuppard R, Keller A, Zhang H, Rabinovitch PS, Marcinek DJ, Bruce JE. Mitochondrial protein interaction landscape of SS-31. Proc Natl Acad Sci U S A 2020; 117:15363-15373. [PMID: 32554501 PMCID: PMC7334473 DOI: 10.1073/pnas.2002250117] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction underlies the etiology of a broad spectrum of diseases including heart disease, cancer, neurodegenerative diseases, and the general aging process. Therapeutics that restore healthy mitochondrial function hold promise for treatment of these conditions. The synthetic tetrapeptide, elamipretide (SS-31), improves mitochondrial function, but mechanistic details of its pharmacological effects are unknown. Reportedly, SS-31 primarily interacts with the phospholipid cardiolipin in the inner mitochondrial membrane. Here we utilize chemical cross-linking with mass spectrometry to identify protein interactors of SS-31 in mitochondria. The SS-31-interacting proteins, all known cardiolipin binders, fall into two groups, those involved in ATP production through the oxidative phosphorylation pathway and those involved in 2-oxoglutarate metabolic processes. Residues cross-linked with SS-31 reveal binding regions that in many cases, are proximal to cardiolipin-protein interacting regions. These results offer a glimpse of the protein interaction landscape of SS-31 and provide mechanistic insight relevant to SS-31 mitochondrial therapy.
Collapse
Affiliation(s)
- Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, WA 98105
| | - Xiaoting Tang
- Department of Genome Sciences, University of Washington, Seattle, WA 98105
| | | | - Gustavo Reyes
- Department of Radiology, University of Washington, Seattle, WA 98105
| | - Philip A Kramer
- Department of Radiology, University of Washington, Seattle, WA 98105
| | - Rudy Stuppard
- Department of Radiology, University of Washington, Seattle, WA 98105
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, WA 98105
| | - Huiliang Zhang
- Department of Pathology, University of Washington, Seattle, WA 98195
| | | | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA 98105
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA 98105;
| |
Collapse
|
63
|
Han B, Xu W, Ahmed N, Yu A, Wang Z, Liu A. Changes and Associations of Genomic Transcription and Histone Methylation with Salt Stress in Castor Bean. PLANT & CELL PHYSIOLOGY 2020; 61:1120-1133. [PMID: 32186723 DOI: 10.1093/pcp/pcaa037] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/15/2020] [Indexed: 05/09/2023]
Abstract
Soil salinity is a major source of abiotic plant stress, adversely affecting plant growth, development and productivity. Although the physiological and molecular mechanisms that underlie plant responses to salt stress are becoming increasingly understood, epigenetic modifications, such as histone methylations and their potential regulation of the transcription of masked genes at the genome level in response to salt stress, remain largely unclear. Castor bean, an important nonedible oil crop, has evolved the capacity to grow under salt stress. Here, based on high-throughput RNA-seq and ChIP-seq data, we systematically investigated changes in genomic transcription and histone methylation using typical histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 tri-methylated lysine 27 (H3K27me3) markers in castor bean leaves subjected to salt stress. The results showed that gain or loss of histone methylation was closely associated with activated or repressed gene expression, though variations in both transcriptome and histone methylation modifications were relatively narrow in response to salt stress. Diverse salt responsive genes and switched histone methylation sites were identified in this study. In particular, we found for the first time that the transcription of the key salt-response regulator RADIALIS-LIKE SANT (RSM1), a MYB-related transcription factor involved in ABA(abscisic acid)-mediated salt stress signaling, was potentially regulated by bivalent H3K4me3-H3K27me3 modifications. Combining phenotypic variations with transcriptional and epigenetic changes, we provide a comprehensive profile for understanding histone modification, genomic transcription and their associations in response to salt stress in plants.
Collapse
Affiliation(s)
- Bing Han
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Naeem Ahmed
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Anmin Yu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zaiqing Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
64
|
Cheong A, Archambault D, Degani R, Iverson E, Tremblay KD, Mager J. Nuclear-encoded mitochondrial ribosomal proteins are required to initiate gastrulation. Development 2020; 147:dev.188714. [PMID: 32376682 DOI: 10.1242/dev.188714] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Mitochondria are essential for energy production and although they have their own genome, many nuclear-encoded mitochondrial ribosomal proteins (MRPs) are required for proper function of the organelle. Although mutations in MRPs have been associated with human diseases, little is known about their role during development. Presented here are the null phenotypes for 21 nuclear-encoded mitochondrial proteins and in-depth characterization of mouse embryos mutant for the Mrp genes Mrpl3, Mrpl22, Mrpl44, Mrps18c and Mrps22 Loss of each MRP results in successful implantation and egg-cylinder formation, followed by severe developmental delay and failure to initiate gastrulation by embryonic day 7.5. The robust and similar single knockout phenotypes are somewhat surprising given there are over 70 MRPs and suggest little functional redundancy. Metabolic analysis reveals that Mrp knockout embryos produce significantly less ATP than controls, indicating compromised mitochondrial function. Histological and immunofluorescence analyses indicate abnormal organelle morphology and stalling at the G2/M checkpoint in Mrp null cells. The nearly identical pre-gastrulation phenotype observed for many different nuclear-encoded mitochondrial protein knockouts hints that distinct energy systems are crucial at specific time points during mammalian development.
Collapse
Affiliation(s)
- Agnes Cheong
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Danielle Archambault
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Rinat Degani
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Elizabeth Iverson
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
65
|
Škulj S, Brkljača Z, Vazdar M. Molecular Dynamics Simulations of the Elusive Matrix‐Open State of Mitochondrial ADP/ATP Carrier. Isr J Chem 2020. [DOI: 10.1002/ijch.202000011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sanja Škulj
- Division of Organic Chemistry and BiochemistryRuđer Bošković Institute Bijenička 54 HR-10000 Zagreb Croatia
| | - Zlatko Brkljača
- Division of Organic Chemistry and BiochemistryRuđer Bošković Institute Bijenička 54 HR-10000 Zagreb Croatia
| | - Mario Vazdar
- Division of Organic Chemistry and BiochemistryRuđer Bošković Institute Bijenička 54 HR-10000 Zagreb Croatia
| |
Collapse
|
66
|
Walker BJ, Kramer DM, Fisher N, Fu X. Flexibility in the Energy Balancing Network of Photosynthesis Enables Safe Operation under Changing Environmental Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E301. [PMID: 32121540 PMCID: PMC7154899 DOI: 10.3390/plants9030301] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022]
Abstract
Given their ability to harness chemical energy from the sun and generate the organic compounds necessary for life, photosynthetic organisms have the unique capacity to act simultaneously as their own power and manufacturing plant. This dual capacity presents many unique challenges, chiefly that energy supply must be perfectly balanced with energy demand to prevent photodamage and allow for optimal growth. From this perspective, we discuss the energy balancing network using recent studies and a quantitative framework for calculating metabolic ATP and NAD(P)H demand using measured leaf gas exchange and assumptions of metabolic demand. We focus on exploring how the energy balancing network itself is structured to allow safe and flexible energy supply. We discuss when the energy balancing network appears to operate optimally and when it favors high capacity instead. We also present the hypothesis that the energy balancing network itself can adapt over longer time scales to a given metabolic demand and how metabolism itself may participate in this energy balancing.
Collapse
Affiliation(s)
- Berkley J. Walker
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - David M. Kramer
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Nicholas Fisher
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
| | - Xinyu Fu
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
| |
Collapse
|
67
|
Galkina KV, Zyrina AN, Golyshev SA, Kashko ND, Markova OV, Sokolov SS, Severin FF, Knorre DA. Mitochondrial dynamics in yeast with repressed adenine nucleotide translocator AAC2. Eur J Cell Biol 2020; 99:151071. [PMID: 32057484 DOI: 10.1016/j.ejcb.2020.151071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/25/2022] Open
Abstract
The mitochondrial network structure dynamically adapts to cellular metabolic challenges. Mitochondrial depolarisation, particularly, induces fragmentation of the network. This fragmentation may be a result of either a direct regulation of the mitochondrial fusion machinery by transmembrane potential or an indirect effect of metabolic remodelling. Activities of ATP synthase and adenine nucleotide translocator (ANT) link the mitochondrial transmembrane potential with the cytosolic NTP/NDP ratio. Given that mitochondrial fusion requires cytosolic GTP, a decrease in the NTP/NDP ratio might also account for protonophore-induced mitochondrial fragmentation. For evaluating the contributions of direct and indirect mechanisms to mitochondrial remodelling, we assessed the morphology of the mitochondrial network in yeast cells with inhibited ANT. We showed that the repression of AAC2 (PET9), a major ANT gene in yeast, increases mitochondrial transmembrane potential. However, the mitochondrial network in this strain was fragmented. Meanwhile, AAC2 repression did not prevent mitochondrial fusion in zygotes; nor did it inhibit mitochondrial hyperfusion induced by Dnm1p inhibitor mdivi-1. These results suggest that the inhibition of ANT, rather than preventing mitochondrial fusion, facilitates mitochondrial fission. The protonophores were not able to induce additional mitochondrial fragmentation in an AAC2-repressed strain and in yeast cells with inhibited ATP synthase. Importantly, treatment with the ATP synthase inhibitor oligomycin A also induced mitochondrial fragmentation and hyperpolarization. Taken together, our data suggest that ATP/ADP translocation plays a crucial role in shaping of the mitochondrial network and exemplify that an increase in mitochondrial membrane potential does not necessarily oppose mitochondrial fragmentation.
