51
|
Mennan C, Brown S, McCarthy H, Mavrogonatou E, Kletsas D, Garcia J, Balain B, Richardson J, Roberts S. Mesenchymal stromal cells derived from whole human umbilical cord exhibit similar properties to those derived from Wharton's jelly and bone marrow. FEBS Open Bio 2016; 6:1054-1066. [PMID: 27833846 PMCID: PMC5095143 DOI: 10.1002/2211-5463.12104] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 05/27/2016] [Accepted: 07/20/2016] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stromal cells (MSC) can be isolated from several regions of human umbilical cords, including Wharton's jelly (WJ), artery, vein or cord lining. These MSC appear to be immune privileged and are promising candidates for cell therapy. However, isolating MSC from WJ, artery, vein or cord lining requires time-consuming tissue dissection. MSC can be obtained easily via briefly digesting complete segments of the umbilical cord, likely containing heterogenous or mixed populations of MSC (MC-MSC). MC-MSC are generally less well characterized than WJ-MSC, but nevertheless represent a potentially valuable population of MSC. This study aimed to further characterize MC-MSC in comparison to WJ-MSC and also the better-characterized bone marrow-derived MSC (BM-MSC). MC-MSC proliferated faster, with significantly faster doubling times reaching passage one 8.8 days sooner and surviving longer in culture than WJ-MSC. All MSC retained the safety aspect of reducing telomere length with increasing passage number. MSC were also assessed for their ability to suppress T-cell proliferation and for the production of key markers of pluripotency, embryonic stem cells, tolerogenicity (CD40, CD80, CD86 and HLA-DR) and immunomodulation (indoleamine 2,3-dioxygenase [IDO] and HLA-G). The MC-MSC population displayed all of the positive attributes of WJ-MSC and BM-MSC, but they were more efficient to obtain and underwent more population doublings than from WJ, suggesting that MC-MSC are promising candidates for allogeneic cell therapy in regenerative medicine.
Collapse
Affiliation(s)
- Claire Mennan
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust & Institute of Science & Technology in MedicineKeele UniversityOswestryShropshireUK
| | - Sharon Brown
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust & Institute of Science & Technology in MedicineKeele UniversityOswestryShropshireUK
| | - Helen McCarthy
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust & Institute of Science & Technology in MedicineKeele UniversityOswestryShropshireUK
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and AgeingInstitute of Biosciences and ApplicationsNational Centre for Scientific Research “Demokritos”AthensGreece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and AgeingInstitute of Biosciences and ApplicationsNational Centre for Scientific Research “Demokritos”AthensGreece
| | - John Garcia
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust & Institute of Science & Technology in MedicineKeele UniversityOswestryShropshireUK
| | - Birender Balain
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust & Institute of Science & Technology in MedicineKeele UniversityOswestryShropshireUK
| | - James Richardson
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust & Institute of Science & Technology in MedicineKeele UniversityOswestryShropshireUK
| | - Sally Roberts
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust & Institute of Science & Technology in MedicineKeele UniversityOswestryShropshireUK
| |
Collapse
|
52
|
van Velthoven CT, Dzietko M, Wendland MF, Derugin N, Faustino J, Heijnen CJ, Ferriero DM, Vexler ZS. Mesenchymal stem cells attenuate MRI-identifiable injury, protect white matter, and improve long-term functional outcomes after neonatal focal stroke in rats. J Neurosci Res 2016; 95:1225-1236. [PMID: 27781299 DOI: 10.1002/jnr.23954] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/01/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022]
Abstract
Cell therapy has emerged as a potential treatment for many neurodegenerative diseases including stroke and neonatal ischemic brain injury. Delayed intranasal administration of mesenchymal stem cells (MSCs) after experimental hypoxia-ischemia and after a transient middle cerebral artery occlusion (tMCAO) in neonatal rats has shown improvement in long-term functional outcomes, but the effects of MSCs on white matter injury (WMI) are insufficiently understood. In this study we used longitudinal T2-weighted (T2W) and diffusion tensor magnetic resonance imaging (MRI) to characterize chronic injury after tMCAO induced in postnatal day 10 (P10) rats and examined the effects of delayed MSC administration on WMI, axonal coverage, and long-term somatosensory function. We show unilateral injury- and region-dependent changes in diffusion fraction anisotropy 1 and 2 weeks after tMCAO that correspond to accumulation of degraded myelin basic protein, astrocytosis, and decreased axonal coverage. With the use of stringent T2W-based injury criteria at 72 hr after tMCAO to randomize neonatal rats to receive intranasal MSCs or vehicle, we show that a single MSC administration attenuates WMI and enhances somatosensory function 28 days after stroke. A positive correlation was found between MSC-enhanced white matter integrity and functional performance in injured neonatal rats. Collectively, these data indicate that the damage induced by tMCAO progresses over time and is halted by administration of MSCs. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cindy T van Velthoven
