51
|
Marx S, Wilken F, Miebach L, Ispirjan M, Kinnen F, Paul S, Bien-Möller S, Freund E, Baldauf J, Fleck S, Siebert N, Lode H, Stahl A, Rauch BH, Singer S, Ritter C, Schroeder HWS, Bekeschus S. Immunophenotyping of Circulating and Intratumoral Myeloid and T Cells in Glioblastoma Patients. Cancers (Basel) 2022; 14:cancers14235751. [PMID: 36497232 PMCID: PMC9739079 DOI: 10.3390/cancers14235751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma is the most common and lethal primary brain malignancy that almost inevitably recurs as therapy-refractory cancer. While the success of immune checkpoint blockade (ICB) revealed the immense potential of immune-targeted therapies in several types of cancers outside the central nervous system, it failed to show objective responses in glioblastoma patients as of now. The ability of glioblastoma cells to drive multiple modes of T cell dysfunction while exhibiting low-quality neoepitopes, low-mutational load, and poor antigen priming limits anti-tumor immunity and efficacy of antigen-unspecific immunotherapies such as ICB. An in-depth understanding of the GBM immune landscape is essential to delineate and reprogram such immunosuppressive circuits during disease progression. In this view, the present study aimed to characterize the peripheral and intratumoral immune compartments of 35 glioblastoma patients compared to age- and sex-matched healthy control probands, particularly focusing on exhaustion signatures on myeloid and T cell subsets. Compared to healthy control participants, different immune signatures were already found in the peripheral circulation, partially related to the steroid medication the patients received. Intratumoral CD4+ and CD8+ TEM cells (CD62Llow/CD45ROhigh) revealed a high expression of PD1, which was also increased on intratumoral, pro-tumorigenic macrophages/microglia. Histopathological analysis further identified high PSGL-1 expression levels of the latter, which has recently been linked to increased metastasis in melanoma and colon cancer via P-selectin-mediated platelet activation. Overall, the present study comprises immunophenotyping of a patient cohort to give implications for eligible immunotherapeutic targets in neurooncology in the future.
Collapse
Affiliation(s)
- Sascha Marx
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Fabian Wilken
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department for General, Thoracic, Vascular, and Thorax Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Mikael Ispirjan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Frederik Kinnen
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
- Department of Pharmacology, C_DAT, Greifswald University Medical Center, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Sebastian Paul
- Department of Ophthalmology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sandra Bien-Möller
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
- Department of Pharmacology, C_DAT, Greifswald University Medical Center, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department for General, Thoracic, Vascular, and Thorax Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Jörg Baldauf
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Steffen Fleck
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Nikolai Siebert
- Department of Pediatric Oncology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Holger Lode
- Department of Pediatric Oncology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Andreas Stahl
- Department of Ophthalmology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Bernhard H. Rauch
- Pharmacology and Toxicology, Department of Human Medicine, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Stephan Singer
- Department of Pathology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
- Department of Pathology and Neuropathology, Tuebingen University Medical Center, Liebermeisterstr. 8, 72076 Tuebingen, Germany
| | - Christoph Ritter
- Institute of Clinical Pharmacy, Greifswald University, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Henry W. S. Schroeder
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Correspondence:
| |
Collapse
|
52
|
Nelles DG, Hazrati LN. Ependymal cells and neurodegenerative disease: outcomes of compromised ependymal barrier function. Brain Commun 2022; 4:fcac288. [PMID: 36415662 PMCID: PMC9677497 DOI: 10.1093/braincomms/fcac288] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 11/01/2022] [Indexed: 08/08/2023] Open
Abstract
Within the central nervous system, ependymal cells form critical components of the blood-cerebrospinal fluid barrier and the cerebrospinal fluid-brain barrier. These barriers provide biochemical, immunological and physical protection against the entry of molecules and foreign substances into the cerebrospinal fluid while also regulating cerebrospinal fluid dynamics, such as the composition, flow and removal of waste from the cerebrospinal fluid. Previous research has demonstrated that several neurodegenerative diseases, such as Alzheimer's disease and multiple sclerosis, display irregularities in ependymal cell function, morphology, gene expression and metabolism. Despite playing key roles in maintaining overall brain health, ependymal barriers are largely overlooked and understudied in the context of disease, thus limiting the development of novel diagnostic and treatment options. Therefore, this review explores the anatomical properties, functions and structures that define ependymal cells in the healthy brain, as well as the ways in which ependymal cell dysregulation manifests across several neurodegenerative diseases. Specifically, we will address potential mechanisms, causes and consequences of ependymal cell dysfunction and describe how compromising the integrity of ependymal barriers may initiate, contribute to, or drive widespread neurodegeneration in the brain.
Collapse
Affiliation(s)
- Diana G Nelles
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, 555 University Ave, Canada
| | - Lili-Naz Hazrati
- Correspondence to: Dr. Lili-Naz Hazrati 555 University Ave, Toronto ON M5G 1X8, Canada E-mail:
| |
Collapse
|
53
|
Bouzbib C, El Mourabit H, Wendum D, Lasnier E, Mouri S, Housset C, Thabut D, Weiss N, Rudler M. ATP-binding cassette transporters expression in rats with cirrhosis and hepatic encephalopathy. Clin Res Hepatol Gastroenterol 2022; 46:101784. [PMID: 34384925 DOI: 10.1016/j.clinre.2021.101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Pathophysiology of acute encephalopathy in cirrhotic patients is not completely understood. Factors implicated include ammonia, inflammation, various metabolic disorders and drug toxicity. Recent studies have evidenced an increased permeability of the blood-brain barrier (BBB) in models of chronic liver disease and encephalopathy, either to solutes, or to leukocytes. A modification of the expression of BBB ATP-Binding Cassette (ABC) transporters, actively transporting endogenous and exogenous components through the BBB, has been described in models of acute liver failure. We hypothesized that a modification of ABC transporters expression may contribute to drug-induced acute encephalopathy in cirrhosis. MATERIEL AND METHODS A rat model of cirrhosis induced by Bile Duct Ligation (BDL) was studied, and compared to a SHAM rat model. Rats were sacrificed and brains studied after decapitation. Genic expression of ABC transporters, including P-gp, BCRP, MRP1, MRP2, MRP4 and MRP5 was evaluated by RT-qPCR on isolated brain microvessels. Encephalopathy was assessed 6 weeks after surgery by a trail suspension test and an Open Field Test. RESULTS BDL rats developed a histologically proven cirrhosis and displayed a higher ammonemia than SHAM rats (183 µmol/L vs 53 µmol/L, p = 0.0003). BDL rats presented with encephalopathy shown by neurobehavioral tests. MRP2 was not detected neither in BDL nor in SHAM rats. There was a decrease in the genic expression of MRP5 6 weeks after surgery. Expressions of P-gp, BCRP, MRP1 and MRP4 were not different between the 2 groups. CONCLUSION We suggest that acute encephalopathy in cirrhotic BDL rats may be associated to a modification of ABC transporter MRP5 on the BBB, that could be responsible for a decrease clearance of neurotoxic agents.
Collapse
Affiliation(s)
- Charlotte Bouzbib
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Brain Liver Pitié-Salpêtrière Study Group, Sorbonne Université, INSERM UMR_S 938, Centre de recherche Saint-Antoine & Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; AP-HP.Sorbonne Université, Liver Intensive Care Unit, Hepatogastroenterology department, Pitié-Salpêtrière Hospital, 47-83 boulevard de l'Hôpital 75013 Paris, France
| | - Haquima El Mourabit
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Brain Liver Pitié-Salpêtrière Study Group, Sorbonne Université, INSERM UMR_S 938, Centre de recherche Saint-Antoine & Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Dominique Wendum
- AP-HP.Sorbonne Université, Department of Pathology, Saint-Antoine Hospital, 184 rue du Faubourg-Saint-Antoine, 75012 Paris, France
| | - Elisabeth Lasnier
- AP-HP.Sorbonne Université, Department of Biochemistry, Saint-Antoine Hospital, 184 rue du Faubourg-Saint-Antoine, 75012 Paris, France
| | - Sarah Mouri
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Brain Liver Pitié-Salpêtrière Study Group, Sorbonne Université, INSERM UMR_S 938, Centre de recherche Saint-Antoine & Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; AP-HP.Sorbonne Université, Liver Intensive Care Unit, Hepatogastroenterology department, Pitié-Salpêtrière Hospital, 47-83 boulevard de l'Hôpital 75013 Paris, France
| | - Chantal Housset
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Brain Liver Pitié-Salpêtrière Study Group, Sorbonne Université, INSERM UMR_S 938, Centre de recherche Saint-Antoine & Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Dominique Thabut
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Brain Liver Pitié-Salpêtrière Study Group, Sorbonne Université, INSERM UMR_S 938, Centre de recherche Saint-Antoine & Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; AP-HP.Sorbonne Université, Liver Intensive Care Unit, Hepatogastroenterology department, Pitié-Salpêtrière Hospital, 47-83 boulevard de l'Hôpital 75013 Paris, France.
| | - Nicolas Weiss
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Brain Liver Pitié-Salpêtrière Study Group, Sorbonne Université, INSERM UMR_S 938, Centre de recherche Saint-Antoine & Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; AP-HP.Sorbonne Université, Neurological Intensive Care Unit, Neurology department, Pitié-Salpêtrière Hospital, 47-83 boulevard de l'Hôpital 75013 Paris, France.
| | - Marika Rudler
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Brain Liver Pitié-Salpêtrière Study Group, Sorbonne Université, INSERM UMR_S 938, Centre de recherche Saint-Antoine & Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; AP-HP.Sorbonne Université, Liver Intensive Care Unit, Hepatogastroenterology department, Pitié-Salpêtrière Hospital, 47-83 boulevard de l'Hôpital 75013 Paris, France
| |
Collapse
|
54
|
Li X, Li L, Zhou K, Zhang H, Maalim AA, Chen X, He X, Ding X, Xu C, Wang Y. Glioma Shapes Blood–Brain Barrier Integrity and Remodels the Tumor Microenvironment: Links with Clinical Features and Prognosis. J Clin Med 2022; 11:jcm11195863. [PMID: 36233730 PMCID: PMC9570525 DOI: 10.3390/jcm11195863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The presence of the blood–brain barrier (BBB) uniquely distinguishes the brain from other organs, and various brain pathologies, including cancer, can disrupt or breach the BBB. The specific implications of BBB alterations in glioma have not been sufficiently clarified. Methods: In this study, statistical analysis of the TCGA pan-glioma dataset and four other validation cohorts was used to investigate the infiltration of BBB constituent cells (endothelial cells, pericytes and astrocytes) in the glioma tumor microenvironment (TME). Results: We found that the infiltration proportions of the three BBB constituent cell types were highly collinear, which implied alteration of the BBB. Hence, we developed an index, the BBB score, which is calculated based on the infiltration proportion of BBB constituent cells. Furthermore, we observed that patients with higher BBB scores were more likely to be diagnosed with more malignant entities in the TCGA database according to significant molecular features, such as IDH mutation status and 1p/19q deletion. The BBB score was also strikingly positively correlated with WHO grade in other cohorts. More importantly, a higher BBB score correlated with shorter survival time and unfavorable prognosis in glioma patients. Finally, we showed that TME-related pathways may regulate BBB alterations and that coinhibitory immune checkpoints were enriched in samples with higher BBB scores. Conclusions: We showed that TME-related pathways may regulate BBB alterations and that coinhibitory immune checkpoints were enriched in samples with higher BBB scores. Assessing BBB alterations may help elucidate the complex role of the glioma TME and suggest new combination treatment strategies.