Collapse
Affiliation(s)
- Kseniia V Galkina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory 1-73, Moscow, 119991, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Anna N Zyrina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Sergey A Golyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Nataliia D Kashko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory 1-73, Moscow, 119991, Russia
| | - Olga V Markova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Svyatoslav S Sokolov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Fedor F Severin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| |
Collapse
|
68
|
Supinski GS, Schroder EA, Callahan LA. Mitochondria and Critical Illness. Chest 2020; 157:310-322. [PMID: 31494084 PMCID: PMC7005375 DOI: 10.1016/j.chest.2019.08.2182] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/18/2019] [Accepted: 08/18/2019] [Indexed: 12/14/2022] Open
Abstract
Classically, mitochondria have largely been believed to influence the development of illness by modulating cell metabolism and determining the rate of production of high-energy phosphate compounds (eg, adenosine triphosphate). It is now recognized that this view is simplistic and that mitochondria play key roles in many other processes, including cell signaling, regulating gene expression, modulating cellular calcium levels, and influencing the activation of cell death pathways (eg, caspase activation). Moreover, these multiple mitochondrial functional characteristics are now known to influence the evolution of cellular and organ function in many disease states, including sepsis, ICU-acquired skeletal muscle dysfunction, acute lung injury, acute renal failure, and critical illness-related immune function dysregulation. In addition, diseased mitochondria generate toxic compounds, most notably released mitochondrial DNA, which can act as danger-associated molecular patterns to induce systemic toxicity and damage multiple organs throughout the body. This article reviews these evolving concepts relating mitochondrial function and acute illness. The discussion is organized into four sections: (1) basics of mitochondrial physiology; (2) cellular mechanisms of mitochondrial pathophysiology; (3) critical care disease processes whose initiation and evolution are shaped by mitochondrial pathophysiology; and (4) emerging treatments for mitochondrial dysfunction in critical illness.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY
| | - Elizabeth A Schroder
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY
| | - Leigh Ann Callahan
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY.
| |
Collapse
|
69
|
Toleco MR, Naake T, Zhang Y, Heazlewood JL, R. Fernie A. Plant Mitochondrial Carriers: Molecular Gatekeepers That Help to Regulate Plant Central Carbon Metabolism. PLANTS 2020; 9:plants9010117. [PMID: 31963509 PMCID: PMC7020223 DOI: 10.3390/plants9010117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
The evolution of membrane-bound organelles among eukaryotes led to a highly compartmentalized metabolism. As a compartment of the central carbon metabolism, mitochondria must be connected to the cytosol by molecular gates that facilitate a myriad of cellular processes. Members of the mitochondrial carrier family function to mediate the transport of metabolites across the impermeable inner mitochondrial membrane and, thus, are potentially crucial for metabolic control and regulation. Here, we focus on members of this family that might impact intracellular central plant carbon metabolism. We summarize and review what is currently known about these transporters from in vitro transport assays and in planta physiological functions, whenever available. From the biochemical and molecular data, we hypothesize how these relevant transporters might play a role in the shuttling of organic acids in the various flux modes of the TCA cycle. Furthermore, we also review relevant mitochondrial carriers that may be vital in mitochondrial oxidative phosphorylation. Lastly, we survey novel experimental approaches that could possibly extend and/or complement the widely accepted proteoliposome reconstitution approach.
Collapse
Affiliation(s)
- M. Rey Toleco
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
- School of BioSciences, the University of Melbourne, Victoria 3010, Australia;
| | - Thomas Naake
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
| | - Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | | | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Correspondence:
| |
Collapse
|
70
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Protein Amphipathic Helix Insertion: A Mechanism to Induce Membrane Fission. Front Cell Dev Biol 2019; 7:291. [PMID: 31921835 PMCID: PMC6914677 DOI: 10.3389/fcell.2019.00291] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
One of the fundamental features of biomembranes is the ability to fuse or to separate. These processes called respectively membrane fusion and fission are central in the homeostasis of events such as those related to intracellular membrane traffic. Proteins that contain amphipathic helices (AHs) were suggested to mediate membrane fission via shallow insertion of these helices into the lipid bilayer. Here we analyze the AH-containing proteins that have been identified as essential for membrane fission and categorize them in few subfamilies, including small GTPases, Atg proteins, and proteins containing either the ENTH/ANTH- or the BAR-domain. AH-containing fission-inducing proteins may require cofactors such as additional proteins (e.g., lipid-modifying enzymes), or lipids (e.g., phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], phosphatidic acid [PA], or cardiolipin). Both PA and cardiolipin possess a cone shape and a negative charge (-2) that favor the recruitment of the AHs of fission-inducing proteins. Instead, PtdIns(4,5)P2 is characterized by an high negative charge able to recruit basic residues of the AHs of fission-inducing proteins. Here we propose that the AHs of fission-inducing proteins contain sequence motifs that bind lipid cofactors; accordingly (K/R/H)(K/R/H)xx(K/R/H) is a PtdIns(4,5)P2-binding motif, (K/R)x6(F/Y) is a cardiolipin-binding motif, whereas KxK is a PA-binding motif. Following our analysis, we show that the AHs of many fission-inducing proteins possess five properties: (a) at least three basic residues on the hydrophilic side, (b) ability to oligomerize, (c) optimal (shallow) depth of insertion into the membrane, (d) positive cooperativity in membrane curvature generation, and (e) specific interaction with one of the lipids mentioned above. These lipid cofactors favor correct conformation, oligomeric state and optimal insertion depth. The most abundant lipid in a given organelle possessing high negative charge (more negative than -1) is usually the lipid cofactor in the fission event. Interestingly, naturally occurring mutations have been reported in AH-containing fission-inducing proteins and related to diseases such as centronuclear myopathy (amphiphysin 2), Charcot-Marie-Tooth disease (GDAP1), Parkinson's disease (α-synuclein). These findings add to the interest of the membrane fission process whose complete understanding will be instrumental for the elucidation of the pathogenesis of diseases involving mutations in the protein AHs.
Collapse
Affiliation(s)
- Mikhail A. Zhukovsky
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | | | | | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
71
|
The SLC25 Mitochondrial Carrier Family: Structure and Mechanism. Trends Biochem Sci 2019; 45:244-258. [PMID: 31787485 PMCID: PMC7611774 DOI: 10.1016/j.tibs.2019.11.001] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022]
Abstract
Members of the mitochondrial carrier family (SLC25) provide the transport steps for amino acids, carboxylic acids, fatty acids, cofactors, inorganic ions, and nucleotides across the mitochondrial inner membrane and are crucial for many cellular processes. Here, we use new insights into the transport mechanism of the mitochondrial ADP/ATP carrier to examine the structure and function of other mitochondrial carriers. They all have a single substrate-binding site and two gates, which are present on either side of the membrane and involve salt-bridge networks. Transport is likely to occur by a common mechanism, in which the coordinated movement of six structural elements leads to the alternating opening and closing of the matrix or cytoplasmic side of the carriers.
Collapse
|
72
|
Abstract
We review the mechanisms responsible for amino acid homeostasis in Saccharomyces cerevisiae and other fungi. Amino acid homeostasis is essential for cell growth and survival. Hence, the de novo synthesis reactions, metabolic conversions, and transport of amino acids are tightly regulated. Regulation varies from nitrogen pool sensing to control by individual amino acids and takes place at the gene (transcription), protein (posttranslational modification and allostery), and vesicle (trafficking and endocytosis) levels. The pools of amino acids are controlled via import, export, and compartmentalization. In yeast, the majority of the amino acid transporters belong to the APC (amino acid-polyamine-organocation) superfamily, and the proteins couple the uphill transport of amino acids to the electrochemical proton gradient. Although high-resolution structures of yeast amino acid transporters are not available, homology models have been successfully exploited to determine and engineer the catalytic and regulatory functions of the proteins. This has led to a further understanding of the underlying mechanisms of amino acid sensing and subsequent downregulation of transport. Advances in optical microscopy have revealed a new level of regulation of yeast amino acid transporters, which involves membrane domain partitioning. The significance and the interrelationships of the latest discoveries on amino acid homeostasis are put in context.