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Mark Dzietko
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Michael F Wendland
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Nikita Derugin
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Joel Faustino
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Donna M Ferriero
- Department of Neurology, University of California, San Francisco, San Francisco, California.,Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Zinaida S Vexler
- Department of Neurology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
53
|
Ahn SY, Chang YS, Sung DK, Sung SI, Ahn JY, Park WS. Pivotal Role of Brain-Derived Neurotrophic Factor Secreted by Mesenchymal Stem Cells in Severe Intraventricular Hemorrhage in Newborn Rats. Cell Transplant 2016; 26:145-156. [PMID: 27535166 DOI: 10.3727/096368916x692861] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation protects against neonatal severe intraventricular hemorrhage (IVH)-induced brain injury by a paracrine rather than regenerative mechanism; however, the paracrine factors involved and their roles have not yet been delineated. This study aimed to identify the paracrine mediator(s) and to determine their role in mediating the therapeutic effects of MSCs in severe IVH. We first identified significant upregulation of brain-derived neurotrophic factor (BDNF) in MSCs compared with fibroblasts, in both DNA and antibody microarrays, after thrombin exposure. We then knocked down BDNF in MSCs by transfection with small interfering (si)RNA specific for human BDNF. The therapeutic effects of MSCs with or without BDNF knockdown were evaluated in vitro in rat neuronal cells challenged with thrombin, and in vivo in newborn Sprague-Dawley rats by injecting 200 μl of blood on postnatal day 4 (P4), and transplanting MSCs (1 × 105 cells) intraventricularly on P6. siRNA-induced BDNF knockdown abolished the in vitro benefits of MSCs on thrombin-induced neuronal cell death. BDNF knockdown also abolished the in vivo protective effects against severe IVH-induced brain injuries such as the attenuation of posthemorrhagic hydrocephalus, impaired behavioral test performance, increased astrogliosis, increased number of TUNEL cells, ED-1+ cells, and inflammatory cytokines, and reduced myelin basic protein expression. Our data indicate that BDNF secreted by transplanted MSCs is one of the critical paracrine factors that play a seminal role in attenuating severe IVH-induced brain injuries in newborn rats.
Collapse
|
54
|
Du WJ, Reppel L, Leger L, Schenowitz C, Huselstein C, Bensoussan D, Carosella ED, Han ZC, Rouas-Freiss N. Mesenchymal Stem Cells Derived from Human Bone Marrow and Adipose Tissue Maintain Their Immunosuppressive Properties After Chondrogenic Differentiation: Role of HLA-G. Stem Cells Dev 2016; 25:1454-69. [PMID: 27465875 DOI: 10.1089/scd.2016.0022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSC) have emerged as alternative sources of stem cells for regenerative medicine because of their multipotency and strong immune-regulatory properties. Also, human leukocyte antigen G (HLA-G) is an important mediator of MSC-mediated immunomodulation. However, it is unclear whether MSC retain their immune-privileged potential after differentiation. As promising candidates for cartilage tissue engineering, the immunogenic and immunomodulatory properties of chondro-differentiated MSC (chondro-MSC) require in-depth exploration. In the present study, we used the alginate/hyaluronic acid (Alg/HA) hydrogel scaffold and induced both bone marrow- and adipose tissue-derived MSC into chondrocytes in three-dimensional condition. Then, MSC before and after chondrocyte differentiation were treated or not with interferon γ and tumor necrosis factor α mimicking inflammatory conditions and were compared side by side using flow cytometry, mixed lymphocyte reaction, and immunostaining assays. Results showed that chondro-MSC were hypoimmunogenic and could exert immunosuppression on HLA-mismatched peripheral blood mononuclear cells as well as undifferentiated MSC did. This alloproliferation inhibition mediated by MSC or chondro-MSC was dose dependent. Meanwhile, chondro-MSC exerted inhibition on natural killer cell-mediated cytolysis. Also, we showed that HLA-G expression was upregulated in chondro-MSC under hypoxia context and could be boosted in allogenic settings. Besides, the Alg/HA hydrogel scaffold was hypoimmunogenic and its addition for supporting MSC chondrocyte differentiation did not modify the immune properties of MSC. Finally, considering their chondro-regenerative potential and their retained immunosuppressive capacity, MSC constitute promising allogenic sources of stem cells for cartilage repair.