Collapse
Affiliation(s)
- Xiaokai Li
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guizhou Cancer Hospital, Guiyang 550008, China
| | - Lei Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hanyang 3rd School, Wuhan Economic & Technological Development Zone, Wuhan 430030, China
| | - Huixiang Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ali Abdi Maalim
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xingyu Chen
- Department of Physiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ximiao He
- Department of Physiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinmin Ding
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Correspondence: (X.D.); (C.X.); (Y.W.)
| | - Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (X.D.); (C.X.); (Y.W.)
| | - Yonghong Wang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Correspondence: (X.D.); (C.X.); (Y.W.)
| |
Collapse
|
55
|
Lin W, Gao J, Zhang H, Chen L, Qiu X, Huang Q, Hu J, Kong L, Lu JJ. Identification of molecular subtypes based on inflammatory response in lower-grade glioma. Inflamm Regen 2022; 42:29. [PMID: 36180938 PMCID: PMC9526248 DOI: 10.1186/s41232-022-00215-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Background Inflammatory response is an important characteristic affecting prognosis and therapeutic response in lower-grade glioma (LGG). However, the molecular subtypes based on inflammatory response are still under exploitation. Methods The RNA sequencing, somatic mutation, and corresponding clinical data from 1205 LGG patients were obtained from the TCGA, CGGA, and Rembrandt cohorts. Consensus clustering was performed to identify molecular subtypes associated with inflammation. Prognosis, clinicopathologic features, immune cell infiltration, and somatic mutation profile were compared among these inflammation-associated subtypes. Results Our results demonstrate that LGG could be categorized into inflammation-, low, -mid, and -high subtypes with distinct clinicopathologic features, prognostic and tumor microenvironment. We established that this categorization was reproducible, as well as predictable. In general, inflammation-high subtype presents a dismal prognosis with the immunosuppressive microenvironment and high frequency of oncogene mutation. Inversely, inflammation-low subtype was associated with the most favorable clinical outcomes with the immunoreactive microenvironment among three subtypes. Moreover, we develop and validate an inflammation-related prognostic model, which shows strong power for prognosis assessment. Conclusion In conclusion, we established a novel glioma classification based on the inflammation subtype. This classification had significant outcomes for estimating the prognosis, as well as the tumor microenvironment. Supplementary Information The online version contains supplementary material available at 10.1186/s41232-022-00215-9.
Collapse
Affiliation(s)
- Wanzun Lin
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, 4365 Kangxin Rd, Shanghai, 201321, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jing Gao
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Haojiong Zhang
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Li Chen
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, 4365 Kangxin Rd, Shanghai, 201321, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Xianxin Qiu
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Qingting Huang
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Jiyi Hu
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, 4365 Kangxin Rd, Shanghai, 201321, China. .,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China. .,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.
| | - Jiade J Lu
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China. .,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China. .,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China.
| |
Collapse
|
56
|
Oh JH, Power EA, Zhang W, Daniels DJ, Elmquist WF. Murine Central Nervous System and Bone Marrow Distribution of the Aurora A Kinase Inhibitor Alisertib: Pharmacokinetics and Exposure at the Sites of Efficacy and Toxicity. J Pharmacol Exp Ther 2022; 383:44-55. [PMID: 36279392 PMCID: PMC9513880 DOI: 10.1124/jpet.122.001268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Important challenges in developing drugs that target central nervous system (CNS) tumors include overcoming barriers for CNS delivery and reducing systemic side effects. Alisertib, an aurora A kinase inhibitor, has been examined for treatment of several CNS tumors in preclinical and clinical studies. In this study, we investigated the distribution of alisertib into the CNS, the site of efficacy for brain tumors, and into the bone marrow, the site of dose-limiting toxicity leading to myelosuppression. Mechanisms influencing site-specific distribution, such as active transport mediated by the efflux proteins, p-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp), were examined. Alisertib exposure to the brain in wild-type mice was less than 1% of that in the plasma, and was evenly distributed throughout various brain regions and the spinal cord. Studies using transporter knockout mice and pharmacological inhibition show that alisertib CNS distribution is influenced by P-gp, but not Bcrp. Conversely, upon systemic administration, alisertib distribution to the bone marrow occurred rapidly, was not significantly limited by efflux transporters, and reached higher concentrations than in the CNS. This study demonstrates that, given an equivalent distributional driving force exposure in plasma, the exposure of alisertib in the brain is significantly less than that in the bone marrow, suggesting that targeted delivery may be necessary to guarantee therapeutic efficacy with minimal risk for adverse events.Therefore, these data suggest that, to improve the therapeutic index when using alisertib for brain tumors, a localized regional delivery, such as convection-enhanced delivery, may be warranted. SIGNIFICANCE STATEMENT: The CNS penetration of alisertib is limited with uniform distribution in various regions of the brain, and P-gp efflux is an important mechanism limiting that CNS distribution. Alisertib rapidly distributes into the bone marrow, a site of toxicity, with a greater exposure than in the CNS, a possible site of efficacy. These results suggest a need to design localized delivery strategies to improve the CNS exposure of alisertib and limit systemic toxicities in the treatment of brain tumors.
Collapse
Affiliation(s)
- Ju-Hee Oh
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (J-H.O., W.Z., W.F.E.); Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota (E.A.P., D.J.D.); and Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota (E.A.P.)
| | - Erica A Power
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (J-H.O., W.Z., W.F.E.); Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota (E.A.P., D.J.D.); and Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota (E.A.P.)
| | - Wenjuan Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (J-H.O., W.Z., W.F.E.); Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota (E.A.P., D.J.D.); and Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota (E.A.P.)
| | - David J Daniels
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (J-H.O., W.Z., W.F.E.); Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota (E.A.P., D.J.D.); and Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota (E.A.P.)
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (J-H.O., W.Z., W.F.E.); Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota (E.A.P., D.J.D.); and Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota (E.A.P.)
| |
Collapse
|
57
|
Endothelial Dysfunction, HMGB1, and Dengue: An Enigma to Solve. Viruses 2022; 14:v14081765. [PMID: 36016387 PMCID: PMC9414358 DOI: 10.3390/v14081765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue is a viral infection caused by dengue virus (DENV), which has a significant impact on public health worldwide. Although most infections are asymptomatic, a series of severe clinical manifestations such as hemorrhage and plasma leakage can occur during the severe presentation of the disease. This suggests that the virus or host immune response may affect the protective function of endothelial barriers, ultimately being considered the most relevant event in severe and fatal dengue pathogenesis. The mechanisms that induce these alterations are diverse. It has been suggested that the high mobility group box 1 protein (HMGB1) may be involved in endothelial dysfunction. This non-histone nuclear protein has different immunomodulatory activities and belongs to the alarmin group. High concentrations of HMGB1 have been detected in patients with several infectious diseases, including dengue, and it could be considered as a biomarker for the early diagnosis of dengue and a predictor of complications of the disease. This review summarizes the main features of dengue infection and describes the known causes associated with endothelial dysfunction, highlighting the involvement and possible relationship between HMGB1 and DENV.
Collapse
|
58
|
Chronic Low Dose Morphine Does Not Alter Two In Vitro BBB Models. Brain Sci 2022; 12:brainsci12070888. [PMID: 35884695 PMCID: PMC9312884 DOI: 10.3390/brainsci12070888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 12/07/2022] Open
Abstract
The blood–brain barrier (BBB) mediates cellular and molecular passage between the central nervous system (CNS) and peripheral circulation. Compromised BBB integrity has been linked to neurocognitive deficits in multiple diseases and various infections, including those associated with HIV-1 infection. Understanding the impact of exposure to pharmaceuticals, such as those utilized for pain management by patients suffering from CNS disease, on BBB regulation and function is clinically important. In this study, we modelled two different BBB systems; a primary human co-culture and a cell line monoculture. These systems were both exposed to three daily repeat doses of morphine and examined for alterations to BBB integrity via permeability, PBMC transmigration, and chemokine gradient changes. We did not find any significant changes to either BBB system with repeat morphine dosing, suggesting that repeat morphine exposure may not play a significant role in BBB changes.
Collapse
|
59
|
Wang G, Wang J, Niu C, Zhao Y, Wu P. Neutrophils: New Critical Regulators of Glioma. Front Immunol 2022; 13:927233. [PMID: 35860278 PMCID: PMC9289230 DOI: 10.3389/fimmu.2022.927233] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
In cancer, neutrophils are an important part of the tumour microenvironment (TME). Previous studies have shown that circulating and infiltrating neutrophils are associated with malignant progression and immunosuppression in gliomas. However, recent studies have shown that neutrophils have an antitumour effect. In this review, we focus on the functional roles of neutrophils in the circulation and tumour sites in patients with glioma. The mechanisms of neutrophil recruitment, immunosuppression and the differentiation of neutrophils are discussed. Finally, the potential of neutrophils as clinical biomarkers and therapeutic targets is highlighted. This review can help us gain a deeper and systematic understanding of the role of neutrophils, and provide new insights for treatment in gliomas.
Collapse
Affiliation(s)
- Guanyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinpeng Wang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, China
- Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, China
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, China
| | - Yan Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengfei Wu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, China
- Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, China
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
60
|
Liu L, Yang S, Lin K, Yu X, Meng J, Ma C, Wu Z, Hao Y, Chen N, Ge Q, Gao W, Wang X, Lam EWF, Zhang L, Li F, Jin B, Jin D. Sp1 induced gene TIMP1 is related to immune cell infiltration in glioblastoma. Sci Rep 2022; 12:11181. [PMID: 35778451 PMCID: PMC9249770 DOI: 10.1038/s41598-022-14751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Tumor immune microenvironment exerts a profound effect on the population of infiltrating immune cells. Tissue inhibitor of matrix metalloproteinase 1 (TIMP1) is frequently overexpressed in a variety of cells, particularly during inflammation and tissue injury. However, its function in cancer and immunity remains enigmatic. In this study, we find that TIMP1 is substantially up-regulated during tumorigenesis through analyzing cancer bioinformatics databases, which is further confirmed by IHC tissue microarrays of clinical samples. The TIMP1 level is significantly increased in lymphocytes infiltrating the tumors and correlated with cancer progression, particularly in GBM. Notably, we find that the transcriptional factor Sp1 binds to the promoter of TIMP1 and triggers its expression in GBM. Together, our findings suggest that the Sp1-TIMP1 axis can be a potent biomarker for evaluating immune cell infiltration at the tumor sites and therefore, the malignant progression of GBM.
Collapse
Affiliation(s)
- Lu Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Shuyao Yang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Kefeng Lin
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Xiaoman Yu
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, People's Republic of China
| | - Jiaqi Meng
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Chao Ma
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Zheng Wu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yuchao Hao
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Ning Chen
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Qi Ge
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Wenli Gao
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Xiang Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Eric W-F Lam
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Lin Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Fangcheng Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, People's Republic of China.
| | - Bilian Jin
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| | - Di Jin
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| |
Collapse
|
61
|
Breaching Brain Barriers: B Cell Migration in Multiple Sclerosis. Biomolecules 2022; 12:biom12060800. [PMID: 35740925 PMCID: PMC9221446 DOI: 10.3390/biom12060800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) known for the manifestation of demyelinated lesions throughout the CNS, leading to neurodegeneration. To date, not all pathological mechanisms that drive disease progression are known, but the clinical benefits of anti-CD20 therapies have put B cells in the spotlight of MS research. Besides their pathological effects in the periphery in MS, B cells gain access to the CNS where they can contribute to disease pathogenesis. Specifically, B cells accumulate in perivascular infiltrates in the brain parenchyma and the subarachnoid spaces of the meninges, but are virtually absent from the choroid plexus. Hence, the possible migration of B cells over the blood-brain-, blood-meningeal-, and blood-cerebrospinal fluid (CSF) barriers appears to be a crucial step to understanding B cell-mediated pathology. To gain more insight into the molecular mechanisms that regulate B cell trafficking into the brain, we here provide a comprehensive overview of the different CNS barriers in health and in MS and how they translate into different routes for B cell migration. In addition, we review the mechanisms of action of diverse therapies that deplete peripheral B cells and/or block B cell migration into the CNS. Importantly, this review shows that studying the different routes of how B cells enter the inflamed CNS should be the next step to understanding this disease.
Collapse
|
62
|
Pinto M, Silva V, Barreiro S, Silva R, Remião F, Borges F, Fernandes C. Brain drug delivery and neurodegenerative diseases: Polymeric PLGA-based nanoparticles as a forefront platform. Ageing Res Rev 2022; 79:101658. [PMID: 35660114 DOI: 10.1016/j.arr.2022.101658] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/20/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023]
Abstract
The discovery of effective drugs for the treatment of neurodegenerative disorders (NDs) is a deadlock. Due to their complex etiology and high heterogeneity, progresses in the development of novel NDs therapies have been slow, raising social/economic and medical concerns. Nanotechnology and nanomedicine evolved exponentially in recent years and presented a panoply of tools projected to improve diagnosis and treatment. Drug-loaded nanosystems, particularly nanoparticles (NPs), were successfully used to address numerous drug glitches, such as efficacy, bioavailability and safety. Polymeric nanoparticles (PNPs), mainly based on polylactic-co-glycolic acid (PLGA), have been already validated and approved for the treatment of cancer, neurologic dysfunctions and hormonal-related diseases. Despite promising no PNPs-based therapy for neurodegenerative disorders is available up to date. To stimulate the research in the area the studies performed so far with polylactic-co-glycolic acid (PLGA) nanoparticles as well as the techniques aimed to improve PNPs BBB permeability and drug targeting were revised. Bearing in mind NDs pharmacological therapy landscape huge efforts must be done in finding new therapeutic solutions along with the translation of the most promising results to the clinic, which hopefully will converge in the development of effective drugs in a foreseeable future.