Collapse
|
73
|
Kano A, Iwasaki T, Shindo M. Bongkrekic acid facilitates glycolysis in cultured cells and induces cell death under low glucose conditions. Biochem Biophys Rep 2019; 20:100683. [PMID: 31517068 PMCID: PMC6728793 DOI: 10.1016/j.bbrep.2019.100683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022] Open
Abstract
Bongkrekic acid (BKA) inhibits adenine nucleotide translocator (ANT) and suppresses ADP/ATP exchange in the mitochondrial inner membrane. Previously, we demonstrated that BKA exhibited cytotoxic effects on 4T1 tumor cells, depending on the cell number in the culture, but not on NIH3T3 cells. However, the cause of this differential sensitivity was unelucidated. Here we demonstrate that BKA reduced the O2 consumption in both cell lines and increased the mitochondrial membrane potential, thereby facilitating glucose consumption. BKA reduced cellular ATP in 4T1 cells in a dose-dependent manner but not in NIH3T3 cells. The cellular ATP of 4T1 cells was decreased with a reduced glucose concentration in the media, but that of NIH3T3 cells remained constant. We also demonstrated that BKA-induced cell death in both cell lines in low glucose media; however, the susceptibility to the reduced glucose concentration was slightly higher in 4T1 cells, which may be attributed to the difference in the dependency on glycolysis as their energy source. These results indicate that 4T1 tumor cells rely heavily on glucose for energy production. Our data demonstrate that BKA disturbs ATP production in mitochondria and increases the susceptibility to a low glucose condition. Bongkrekic acid decreases cellular ATP in cancer cells. Bongkrekic acid decreases mitochondrial OXPHOS and enhances glycolysis in cells. Bongkrekic acid induces cell death under low glucose conditions.
Collapse
Affiliation(s)
- Arihiro Kano
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 819-0395, Japan.,Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 819-0395, Japan
| | - Takuma Iwasaki
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 819-0395, Japan
| | - Mitsuru Shindo
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 819-0395, Japan.,Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 819-0395, Japan
| |
Collapse
|
74
|
Loss of Peter Pan (PPAN) Affects Mitochondrial Homeostasis and Autophagic Flux. Cells 2019; 8:cells8080894. [PMID: 31416196 PMCID: PMC6721654 DOI: 10.3390/cells8080894] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/30/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022] Open
Abstract
Nucleolar stress is a cellular response to inhibition of ribosome biogenesis or nucleolar disruption leading to cell cycle arrest and/or apoptosis. Emerging evidence points to a tight connection between nucleolar stress and autophagy as a mechanism underlying various diseases such as neurodegeneration and treatment of cancer. Peter Pan (PPAN) functions as a key regulator of ribosome biogenesis. We previously showed that human PPAN localizes to nucleoli and mitochondria and that PPAN knockdown triggers a p53-independent nucleolar stress response culminating in mitochondrial apoptosis. Here, we demonstrate a novel role of PPAN in the regulation of mitochondrial homeostasis and autophagy. Our present study characterizes PPAN as a factor required for maintaining mitochondrial integrity and respiration-coupled ATP production. PPAN interacts with cardiolipin, a lipid of the inner mitochondrial membrane. Down-regulation of PPAN enhances autophagic flux in cancer cells. PPAN knockdown promotes recruitment of the E3-ubiquitin ligase Parkin to damaged mitochondria. Moreover, we provide evidence that PPAN knockdown decreases mitochondrial mass in Parkin-expressing cells. In summary, our study uncovers that PPAN knockdown is linked to mitochondrial damage and stimulates autophagy.
Collapse
|
75
|
Ruprecht JJ, Kunji ER. Structural changes in the transport cycle of the mitochondrial ADP/ATP carrier. Curr Opin Struct Biol 2019; 57:135-144. [PMID: 31039524 PMCID: PMC6700394 DOI: 10.1016/j.sbi.2019.03.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 11/27/2022]
Abstract
The mitochondrial ADP/ATP carrier, also called adenine nucleotide translocase, accomplishes one of the most important transport activities in eukaryotic cells, importing ADP into the mitochondrial matrix for ATP synthesis, and exporting ATP to fuel cellular activities. In the transport cycle, the carrier changes between a cytoplasmic and matrix state, in which the central substrate binding site is alternately accessible to these compartments. A structure of a cytoplasmic state was known, but recently, a structure of a matrix-state in complex with bongkrekic acid was solved. Comparison of the two states explains the function of highly conserved sequence features and reveals that the transport mechanism is unique, involving the coordinated movement of six dynamic elements around a central translocation pathway.
Collapse
Affiliation(s)
- Jonathan J Ruprecht
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
| | - Edmund Rs Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
| |
Collapse
|
76
|
Giangregorio N, Tonazzi A, Console L, Pistillo M, Scalera V, Indiveri C. Tryptophan 224 of the rat mitochondrial carnitine/acylcarnitine carrier is crucial for the antiport mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:708-716. [PMID: 31340138 DOI: 10.1016/j.bbabio.2019.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/06/2019] [Accepted: 07/18/2019] [Indexed: 01/14/2023]
Abstract
The mitochondrial carnitine/acylcarnitine carrier (CACT) catalyzes an antiport of carnitine and acylcarnitines and also a uniport reaction with a rate of about one tenth with respect to the antiport rate. The antiport process results from the coupling of the two uniport reactions in opposite directions. In this mechanism, the transition of the carrier from the outward open conformation to the inward open one (or vice versa) is much faster for the carrier-substrate complex than for the unbound carrier. To investigate the molecular determinants that couple the binding of the substrate with the conformational transitions, site directed mutagenesis has been employed. The antiport or the uniport reaction was followed as [3H]carnitine uptake in or efflux from proteoliposomes reconstituted with the WT or Trp mutants of the rat CACT. Substitution of each the three Trp residues led to different results. Nearly no variations were observed upon substitution of W192 and/or W296 with Ala. While, substantial alteration of the transport function was observed in the mutants W224A, W224Y and W224F. Mutation of W224 led to the loss of the antiport function while the uniport function was unaltered. In these mutants impairment of the substrate affinity on the external side was also observed. The data highlights that W224 is involved in the coupling of the substrate binding with the matrix gate opening. The experimental data are in line with predictions by homology modeling of the CACT in its cytosolic (c-state) or matrix (m-state) opened conformations.
Collapse
Affiliation(s)
- Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, via Amendola 165/A, 70126 Bari, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, via Amendola 165/A, 70126 Bari, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Mariella Pistillo
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Vito Scalera
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy.
| |
Collapse
|
77
|
Scheerer U, Netzer F, Bauer AF, Herschbach C. Measurements of 18 O-P i uptake indicate fast metabolism of phosphate in tree roots. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:565-570. [PMID: 30311347 DOI: 10.1111/plb.12922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
Phosphorus (P) nutrition of beech ecosystems depends on soil processes, plant internal P cycling and P acquisition. P uptake of trees in the field is currently not validated due to the lack of an experimental approach applicable in natural forests. Application of radiolabelled tracers such as 33 P and 32 P is limited to special research sites and not allowed in natural environments. Moreover, only one stable isotope of P, namely 31 P, exists. One alternative tool to measure P acquisition in the field could be the use of 18 O-labelled 31 P-phosphate (31 P18 O4 3- ). Phosphate (Pi ) uptake rates calculated from the 18 O enrichment of dried root material after application of 31 Pi 18 O4 3- via nutrient solution was always lower compared to 33 P incorporation, did not show increasing rates of Pi uptake at P deficiency under controlled conditions, and did not reveal seasonal fluctuations in the field. Consequently, a clear correlation between 33 P-based and 18 O-based Pi uptake by roots could not be established. Comparison of Pi uptake rates achieved from 33 P-Pi and 18 O-Pi application led to the conclusion of high Pi metabolism in roots after Pi uptake. The replacement of 18 O by 16 O from water in 18 O-Pi during root influx, but most probably after Pi uptake into roots, due to metabolic activities, indicates high and fast turnover of Pi . Hence, the use of 18 O-Pi as an alternative tool to estimate Pi acquisition of trees in the field must consider the increase of 18 O abundance in root water that was disregarded in dried root material.
Collapse
Affiliation(s)
- U Scheerer
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - F Netzer
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - A F Bauer
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - C Herschbach
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
78
|
Kelley LC, Chi Q, Cáceres R, Hastie E, Schindler AJ, Jiang Y, Matus DQ, Plastino J, Sherwood DR. Adaptive F-Actin Polymerization and Localized ATP Production Drive Basement Membrane Invasion in the Absence of MMPs. Dev Cell 2019; 48:313-328.e8. [PMID: 30686527 PMCID: PMC6372315 DOI: 10.1016/j.devcel.2018.12.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/07/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are associated with decreased patient prognosis but have failed as anti-invasive drug targets despite promoting cancer cell invasion. Through time-lapse imaging, optical highlighting, and combined genetic removal of the five MMPs expressed during anchor cell (AC) invasion in C. elegans, we find that MMPs hasten invasion by degrading basement membrane (BM). Though irregular and delayed, AC invasion persists in MMP- animals via adaptive enrichment of the Arp2/3 complex at the invasive cell membrane, which drives formation of an F-actin-rich protrusion that physically breaches and displaces BM. Using a large-scale RNAi synergistic screen and a genetically encoded ATP FRET sensor, we discover that mitochondria enrich within the protrusion and provide localized ATP that fuels F-actin network growth. Thus, without MMPs, an invasive cell can alter its BM-breaching tactics, suggesting that targeting adaptive mechanisms will be necessary to mitigate BM invasion in human pathologies.