Collapse
Affiliation(s)
- Wen-Jing Du
- 1 CEA, Direction de la Recherche Fondamentale (DRF), Institut des Maladies Emergentes et des Therapies Innovantes (IMETI), Service de Recherche en Hemato-Immunologie (SRHI), Hopital Saint-Louis , IUH, Paris, France .,2 The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease , Chinese Academy of Medical Science, Peking Union Medical College, Tianjin, China
| | - Loic Reppel
- 3 Cell and Tissue Banking Unit and Research Federation FR 3209, Nancy University Hospital , Nancy, France .,4 UMR CNRS 7365 and FR 3209 CNRS-INSERM-UL-CHU, Lorraine University , Vandoeuvre-Les-Nancy, France .,5 Microbiology-Immunology Department, Faculty of Pharmacy, Lorraine University , Nancy, France
| | - Léonore Leger
- 3 Cell and Tissue Banking Unit and Research Federation FR 3209, Nancy University Hospital , Nancy, France .,4 UMR CNRS 7365 and FR 3209 CNRS-INSERM-UL-CHU, Lorraine University , Vandoeuvre-Les-Nancy, France .,5 Microbiology-Immunology Department, Faculty of Pharmacy, Lorraine University , Nancy, France
| | - Chantal Schenowitz
- 1 CEA, Direction de la Recherche Fondamentale (DRF), Institut des Maladies Emergentes et des Therapies Innovantes (IMETI), Service de Recherche en Hemato-Immunologie (SRHI), Hopital Saint-Louis , IUH, Paris, France .,6 Sorbonne Paris Cite, IUH, Hopital Saint-Louis, UMR_E5, Universite Paris Diderot , Paris, France
| | - Celine Huselstein
- 4 UMR CNRS 7365 and FR 3209 CNRS-INSERM-UL-CHU, Lorraine University , Vandoeuvre-Les-Nancy, France
| | - Danièle Bensoussan
- 3 Cell and Tissue Banking Unit and Research Federation FR 3209, Nancy University Hospital , Nancy, France .,4 UMR CNRS 7365 and FR 3209 CNRS-INSERM-UL-CHU, Lorraine University , Vandoeuvre-Les-Nancy, France .,5 Microbiology-Immunology Department, Faculty of Pharmacy, Lorraine University , Nancy, France
| | - Edgardo D Carosella
- 1 CEA, Direction de la Recherche Fondamentale (DRF), Institut des Maladies Emergentes et des Therapies Innovantes (IMETI), Service de Recherche en Hemato-Immunologie (SRHI), Hopital Saint-Louis , IUH, Paris, France .,6 Sorbonne Paris Cite, IUH, Hopital Saint-Louis, UMR_E5, Universite Paris Diderot , Paris, France
| | - Zhong-Chao Han
- 2 The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease , Chinese Academy of Medical Science, Peking Union Medical College, Tianjin, China
| | - Nathalie Rouas-Freiss
- 1 CEA, Direction de la Recherche Fondamentale (DRF), Institut des Maladies Emergentes et des Therapies Innovantes (IMETI), Service de Recherche en Hemato-Immunologie (SRHI), Hopital Saint-Louis , IUH, Paris, France .,6 Sorbonne Paris Cite, IUH, Hopital Saint-Louis, UMR_E5, Universite Paris Diderot , Paris, France
| |
Collapse
|
55
|
Mitsialis SA, Kourembanas S. Stem cell-based therapies for the newborn lung and brain: Possibilities and challenges. Semin Perinatol 2016; 40:138-51. [PMID: 26778234 PMCID: PMC4808378 DOI: 10.1053/j.semperi.2015.12.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There have been substantial advances in neonatal medical care over the past 2 decades that have resulted in the increased survival of very low birth weight infants, survival that in some centers extends to 22 weeks gestational age. Despite these advances, there continues to be significant morbidity associated with extreme preterm birth that includes both short-term and long-term pulmonary and neurologic consequences. No single therapy has proven to be effective in preventing or treating either developmental lung and brain injuries in preterm infants or the hypoxic-ischemic injury that can be inflicted on the full-term brain as a result of in utero or perinatal complications. Stem cell-based therapies are emerging as a potential paradigm-shifting approach for such complex diseases with multifactorial etiologies, but a great deal of work is still required to understand the role of stem/progenitor cells in normal development and in the repair of injured tissue. This review will summarize the biology of the various stem/progenitor cells, their effects on tissue repair in experimental models of lung and brain injury, the recent advances in our understanding of their mechanism of action, and the challenges that remain to be addressed before their eventual application to clinical care.
Collapse
|
56
|