Collapse
|
63
|
Pandian SRK, Vijayakumar KK, Murugesan S, Kunjiappan S. Liposomes: An emerging carrier for targeting Alzheimer's and Parkinson's diseases. Heliyon 2022; 8:e09575. [PMID: 35706935 PMCID: PMC9189891 DOI: 10.1016/j.heliyon.2022.e09575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
The function of the brain can be affected by various factors that include infection, tumor, and stroke. The major disorders reported with altered brain function are Alzheimer's disease (AD), Parkinson's disease (PD), dementia, brain cancer, seizures, mental disorders, and other movement disorders. The major barrier in treating CNS disease is the blood-brain barrier (BBB), which protects the brain from toxic molecules, and the cerebrospinal fluid (CSF) barrier, which separates blood from CSF. Brain endothelial cells and perivascular elements provide an integrated cellular barrier, the BBB, which hamper the invasion of molecules from the blood to the brain. Even though many drugs are available to treat neurological disorders, it fails to reach the desired site with the required concentration. In this purview, liposomes can carry required concentrations of molecules intracellular by diverse routes such as carrier-mediated transport and receptor-mediated transcytosis. Surface modification of liposomes enables them to deliver drugs to various brain cells, including neurons, astrocytes, oligodendrocytes, and microglia. The research studies supported the role of liposomes in delivering drugs across BBB and in reducing the pathogenesis of AD and PD. The liposomes were surface-functionalized with various molecules to reach the cells intricated with the AD or PD pathogenesis. The targeted and sustained delivery of drugs by liposomes is disturbed due to the antibody formation, renal clearance, accelerated blood clearance, and complement activation-related pseudoallergy (CARPA). Hence, this review will focus on the characteristics, surface functionalization, drug loading, and biodistribution of liposomes respective to AD and PD. In addition, the alternative strategies to overcome immunogenicity are discussed briefly.
Collapse
Affiliation(s)
- Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, Tamilnadu, India
| | - Kevin Kumar Vijayakumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu, India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, 333031, Rajasthan, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, Tamilnadu, India
| |
Collapse
|
64
|
Zehravi M, Kabir J, Akter R, Malik S, Ashraf GM, Tagde P, Ramproshad S, Mondal B, Rahman MH, Mohan AG, Cavalu S. A Prospective Viewpoint on Neurological Diseases and Their Biomarkers. Molecules 2022; 27:molecules27113516. [PMID: 35684455 PMCID: PMC9182418 DOI: 10.3390/molecules27113516] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are disorders that affect both the central and peripheral nervous systems. To name a few causes, NDDs can be caused by ischemia, oxidative and endoplasmic reticulum (ER) cell stress, inflammation, abnormal protein deposition in neural tissue, autoimmune-mediated neuron loss, and viral or prion infections. These conditions include Alzheimer's disease (AD), Lewy body dementia (LBD), and Parkinson's disease (PD). The formation of β-sheet-rich aggregates of intra- or extracellular proteins in the CNS hallmarks all neurodegenerative proteinopathies. In systemic lupus erythematosus (SLE), numerous organs, including the central nervous system (CNS), are affected. However, the inflammatory process is linked to several neurodegenerative pathways that are linked to depression because of NDDs. Pro-inflammatory signals activated by aging may increase vulnerability to neuropsychiatric disorders. Viruses may increase macrophages and CCR5+ T cells within the CNS during dementia formation and progression. Unlike medical symptoms, which are just signs of a patient's health as expressed and perceived, biomarkers are reproducible and quantitative. Therefore, this current review will highlight and summarize the neurological disorders and their biomarkers.
Collapse
Affiliation(s)
- Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia
- Correspondence: (M.Z.); (M.H.R.); (S.C.)
| | - Janisa Kabir
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China;
| | - Rokeya Akter
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, Korea;
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India;
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201301, India;
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (S.R.); (B.M.)
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (S.R.); (B.M.)
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, Korea;
- Correspondence: (M.Z.); (M.H.R.); (S.C.)
| | - Aurel George Mohan
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
- Correspondence: (M.Z.); (M.H.R.); (S.C.)
| |
Collapse
|
65
|
Dialogue among Lymphocytes and Microglia in Glioblastoma Microenvironment. Cancers (Basel) 2022; 14:cancers14112632. [PMID: 35681612 PMCID: PMC9179556 DOI: 10.3390/cancers14112632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In this review, we summarize in vitro and in vivo studies related to glioblastoma models and human patients to outline the symbiotic bidirectional interaction between microglia, lymphocytes, and tumor cells that develops during tumor progression. Particularly, we highlight the current experimental therapeutic approaches that aim to shape these interplays, such as adeno-associated virus (AAV) delivery and CAR-T and -NK cell infusion, and to modulate the tumor microenvironment in an anti-tumoral way, thus counteracting glioblastoma growth. Abstract Microglia and lymphocytes are fundamental constituents of the glioblastoma microenvironment. In this review, we summarize the current state-of-the-art knowledge of the microglial role played in promoting the development and aggressive hallmarks of this deadly brain tumor. Particularly, we report in vitro and in vivo studies related to glioblastoma models and human patients to outline the symbiotic bidirectional interaction between microglia, lymphocytes, and tumor cells that develops during tumor progression. Furthermore, we highlight the current experimental therapeutic approaches that aim to shape these interplays, such as adeno-associated virus (AAV) delivery and CAR-T and -NK cell infusion, and to modulate the tumor microenvironment in an anti-tumoral way, thus counteracting glioblastoma growth.
Collapse
|
66
|
Hughes JM, Neese OR, Bieber DD, Lewis KA, Ahmadi LM, Parsons DW, Canfield SG. The Effects of Propofol on a Human in vitro Blood-Brain Barrier Model. Front Cell Neurosci 2022; 16:835649. [PMID: 35634467 PMCID: PMC9132176 DOI: 10.3389/fncel.2022.835649] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundRecently, the safety of repeated and lengthy anesthesia administration has been called into question, a subset of these animal studies demonstrated that anesthetics induced blood-brain barrier (BBB) dysfunction. The BBB is critical in protecting the brain parenchyma from the surrounding micro-vasculature. BBB breakdown and dysfunction has been observed in several neurodegenerative diseases and may contribute to both the initiation and the progression of the disease. In this study we utilize a human induced pluripotent stem cell (iPSC) derived-BBB model, exhibiting near in vivo properties, to evaluate the effects of anesthetics on critical barrier properties.MethodsiPSC-derived brain microvascular endothelial cells (BMECs) expressed near in vivo barrier tightness assessed by trans-endothelial electrical resistance and para-cellular permeability. Efflux transporter activity was determined by substrate transport in the presence of specific inhibitors. Trans-cellular transport was measured utilizing large fluorescently tagged dextran. Tight junction localization in BMECs was evaluated with fluorescent microscopy. The anesthetic, propofol was exposed to BMECs at varying durations and concentrations and BBB properties were monitored post-exposure.ResultsFollowing propofol exposure, BMECs displayed reduced resistance and increased permeability indicative of a leaky barrier. Reduced barrier tightness and the dysregulation of occludin, a tight junction protein, were partly the result of an elevation in matrix metalloproteinase (MMP) levels. Efflux transporter activity and trans-cellular transport were unaffected by propofol exposure. Propofol induced barrier dysfunction was partially restored following matrix metalloproteinase inhibition.ConclusionFor the first time, we have demonstrated that propofol alters BBB integrity utilizing a human in vitro BBB model that displays key in vivo characteristics. A leaky BBB enables otherwise impermeable molecules such as pathogens and toxins the ability to reach vulnerable cell types of the brain parenchyma. A robust human in vitro BBB model will allow for the evaluation of several anesthetics at fluctuating clinical scenarios and to elucidate mechanisms with the goal of ultimately improving anesthesia safety.
Collapse
Affiliation(s)
- Jason M. Hughes
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Terre Haute, IN, United States
| | - Olivia R. Neese
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Terre Haute, IN, United States
- Department of Biology, Indiana State University, Terre Haute, IN, United States
| | - Dylan D. Bieber
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Terre Haute, IN, United States
| | - Kirsten A. Lewis
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Terre Haute, IN, United States
| | - Layla M. Ahmadi
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Terre Haute, IN, United States
| | - Dustin W. Parsons
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Terre Haute, IN, United States
| | - Scott G. Canfield
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Terre Haute, IN, United States
- *Correspondence: Scott G. Canfield,
| |
Collapse
|
67
|
Ouro A, Correa-Paz C, Maqueda E, Custodia A, Aramburu-Núñez M, Romaus-Sanjurjo D, Posado-Fernández A, Candamo-Lourido M, Alonso-Alonso ML, Hervella P, Iglesias-Rey R, Castillo J, Campos F, Sobrino T. Involvement of Ceramide Metabolism in Cerebral Ischemia. Front Mol Biosci 2022; 9:864618. [PMID: 35531465 PMCID: PMC9067562 DOI: 10.3389/fmolb.2022.864618] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke, caused by the interruption of blood flow to the brain and subsequent neuronal death, represents one of the main causes of disability in worldwide. Although reperfusion therapies have shown efficacy in a limited number of patients with acute ischemic stroke, neuroprotective drugs and recovery strategies have been widely assessed, but none of them have been successful in clinical practice. Therefore, the search for new therapeutic approaches is still necessary. Sphingolipids consist of a family of lipidic molecules with both structural and cell signaling functions. Regulation of sphingolipid metabolism is crucial for cell fate and homeostasis in the body. Different works have emphasized the implication of its metabolism in different pathologies, such as diabetes, cancer, neurodegeneration, or atherosclerosis. Other studies have shown its implication in the risk of suffering a stroke and its progression. This review will highlight the implications of sphingolipid metabolism enzymes in acute ischemic stroke.
Collapse
Affiliation(s)
- Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Clara Correa-Paz
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Elena Maqueda
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Antía Custodia
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Marta Aramburu-Núñez
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Adrián Posado-Fernández
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Candamo-Lourido
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Maria Luz Alonso-Alonso
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
68
|
Yuan Z, Wang B, Teng Y, Ho W, Hu B, Boakye-Yiadom KO, Xu X, Zhang XQ. Rational design of engineered H-ferritin nanoparticles with improved siRNA delivery efficacy across an in vitro model of the mouse BBB. NANOSCALE 2022; 14:6449-6464. [PMID: 35416195 DOI: 10.1039/d1nr07880a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gene therapy holds tremendous potential for the treatment of incurable brain diseases including Alzheimer's disease (AD), stroke, glioma, and Parkinson's disease. The main challenge is the lack of effective gene delivery systems traversing the blood-brain barrier (BBB), due to the complex microvessels present in the brain which restrict substances from the circulating blood passing through. Recently, increasing efforts have been made to develop promising gene carriers for brain-related disease therapies. One such development is the self-assembled heavy chain ferritin (HFn) nanoparticles (NPs). HFn NPs have a unique hollow spherical structure that can encapsulate nucleic acid drugs (NADs) and specifically bind to cancer cells and BBB endothelial cells (BBB ECs) via interactions with the transferrin receptor 1 (TfR1) overexpressed on their surfaces, which increases uptake through the BBB. However, the gene-loading capacity of HFn is restricted by its limited interior volume and negatively charged inner surface; therefore, these drawbacks have prompted the demand for strategies to remould the structure of HFn. In this work, we analyzed the three-dimensional (3D) structure of HFn using Chimera software (v 1.14) and developed a class of internally cationic HFn variants (HFn+ NPs) through arginine mutation on the lumenal surface of HFn. These HFn+ NPs presented powerful electrostatic forces in their cavities, and exhibited higher gene encapsulation efficacy than naive HFn. The top-performing candidate, HFn2, effectively delivered siRNA to glioma cells after traversing the BBB and achieved the highest silencing efficacy among HFn+ NPs. Overall, our findings demonstrate that HFn+ NPs obtained by this genetic engineering method provide critical insights into the future development of nucleic acid delivery carriers with BBB-crossing ability.
Collapse
Affiliation(s)
- Ziwei Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Bin Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Yilong Teng
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - William Ho
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Bin Hu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Kofi Oti Boakye-Yiadom
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Xue-Qing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| |
Collapse
|
69
|
Eisemann T, Wechsler-Reya RJ. Coming in from the cold: overcoming the hostile immune microenvironment of medulloblastoma. Genes Dev 2022; 36:514-532. [PMID: 35680424 PMCID: PMC9186392 DOI: 10.1101/gad.349538.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Medulloblastoma is an aggressive brain tumor that occurs predominantly in children. Despite intensive therapy, many patients die of the disease, and novel therapies are desperately needed. Although immunotherapy has shown promise in many cancers, the low mutational burden, limited infiltration of immune effector cells, and immune-suppressive microenvironment of medulloblastoma have led to the assumption that it is unlikely to respond to immunotherapy. However, emerging evidence is challenging this view. Here we review recent preclinical and clinical studies that have identified mechanisms of immune evasion in medulloblastoma, and highlight possible therapeutic interventions that may give new hope to medulloblastoma patients and their families.