Collapse
Affiliation(s)
- Laura C Kelley
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - Qiuyi Chi
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - Rodrigo Cáceres
- CNRS, Laboratoire Physico Chimie Curie, Institut Curie, PSL Research Université, Paris 75005, France; Sorbonne Université, Paris 75005, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
| | - Eric Hastie
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - Adam J Schindler
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - Yue Jiang
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Julie Plastino
- CNRS, Laboratoire Physico Chimie Curie, Institut Curie, PSL Research Université, Paris 75005, France; Sorbonne Université, Paris 75005, France
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
79
|
Ruprecht JJ, King MS, Zögg T, Aleksandrova AA, Pardon E, Crichton PG, Steyaert J, Kunji ERS. The Molecular Mechanism of Transport by the Mitochondrial ADP/ATP Carrier. Cell 2019; 176:435-447.e15. [PMID: 30611538 PMCID: PMC6349463 DOI: 10.1016/j.cell.2018.11.025] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/25/2018] [Accepted: 11/16/2018] [Indexed: 11/30/2022]
Abstract
Mitochondrial ADP/ATP carriers transport ADP into the mitochondrial matrix for ATP synthesis, and ATP out to fuel the cell, by cycling between cytoplasmic-open and matrix-open states. The structure of the cytoplasmic-open state is known, but it has proved difficult to understand the transport mechanism in the absence of a structure in the matrix-open state. Here, we describe the structure of the matrix-open state locked by bongkrekic acid bound in the ADP/ATP-binding site at the bottom of the central cavity. The cytoplasmic side of the carrier is closed by conserved hydrophobic residues, and a salt bridge network, braced by tyrosines. Glycine and small amino acid residues allow close-packing of helices on the matrix side. Uniquely, the carrier switches between states by rotation of its three domains about a fulcrum provided by the substrate-binding site. Because these features are highly conserved, this mechanism is likely to apply to the whole mitochondrial carrier family. Video Abstract
Structure of the matrix-open state of the mitochondrial ADP/ATP carrier solved The inhibitor bongkrekic acid locks the state by occupying the substrate-binding site Conformational changes during transport are highly dynamic, using six mobile elements Roles of all conserved sequence features in mitochondrial carriers are now explained
Collapse
Affiliation(s)
- Jonathan J Ruprecht
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.
| | - Martin S King
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Thomas Zögg
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Antoniya A Aleksandrova
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Paul G Crichton
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Edmund R S Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.
| |
Collapse
|
80
|
Structural biology and structure–function relationships of membrane proteins. Biochem Soc Trans 2018; 47:47-61. [DOI: 10.1042/bst20180269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 01/02/2023]
Abstract
Abstract
The study of structure–function relationships of membrane proteins (MPs) has been one of the major goals in the field of structural biology. Many Noble Prizes regarding remarkable accomplishments in MP structure determination and biochemistry have been awarded over the last few decades. Mutations or improper folding of these proteins are associated with numerous serious illnesses. Therefore, as important drug targets, the study of their primary sequence and three-dimensional fold, combined with cell-based assays, provides vital information about their structure–function relationships. Today, this information is vital to drug discovery and medicine. In the last two decades, many have been the technical advances and breakthroughs in the field of MP structural biology that have contributed to an exponential growth in the number of unique MP structures in the Protein Data Bank. Nevertheless, given the medical importance and many unanswered questions, it will never be an excess of MP structures, regardless of the method used. Owing to the extension of the field, in this brief review, we will only focus on structure–function relationships of the three most significant pharmaceutical classes: G protein-coupled receptors, ion channels and transporters.
Collapse
|
81
|
Harborne SPD, Kunji ERS. Calcium-regulated mitochondrial ATP-Mg/P i carriers evolved from a fusion of an EF-hand regulatory domain with a mitochondrial ADP/ATP carrier-like domain. IUBMB Life 2018; 70:1222-1232. [PMID: 30281880 PMCID: PMC6283063 DOI: 10.1002/iub.1931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 02/02/2023]
Abstract
The mitochondrial ATP-Mg/Pi carrier is responsible for the calcium-dependent regulation of adenosine nucleotide concentrations in the mitochondrial matrix, which allows mitochondria to respond to changing energy requirements of the cell. The carrier is expressed in mitochondria of fungi, plants and animals and belongs to the family of mitochondrial carriers. The carrier is unusual as it consists of three separate domains: (i) an N-terminal regulatory domain with four calcium-binding EF-hands similar to calmodulin, (ii) a loop domain containing an amphipathic α-helix and (iii) a mitochondrial carrier domain related to the mitochondrial ADP/ATP carrier. This striking example of three domains coming together from different origins to provide new functions represents an interesting quirk of evolution. In this review, we outline how the carrier was identified and how its physiological role was established with a focus on human isoforms. We exploit the sequence and structural information of the domains to explore the similarities and differences to their closest counterparts; mitochondrial ADP/ATP carriers and proteins with four EF-hands. We discuss how their combined function has led to a mechanism for calcium-regulated transport of adenosine nucleotides. Finally, we compare the ATP-Mg/Pi carrier with the mitochondrial aspartate/glutamate carrier, the only other mitochondrial carrier regulated by calcium, and we will argue that they have arisen by convergent rather than divergent evolution. © 2018 The Authors. IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 70(12):1222-1232, 2018.
Collapse
Affiliation(s)
- Steven P. D. Harborne
- School of Biomedical Sciences and Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Edmund R. S. Kunji
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeCB2 0XYUK
| |
Collapse
|
82
|
Henderson RK, Fendler K, Poolman B. Coupling efficiency of secondary active transporters. Curr Opin Biotechnol 2018; 58:62-71. [PMID: 30502621 DOI: 10.1016/j.copbio.2018.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
Secondary active transporters are fundamental to a myriad of biological processes. They use the electrochemical gradient of one solute to drive transport of another solute against its concentration gradient. Central to this mechanism is that the transport of one does not occur in the absence of the other. However, like in most of biology, imperfections in the coupling mechanism exist and we argue that these are innocuous and may even be beneficial for the cell. We discuss the energetics and kinetics of alternating-access in secondary transport and focus on the mechanistic aspects of imperfect coupling that give rise to leak pathways. Additionally, inspection of available transporter structures gives valuable insight into coupling mechanics, and we review literature where proteins have been altered to change their coupling efficiency.
Collapse
Affiliation(s)
- Ryan K Henderson
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Klaus Fendler
- Department of Biophysical Chemistry, Max-Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
83
|
Chen F, Xue Y, Pan N, Bhatti MZ, Niu T, Chen J. New contribution to the morphology and molecular mechanism of Euplotes encysticus encystment. Sci Rep 2018; 8:12795. [PMID: 30143743 PMCID: PMC6109176 DOI: 10.1038/s41598-018-31160-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/13/2018] [Indexed: 11/30/2022] Open
Abstract
Ciliated protists are a large group of single-cell eukaryotes, leading to the resting cysts in unfavorable environmental condition. However, the underlying molecular mechanism of encystment in the free-living ciliates is poorly understood. Here we show that the resting cysts are better than the vegetative cells of Euplotes encysticus in adverse survivor with respect to energy metabolism. Therefore scale identification of encystment-related proteins in Euplotes encysticus was investigated by iTRAQ analysis. We analyzed a total of 130 proteins, in which 19 proteins involving 12 upregulated and 7 downregulated proteins were associated with encystment in the resting cysts in comparison with the vegetative cells. Moreover, direct fluorescent labeling analysis showed that the vegetative cells treated with shRNA-β-tubulin recombinant E. coli accumulated a large number of granular materials, and dramatic cell morphology changes. Importantly, the cell membrane rupture phenomenon was observed after three weeks of shRNA-β-tubulin interference as compared to the control group. These results revealed that different proteins might play an important role in the process of the vegetative cells into the resting cysts. These results will help to reveal the morphological changes and molecular mechanism of resting cyst formation of ciliates.