Liu Y, Chen J, Liu W, Lu X, Liu Z, Zhao X, Li G, Chen Z. A Modified Approach to Inducing Bone Marrow Stromal Cells to Differentiate into Cells with Mature Schwann Cell Phenotypes. Stem Cells Dev 2016; 25:347-59. [PMID: 26670188 DOI: 10.1089/scd.2015.0295] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Marrow stromal cells (MSCs) can be induced to differentiate into Schwann-like cells under classical induction conditions. However, cells derived from this method are unstable, exhibiting a low neurotrophin expression level after the induction conditions are removed. In Schwann cell (SC) culture, progesterone (PROG) enhances neurotrophic synthesis and myelination, specifically regulating the expression of the myelin protein zero (P0)- and peripheral myelin protein 22 (PMP22)-encoding genes by acting in concert or in synergy with insulin and glucocorticoids (GLUCs). In the present study, we investigated whether combined PROG, GLUC, and insulin therapy induced MSCs to differentiate into modified SC-like cells with phenotypes similar to those of mature SCs. After being cultured for 2 weeks in modified differentiation medium, the modified SC-like cells showed increased expression of P0 and PMP22. In addition, morphological and phenotypic characterizations were conducted over a period of over 2 weeks, and functional characteristics persisted for more than 3 weeks after the induction reagents were withdrawn. The transplantation of green fluorescent protein-labeled, modified SC-like cells into transected sciatic nerves with a 10-mm gap significantly increased the proliferation of the original SCs and improved axon regeneration and myelination compared with original BM-SCs. Immunostaining for P0 revealed that more of the transplanted modified SC-like cells retained the phenotypic characteristics of SCs. Taken together, these results reveal that the combined application of PROG, GLUC, and insulin induces MSCs to differentiate into cells with phenotypic, molecular, and functional properties of mature SCs.
Collapse
Affiliation(s)
- Yutian Liu
- 1 Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Jianghai Chen
- 1 Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Wei Liu
- 2 Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Xiaocheng Lu
- 1 Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Zhenyu Liu
- 1 Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Xiaobo Zhao
- 1 Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Gongchi Li
- 1 Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Zhenbing Chen
- 1 Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| |
Collapse
|
57
|
Endogenous IL-6 of mesenchymal stem cell improves behavioral outcome of hypoxic-ischemic brain damage neonatal rats by supressing apoptosis in astrocyte. Sci Rep 2016; 6:18587. [PMID: 26766745 PMCID: PMC4725911 DOI: 10.1038/srep18587] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/23/2015] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cell (MSC) transplantation reduces the neurological impairment caused by hypoxic-ischemic brain damage (HIBD) via immunomodulation. In the current study, we found that MSC transplantation improved learning and memory function and enhanced long-term potentiation in neonatal rats subjected to HIBD and the amount of IL-6 released from MSCs was far greater than that of other cytokines. However, the neuroprotective effect of MSCs infected with siIL-6-transduced recombinant lentivirus (siIL-6 MSCs) was significantly weakened in the behavioural tests and electrophysiological analysis. Meanwhile, the hippocampal IL-6 levels were decreased following siIL-6 MSC transplantation. In vitro, the levels of IL-6 release and the levels of IL-6R and STAT3 expression were increased in both primary neurons and astrocytes subjected to oxygen and glucose deprivation (OGD) following MSCs co-culture. The anti-apoptotic protein Bcl-2 was upregulated and the pro-apoptotic protein Bax was downregulated in OGD-injured astrocytes co-cultured with MSCs. However, the siIL-6 MSCs suppressed ratio of Bcl-2/Bax in the injured astrocytes and induced apoptosis number of the injured astrocytes. Taken together, these data suggest that the neuroprotective effect of MSC transplantation in neonatal HIBD rats is partly mediated by IL-6 to enhance anti-apoptosis of injured astrocytes via the IL-6/STAT3 signaling pathway.