Collapse
Affiliation(s)
- Tanja Eisemann
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA.,Department of Pediatrics, University of California at San Diego, La Jolla, California 92161, USA
| |
Collapse
|
70
|
Jadhav S, Yenorkar N, Bondre R, Karemore M, Bali N. Nanomedicines encountering HIV dementia: A guiding star for neurotherapeutics. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
71
|
Choi H, Lee D, Mook-Jung I. Gut Microbiota as a Hidden Player in the Pathogenesis of Alzheimer's Disease. J Alzheimers Dis 2022; 86:1501-1526. [PMID: 35213369 DOI: 10.3233/jad-215235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is accompanied by cognitive impairment and shows representative pathological features, including senile plaques and neurofibrillary tangles in the brain. Recent evidence suggests that several systemic changes outside the brain are associated with AD and may contribute to its pathogenesis. Among the factors that induce systemic changes in AD, the gut microbiota is increasingly drawing attention. Modulation of gut microbiome, along with continuous attempts to remove pathogenic proteins directly from the brain, is a viable strategy to cure AD. Seeking a holistic understanding of the pathways throughout the body that can affect the pathogenesis, rather than regarding AD solely as a brain disease, may be key to successful therapy. In this review, we focus on the role of the gut microbiota in causing systemic manifestations of AD. The review integrates recently emerging concepts and provides potential mechanisms about the involvement of the gut-brain axis in AD, ranging from gut permeability and inflammation to bacterial translocation and cross-seeding.
Collapse
Affiliation(s)
- Hyunjung Choi
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dongjoon Lee
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Inhee Mook-Jung
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
72
|
High-Dose Acetaminophen Alters the Integrity of the Blood-Brain Barrier and Leads to Increased CNS Uptake of Codeine in Rats. Pharmaceutics 2022; 14:pharmaceutics14050949. [PMID: 35631535 PMCID: PMC9144323 DOI: 10.3390/pharmaceutics14050949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
The consumption of acetaminophen (APAP) can induce neurological changes in human subjects; however, effects of APAP on blood-brain barrier (BBB) integrity are unknown. BBB changes by APAP can have profound consequences for brain delivery of co-administered drugs. To study APAP effects, female Sprague-Dawley rats (12-16 weeks old) were administered vehicle (i.e., 100% dimethyl sulfoxide (DMSO), intraperitoneally (i.p.)) or APAP (80 mg/kg or 500 mg/kg in DMSO, i.p.; equivalent to a 900 mg or 5600 mg daily dose for a 70 kg human subject). BBB permeability was measured via in situ brain perfusion using [14C]sucrose and [3H]codeine, an opioid analgesic drug that is co-administered with APAP (i.e., Tylenol #3). Localization and protein expression of tight junction proteins (i.e., claudin-5, occludin, ZO-1) were studied in rat brain microvessels using Western blot analysis and confocal microscopy, respectively. Paracellular [14C]sucrose "leak" and brain [3H]codeine accumulation were significantly enhanced in rats treated with 500 mg/kg APAP only. Additionally, claudin-5 localization and protein expression were altered in brain microvessels isolated from rats administered 500 mg/kg APAP. Our novel and translational data show that BBB integrity is altered following a single high APAP dose, results that are relevant to patients abusing or misusing APAP and/or APAP/opioid combination products.
Collapse
|
73
|
Li Y, Wei JY, Liu H, Wang KJ, Jin SN, Su ZK, Wang HJ, Shi JX, Li B, Shang DS, Fang WG, Qin XX, Zhao WD, Chen YH. An oxygen-adaptive interaction between SNHG12 and occludin maintains blood-brain barrier integrity. Cell Rep 2022; 39:110656. [PMID: 35417709 DOI: 10.1016/j.celrep.2022.110656] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/14/2022] [Accepted: 03/18/2022] [Indexed: 11/03/2022] Open
Abstract
Tight junctions (TJs) of brain microvascular endothelial cells (BMECs) play a pivotal role in maintaining the blood-brain barrier (BBB) integrity; however, precise regulation of TJs stability in response to physiological and pathological stimuli remains elusive. Here, using RNA immunoprecipitation with next-generation sequencing (RIP-seq) and functional characterization, we identify SNHG12, a long non-coding RNA (lncRNA), as being critical for maintaining the BBB integrity by directly interacting with TJ protein occludin. The interaction between SNHG12 and occludin is oxygen adaptive and could block Itch (an E3 ubiquitin ligase)-mediated ubiquitination and degradation of occludin in human BMECs. Genetic ablation of endothelial Snhg12 in mice results in occludin reduction and BBB leakage and significantly aggravates hypoxia-induced BBB disruption. The detrimental effects of hypoxia on BBB could be alleviated by exogenous SNHG12 overexpression in brain endothelium. Together, we identify a direct TJ modulator lncRNA SNHG12 that is critical for the BBB integrity maintenance and oxygen adaption.
Collapse
Affiliation(s)
- Yuan Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Jia-Yi Wei
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Hui Liu
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Kang-Ji Wang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Sheng-Nan Jin
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Zheng-Kang Su
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Hui-Jie Wang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Jun-Xiu Shi
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Bo Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - De-Shu Shang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Wen-Gang Fang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Xiao-Xue Qin
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Wei-Dong Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China.
| | - Yu-Hua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China.
| |
Collapse
|
74
|
Theologou M, Natsis K, Kouskouras K, Chatzinikolaou F, Varoutis P, Skoulios N, Tsitouras V, Tsonidis C. Cerebrospinal Fluid Homeostasis and Hydrodynamics: A Review of Facts and Theories. Eur Neurol 2022; 85:313-325. [PMID: 35405679 DOI: 10.1159/000523709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE According to the classical hypothesis, the cerebrospinal fluid (CSF) is actively secreted inside the brain's ventricular system, predominantly by the choroid plexuses, before flowing unidirectionally in a cranio-caudal orientation toward the arachnoid granulations (AGs), where it is reabsorbed into the dural venous sinuses. This concept has been accepted as a doctrine for more than 100 years and was subjected only to minor modifications. Its inability to provide an adequate explanation to questions arising from the everyday clinical practice, in addition to the ever growing pool of experimental data contradicting it, has led to the identification of its limitations. Literature includes an increasing number of studies suggesting a more complex mechanism than that previously described. This review article summarizes the proposed mechanisms of CSF regulation, referring to the key clinical and experimental developments supporting or defying them. METHODS A non-systematical literature search of the major databases was performed for studies on the mechanisms of CSF homeostasis. Gray literature was additionally assessed employing a hand-search technique. No restrictions were imposed regarding the time, language, or type of publication. CONCLUSION CSF secretion and absorption are expected to take place throughout the entire brain's capillaries network under the regulation of hydrostatic and osmotic gradients. The unidirectional flow is defied, highlighting the possibility of its complete absence. The importance of AGs is brought into question, potentiating the significance of the lymphatic system as the primary site of reabsorption. However, the definition of hydrocephalus and its treatment strategies remain strongly associated with the classical hypothesis.
Collapse
Affiliation(s)
- Marios Theologou
- Second Department of Neurosurgery, Aristotle University of Thessaloniki, General Hospital of Thessaloniki Hippokratio, Thessaloniki, Greece
| | - Konstantinos Natsis
- Department of Anatomy and Surgical Anatomy, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Kouskouras
- Department of Radiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fotios Chatzinikolaou
- Department of Forensic Medicine and Toxicology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Varoutis
- Second Department of Neurosurgery, Aristotle University of Thessaloniki, General Hospital of Thessaloniki Hippokratio, Thessaloniki, Greece
| | - Nikolaos Skoulios
- Second Department of Neurosurgery, Aristotle University of Thessaloniki, General Hospital of Thessaloniki Hippokratio, Thessaloniki, Greece
| | - Vassilios Tsitouras
- Second Department of Neurosurgery, Aristotle University of Thessaloniki, General Hospital of Thessaloniki Hippokratio, Thessaloniki, Greece
| | - Christos Tsonidis
- Second Department of Neurosurgery, Aristotle University of Thessaloniki, General Hospital of Thessaloniki Hippokratio, Thessaloniki, Greece
| |
Collapse
|
75
|
Starnes HM, Rock KD, Jackson TW, Belcher SM. A Critical Review and Meta-Analysis of Impacts of Per- and Polyfluorinated Substances on the Brain and Behavior. FRONTIERS IN TOXICOLOGY 2022; 4:881584. [PMID: 35480070 PMCID: PMC9035516 DOI: 10.3389/ftox.2022.881584] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of structurally diverse synthetic organic chemicals that are chemically stable, resistant to degradation, and persistent in terrestrial and aquatic environments. Widespread use of PFAS in industrial processing and manufacturing over the last 70 years has led to global contamination of built and natural environments. The brain is a lipid rich and highly vascularized organ composed of long-lived neurons and glial cells that are especially vulnerable to the impacts of persistent and lipophilic toxicants. Generally, PFAS partition to protein-rich tissues of the body, primarily the liver and blood, but are also detected in the brains of humans, wildlife, and laboratory animals. Here we review factors impacting the absorption, distribution, and accumulation of PFAS in the brain, and currently available evidence for neurotoxic impacts defined by disruption of neurochemical, neurophysiological, and behavioral endpoints. Emphasis is placed on the neurotoxic potential of exposures during critical periods of development and in sensitive populations, and factors that may exacerbate neurotoxicity of PFAS. While limitations and inconsistencies across studies exist, the available body of evidence suggests that the neurobehavioral impacts of long-chain PFAS exposures during development are more pronounced than impacts resulting from exposure during adulthood. There is a paucity of experimental studies evaluating neurobehavioral and molecular mechanisms of short-chain PFAS, and even greater data gaps in the analysis of neurotoxicity for PFAS outside of the perfluoroalkyl acids. Whereas most experimental studies were focused on acute and subchronic impacts resulting from high dose exposures to a single PFAS congener, more realistic exposures for humans and wildlife are mixtures exposures that are relatively chronic and low dose in nature. Our evaluation of the available human epidemiological, experimental, and wildlife data also indicates heightened accumulation of perfluoroalkyl acids in the brain after environmental exposure, in comparison to the experimental studies. These findings highlight the need for additional experimental analysis of neurodevelopmental impacts of environmentally relevant concentrations and complex mixtures of PFAS.
Collapse
|
76
|
Ford JN, Zhang Q, Sweeney EM, Merkler AE, de Leon MJ, Gupta A, Nguyen TD, Ivanidze J. Quantitative Water Permeability Mapping of Blood-Brain-Barrier Dysfunction in Aging. Front Aging Neurosci 2022; 14:867452. [PMID: 35462701 PMCID: PMC9024318 DOI: 10.3389/fnagi.2022.867452] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Blood-brain-barrier (BBB) dysfunction is a hallmark of aging and aging-related disorders, including cerebral small vessel disease and Alzheimer's disease. An emerging biomarker of BBB dysfunction is BBB water exchange rate (kW) as measured by diffusion-weighted arterial spin labeling (DW-ASL) MRI. We developed an improved DW-ASL sequence for Quantitative Permeability Mapping and evaluated whole brain and region-specific kW in a cohort of 30 adults without dementia across the age spectrum. In this cross-sectional study, we found higher kW values in the cerebral cortex (mean = 81.51 min-1, SD = 15.54) compared to cerebral white matter (mean = 75.19 min-1, SD = 13.85) (p < 0.0001). We found a similar relationship for cerebral blood flow (CBF), concordant with previously published studies. Multiple linear regression analysis with kW as an outcome showed that age was statistically significant in the cerebral cortex (p = 0.013), cerebral white matter (p = 0.033), hippocampi (p = 0.043), orbitofrontal cortices (p = 0.042), and precunei cortices (p = 0.009), after adjusting for sex and number of vascular risk factors. With CBF as an outcome, age was statistically significant only in the cerebral cortex (p = 0.026) and precunei cortices (p = 0.020). We further found moderate negative correlations between white matter hyperintensity (WMH) kW and WMH volume (r = -0.51, p = 0.02), and normal-appearing white matter (NAWM) and WMH volume (r = -0.44, p = 0.05). This work illuminates the relationship between BBB water exchange and aging and may serve as the basis for BBB-targeted therapies for aging-related brain disorders.