Collapse
Affiliation(s)
- Fenfen Chen
- School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Yanyan Xue
- School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Nan Pan
- School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Muhammad Zeeshan Bhatti
- Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
- Department of Molecular Medicine, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Tao Niu
- School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Jiwu Chen
- School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China.
| |
Collapse
|
84
|
King MS, Thompson K, Hopton S, He L, Kunji ERS, Taylor RW, Ortiz-Gonzalez XR. Expanding the phenotype of de novo SLC25A4-linked mitochondrial disease to include mild myopathy. Neurol Genet 2018; 4:e256. [PMID: 30046662 PMCID: PMC6055355 DOI: 10.1212/nxg.0000000000000256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/15/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the disease relevance of a novel de novo dominant variant in the SLC25A4 gene, encoding the muscle mitochondrial adenosine diphosphate (ADP)/adenosine triphosphate (ATP) carrier, identified in a child presenting with a previously unreported phenotype of mild childhood-onset myopathy. METHODS Immunohistochemical and western blot analysis of the patient's muscle tissue were used to assay for the evidence of mitochondrial myopathy and for complex I-V protein levels. To determine the effect of a putative pathogenic p.Lys33Gln variant on ADP/ATP transport, the mutant protein was expressed in Lactococcus lactis and its transport activity was assessed with fused membrane vesicles. RESULTS Our data demonstrate that the heterozygous c.97A>T (p.Lys33Gln) SLC25A4 variant is associated with classic muscle biopsy findings of mitochondrial myopathy (cytochrome c oxidase [COX]-deficient and ragged blue fibers), significantly impaired ADP/ATP transport in Lactococcus lactis and decreased complex I, III, and IV protein levels in patient's skeletal muscle. Nonetheless, the expression levels of the total ADP/ATP carrier (AAC) content in the muscle biopsy was largely unaffected. CONCLUSIONS This report further expands the clinical phenotype of de novo dominant SLC25A4 mutations to a childhood-onset, mild skeletal myopathy, without evidence of previously reported clinical features associated with SLC25A4-associated disease, such as cardiomyopathy, encephalopathy or ophthalmoplegia. The most likely reason for the milder disease phenotype is that the overall AAC expression levels were not affected, meaning that expression of the wild-type allele and other isoforms may in part have compensated for the impaired mutant variant.
Collapse
Affiliation(s)
- Martin S King
- Medical Research Council Mitochondrial Biology Unit (M.S.K., E.R.S.K.), University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, UK; Wellcome Centre for Mitochondrial Research (K.T., S.H., L.H., R.W.D.), Institute of Neuroscience, Newcastle University, UK; and Department of Neurology (X.R.O.), Perelman School of Medicine, Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania
| | - Kyle Thompson
- Medical Research Council Mitochondrial Biology Unit (M.S.K., E.R.S.K.), University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, UK; Wellcome Centre for Mitochondrial Research (K.T., S.H., L.H., R.W.D.), Institute of Neuroscience, Newcastle University, UK; and Department of Neurology (X.R.O.), Perelman School of Medicine, Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania
| | - Sila Hopton
- Medical Research Council Mitochondrial Biology Unit (M.S.K., E.R.S.K.), University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, UK; Wellcome Centre for Mitochondrial Research (K.T., S.H., L.H., R.W.D.), Institute of Neuroscience, Newcastle University, UK; and Department of Neurology (X.R.O.), Perelman School of Medicine, Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania
| | - Langping He
- Medical Research Council Mitochondrial Biology Unit (M.S.K., E.R.S.K.), University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, UK; Wellcome Centre for Mitochondrial Research (K.T., S.H., L.H., R.W.D.), Institute of Neuroscience, Newcastle University, UK; and Department of Neurology (X.R.O.), Perelman School of Medicine, Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit (M.S.K., E.R.S.K.), University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, UK; Wellcome Centre for Mitochondrial Research (K.T., S.H., L.H., R.W.D.), Institute of Neuroscience, Newcastle University, UK; and Department of Neurology (X.R.O.), Perelman School of Medicine, Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania
| | - Robert W Taylor
- Medical Research Council Mitochondrial Biology Unit (M.S.K., E.R.S.K.), University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, UK; Wellcome Centre for Mitochondrial Research (K.T., S.H., L.H., R.W.D.), Institute of Neuroscience, Newcastle University, UK; and Department of Neurology (X.R.O.), Perelman School of Medicine, Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania
| | - Xilma R Ortiz-Gonzalez
- Medical Research Council Mitochondrial Biology Unit (M.S.K., E.R.S.K.), University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, UK; Wellcome Centre for Mitochondrial Research (K.T., S.H., L.H., R.W.D.), Institute of Neuroscience, Newcastle University, UK; and Department of Neurology (X.R.O.), Perelman School of Medicine, Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania
| |
Collapse
|
85
|
Ye Z, Zhang X, Zhu Y, Song T, Chen X, Lei X, Wang C. Chemoproteomic Profiling Reveals Ethacrynic Acid Targets Adenine Nucleotide Translocases to Impair Mitochondrial Function. Mol Pharm 2018; 15:2413-2422. [PMID: 29763317 DOI: 10.1021/acs.molpharmaceut.8b00250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ethacrynic acid (EA) is a diuretic drug that is widely used to treat high-blood pressure and swelling caused by congestive heart failure or kidney failure. It acts through noncovalent inhibition of the Na+-K+-2Cl- cotransporter in the thick ascending limb of Henle's loop. Chemically, EA contains a Michael acceptor group that can react covalently with nucleophilic residues in proteins; however, the proteome reactivity of EA remains unexplored. Herein, we took a quantitative chemoproteomic approach to globally profile EA's targets in cancer cells. We discovered that EA induces impaired mitochondrial function accompanied by increased ROS production. Our profiling revealed that EA targets functional proteins on mitochondrial membranes, including adenine nucleotide translocases (ANTs). Site-specific mapping identified that EA covalently modifies a functional cysteine in ANTs, a mutation of which resulted in the rescuing effect on EA-induced mitochondrial dysfunction. The newly discovered modes of action offer valuable information to repurpose EA for cancer treatment.
Collapse
Affiliation(s)
- Zi Ye
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100871 , China
| | - Xiaoyun Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Yuangang Zhu
- Institute of Molecular Medicine , Peking University , Beijing 100871 , China
| | - Tong Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Xiaowei Chen
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100871 , China.,Institute of Molecular Medicine , Peking University , Beijing 100871 , China
| | - Xiaoguang Lei
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100871 , China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100871 , China
| |
Collapse
|
86
|
Chipot C, Dehez F, Schnell JR, Zitzmann N, Pebay-Peyroula E, Catoire LJ, Miroux B, Kunji ERS, Veglia G, Cross TA, Schanda P. Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies. Chem Rev 2018; 118:3559-3607. [PMID: 29488756 PMCID: PMC5896743 DOI: 10.1021/acs.chemrev.7b00570] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 12/25/2022]
Abstract
Membrane proteins perform a host of vital cellular functions. Deciphering the molecular mechanisms whereby they fulfill these functions requires detailed biophysical and structural investigations. Detergents have proven pivotal to extract the protein from its native surroundings. Yet, they provide a milieu that departs significantly from that of the biological membrane, to the extent that the structure, the dynamics, and the interactions of membrane proteins in detergents may considerably vary, as compared to the native environment. Understanding the impact of detergents on membrane proteins is, therefore, crucial to assess the biological relevance of results obtained in detergents. Here, we review the strengths and weaknesses of alkyl phosphocholines (or foscholines), the most widely used detergent in solution-NMR studies of membrane proteins. While this class of detergents is often successful for membrane protein solubilization, a growing list of examples points to destabilizing and denaturing properties, in particular for α-helical membrane proteins. Our comprehensive analysis stresses the importance of stringent controls when working with this class of detergents and when analyzing the structure and dynamics of membrane proteins in alkyl phosphocholine detergents.
Collapse
Affiliation(s)
- Christophe Chipot
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
- Department
of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - François Dehez
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
| | - Jason R. Schnell
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Nicole Zitzmann
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | - Laurent J. Catoire
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Bruno Miroux
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Edmund R. S. Kunji
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Gianluigi Veglia
- Department
of Biochemistry, Molecular Biology, and Biophysics, and Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy A. Cross
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Paul Schanda
- Université
Grenoble Alpes, CEA, CNRS, IBS, Grenoble F-38000, France
| |
Collapse
|
87
|
Kurauskas V, Hessel A, Ma P, Lunetti P, Weinhäupl K, Imbert L, Brutscher B, King MS, Sounier R, Dolce V, Kunji ERS, Capobianco L, Chipot C, Dehez F, Bersch B, Schanda P. How Detergent Impacts Membrane Proteins: Atomic-Level Views of Mitochondrial Carriers in Dodecylphosphocholine. J Phys Chem Lett 2018; 9:933-938. [PMID: 29397729 PMCID: PMC5834942 DOI: 10.1021/acs.jpclett.8b00269] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 05/30/2023]
Abstract
Characterizing the structure of membrane proteins (MPs) generally requires extraction from their native environment, most commonly with detergents. Yet, the physicochemical properties of detergent micelles and lipid bilayers differ markedly and could alter the structural organization of MPs, albeit without general rules. Dodecylphosphocholine (DPC) is the most widely used detergent for MP structure determination by NMR, but the physiological relevance of several prominent structures has been questioned, though indirectly, by other biophysical techniques, e.g., functional/thermostability assay (TSA) and molecular dynamics (MD) simulations. Here, we resolve unambiguously this controversy by probing the functional relevance of three different mitochondrial carriers (MCs) in DPC at the atomic level, using an exhaustive set of solution-NMR experiments, complemented by functional/TSA and MD data. Our results provide atomic-level insight into the structure, substrate interaction and dynamics of the detergent-membrane protein complexes and demonstrates cogently that, while high-resolution NMR signals can be obtained for MCs in DPC, they systematically correspond to nonfunctional states.