Collapse
|
58
|
Abstract
Despite recent advances in neonatal intensive care medicine, neonatal brain injury resulting from intraventricular hemorrhage or hypoxic-ischemic encephalopathy remains a major cause of neonatal mortality and neurologic morbidities in survivors. Several studies have indicated that stem cell therapy is a promising novel therapy for neonatal brain injury resulting from these disorders. This review summarizes recent advances in stem cell research for treating neonatal brain injury due to intraventricular hemorrhage or hypoxic-ischemic encephalopathy with a particular focus on preclinical data, covering important issues for clinical translation such as optimal cell type, route, dose and timing of stem cell therapy, and translation of these preclinical results into a clinical trial.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | |
Collapse
|
59
|
Farías JG, Herrera EA, Carrasco-Pozo C, Sotomayor-Zárate R, Cruz G, Morales P, Castillo RL. Pharmacological models and approaches for pathophysiological conditions associated with hypoxia and oxidative stress. Pharmacol Ther 2015; 158:1-23. [PMID: 26617218 DOI: 10.1016/j.pharmthera.2015.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypoxia is the failure of oxygenation at the tissue level, where the reduced oxygen delivered is not enough to satisfy tissue demands. Metabolic depression is the physiological adaptation associated with reduced oxygen consumption, which evidently does not cause any harm to organs that are exposed to acute and short hypoxic insults. Oxidative stress (OS) refers to the imbalance between the generation of reactive oxygen species (ROS) and the ability of endogenous antioxidant systems to scavenge ROS, where ROS overwhelms the antioxidant capacity. Oxidative stress plays a crucial role in the pathogenesis of diseases related to hypoxia during intrauterine development and postnatal life. Thus, excessive ROS are implicated in the irreversible damage to cell membranes, DNA, and other cellular structures by oxidizing lipids, proteins, and nucleic acids. Here, we describe several pathophysiological conditions and in vivo and ex vivo models developed for the study of hypoxic and oxidative stress injury. We reviewed existing literature on the responses to hypoxia and oxidative stress of the cardiovascular, renal, reproductive, and central nervous systems, and discussed paradigms of chronic and intermittent hypobaric hypoxia. This systematic review is a critical analysis of the advantages in the application of some experimental strategies and their contributions leading to novel pharmacological therapies.
Collapse
Affiliation(s)
- Jorge G Farías
- Facultad de Ingeniería y Ciencias, Departamento de Ingeniería Química, Universidad de la Frontera, Casilla 54-D, Temuco, Chile
| | - Emilio A Herrera
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Chile
| | | | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile
| | - Gonzalo Cruz
- Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile
| | - Paola Morales
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Chile
| | - Rodrigo L Castillo
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Chile.