Collapse
Affiliation(s)
- Jeremy N. Ford
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States,Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Qihao Zhang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Elizabeth M. Sweeney
- Department of Biostatistics, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Mony J. de Leon
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Jana Ivanidze
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States,*Correspondence: Jana Ivanidze,
| |
Collapse
|
77
|
Younis A, Hardowar L, Barker S, Hulse RP. The consequence of endothelial remodelling on the blood spinal cord barrier and nociception. Curr Res Physiol 2022; 5:184-192. [PMID: 35434652 PMCID: PMC9010889 DOI: 10.1016/j.crphys.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/09/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022] Open
Abstract
Nociception is a fundamental acute protective mechanism that prevents harm to an organism. Understanding the integral processes that control nociceptive processing are fundamental to our appreciation of which cellular and molecular features underlie this process. There is an extensive understanding of how sensory neurons interpret differing sensory modalities and intensities. However, it is widely appreciated that the sensory neurons do not act alone. These work in harmony with inflammatory and vascular systems to modulate pain perception. The spinal cord has an extensive interaction with the capillary network in the form of a blood spinal cord barrier to ensure homeostatic control of the spinal cord neuron milieu. However, there is an extensive appreciation that disturbances in the blood spinal cord barrier contribute to the onset of chronic pain. Enhanced vascular permeability and impaired blood perfusion have both been highlighted as contributors to chronic pain manifestation. Here, we discuss the evidence that demonstrates alterations in the blood spinal cord barrier influences nociceptive processing and perception of pain.
Collapse
Affiliation(s)
- Awais Younis
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Lydia Hardowar
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Sarah Barker
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Richard Philip Hulse
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
78
|
Li M, Hou X, Sai K, Wu L, Chen J, Zhang B, Wang N, Wu L, Zheng H, Zhang J, Mou Y, Chen L. Immune suppressive microenvironment in brain metastatic non-small cell lung cancer: comprehensive immune microenvironment profiling of brain metastases versus paired primary lung tumors (GASTO 1060). Oncoimmunology 2022; 11:2059874. [PMID: 35402080 PMCID: PMC8986255 DOI: 10.1080/2162402x.2022.2059874] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Lung cancer is one of the most common causes of brain metastases and is always associated with poor prognosis. We investigated the immunophenotypes of primary lung tumors and paired brain metastases, as well as immunophenotypes in the synchronous group (patients with brain metastases upon initial diagnosis) and metachronous group (patients developed brain metastases during the course of their disease). RNA sequencing of eighty-six samples from primary lung tumors and paired brain metastases of 43 patients was conducted to analyze the tumor immune microenvironment. Our data revealed that matched brain metastases compared with primary lung tumors exhibited reduced tumor infiltrating lymphocytes (TILs), a higher fraction of neutrophils infiltration, decreased scores of immune-related signatures, and a lower proportion of tumor microenvironment immune type I (high PD-L1/high CD8A) tumors. Additionally, we found a poor correlation of PD-L1 expression between paired brain metastases and primary lung tumors. In addition, gene set enrichment analysis (GSEA) showed that some gene sets associated with the immune response were enriched in the metachronous group, while other gene sets associated with differentiation and metastasis were enriched in the synchronous group in the primary lung tumors. Moreover, the tumor immune microenvironment between paired brain metastases and primary lung tumors displayed more differences in the metachronous group than in the synchronous group. Our work illustrates that brain metastatic tumors are more immunosuppressed than primary lung tumors, which may help guide immunotherapeutic strategies for NSCLC brain metastases.
Collapse
Affiliation(s)
- Meichen Li
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Xue Hou
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Ke Sai
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Lihong Wu
- Genecast Biotechnology Co., Ltd, Wuxi, P.R. China
| | - Jing Chen
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Baishen Zhang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Na Wang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Lijia Wu
- Genecast Biotechnology Co., Ltd, Wuxi, P.R. China
| | - Hongbo Zheng
- Genecast Biotechnology Co., Ltd, Wuxi, P.R. China
| | - Jiao Zhang
- Genecast Biotechnology Co., Ltd, Wuxi, P.R. China
| | - Yonggao Mou
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Likun Chen
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| |
Collapse
|
79
|
Yang G, Xing L, Sun X. Navigate Towards the Immunotherapy Era: Value of Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer Patients With Brain Metastases. Front Immunol 2022; 13:852811. [PMID: 35422812 PMCID: PMC9001915 DOI: 10.3389/fimmu.2022.852811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
Brain metastases (BMs) in non-small-cell lung cancer (NSCLC) patients are associated with significant morbidity and poor prognosis. Immune checkpoint inhibitors (ICIs) have resulted in a paradigm shift in the management of advanced NSCLC. However, the value of ICIs in NSCLC patients with BMs remains unclear because patients with BMs are routinely excluded in numerous prospective trials on ICIs. Here, starting from the mechanisms of ICIs for BMs, we will reveal the value of ICIs by reviewing the efficacy and adverse effects of ICIs monotherapy as well as promising combination strategies, such as combinations with chemotherapy, radiotherapy, and anti-angiogenic drugs, etc. In addition, the methods of patient selection and response assessment will be summarized to assist clinical practice and further studies.
Collapse
Affiliation(s)
- Guanqun Yang
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ligang Xing
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaorong Sun
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
80
|
Martinelli I, Tayebati SK, Tomassoni D, Nittari G, Roy P, Amenta F. Brain and Retinal Organoids for Disease Modeling: The Importance of In Vitro Blood–Brain and Retinal Barriers Studies. Cells 2022; 11:cells11071120. [PMID: 35406683 PMCID: PMC8997725 DOI: 10.3390/cells11071120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Brain and retinal organoids are functional and dynamic in vitro three-dimensional (3D) structures derived from pluripotent stem cells that spontaneously organize themselves to their in vivo counterparts. Here, we review the main literature data of how these organoids have been developed through different protocols and how they have been technically analyzed. Moreover, this paper reviews recent advances in using organoids to model neurological and retinal diseases, considering their potential for translational applications but also pointing out their limitations. Since the blood–brain barrier (BBB) and blood–retinal barrier (BRB) are understood to play a fundamental role respectively in brain and eye functions, both in health and in disease, we provide an overview of the progress in the development techniques of in vitro models as reliable and predictive screening tools for BBB and BRB-penetrating compounds. Furthermore, we propose potential future directions for brain and retinal organoids, in which dedicated biobanks will represent a novel tool for neuroscience and ophthalmology research.
Collapse
Affiliation(s)
- Ilenia Martinelli
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
- Correspondence:
| | - Seyed Khosrow Tayebati
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (P.R.)
| | - Giulio Nittari
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
| | - Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (P.R.)
| | - Francesco Amenta
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
| |
Collapse
|
81
|
An Y, Qi Y, Li Y, Li Z, Yang C, Jia D. Activation of the sigma-1 receptor attenuates blood-brain barrier disruption by inhibiting amyloid deposition in Alzheimer's disease mice. Neurosci Lett 2022; 774:136528. [PMID: 35157973 DOI: 10.1016/j.neulet.2022.136528] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
Abstract
The sigma-1 receptor is an important target for drug development in several neuropsychiatric diseases, including Alzheimer's disease (AD). Accumulating evidence has shown that the integrity and functional activity of the blood-brain barrier (BBB) in AD are impaired, which is closely related to the movement of amyloid beta (Aβ) across the BBB and the formation of Aβ plaques. In this study, we investigated the effects of sigma-1 receptor activation on BBB disruption and Aβ levels in AD mice. We found that PRE-084, a sigma-1 receptor agonist, attenuated learning and memory deficits in Aβ-injected mice, significantly increased levels of low-density lipoprotein receptor-related protein 1 (LRP-1), and lowered the Aβ level synergistically in the brain. Moreover, the upregulation of vascular endothelial growth factor (VEGF) levels through the sigma-1 receptor may be involved in the reduction of the BBB permeability by PRE-084. The identification of this previously unexplored role of the sigma-1 receptor in alleviating BBB disruption via upregulating the levels of VEGF and LRP-1 in AD suggests that reversing BBB dysfunction through sigma-1 receptor activation may be a promising treatment for AD.
Collapse
Affiliation(s)
- Yang An
- College of Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang 110034, PR China
| | - Yue Qi
- Department of Pharmacology, The Second Hospital Affiliated to Liaoning Chinese Medical University, Shenyang 110034, PR China
| | - Ying Li
- College of Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang 110034, PR China
| | - Zhao Li
- Department of Pharmacology, Shenyang Medical College, Shenyang 110034, PR China
| | - Caiyu Yang
- College of Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang 110034, PR China
| | - Dong Jia
- College of Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang 110034, PR China.
| |
Collapse
|
82
|
Cheng W, Su YL, Hsu HH, Lin YH, Chu LA, Huang WC, Lu YJ, Chiang CS, Hu SH. Rabies Virus Glycoprotein-Mediated Transportation and T Cell Infiltration to Brain Tumor by Magnetoelectric Gold Yarnballs. ACS NANO 2022; 16:4014-4027. [PMID: 35225594 DOI: 10.1021/acsnano.1c09601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
T lymphocyte infiltration with immunotherapy potentially suppresses most devastating brain tumors. However, local immune privilege and tumor heterogeneity usually limit the penetration of immune cells and therapeutic agents into brain tumors, leading to tumor recurrence after treatment. Here, a rabies virus glycoprotein (RVG)-camouflaged gold yarnball (RVG@GY) that can boost the targeting efficiency at a brain tumor via dual hierarchy- and RVG-mediated spinal cord transportation, facilitating the decrease of tumor heterogeneity for T cell infiltration, is developed. Upon magnetoelectric irradiation, the electron current generated on the GYs activates the electrolytic penetration of palbociclib-loaded dendrimer (Den[Pb]) deep into tumors. In addition, the high-density GYs at brain tumors also induces the disruption of cell-cell interactions and T cell infiltration. The integration of the electrolytic effects and T cell infiltration promoted by drug-loaded RVG@GYs deep in the brain tumor elicits sufficient T cell numbers and effectively prolongs the survival rate of mice with orthotopic brain tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei-Chen Huang
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | | | | |
Collapse
|
83
|
Devasani K, Yao Y. Expression and functions of adenylyl cyclases in the CNS. Fluids Barriers CNS 2022; 19:23. [PMID: 35307032 PMCID: PMC8935726 DOI: 10.1186/s12987-022-00322-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 12/27/2022] Open
Abstract
Adenylyl cyclases (ADCYs), by generating second messenger cAMP, play important roles in various cellular processes. Their expression, regulation and functions in the CNS, however, remain largely unknown. In this review, we first introduce the classification and structure of ADCYs, followed by a discussion of the regulation of mammalian ADCYs (ADCY1-10). Next, the expression and function of each mammalian ADCY isoform are summarized in a region/cell-specific manner. Furthermore, the effects of GPCR-ADCY signaling on blood-brain barrier (BBB) integrity are reviewed. Last, current challenges and future directions are discussed. We aim to provide a succinct review on ADCYs to foster new research in the future.
Collapse
Affiliation(s)
- Karan Devasani
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, 33612, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, 33612, USA.
| |
Collapse
|
84
|
Zheng G, Han T, Hu X, Yang Z, Wang J, Wen Z, Li H, Wang H. NCAPG Promotes Tumor Progression and Modulates Immune Cell Infiltration in Glioma. Front Oncol 2022; 12:770628. [PMID: 35372056 PMCID: PMC8964493 DOI: 10.3389/fonc.2022.770628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Glioma is one of the most deadly types of brain cancer. As it is highly invasive, the prognosis for glioma patients remains dismal, with median survival rarely exceeding 16 months. Thus, developing a new prognostic biomarker for glioma and investigating its molecular mechanisms is necessary for the development of an efficient treatment strategy. In this study, we analyzed a cohort of 1,131 glioma patients using RNA-seq data from The Cancer Genome Atlas (TCGA project) and Gene Expression Omnibus (GSE4290 and GSE16011 datasets), and validated the results using the RNA-seq data of 1,018 gliomas from the Chinese Glioma Genome Atlas (CGGA project). We used the R language as the main tool for statistical analysis and data visualization. We found that NCAPG, a mitosis-associated chromosomal condensing protein, is highly expressed in glioma tissues. Furthermore, the expression of NCAPG increased significantly with the increase in tumor grade, and high NCAPG expression was found to be a predictor of poor overall survival in glioma patients (P < 0.001). This result shows that NCAPG expression could be an independent prognostic factor. Importantly, when the expression of NCAPG was knocked down, the CCK-8 assay revealed that the proliferation of glioma cells (LN-229 and T98G cell lines) decreased significantly compared with the control group. In addition, the healing rates of these cells were significantly lower in the si-NCAPG group than in the control group (P < 0.001). We then used the CIBERSORT algorithm to analyze the expression levels of 22 subpopulations of immune cells and found that NCAPG was significantly negatively correlated with natural killer cell activation. In addition, it was positively correlated with MHC-I molecules and ADAM17. Our study is first in comprehensively describing the high expression of NCAPG in glioma. It also shows that NCAPG can function as an independent prognostic predictor of glioma, and that targeting NCAPG can be a new strategy for the treatment of glioma patients.