Collapse
Affiliation(s)
- Vilius Kurauskas
- Université
Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Audrey Hessel
- Université
Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Peixiang Ma
- Université
Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Paola Lunetti
- Department
of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | | | - Lionel Imbert
- Université
Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | | | - Martin S. King
- MRC-MBU, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Rémy Sounier
- CNRS,
INSERM, Université de Montpellier, 34094 Montpellier, France
| | - Vincenza Dolce
- Dept
of Pharmacy, University of Calabria, 87036 Arcavacata
di Rende, Italy
| | | | - Loredana Capobianco
- Department
of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Christophe Chipot
- LPCT, UMR
7019 Université de Lorraine, CNRS and Laboratoire International
Associé & University of Illinois at Urbana−Champaign, F-54500 Vandoeuvre-lès-Nancy, France
| | - François Dehez
- LPCT, UMR
7019 Université de Lorraine, CNRS and Laboratoire International
Associé & University of Illinois at Urbana−Champaign, F-54500 Vandoeuvre-lès-Nancy, France
| | - Beate Bersch
- Université
Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Paul Schanda
- Université
Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| |
Collapse
|
88
|
Cardiolipin dynamics and binding to conserved residues in the mitochondrial ADP/ATP carrier. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1035-1045. [PMID: 29366674 PMCID: PMC5988563 DOI: 10.1016/j.bbamem.2018.01.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 11/24/2022]
Abstract
Cardiolipin in eukaryotes is found in the mitochondrial inner membrane, where it interacts with membrane proteins and, although not essential, is necessary for the optimal activity of a number of proteins. One of them is the mitochondrial ADP/ATP carrier, which imports ADP into the mitochondrion and exports ATP. In the crystal structures, cardiolipin is bound to three equivalent sites of the ADP/ATP carrier, but its role is unresolved. Conservation of residues at these cardiolipin binding sites across other members of the mitochondrial carrier superfamily indicates cardiolipin binding is likely to be important for the function of all mitochondrial carriers. Multiscale simulations were performed in a cardiolipin-containing membrane to investigate the dynamics of cardiolipin around the yeast and bovine ADP/ATP carriers in a lipid bilayer and the properties of the cardiolipin-binding sites. In coarse-grain simulations, cardiolipin molecules bound to the carriers for longer periods of time than phosphatidylcholine and phosphatidylethanolamine lipids—with timescales in the tens of microseconds. Three long-lived cardiolipin binding sites overlapped with those in the crystal structures of the carriers. Other shorter-lived cardiolipin interaction sites were identified in both membrane leaflets. However, the timescales of the interactions were of the same order as phosphatidylcholine and phosphatidylethanolamine, suggesting that these sites are not specific for cardiolipin binding. The calculation of lipid binding times and the overlap of the cardiolipin binding sites between the structures and simulations demonstrate the potential of multiscale simulations to investigate the dynamics and behavior of lipids interacting with membrane proteins. Coarse-grained models of AAC in mixed lipid bilayers were simulated. Three long-lived cardiolipin sites correspond to those in the crystal structures. No other long-lived binding sites were observed for cardiolipin or other phospholipids. Trimethylation of Lys-51 of AAC had no effect on cardiolipin interactions.
Collapse
|
89
|
Wang Q, Wang J, Lin H, Huo X, Zhu Q, Zhang M. Relationship between fat mass and obesity-associated gene expression and type 2 diabetes mellitus severity. Exp Ther Med 2018; 15:2917-2921. [PMID: 29456697 PMCID: PMC5795504 DOI: 10.3892/etm.2018.5752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/21/2017] [Indexed: 01/22/2023] Open
Abstract
This study sought to investigate any correlation between fat mass and obesity-associated gene (FTO) expression and the severity of type 2 diabetes mellitus (T2DM). In total 110 patients newly diagnosed with T2DM in the outpatient department of Yantai Yuhuangding Hospital between September 2016 and March 2017 were selected as study subjects and were divided into severe (58 cases) and mild groups (52 cases) according to T2DM severity. Patients in the severe group were followed up for 12 weeks. An additional 60 healthy individuals were selected to serve as the normal control group. Fasting plasma glucose (FPG), fasting insulin (FINs), fasting C-peptide (FCP), glycosylated hemoglobin (HbA1c) and homeostasis model assessment of insulin resistance (HOMA-IR) were examined for every patient in the study. Real-time polymerase chain reaction (RT-PCR) was used to detect FTO messenger ribonucleic acid (mRNA) expression levels in patient peripheral blood lymphocytes. Western blotting was used to detect serum FTO protein expression levels, upon which the correlation between FTO protein levels and all other indices were analyzed. Compared with the normal control group, both T2DM groups showed significantly increased waist circumferences, hip circumferences, body mass indexes (BMIs), blood glucose indexes (FPG, FCP, HbA1c, FINs, HOMA-IR) and FTO mRNA/protein levels (p<0.05). Additionally, the increases presented by the severe T2DM group were significantly greater than those presented by the mild T2DM group (p<0.05). After 12 weeks of treatment, the severe T2DM group showed decreased BMI, blood glucose index and FTO protein expression (p<0.05). FTO protein expression in T2DM patients was higher than in healthy controls, with severe patients showing greater expression levels than mild group patients. FTO expression was positively correlated with BMI, waist circumference, chest circumference, FPG, FCP, HbA1c, FINs and HOMA-IR. Therefore, FTO expression can serve as a marker for the clinical diagnosis and treatment of T2DM.
Collapse
Affiliation(s)
- Qiuling Wang
- Department of Endocrinology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Jinhuan Wang
- Department of Health, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Haixia Lin
- Department of Endocrinology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Xuechen Huo
- Department of Biliary Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Qiaoling Zhu
- Department of Pharmacy, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Min Zhang
- Neurological Intensive Care Unit, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
90
|
Hardie DG. Keeping the home fires burning: AMP-activated protein kinase. J R Soc Interface 2018; 15:20170774. [PMID: 29343628 PMCID: PMC5805978 DOI: 10.1098/rsif.2017.0774] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022] Open
Abstract
Living cells obtain energy either by oxidizing reduced compounds of organic or mineral origin or by absorbing light. Whichever energy source is used, some of the energy released is conserved by converting adenosine diphosphate (ADP) to adenosine triphosphate (ATP), which are analogous to the chemicals in a rechargeable battery. The energy released by the conversion of ATP back to ADP is used to drive most energy-requiring processes, including cell growth, cell division, communication and movement. It is clearly essential to life that the production and consumption of ATP are always maintained in balance, and the AMP-activated protein kinase (AMPK) is one of the key cellular regulatory systems that ensures this. In eukaryotic cells (cells with nuclei and other internal membrane-bound structures, including human cells), most ATP is produced in mitochondria, which are thought to have been derived by the engulfment of oxidative bacteria by a host cell not previously able to use molecular oxygen. AMPK is activated by increasing AMP or ADP (AMP being generated from ADP whenever ADP rises) coupled with falling ATP. Relatives of AMPK are found in essentially all eukaryotes, and it may have evolved to allow the host cell to monitor the output of the newly acquired mitochondria and step their ATP production up or down according to the demand. Structural studies have illuminated how AMPK achieves the task of detecting small changes in AMP and ADP, despite the presence of much higher concentrations of ATP. Recently, it has been shown that AMPK can also sense the availability of glucose, the primary carbon source for most eukaryotic cells, via a mechanism independent of changes in AMP or ADP. Once activated by energy imbalance or glucose lack, AMPK modifies many target proteins by transferring phosphate groups to them from ATP. By this means, numerous ATP-producing processes are switched on (including the production of new mitochondria) and ATP-consuming processes are switched off, thus restoring energy homeostasis. Drugs that modulate AMPK have great potential in the treatment of metabolic disorders such as obesity and Type 2 diabetes, and even cancer. Indeed, some existing drugs such as metformin and aspirin, which were derived from traditional herbal remedies, appear to work, in part, by activating AMPK.
Collapse
Affiliation(s)
- D Grahame Hardie
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| |
Collapse
|
91
|
Woznicka-Misaila A, Juillan-Binard C, Baud D, Pebay-Peyroula E, Ravaud S. Cell-free production, purification and characterization of human mitochondrial ADP/ATP carriers. Protein Expr Purif 2017; 144:46-54. [PMID: 29217202 DOI: 10.1016/j.pep.2017.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/17/2017] [Accepted: 11/29/2017] [Indexed: 11/17/2022]
Abstract
Mitochondrial Carriers (MCs) are responsible for fluent traffic of a variety of compounds that need to be shuttled via mitochondrial inner membranes to maintain cell metabolism. The ADP/ATP Carriers (AACs) are responsible for the import of ADP inside the mitochondria and the export of newly synthesized ATP. In human, four different AACs isoforms are described which are expressed in tissue-specific manner. They are involved in different genetic diseases and play a role in cancerogenesis. Up to now only the structures of the bovine (isoform 1) and yeast (isoforms 2 and 3) AAC have been determined in one particular conformation, obtained in complex with the CATR inhibitor. Herein, we report that full-length human ADP/ATP Carriers isoform 1 and 3 were successfully expressed in cell-free system and purified in milligram amounts in detergent-solubilized state. The proteins exhibited the expected secondary structure content. Thermostability profiles showing stabilization by the CATR inhibitor suggest that the carriers are well folded.