| |
Collapse
|
60
|
Assessment of long-term safety and efficacy of intranasal mesenchymal stem cell treatment for neonatal brain injury in the mouse. Pediatr Res 2015; 78:520-6. [PMID: 26270577 PMCID: PMC4635434 DOI: 10.1038/pr.2015.145] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 05/09/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND For clinical translation, we assessed whether intranasal mesenchymal stem cell (MSC) treatment after hypoxia-ischemia (HI) induces neoplasia in the brain or periphery at 14 mo. Furthermore, the long-term effects of MSCs on behavior and lesion size were determined. METHOD HI was induced in 9-d-old mice. Pups received an intranasal administration of 0.5 × 10(6) MSCs or vehicle at 10 d post-HI. Full macroscopical and microscopical pathological analysis of 39 organs per mouse was performed. Sensorimotor behavior was assessed in the cylinder-rearing test at 10 d, 28 d, 6 mo, and 9 mo. Cognition was measured with the novel object recognition test at 3 and 14 mo post-HI. Lesion size was determined by analyzing mouse-anti-microtubule-associated protein 2 (MAP2) and mouse-anti-myelin basic protein (MBP) staining at 5 wk and 14 mo. RESULTS At 14 mo post-HI, we did not observe any neoplasia in the nasal turbinates, brain, or other organs of HI mice treated with MSCs. Furthermore, our results show that MSC-induced improvement of sensorimotor and cognitive function is long lasting. In contrast, HI-vehicle mice showed severe behavioral impairment. Recovery of MAP2- and MBP-positive area lasted up to 14 mo following MSC treatment. CONCLUSION Our results provide strong evidence of the long-term safety and positive effects of MSC treatment following neonatal HI in mice.
Collapse
|
61
|
Gu Y, Zhang Y, Bi Y, Liu J, Tan B, Gong M, Li T, Chen J. Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage. Mol Brain 2015; 8:65. [PMID: 26475712 PMCID: PMC4609057 DOI: 10.1186/s13041-015-0157-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/10/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hypoxic-ischemic brain damage (HIBD) is a major cause of infant mortality and neurological disability in children. Many studies have demonstrated that mesenchymal stem cell (MSC) transplantation facilitates the restoration of the biological function of injured tissue following HIBD via immunomodulation. This study aimed to elucidate the mechanisms by which MSCs mediate immunomodulation via the key effectors Toll-like receptor 2 (TLR2) and interleukin-10 (IL-10). RESULTS We showed that TLR2 expression in the brain of HIBD rats was upregulated following HIBD and that MSC transplantation suppressed the expression of TLR2 and the release of IL-10, thereby alleviating the learning-memory deficits of HIBD rats. Following treatment with the specific TLR2 agonist Pam3CSK4 to activate TLR2, learning-memory function became further impaired, and the levels of nuclear factor kappa B (NFκB) and Bax expression and IL-10 release were significantly increased compared with those in HIBD rats that did not receive Pam3CSK4. In vitro, we found that MSC co-culture downregulated TLR2/NFκB signaling and repressed Bax expression and IL-10 secretion in oxygen and glucose deprivation (OGD)-injured adrenal pheochromocytoma (PC12) cells. Furthermore, NFκB and Bax expression and IL-10 release were enhanced following Pam3CSK4 treatment and were decreased following siTLR2 treatment in OGD-injured PC12 cells in the presence or absence of MSCs. CONCLUSIONS Our data indicate that TLR2 is involved in HIBD and that MSCs decrease apoptosis and improve learning-memory function in HIBD rats by suppressing the TLR2/NFκB signaling pathway via a feedback mechanism that reduces IL-10 release. These findings strongly suggest that MSC transplantation improves HIBD via the inhibition of the TLR2/NFκB pathway.
Collapse
Affiliation(s)
- Yan Gu
- Children Nutrition Research Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Chongqing Stem Cell Therapy Engineering Technical Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Yun Zhang
- Children Nutrition Research Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Chongqing Stem Cell Therapy Engineering Technical Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Yang Bi
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Chongqing Stem Cell Therapy Engineering Technical Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Jingjing Liu
- Children Nutrition Research Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Chongqing Stem Cell Therapy Engineering Technical Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Bin Tan
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Min Gong
- Children Nutrition Research Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Chongqing Stem Cell Therapy Engineering Technical Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Tingyu Li
- Children Nutrition Research Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China.