Collapse
Affiliation(s)
- Guangrong Zheng
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Tao Han
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaomu Hu
- Department of Pathology, Huashan Hospital, FuDan University, Shanghai, China
| | - Zhou Yang
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jin Wang
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Zhenyi Wen
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Hengyu Li
- Department of Breast and Thyroid Surgery, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Hongjin Wang
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
85
|
Schaefer A, Journaux M, Mourabit HE, Mouri S, Wendum D, Lasnier E, Couraud PO, Housset C, Thabut D, Rudler M, Weiss N. A systemic mechanism of increased transendothelial migration of leukocytes through the blood-brain barrier in hepatic encephalopathy. Clin Res Hepatol Gastroenterol 2022; 46:101801. [PMID: 34517149 DOI: 10.1016/j.clinre.2021.101801] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/06/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hepatic encephalopathy (HE) is a frequent neurological complication of cirrhosis. Evidence suggests a synergic pathophysiological implication of hyperammonemia and systemic inflammation. In addition, the blood-brain barrier (BBB) permeability can be impaired in cirrhotic patients, notably in those displaying HE. We hypothesized that systemic inflammation could trigger leukocytes transendothelial migration (TEM) through the BBB in cirrhotic patients and especially those with HE. METHODS We studied the effects of patients' plasma on the TEM of the leukocyte U937 cell line in vitro, using a validated BBB model (hCMEC/D3 cell line). We compared TEM of U937 leukocytes across hCMEC/D3 monolayer incubated with the plasma of i) patients with cirrhosis without HE, ii) patients with cirrhosis and HE, iii) healthy controls. RESULTS We show that the plasma of cirrhotic patients with HE enhances TEM of U937 leukocytes across hCMEC/D3 BBB model. We found a correlation between U937 TEM on the one hand, the West-Haven score and ammonemia on the other one. A trend towards a correlation between U937 TEM and PS-100Beta in plasma, a marker of BBB solute's permeability increase, was also found. CONCLUSION These findings suggest that circulating factors could increase leukocytes TEM in cirrhotic patients and contribute to the increased BBB permeability that has been described in cirrhotic patients with HE.
Collapse
Affiliation(s)
- Augustin Schaefer
- Sorbonne Université, INSERM, Centre de recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), F-75012 Paris, France
| | - Martin Journaux
- Sorbonne Université, INSERM, Centre de recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), F-75012 Paris, France
| | - Haquima El Mourabit
- Sorbonne Université, INSERM, Centre de recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), F-75012 Paris, France
| | - Sarah Mouri
- Sorbonne Université, INSERM, Centre de recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), F-75012 Paris, France; AP-HP.Sorbonne Université, Hôpital Pitié-Salpêtrière, Service d'Hépato-Gastroentérologie, Unité de Soins Intensifs d'Hépatologie, Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, F-75013 Paris, France
| | - Dominique Wendum
- Sorbonne Université, INSERM, Centre de recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), F-75012 Paris, France; AP-HP.Sorbonne Université, Hôpital Saint-Antoine, Service d'Anatomo-Pathologie, Service d'Hépatologie, Centre de Référence Maladie Rare (CRMR) Maladies Inflammatoires des Voies Biliaires-Hépatites Auto-immunes (MIVB-H), Service de Biochimie, F-75012 Paris, France
| | - Elisabeth Lasnier
- AP-HP.Sorbonne Université, Hôpital Saint-Antoine, Service d'Anatomo-Pathologie, Service d'Hépatologie, Centre de Référence Maladie Rare (CRMR) Maladies Inflammatoires des Voies Biliaires-Hépatites Auto-immunes (MIVB-H), Service de Biochimie, F-75012 Paris, France
| | | | - Chantal Housset
- Sorbonne Université, INSERM, Centre de recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), F-75012 Paris, France; AP-HP.Sorbonne Université, Hôpital Saint-Antoine, Service d'Anatomo-Pathologie, Service d'Hépatologie, Centre de Référence Maladie Rare (CRMR) Maladies Inflammatoires des Voies Biliaires-Hépatites Auto-immunes (MIVB-H), Service de Biochimie, F-75012 Paris, France
| | - Dominique Thabut
- Sorbonne Université, INSERM, Centre de recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), F-75012 Paris, France; AP-HP.Sorbonne Université, Hôpital Pitié-Salpêtrière, Service d'Hépato-Gastroentérologie, Unité de Soins Intensifs d'Hépatologie, Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, F-75013 Paris, France
| | - Marika Rudler
- Sorbonne Université, INSERM, Centre de recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), F-75012 Paris, France; AP-HP.Sorbonne Université, Hôpital Pitié-Salpêtrière, Service d'Hépato-Gastroentérologie, Unité de Soins Intensifs d'Hépatologie, Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, F-75013 Paris, France
| | - Nicolas Weiss
- Sorbonne Université, INSERM, Centre de recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), F-75012 Paris, France; AP-HP.Sorbonne Université, Hôpital Pitié-Salpêtrière, Département de Neurologie, Unité de Médecine Intensive Réanimation à Orientation Neurologique, Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, Groupe de Recherche Clinique en REanimation et Soins intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE), F-75013 Paris, France.
| |
Collapse
|
86
|
Varanoske AN, McClung HL, Sepowitz JJ, Halagarda CJ, Farina EK, Berryman CE, Lieberman HR, McClung JP, Pasiakos SM, Philip Karl J. Stress and the gut-brain axis: Cognitive performance, mood state, and biomarkers of blood-brain barrier and intestinal permeability following severe physical and psychological stress. Brain Behav Immun 2022; 101:383-393. [PMID: 35131441 DOI: 10.1016/j.bbi.2022.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/13/2022] [Accepted: 02/01/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Physical and psychological stress alter gut-brain axis activity, potentially causing intestinal barrier dysfunction that may, in turn, induce cognitive and mood impairments through exacerbated inflammation and blood brain barrier (BBB) permeability. These interactions are commonly studied in animals or artificial laboratory environments. However, military survival training provides an alternative and unique human model for studying the impacts of severe physical and psychological stress on the gut-brain axis in a realistic environment. PURPOSE To determine changes in intestinal barrier and BBB permeability during stressful military survival training and identify relationships between those changes and markers of stress, inflammation, cognitive performance, and mood state. MATERIALS AND METHODS Seventy-one male U.S. Marines (25.2 ± 2.6 years) were studied during Survival, Evasion, Resistance, and Escape (SERE) training. Measurements were conducted on day 2 of the 10-day classroom phase of training (PRE), following completion of the 7.5-day field-based simulation phase of the training (POST), and following a 27-day recovery period (REC). Fat-free mass (FFM) was measured to assess the overall physiologic impact of the training. Biomarkers of intestinal permeability (liposaccharide-binding protein [LBP]) and BBB permeability (S100 calcium-binding protein B [S100B]), stress (cortisol, dehydroepiandrosterone sulfate [DHEA-S] epinephrine, norepinephrine) and inflammation (interleukin-6 [IL-6], high-sensitivity C-reactive protein [hsCRP]) were measured in blood. Cognitive performance was assessed by psychomotor vigilance (PVT) and grammatical reasoning (GR) tests, and mood state by the Profile of Mood States (total mood disturbance; TMD), General Anxiety Disorder-7 (GAD-7), and Patient Health (PHQ-9) questionnaires. RESULTS FFM, psychomotor vigilance, and LBP decreased from PRE to POST, while TMD, anxiety, and depression scores, and S100B, DHEA-S, IL-6, norepinephrine, and epinephrine concentrations all increased (all p ≤ 0.01). Increases in DHEA-S were associated with decreases in body mass (p = 0.015). Decreases in FFM were associated with decreases in LBP concentrations (p = 0.015), and both decreases in FFM and LBP were associated with increases in TMD and depression scores (all p < 0.05) but not with changes in cognitive performance. Conversely, increases in S100B concentrations were associated with decreases in psychomotor vigilance (p < 0.05) but not with changes in mood state or LBP concentrations. CONCLUSIONS Evidence of increased intestinal permeability was not observed in this military survival training-based model of severe physical and psychological stress. However, increased BBB permeability was associated with stress and cognitive decline, while FFM loss was associated with mood disturbance, suggesting that distinct mechanisms may contribute to decrements in cognitive performance and mood state during the severe physical and psychological stress experienced during military survival training.
Collapse
Affiliation(s)
- Alyssa N Varanoske
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA; Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - Holly L McClung
- Biophysics and Biomedical Modeling Division, USARIEM, Natick, MA, USA
| | - John J Sepowitz
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA
| | | | - Emily K Farina
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA
| | - Claire E Berryman
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA; Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA; Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Harris R Lieberman
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA
| | - James P McClung
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA
| | | | - J Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, MA, USA.
| |
Collapse
|
87
|
Gong S, Wu C, Köhler F, Meixensberger J, Schopow N, Kallendrusch S. Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase Family: Novel Prognostic Biomarkers and Tumor Microenvironment Regulators for Lower-Grade Glioma. Front Cell Neurosci 2022; 16:838548. [PMID: 35250490 PMCID: PMC8894330 DOI: 10.3389/fncel.2022.838548] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Lower-grade glioma (LGG) is a group of tumors arising from the cells of the central nervous system. Although various therapy interventions are used, the prognosis remains different. Novel biomarkers are needed for the prognosis of disease and novel therapeutic strategies in LGG. The procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD) family contains three members and is related to multiple cancers, yet it was not investigated in LGG. Data from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) cohorts were used to analyze the role of PLOD in LGG. As the PLOD family is involved in processes, such as tumor formation and cancer metastasis, we focused on its relationship to the tumor microenvironment (TME) in LGG. A high expression of the PLOD family relates to poor prognosis and high infiltration of immune cells within the TME. The expression level of the PLOD family might become a novel biomarker for prognosis and is a potential target for individual treatment decisions in LGG.
Collapse
Affiliation(s)
- Siming Gong
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Changwu Wu
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
- *Correspondence: Changwu Wu,
| | | | | | - Nikolas Schopow
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
- Department of Orthopedics, Trauma and Plastic Surgery, Sarcoma Center, University Hospital Leipzig, Leipzig, Germany
| | - Sonja Kallendrusch
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
- Department of Medicine, Health and Medical University Potsdam, Potsdam, Germany
| |
Collapse
|
88
|
Hüls A, Robins C, Conneely KN, Edgar R, De Jager PL, Bennett DA, Wingo AP, Epstein MP, Wingo TS. Brain DNA Methylation Patterns in CLDN5 Associated With Cognitive Decline. Biol Psychiatry 2022; 91:389-398. [PMID: 33838873 PMCID: PMC8329105 DOI: 10.1016/j.biopsych.2021.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/06/2021] [Accepted: 01/27/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cognitive trajectory varies widely and can distinguish people who develop dementia from people who remain cognitively normal. Variation in cognitive trajectory is only partially explained by traditional neuropathologies. We sought to identify novel genes associated with cognitive trajectory using DNA methylation profiles from human postmortem brain. METHODS We performed a brain epigenome-wide association study of cognitive trajectory in 636 participants from the ROS (Religious Orders Study) and MAP (Rush Memory and Aging Project) using DNA methylation profiles of the dorsolateral prefrontal cortex. To maximize our power to detect epigenetic associations, we used the recently developed Gene Association with Multiple Traits test to analyze the 5 measured cognitive domains simultaneously. RESULTS We found an epigenome-wide association for differential methylation of sites in the CLDN5 locus and cognitive trajectory (p = 9.96 × 10-7) that was robust to adjustment for cell type proportions (p = 8.52 × 10-7). This association was primarily driven by association with declines in episodic (p = 4.65 × 10-6) and working (p = 2.54 × 10-7) memory. This association between methylation in CLDN5 and cognitive decline was significant even in participants with no or little signs of amyloid-β and neurofibrillary tangle pathology. CONCLUSIONS Differential methylation of CLDN5, a gene that encodes an important protein of the blood-brain barrier, is associated with cognitive trajectory beyond traditional Alzheimer's disease pathologies. The association between CLDN5 methylation and cognitive trajectory in people with low pathology suggests an early role for CLDN5 and blood-brain barrier dysfunction in cognitive decline and Alzheimer's disease.