Collapse
Affiliation(s)
| | - Céline Juillan-Binard
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Delphine Baud
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Eva Pebay-Peyroula
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Stéphanie Ravaud
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.
| |
Collapse
|
92
|
Silva-Marrero JI, Sáez A, Caballero-Solares A, Viegas I, Almajano MP, Fernández F, Baanante IV, Metón I. A transcriptomic approach to study the effect of long-term starvation and diet composition on the expression of mitochondrial oxidative phosphorylation genes in gilthead sea bream (Sparus aurata). BMC Genomics 2017; 18:768. [PMID: 29020939 PMCID: PMC5637328 DOI: 10.1186/s12864-017-4148-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022] Open
Abstract
Background The impact of nutritional status and diet composition on mitochondrial oxidative phosphorylation (OXPHOS) in fish remains largely unknown. To identify biomarkers of interest in nutritional studies, herein we obtained a deep-coverage transcriptome by 454 pyrosequencing of liver and skeletal muscle cDNA normalised libraries from long-term starved gilthead sea bream (Sparus aurata) and fish fed different diets. Results After clean-up of high-throughput deep sequencing reads, 699,991 and 555,031 high-quality reads allowed de novo assembly of liver and skeletal muscle sequences, respectively (average length: 374 and 441 bp; total megabases: 262 and 245 Mbp). An additional incremental assembly was completed by integrating data from both tissues (hybrid assembly). Assembly of hybrid, liver and skeletal muscle transcriptomes yielded, respectively, 19,530, 11,545 and 10,599 isotigs (average length: 1330, 1208 and 1390 bp, respectively) that were grouped into 15,954, 10,033 and 9189 isogroups. Following annotation, hybrid transcriptomic data were used to construct an oligonucleotide microarray to analyse nutritional regulation of the expression of 129 genes involved in OXPHOS in S. aurata. Starvation upregulated cytochrome c oxidase components and other key OXPHOS genes in the liver, which exhibited higher sensitive to food deprivation than the skeletal muscle. However, diet composition affected OXPHOS in the skeletal muscle to a greater extent than in the liver: most of genes upregulated under starvation presented higher expression among fish fed a high carbohydrate/low protein diet. Conclusions Our findings indicate that the expression of coenzyme Q-binding protein (COQ10), cytochrome c oxidase subunit 6A2 (COX6A2) and ADP/ATP translocase 3 (SLC25A6) in the liver, and cytochrome c oxidase subunit 5B isoform 1 (COX5B1) in the liver and the skeletal muscle, are sensitive markers of the nutritional condition that may be relevant to assess the effect of changes in the feeding regime and diet composition on fish farming. Electronic supplementary material The online version of this article (10.1186/s12864-017-4148-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonás I Silva-Marrero
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Alberto Sáez
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Albert Caballero-Solares
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain
| | - Ivan Viegas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,Center for Functional Ecology (CFE), Department Life Sciences, University of Coimbra, Calçada Martins de Freitas, 3000-456, Coimbra, Portugal
| | - María Pilar Almajano
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona, Spain
| | - Felipe Fernández
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain
| | - Isabel V Baanante
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Isidoro Metón
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028, Barcelona, Spain.
| |
Collapse
|
93
|
Dallabona C, Baruffini E, Goffrini P, Lodi T. Dominance of yeast aac2 R96H and aac2 R252G mutations, equivalent to pathological mutations in ant1, is due to gain of function. Biochem Biophys Res Commun 2017; 493:909-913. [PMID: 28947214 DOI: 10.1016/j.bbrc.2017.09.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/21/2017] [Indexed: 01/20/2023]
Abstract
The mitochondrial ADP/ATP carrier is a nuclear encoded protein, which catalyzes the exchange of ATP generated in mitochondria with ADP produced in the cytosol. In humans, mutations in the major ADP/ATP carrier gene, ANT1, are involved in several degenerative mitochondrial pathologies, leading to instability of mitochondrial DNA. Recessive mutations have been associated with mitochondrial myopathy and cardiomyopathy whereas dominant mutations have been associated with autosomal dominant Progressive External Ophtalmoplegia (adPEO). Recently, two de novo dominant mutations, R80H and R235G, leading to extremely severe symptoms, have been identified. In order to evaluate if the dominance is due to haploinsufficiency or to a gain of function, the two mutations have been introduced in the equivalent positions of the AAC2 gene, the yeast orthologue of human ANT1, and their dominant effect has been studied in heteroallelic strains, containing both one copy of wild type AAC2 and one copy of mutant aac2 allele. Through phenotypic characterization of these yeast models we showed that the OXPHOS phenotypes in the heteroallelic strains were more affected than in the hemiallelic strain indicating that the dominant trait of the two mutations is due to gain of function.
Collapse
Affiliation(s)
- Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Tiziana Lodi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
| |
Collapse
|
94
|
Modelling the free energy profile of the mitochondrial ADP/ATP carrier. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:906-914. [PMID: 28554566 PMCID: PMC5604490 DOI: 10.1016/j.bbabio.2017.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/23/2017] [Accepted: 05/24/2017] [Indexed: 02/07/2023]
Abstract
The mitochondrial ADP/ATP carrier catalyses the equimolar exchange of adenosine di- and tri-phosphates. It operates by an alternating access mechanism in which a single substrate-binding site is made available either to the mitochondrial matrix or the intermembrane space through conformational changes. These changes are prevented in the absence of substrate by a large energy barrier due to the need for sequential disruption and formation of a matrix and cytoplasmic salt bridge network that are located on either side of the central cavity. In analogy to enzyme catalysis, substrate lowers the energy barrier by binding tighter in the intermediate state. Here we provide an in-silico kinetic model that captures the free energy profile of these conformational changes and treats the carrier as a nanomachine moving stochastically from the matrix to cytoplasmic conformation under the influence of thermal energy. The model reproduces the dependency of experimentally determined kcat and KM values on the cytoplasmic network strength with good quantitative accuracy, implying that it captures the transport mechanism and can provide a framework to understand the structure-function relationships of this class of transporter. The results show that maximum transport occurs when the interaction energies of the cytoplasmic network, matrix network and substrate binding are approximately equal such that the energy barrier is minimized. Consequently, the model predicts that there will be other interactions in addition to those of the cytoplasmic network that stabilise the matrix conformation of the ADP/ATP carrier.
Collapse
|
95
|
Taylor EB. Functional Properties of the Mitochondrial Carrier System. Trends Cell Biol 2017; 27:633-644. [PMID: 28522206 DOI: 10.1016/j.tcb.2017.04.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 11/28/2022]
Abstract
The mitochondrial carrier system (MCS) transports small molecules between mitochondria and the cytoplasm. It is integral to the core mitochondrial function to regulate cellular chemistry by metabolism. The mammalian MCS comprises the transporters of the 53-member canonical SLC25A family and a lesser number of identified noncanonical transporters. The recent discovery and investigations of the mitochondrial pyruvate carrier (MPC) illustrate the diverse effects a single mitochondrial carrier may exert on cellular function. However, the transport selectivities of many carriers remain unknown, and most have not been functionally investigated in mammalian cells. The mechanisms coordinating their function as a unified system remain undefined. Increased accessibility to molecular genetic and metabolomic technologies now greatly enables investigation of the MCS. Continued investigation of the MCS may reveal how mitochondria encode complex regulatory information within chemical thermodynamic gradients. This understanding may enable precision modulation of cellular chemistry to counteract the dysmetabolism inherent in disease.
Collapse
Affiliation(s)
- Eric B Taylor
- Department of Biochemistry, Fraternal Order of the Eagles Diabetes Center, Holden Comprehensive Cancer Center, Abboud Cardiovascular Research Center, Pappajohn Biomedical Discovery Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
96
|
Cardouat G, Duparc T, Fried S, Perret B, Najib S, Martinez LO. Ectopic adenine nucleotide translocase activity controls extracellular ADP levels and regulates the F 1-ATPase-mediated HDL endocytosis pathway on hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:832-841. [PMID: 28504211 DOI: 10.1016/j.bbalip.2017.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/22/2017] [Accepted: 05/09/2017] [Indexed: 11/26/2022]
Abstract
Ecto-F1-ATPase is a complex related to mitochondrial ATP synthase which has been identified as a plasma membrane receptor for apolipoprotein A-I (apoA-I), the major protein of high-density lipoprotein (HDL), and has been shown to contribute to HDL endocytosis in several cell types. On hepatocytes, apoA-I binding to ecto-F1-ATPase stimulates extracellular ATP hydrolysis into ADP, which subsequently activates a P2Y13-mediated HDL endocytosis pathway. Interestingly, other mitochondrial proteins have been found to be expressed at the plasma membrane of several cell types. Among these, adenine nucleotide translocase (ANT) is an ADP/ATP carrier but its role in controlling extracellular ADP levels and F1-ATPase-mediated HDL endocytosis has never been investigated. Here we confirmed the presence of ANT at the plasma membrane of human hepatocytes. We then showed that ecto-ANT activity increases or reduces extracellular ADP level, depending on the extracellular ADP/ATP ratio. Interestingly, ecto-ANT co-localized with ecto-F1-ATPase at the hepatocyte plasma membrane and pharmacological inhibition of ecto-ANT activity increased extracellular ADP level when ecto-F1-ATPase was activated by apoA-I. This increase in the bioavailability of extracellular ADP accordingly translated into an increase of HDL endocytosis on human hepatocytes. This study thus uncovered a new location and function of ANT for which activity at the cell surface of hepatocytes modulates the concentration of extracellular ADP and regulates HDL endocytosis.