| | - Jie Chen
- Children Nutrition Research Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Chongqing Stem Cell Therapy Engineering Technical Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
62
|
Titomanlio L, Fernández-López D, Manganozzi L, Moretti R, Vexler ZS, Gressens P. Pathophysiology and neuroprotection of global and focal perinatal brain injury: lessons from animal models. Pediatr Neurol 2015; 52:566-584. [PMID: 26002050 PMCID: PMC4720385 DOI: 10.1016/j.pediatrneurol.2015.01.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 01/16/2015] [Accepted: 01/24/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Arterial ischemic stroke occurs more frequently in term newborns than in the elderly, and brain immaturity affects mechanisms of ischemic injury and recovery. The susceptibility to injury of the brain was assumed to be lower in the perinatal period as compared with childhood. This concept was recently challenged by clinical studies showing marked motor disabilities after stroke in neonates, with the severity of motor and cortical sensory deficits similar in both perinatal and childhood ischemic stroke. Our understanding of the triggers and the pathophysiological mechanisms of perinatal stroke has greatly improved in recent years, but many factors remain incompletely understood. METHODS In this review, we focus on the pathophysiology of perinatal stroke and on therapeutic strategies that can protect the immature brain from the consequences of stroke by targeting inflammation and brain microenvironment. RESULTS Studies in neonatal rodent models of cerebral ischemia have suggested a potential role for soluble inflammatory molecules as important modulators of injury and recovery. A great effort is underway to investigate neuroprotective molecules based on our increasing understanding of the pathophysiology. CONCLUSION In this review, we provide a comprehensive summary of new insights concerning pathophysiology of focal and global perinatal brain injury and their implications for new therapeutic approaches.
Collapse
Affiliation(s)
- Luigi Titomanlio
- Pediatric Emergency Department, APHP, Robert Debré Hospital, Paris, France
- Inserm, U1141, F-75019 Paris, France
| | - David Fernández-López
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94158-0663, USA
| | - Lucilla Manganozzi
- Pediatric Emergency Department, APHP, Robert Debré Hospital, Paris, France
- Inserm, U1141, F-75019 Paris, France
| | | | - Zinaida S. Vexler
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94158-0663, USA
| | - Pierre Gressens
- Inserm, U1141, F-75019 Paris, France
- Univ Paris Diderot, Sorbonne Paris Cité, UMRS 676, F-75019 Paris, France
- PremUP, Paris, France
- Centre for the Developing Brain, King’s College, St Thomas’ Campus, London SE1 7EH, UK
| |
Collapse
|
63
|
Hendijani F. Human mesenchymal stromal cell therapy for prevention and recovery of chemo/radiotherapy adverse reactions. Cytotherapy 2015; 17:509-25. [DOI: 10.1016/j.jcyt.2014.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 12/21/2022]
|
64
|
Cameron SH, Alwakeel AJ, Goddard L, Hobbs CE, Gowing EK, Barnett ER, Kohe SE, Sizemore RJ, Oorschot DE. Delayed post-treatment with bone marrow-derived mesenchymal stem cells is neurorestorative of striatal medium-spiny projection neurons and improves motor function after neonatal rat hypoxia-ischemia. Mol Cell Neurosci 2015; 68:56-72. [PMID: 25828540 DOI: 10.1016/j.mcn.2015.03.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 03/19/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
Perinatal hypoxia-ischemia is a major cause of striatal injury and may lead to cerebral palsy. This study investigated whether delayed administration of bone marrow-derived mesenchymal stem cells (MSCs), at one week after neonatal rat hypoxia-ischemia, was neurorestorative of striatal medium-spiny projection neurons and improved motor function. The effect of a subcutaneous injection of a high-dose, or a low-dose, of MSCs was investigated in stereological studies. Postnatal day (PN) 7 pups were subjected to hypoxia-ischemia. At PN14, pups received treatment with either MSCs or diluent. A subset of high-dose pups, and their diluent control pups, were also injected intraperitoneally with bromodeoxyuridine (BrdU), every 24h, on PN15, PN16 and PN17. This permitted tracking of the migration and survival of neuroblasts originating from the subventricular zone into the adjacent injured striatum. Pups were euthanized on PN21 and the absolute number of striatal medium-spiny projection neurons was measured after immunostaining for DARPP-32 (dopamine- and cAMP-regulated phosphoprotein-32), double immunostaining for BrdU and DARPP-32, and after cresyl violet staining alone. The absolute number of striatal immunostained calretinin interneurons was also measured. There was a statistically significant increase in the absolute number of DARPP-32-positive, BrdU/DARPP-32-positive, and cresyl violet-stained striatal medium-spiny projection neurons, and fewer striatal calretinin interneurons, in the high-dose mesenchymal stem cell (MSC) group compared to their diluent counterparts. A high-dose of MSCs restored the absolute number of these neurons to normal uninjured levels, when compared with previous stereological data on the absolute number of cresyl violet-stained striatal medium-spiny projection neurons in the normal uninjured brain. For the low-dose experiment, in which cresyl violet-stained striatal medium-spiny neurons alone were measured, there was a lower statistically significant increase in their absolute number in the MSC group compared to their diluent controls. Investigation of behavior in another cohort of animals showed that delayed administration of a high-dose of bone marrow-derived MSCs, at one week after neonatal rat hypoxia-ischemia, improved motor function on the cylinder test. Thus, delayed therapy with a high- or low-dose of adult MSCs, at one week after injury, is effective in restoring the loss of striatal medium-spiny projection neurons after neonatal rat hypoxia-ischemia and a high-dose of MSCs improved motor function.