Collapse
Affiliation(s)
- Anke Hüls
- Department of Human Genetics, Emory University, Atlanta, Georgia; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Chloe Robins
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Karen N Conneely
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Rachel Edgar
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, New York
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Aliza P Wingo
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia; Division of Mental Health, Atlanta VA Medical Center, Decatur, Georgia
| | | | - Thomas S Wingo
- Department of Human Genetics, Emory University, Atlanta, Georgia; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
89
|
Quantifying Vascular Remodeling in the Mouse Spinal Cord. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2441:191-200. [PMID: 35099738 DOI: 10.1007/978-1-0716-2059-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The spinal cord, a compartment of the central nervous system, is made up of a number of architecturally distinct neural centers that influence an array of neurophysiological systems. The primary role of the spinal cord is the modulation of sensory and motor function by acting as a relay station between the periphery and the brain. Inherently these are considered as neural networks, however the functional dynamics of these tissues consist of a heterogenic population of cell types, all working in harmony to maintain physiological function. Part of this cellular diversity comprises of the vascular network that delivers essential nutrients and oxygen to the spinal cord tissue, whilst also protecting it from potentially tissue damaging substances such as foreign entities including toxic pharmacological agents or pathogens. The viability of the spinal cord is dependent upon the harmonious balance between opposing angiogenic processes; vascular remodeling and vascular regression, tipping the balance to either side contributes to neurodegeneration. Exploring vascular remodeling in the central nervous system requires consideration of the anatomical landscape of the spinal cord and the dynamic nature of the microvasculature. Utilizing immunofluorescent staining and 3D image rendering analysis of the endothelium and mural cell population allows for investigation of cellular as well as molecular mediation of vascular remodeling in the spinal cord. This method can be utilized in a range of rodent models (utilizing pharmacological, disease models, transgenic and/or viral approaches) offering extensive appreciation of the blood-spinal cord barrier.
Collapse
|
90
|
Solis-Leal A, Siddiqui S, Wu F, Mohan M, Hu W, Doyle-Meyers LA, Dufour JP, Ling B. Neuroinflammatory Profiling in SIV-Infected Chinese-Origin Rhesus Macaques on Antiretroviral Therapy. Viruses 2022; 14:139. [PMID: 35062343 PMCID: PMC8781366 DOI: 10.3390/v14010139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
The central nervous system (CNS) HIV reservoir is an obstacle to achieving an HIV cure. The basal ganglia harbor a higher frequency of SIV than other brain regions in the SIV-infected rhesus macaques of Chinese-origin (chRMs) even on suppressive combination antiretroviral therapy (ART). Since residual HIV/SIV reservoir is associated with inflammation, we characterized the neuroinflammation by gene expression and systemic levels of inflammatory molecules in healthy controls and SIV-infected chRMs with or without ART. CCL2, IL-6, and IFN-γ were significantly reduced in the cerebrospinal fluid (CSF) of animals receiving ART. Moreover, there was a correlation between levels of CCL2 in plasma and CSF, suggesting the potential use of plasma CCL2 as a neuroinflammation biomarker. With higher SIV frequency, the basal ganglia of untreated SIV-infected chRMs showed an upregulation of secreted phosphoprotein 1 (SPP1), which could be an indicator of ongoing neuroinflammation. While ART greatly reduced neuroinflammation in general, proinflammatory genes, such as IL-9, were still significantly upregulated. These results expand our understanding of neuroinflammation and signaling in SIV-infected chRMs on ART, an excellent model to study HIV/SIV persistence in the CNS.
Collapse
Affiliation(s)
- Antonio Solis-Leal
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W Military Dr., San Antonio, TX 78227, USA; (A.S.-L.); (F.W.); (M.M.)
| | - Summer Siddiqui
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (S.S.); (L.A.D.-M.); (J.P.D.)
| | - Fei Wu
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W Military Dr., San Antonio, TX 78227, USA; (A.S.-L.); (F.W.); (M.M.)
- Tulane Center for Aging, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Mahesh Mohan
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W Military Dr., San Antonio, TX 78227, USA; (A.S.-L.); (F.W.); (M.M.)
| | - Wenhui Hu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19122, USA;
| | - Lara A. Doyle-Meyers
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (S.S.); (L.A.D.-M.); (J.P.D.)
| | - Jason P. Dufour
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (S.S.); (L.A.D.-M.); (J.P.D.)
| | - Binhua Ling
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W Military Dr., San Antonio, TX 78227, USA; (A.S.-L.); (F.W.); (M.M.)
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (S.S.); (L.A.D.-M.); (J.P.D.)
- Tulane Center for Aging, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
91
|
Kelishadi MR, Naeini AA, Khorvash F, Askari G, Heidari Z. The beneficial effect of Alpha-lipoic acid supplementation as a potential adjunct treatment in episodic migraines. Sci Rep 2022; 12:271. [PMID: 34997178 PMCID: PMC8742085 DOI: 10.1038/s41598-021-04397-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 12/20/2021] [Indexed: 01/10/2023] Open
Abstract
The current study was performed to evaluate the effects of alpha-lipoic acid (ALA) supplementation on lactate, nitric oxide (NO), vascular cell adhesion molecule-1 (VCAM-1) levels, and clinical symptoms in women with episodic migraines. Considering the inclusion and exclusion criteria, ninety-two women with episodic migraines participated in this randomized, double-blind, placebo-controlled, parallel-design trial. The participants were randomly assigned to receive either 300 mg/day ALA or placebo, twice per day for 12 weeks. The primary outcomes included headache severity, headache frequency per month, and duration of attacks and the secondary outcomes included lactate (a marker of mitochondrial function), NO, and VCAM-1 serum levels were measured at baseline and the end of the intervention. At the end of the study, there was a significant decrease in lactate serum levels (- 6.45 ± 0.82 mg/dl vs - 2.27 ± 1.17 mg/dl; P = 0.039) and VCAM-1 (- 2.02 ± 0.30 ng/ml vs - 1.21 ± 0.36 ng/ml; P = 0.025) in the ALA as compared to the placebo group. In addition, the severity (P < 0.001), frequency (P = 0.001), headache impact test (HIT-6) (P < 0.001), headache dairy results (HDR) (P = 0.003), and migraine headache index score (MHIS) (P < 0.001) had significantly decreased in the intervention as compared to the control group. No significant changes were observed for NO levels and duration of migraine pains. ALA supplementation can be considered a potential adjunct treatment in patients with migraine due to its improving mitochondrial and endothelial functions and clinical symptoms.
Collapse
Affiliation(s)
- Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirmansour Alavi Naeini
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Fariborz Khorvash
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
92
|
Le Guennec L, Marois C, Demeret S, Wijdicks EFM, Weiss N. Toxic-metabolic encephalopathy in adults: Critical discussion and pragmatical diagnostic approach. Rev Neurol (Paris) 2022; 178:93-104. [PMID: 34996631 DOI: 10.1016/j.neurol.2021.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Toxic-metabolic encephalopathy (TME) results from an acute cerebral dysfunction due to different metabolic disturbances including medications or illicit-drugs. It can lead to altered consciousness, going from delirium to coma, which may require intensive care and invasive mechanical ventilation. Even if it is a life-threatening condition, TME might have an excellent prognosis if its etiology is rapidly identified and treated adequately. This review summarizes the main etiologies, their differential diagnosis, and diagnostic strategy and management of TME with a critical discussion on the definition of TME.
Collapse
Affiliation(s)
- L Le Guennec
- Sorbonne Université, AP-HP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, département de neurologie, unité de Médecine Intensive Réanimation à orientation neurologique, Paris, France; Groupe de Recherche Clinique en REanimation et Soins intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Sorbonne, France
| | - C Marois
- Sorbonne Université, AP-HP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, département de neurologie, unité de Médecine Intensive Réanimation à orientation neurologique, Paris, France
| | - S Demeret
- Sorbonne Université, AP-HP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, département de neurologie, unité de Médecine Intensive Réanimation à orientation neurologique, Paris, France
| | - E F M Wijdicks
- Mayo Clinic, Department of Neurology, 200 First Street SW, Rochester, MN 55905, USA
| | - N Weiss
- Groupe de Recherche Clinique en REanimation et Soins intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Sorbonne, France; Sorbonne Université, AP-HP, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, département de neurologie, unité de Médecine Intensive Réanimation à orientation neurologique, Paris, France; Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, INSERM UMR_S 938, Centre de recherche Saint-Antoine, Maladies métaboliques, biliaires et fibro-inflammatoire du foie, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France.
| |
Collapse
|
93
|
Molins Gutiérrez G, Martorell J, Salazar-Martin AG, Balcells M. A Dynamic, In Vitro BBB Model to Study the Effects of Varying Levels of Shear Stress. Methods Mol Biol 2022; 2492:175-190. [PMID: 35733045 DOI: 10.1007/978-1-0716-2289-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The blood-brain barrier (BBB) consists of a tight network of blood capillaries in the brain that separate the circulatory system from the central nervous system. Its particular properties are based on the dynamic interaction between cerebral endothelial cells and other surrounding cells, especially astrocytes. We have designed and synthesized a three-dimensional scaffold that recapitulates the main hallmarks of the BBB extracellular matrix and serves as a platform to co-culture human brain microvascular endothelial cells and human cortical astrocytes. The scaffold can be exposed to flow, thereby allowing the study of flow-mediated pathways at the BBB.
Collapse
Affiliation(s)
- Gemma Molins Gutiérrez
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jordi Martorell
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain.
| | - Antonio G Salazar-Martin
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mercedes Balcells
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| |
Collapse
|
94
|
Carloni S, Rescigno M. Unveiling the gut-brain axis: structural and functional analogies between the gut and the choroid plexus vascular and immune barriers. Semin Immunopathol 2022; 44:869-882. [PMID: 35861857 PMCID: PMC9301898 DOI: 10.1007/s00281-022-00955-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
The vasculature plays an essential role in the development and maintenance of blood-tissue interface homeostasis. Knowledge on the morphological and functional nature of the blood vessels in every single tissue is, however, very poor, but it is becoming clear that each organ is characterized by the presence of endothelial barriers with different properties fundamental for the maintenance of tissue resident immune homeostasis and for the recruitment of blood-trafficking immune cells. The tissue specificity of the vascular unit is dependent on the presence of differentiated endothelial cells that form continues, fenestrated, or sinusoidal vessels with different grades of permeability and different immune receptors, according to how that particular tissue needs to be protected. The gut-brain axis highlights the prominent role that the vasculature plays in allowing a direct and prompt exchange of molecules between the gut, across the gut vascular barrier (GVB), and the brain. Recently, we identified a new choroid plexus vascular barrier (PVB) which receives and integrates information coming from the gut and is fundamental in the modulation of the gut-brain axis. Several pathologies are linked to functional dysregulation of either the gut or the choroid plexus vascular barriers. In this review, we unveil the structural and functional analogies between the GVB and PVB, comparing their peculiar features and highlighting the functional role of pitcher and catcher of the gut-brain axis, including their role in the establishment of immune homeostasis and response upon systemic stimuli. We propose that when the gut vascular barrier-the main protecting system of the body from the external world-is compromised, the choroid plexus gatekeeper becomes a second barrier that protects the central nervous system from systemic inflammation.
Collapse
Affiliation(s)
- Sara Carloni
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20072, Pieve Emanuele, MI, Italy.
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy.
| | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20072, Pieve Emanuele, MI, Italy.