Collapse
Affiliation(s)
- G Cardouat
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France
| | - T Duparc
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France
| | - S Fried
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France
| | - B Perret
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France; Service de Biochimie, Pôle biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - S Najib
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France.
| | - L O Martinez
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France.
| |
Collapse
|
97
|
Harborne SPD, King MS, Crichton PG, Kunji ERS. Calcium regulation of the human mitochondrial ATP-Mg/Pi carrier SLC25A24 uses a locking pin mechanism. Sci Rep 2017; 7:45383. [PMID: 28350015 PMCID: PMC5369052 DOI: 10.1038/srep45383] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/22/2017] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial ATP-Mg/Pi carriers import adenine nucleotides into the mitochondrial matrix and export phosphate to the cytosol. They are calcium-regulated to control the size of the matrix adenine nucleotide pool in response to cellular energetic demands. They consist of three domains: an N-terminal regulatory domain containing four calcium-binding EF-hands, a linker loop domain with an amphipathic α-helix and a C-terminal mitochondrial carrier domain for the transport of substrates. Here, we use thermostability assays to demonstrate that the carrier is regulated by calcium via a locking pin mechanism involving the amphipathic α-helix. When calcium levels in the intermembrane space are high, the N-terminus of the amphipathic α-helix is bound to a cleft in the regulatory domain, leading to substrate transport by the carrier domain. When calcium levels drop, the cleft closes, and the amphipathic α-helix is released to bind to the carrier domain via its C-terminus, locking the carrier in an inhibited state.
Collapse
Affiliation(s)
- Steven P. D. Harborne
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Martin S. King
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Paul G. Crichton
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Edmund R. S. Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
98
|
Hedger G, Rouse SL, Domański J, Chavent M, Koldsø H, Sansom MSP. Lipid-Loving ANTs: Molecular Simulations of Cardiolipin Interactions and the Organization of the Adenine Nucleotide Translocase in Model Mitochondrial Membranes. Biochemistry 2016; 55:6238-6249. [PMID: 27786441 PMCID: PMC5120876 DOI: 10.1021/acs.biochem.6b00751] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
The exchange of ADP
and ATP across the inner mitochondrial membrane
is a fundamental cellular process. This exchange is facilitated by
the adenine nucleotide translocase, the structure and function of
which are critically dependent on the signature phospholipid of mitochondria,
cardiolipin (CL). Here we employ multiscale molecular dynamics simulations
to investigate CL interactions within a membrane environment. Using
simulations at both coarse-grained and atomistic resolutions, we identify
three CL binding sites on the translocase, in agreement with those
seen in crystal structures and inferred from nuclear magnetic resonance
measurements. Characterization of the free energy landscape for lateral
lipid interaction via potential of mean force calculations demonstrates
the strength of interaction compared to those of binding sites on
other mitochondrial membrane proteins, as well as their selectivity
for CL over other phospholipids. Extending the analysis to other members
of the family, yeast Aac2p and mouse uncoupling protein 2, suggests
a degree of conservation. Simulation of large patches of a model mitochondrial
membrane containing multiple copies of the translocase shows that
CL interactions persist in the presence of protein–protein
interactions and suggests CL may mediate interactions between translocases.
This study provides a key example of how computational microscopy
may be used to shed light on regulatory lipid–protein interactions.
Collapse
Affiliation(s)
- George Hedger
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| | - Sarah L Rouse
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K.,Department of Life Sciences, Imperial College London , London SW7 2AZ, U.K
| | - Jan Domański
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| | - Matthieu Chavent
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| | - Heidi Koldsø
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K.,D. E. Shaw Research , 120 West 45th Street, 39th Floor, New York, New York 10036, United States
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
99
|
Thompson K, Majd H, Dallabona C, Reinson K, King MS, Alston CL, He L, Lodi T, Jones SA, Fattal-Valevski A, Fraenkel ND, Saada A, Haham A, Isohanni P, Vara R, Barbosa IA, Simpson MA, Deshpande C, Puusepp S, Bonnen PE, Rodenburg RJ, Suomalainen A, Õunap K, Elpeleg O, Ferrero I, McFarland R, Kunji ERS, Taylor RW. Recurrent De Novo Dominant Mutations in SLC25A4 Cause Severe Early-Onset Mitochondrial Disease and Loss of Mitochondrial DNA Copy Number. Am J Hum Genet 2016; 99:860-876. [PMID: 27693233 PMCID: PMC5065686 DOI: 10.1016/j.ajhg.2016.08.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/18/2016] [Indexed: 11/26/2022] Open
Abstract
Mutations in SLC25A4 encoding the mitochondrial ADP/ATP carrier AAC1 are well-recognized causes of mitochondrial disease. Several heterozygous SLC25A4 mutations cause adult-onset autosomal-dominant progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions, whereas recessive SLC25A4 mutations cause childhood-onset mitochondrial myopathy and cardiomyopathy. Here, we describe the identification by whole-exome sequencing of seven probands harboring dominant, de novo SLC25A4 mutations. All affected individuals presented at birth, were ventilator dependent and, where tested, revealed severe combined mitochondrial respiratory chain deficiencies associated with a marked loss of mitochondrial DNA copy number in skeletal muscle. Strikingly, an identical c.239G>A (p.Arg80His) mutation was present in four of the seven subjects, and the other three case subjects harbored the same c.703C>G (p.Arg235Gly) mutation. Analysis of skeletal muscle revealed a marked decrease of AAC1 protein levels and loss of respiratory chain complexes containing mitochondrial DNA-encoded subunits. We show that both recombinant AAC1 mutant proteins are severely impaired in ADP/ATP transport, affecting most likely the substrate binding and mechanics of the carrier, respectively. This highly reduced capacity for transport probably affects mitochondrial DNA maintenance and in turn respiration, causing a severe energy crisis. The confirmation of the pathogenicity of these de novo SLC25A4 mutations highlights a third distinct clinical phenotype associated with mutation of this gene and demonstrates that early-onset mitochondrial disease can be caused by recurrent de novo mutations, which has significant implications for the application and analysis of whole-exome sequencing data in mitochondrial disease.
Collapse
Affiliation(s)
- Kyle Thompson
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Homa Majd
- The Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Cristina Dallabona
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, Parma 43124, Italy
| | - Karit Reinson
- Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, 51014 Tartu, Estonia; Department of Genetics, United Laboratories, Tartu University Hospital, 51014 Tartu, Estonia
| | - Martin S King
- The Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Charlotte L Alston
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Langping He
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Tiziana Lodi
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, Parma 43124, Italy
| | - Simon A Jones
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, St Marys Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Aviva Fattal-Valevski
- Paediatric Neurology Unit, "Dana" Children Hospital, Tel Aviv Sourasky Medical Centre, Sackler Faculty of Medicine, Tel Aviv University, 64239 Tel Aviv, Israel
| | - Nitay D Fraenkel
- Department of Respiratory Rehabilitation, Alyn Hospital, Jerusalem 91090, Israel
| | - Ann Saada
- Metabolic Laboratory Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Alon Haham
- Neonatal Intensive Care Unit, "Lis" Maternity Hospital, Tel Aviv Sourasky Medical Centre, 64239 Tel Aviv, Israel
| | - Pirjo Isohanni
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, 00290 Helsinki, Finland; Department of Pediatric Neurology, Children's Hospital, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland
| | - Roshni Vara
- Department of Paediatric Inherited Metabolic Diseases, Evelina Children's Hospital, London SE1 7EH, UK
| | - Inês A Barbosa
- Division of Genetics and Molecular Medicine, King's College London School of Medicine, London SE1 9RY, UK
| | - Michael A Simpson
- Division of Genetics and Molecular Medicine, King's College London School of Medicine, London SE1 9RY, UK
| | - Charu Deshpande
- Clinical Genetics Unit, Guys and St Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Sanna Puusepp
- Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, 51014 Tartu, Estonia; Department of Genetics, United Laboratories, Tartu University Hospital, 51014 Tartu, Estonia
| | - Penelope E Bonnen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard J Rodenburg
- Radboud Center for Mitochondrial Medicine, Department of Paediatrics, Translational Metabolic Laboratory, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Anu Suomalainen
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, 00290 Helsinki, Finland; Department of Neurosciences, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland
| | - Katrin Õunap
- Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, 51014 Tartu, Estonia; Department of Genetics, United Laboratories, Tartu University Hospital, 51014 Tartu, Estonia
| | - Orly Elpeleg
- The Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Ileana Ferrero
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, Parma 43124, Italy
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Edmund R S Kunji
- The Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|