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy.
| |
Collapse
|
95
|
Kiran P, Debnath SK, Neekhra S, Pawar V, Khan A, Dias F, Pallod S, Srivastava R. Designing nanoformulation for the nose-to-brain delivery in Parkinson's disease: Advancements and barrier. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1768. [PMID: 34825510 DOI: 10.1002/wnan.1768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/30/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons, which results in the loss of motor activity. In the management of PD, the primary aim is to increase the dopamine content in the brain either by delivering the precursors of dopamine or by inhibiting the molecules responsible for dopamine degradation. Due to the low bioavailability, a higher dosage of drugs needs to be administered repeatedly for achieving the desired therapeutic effect. This repeated high dose not only increases the severe side effects but also produces tolerance in the body. Often, direct administration of drugs fails to ameliorate the symptoms as the unmodified drugs cannot cross the blood-brain barrier (BBB). Nanotherapeutic is at the forefront of the alternative treatment against the central nervous system (CNS) disorders due to the ability to circumvents the BBB. Here, all the available treatments for PD have been discussed with their limitation. The current trends of nanotherapeutics for PD have been explored. Suitability and formulation prospects for nasal delivery have been analyzed in detail to explore new research scope. The most effective approach is the nose-to-brain delivery for targeting drugs directly to the brain. This delivery bypasses the BBB and concentrates more drugs at the target site. Thus, developments of nose-to-brain delivery of nanoformulations explicit the new scope to manage PD better. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Pallavi Kiran
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sujit Kumar Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Suditi Neekhra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Vaishali Pawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Faith Dias
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shubham Pallod
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
96
|
Haidar MA, Ibeh S, Shakkour Z, Reslan MA, Nwaiwu J, Moqidem YA, Sader G, Nickles RG, Babale I, Jaffa AA, Salama M, Shaito A, Kobeissy F. Crosstalk between Microglia and Neurons in Neurotrauma: An Overview of the Underlying Mechanisms. Curr Neuropharmacol 2022; 20:2050-2065. [PMID: 34856905 PMCID: PMC9886840 DOI: 10.2174/1570159x19666211202123322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022] Open
Abstract
Microglia are the resident immune cells of the brain and play a crucial role in housekeeping and maintaining homeostasis of the brain microenvironment. Upon injury or disease, microglial cells become activated, at least partly, via signals initiated by injured neurons. Activated microglia, thereby, contribute to both neuroprotection and neuroinflammation. However, sustained microglial activation initiates a chronic neuroinflammatory response which can disturb neuronal health and disrupt communications between neurons and microglia. Thus, microglia-neuron crosstalk is critical in a healthy brain as well as during states of injury or disease. As most studies focus on how neurons and microglia act in isolation during neurotrauma, there is a need to understand the interplay between these cells in brain pathophysiology. This review highlights how neurons and microglia reciprocally communicate under physiological conditions and during brain injury and disease. Furthermore, the modes of microglia-neuron communication are exposed, focusing on cell-contact dependent signaling and communication by the secretion of soluble factors like cytokines and growth factors. In addition, it has been discussed that how microglia-neuron interactions could exert either beneficial neurotrophic effects or pathologic proinflammatory responses. We further explore how aberrations in microglia-neuron crosstalk may be involved in central nervous system (CNS) anomalies, namely traumatic brain injury (TBI), neurodegeneration, and ischemic stroke. A clear understanding of how the microglia-neuron crosstalk contributes to the pathogenesis of brain pathologies may offer novel therapeutic avenues of brain trauma treatment.
Collapse
Affiliation(s)
- Muhammad Ali Haidar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Stanley Ibeh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zaynab Shakkour
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mohammad Amine Reslan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Judith Nwaiwu
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yomna Adel Moqidem
- Biotechnology Program, School of Science and Engineering, The American University in Cairo, Cairo, Egypt
| | - Georgio Sader
- Faculty of Medicine, University of Balamand, Balamand, Lebanon
| | - Rachel G. Nickles
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Ismail Babale
- Department of Biomedical Engineering, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Aneese A. Jaffa
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (I-GHHE), The American University in Cairo, New Cairo 11835, Egypt
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Abdullah Shaito
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biomedical Engineering, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
97
|
Zhang F, Wen L, Wang K, Huang Z, Jin X, Xiong R, He S, Hu F. Effect of axitinib regulating the pathological blood-brain barrier functional recovery for glioblastoma therapeutics. CNS Neurosci Ther 2021; 28:411-421. [PMID: 34967104 PMCID: PMC8841308 DOI: 10.1111/cns.13788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/11/2021] [Accepted: 12/01/2021] [Indexed: 11/01/2022] Open
Abstract
AIMS Dysfunction of the blood-brain barrier (BBB) is a prominent pathological feature of glioblastoma (GBM). Vascular endothelial growth factor (VEGF) is confirmed to be abnormally elevated in the pathogenesis of GBM, causing BBB pathological disruption, which further allows the leakage of neurotoxic blood-derived molecules into the central nervous system (CNS), interfering brain homeostasis and leading to poor patient outcome. Since BBB is an integral and pivotal part of the brain microenvironment, which strongly supports the occurrence and the pathological progression of GBM, here we have selected the VEGFR antagonist axitinib as a BBB functional regulator and hypothesized to regulate pathological BBB restoration for GBM effective treatment. METHODS The pathological BBB cell model was constructed to investigate the timeliness and dose effect of axitinib regulating pathological BBB restoration. In order to investigate the efficacy and safety of axitinib regulating pathological BBB restoration for anti-GBM treatment, the orthotropic GBM-bearing mice model was established for in vivo study, and bioluminescent imaging was used to real-time and noninvasively monitor tumor growth response in vivo, and survival time was also recorded. RESULTS Axitinib under non-cytotoxic dosage regulated pathological BBB restoration in a time-dependent mode, and multiple intervention of axitinib could realize a visible restoration of pathological BBB in vitro. Moreover, axitinib treatment restored pathological BBB in orthotropic GBM-bearing mice. We further confirmed that functional restoration of pathological BBB with axitinib had certain curative effect in prolonging median survival of orthotropic GBM-bearing mice at non-cytotoxic dosages in vivo. CONCLUSION The mechanism of axitinib involved in BBB functional regulation in the treatment of GBM is first illuminated in this report; moreover, this is the first report first referring to regulating pathological BBB functional recovery for GBM effective therapeutics. Overall, the view of regulating pathological BBB functional recovery may offer a novel sight for other CNS diseases relating to BBB permeability effective therapeutics.
Collapse
Affiliation(s)
- Fengtian Zhang
- Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, China.,Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lijuan Wen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,National Engineering Research Center for Modernization of Tranditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Kai Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhihua Huang
- Department of Physiology, School of Basic Medical Sciences, Institute for Medical Sciences of Pain, Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Xiangyu Jin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ruiwen Xiong
- National Engineering Research Center for Modernization of Tranditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Shiying He
- National Engineering Research Center for Modernization of Tranditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
98
|
Aykac A, Sehirli AÖ. The Function and Expression of ATP-Binding Cassette Transporters Proteins in the Alzheimer's Disease. Glob Med Genet 2021; 8:149-155. [PMID: 34877572 PMCID: PMC8635834 DOI: 10.1055/s-0041-1735541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023] Open
Abstract
Despite many years of research, radical treatment of Alzheimer's disease (AD) has still not been found. Amyloid-β (Aβ) peptide is known to play an important role in the pathogenesis of this disease. AD is characterized by three main changes occurring in the central nervous system: (1) Aβ plaque accumulation that prevents synaptic communication, (2) the accumulation of hyperphosphorylated tau proteins that inhibit the transport of molecules inside neurons, and (3) neuronal cell loss of the limbic system. Mechanisms leading to Aβ accumulation in AD are excessive Aβ production as a result of mutations in amyloid precursor protein or genes, and impairment of clearance of Aβ due to changes in Aβ aggregation properties and/or Aβ removal processes. Human ATP-binding cassette (ABC) transporters are expressed in astrocyte, microglia, neuron, brain capillary endothelial cell, choroid plexus, choroid plexus epithelial cell, and ventricular ependymal cell. ABC transporters have essential detoxification and neuroprotective roles in the brain. The expression and functional changes in ABC transporters contribute to the accumulation of Aβ peptide. In conclusion, the review was aimed to summarize and highlight accumulated evidence in the literature focusing on the changing functions of human ABC transporter members, in AD pathogenesis and progression.
Collapse
Affiliation(s)
- Asli Aykac
- Department of Biophysics, Near East University, Nicosia, Cyprus
| | - Ahmet Özer Sehirli
- Department of Pharmacology, Faculty of Dentistry, Near East University, Nicosia, Cyprus
| |
Collapse
|
99
|
Savarraj J, Park ES, Colpo GD, Hinds SN, Morales D, Ahnstedt H, Paz AS, Assing A, Liu F, Juneja S, Kim E, Cho SM, Gusdon AM, Dash P, McCullough LD, Choi HA. Brain injury, endothelial injury and inflammatory markers are elevated and express sex-specific alterations after COVID-19. J Neuroinflammation 2021; 18:277. [PMID: 34838058 PMCID: PMC8627162 DOI: 10.1186/s12974-021-02323-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/14/2021] [Indexed: 01/15/2023] Open
Abstract
Objective Although COVID-19 is a respiratory disease, all organs can be affected including the brain. To date, specific investigations of brain injury markers (BIM) and endothelial injury markers (EIM) have been limited. Additionally, a male bias in disease severity and mortality after COVID-19 is evident globally. Sex differences in the immune response to COVID-19 may mediate this disparity. We investigated BIM, EIM and inflammatory cytokine/chemokine (CC) levels after COVID-19 and in across sexes. Methods Plasma samples from 57 subjects at < 48 h of COVID-19 hospitalization, and 20 matched controls were interrogated for the levels of six BIMs—including GFAP, S100B, Syndecan-1, UCHLI, MAP2 and NSE, two EIMs—including sICAM1 and sVCAM1. Additionally, several cytokines/chemokines were analyzed by multiplex. Statistical and bioinformatics methods were used to measure differences in the marker profiles across (a) COVID-19 vs. controls and (b) men vs. women. Results Three BIMs: MAP2, NSE and S100B, two EIMs: sICAM1 and sVCAM1 and seven CCs: GRO IL10, sCD40L, IP10, IL1Ra, MCP1 and TNFα were significantly (p < 0.05) elevated in the COVID-19 cohort compared to controls. Bioinformatics analysis reveal a stronger positive association between BIM/CC/EIMs in the COVID-19 cohort. Analysis across sex revealed that several BIMs and CCs including NSE, IL10, IL15 and IL8 were significantly (p < 0.05) higher in men compared to women. Men also expressed a more robust BIM/ EIM/CC association profile compared to women. Conclusion The acute elevation of BIMs, CCs, and EIMs and the robust associations among them at COVID-19 hospitalization are suggestive of brain and endothelial injury. Higher BIM and inflammatory markers in men additionally suggest that men are more susceptible to the risk compared to women. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02323-8.
Collapse
Affiliation(s)
- Jude Savarraj
- Departent of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA.
| | - Eun S Park
- Departent of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Gabriela D Colpo
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Sarah N Hinds
- Departent of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Diego Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hilda Ahnstedt
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Atzhiry S Paz
- Departent of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Andres Assing
- Departent of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Fudong Liu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shivanki Juneja
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Eunhee Kim
- Departent of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Sung-Min Cho
- Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Aaron M Gusdon
- Departent of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Pramod Dash
- Department of Neurobiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - H Alex Choi
- Departent of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA.
| |
Collapse
|
100
|
Ahmadpour D, Mhaouty-Kodja S, Grange-Messent V. Disruption of the blood-brain barrier and its close environment following adult exposure to low doses of di(2-ethylhexyl)phthalate alone or in an environmental phthalate mixture in male mice. CHEMOSPHERE 2021; 282:131013. [PMID: 34090004 DOI: 10.1016/j.chemosphere.2021.131013] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/14/2021] [Accepted: 05/26/2021] [Indexed: 05/20/2023]
Abstract
We have previously shown that adult male mice exposure to low doses of di(2-ethylhexyl)phthalate (DEHP) alters neural function and behaviour. Whether such exposure also affects the integrity and function of the blood-brain barrier (BBB) remained to be explored. The impact of adult exposure to low doses of DEHP alone or in an environmental phthalate mixture on the BBB integrity and surrounding parenchyma was studied in male mice. Two-month-old C57BL/6J males were orally exposed for 6 weeks to DEHP alone (5, and 50 μg/kg/day) or to DEHP (5 μg/kg/day) in an environmental phthalate mixture. BBB permeability, glial activation and neuroinflammation were investigated in the hypothalamic medial preoptic area (mPOA) and hippocampus involved, respectively on the reproductive and cognitive functions. Exposure to DEHP alone or in a phthalate mixture increased BBB permeability and affected the endothelial accessory tight junction protein zona occludens-1 and caveolae protein Cav-1 in the mPOA and the hippocampal CA1 and CA3 areas. This was associated with an inflammatory profile including astrocyte activation accompanied by enhanced expression of inducible nitric oxide synthase in the mPOA, and a microglial activation in the mPOA and the hippocampal CA1 and CA3 areas. The protein levels of the inflammatory molecule cyclooxygenase-2 were increased in activated microglial cells of the exposed mPOA. None of the major effects induced by DEHP alone or in a mixture was detected in the hippocampal dendate gyrus. The data highlight that environmental exposure to endocrine disruptors such as phthalates, could represent a risk factor for the cerebrovascular function.
Collapse
Affiliation(s)
- Delnia Ahmadpour
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, 75005 Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, 75005 Paris, France
| | - Valérie Grange-Messent
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, 75005 Paris, France.
| |
Collapse
|