Collapse
Affiliation(s)
- Stella H Cameron
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Amr J Alwakeel
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Liping Goddard
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Catherine E Hobbs
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Emma K Gowing
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Elizabeth R Barnett
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Sarah E Kohe
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Rachel J Sizemore
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Dorothy E Oorschot
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
65
|
Wei ZZ, Gu X, Ferdinand A, Lee JH, Ji X, Ji XM, Yu SP, Wei L. Intranasal Delivery of Bone Marrow Mesenchymal Stem Cells Improved Neurovascular Regeneration and Rescued Neuropsychiatric Deficits after Neonatal Stroke in Rats. Cell Transplant 2015; 24:391-402. [DOI: 10.3727/096368915x686887] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neonatal stroke is a major cause of mortality and long-term morbidity in infants and children. Currently, very limited therapeutic strategies are available to protect the developing brain against ischemic damage and promote brain repairs for pediatric patients. Moreover, children who experienced neonatal stroke often have developmental social behavior problems. Cellular therapy using bone marrow mesenchymal stem cells (BMSCs) has emerged as a regenerative therapy after stroke. In the present investigation, neonatal stroke of postnatal day 7 (P7) rat pups was treated with noninvasive and brain-specific intranasal delivery of BMSCs at 6 h and 3 days after stroke (1 × 106cells/animal). Prior to transplantation, BMSCs were subjected to hypoxic preconditioning to enhance their tolerance and regenerative properties. The effects on regenerative activities and stroke-induced sensorimotor and social behavioral deficits were specifically examined at P24 of juvenile age. The BMSC treatment significantly reduced infarct size and blood-brain barrier disruption, promoted angiogenesis, neurogenesis, neurovascular repair, and improved local cerebral blood flow in the ischemic cortex. BMSC-treated rats showed better sensorimotor and olfactory functional recovery than saline-treated animals, measured by the adhesive removal test and buried food finding test. In social behavioral tests, we observed functional and social behavioral deficits in P24 rats subjected to stroke at P7, while the BMSC treatment significantly improved the performance of stroke animals. Overall, intranasal BMSC transplantation after neonatal stroke shows neuroprotection and great potential as a regenerative therapy to enhance neurovascular regeneration and improve functional recovery observed at the juvenile stage of development.
Collapse
Affiliation(s)
- Zheng Zachory Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anwar Ferdinand
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jin Hwan Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaoya Ji
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xun Ming Ji
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
66
|
Neuroprotection in preterm infants. BIOMED RESEARCH INTERNATIONAL 2015; 2015:257139. [PMID: 25650134 PMCID: PMC4306255 DOI: 10.1155/2015/257139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/22/2014] [Indexed: 01/05/2023]
Abstract
Preterm infants born before the 30th week of pregnancy are especially at risk of perinatal brain damage which is usually a result of cerebral ischemia or an ascending intrauterine infection. Prevention of preterm birth and early intervention given signs of imminent intrauterine infection can reduce the incidence of perinatal cerebral injury. It has been shown that administering magnesium intravenously to women at imminent risk of a preterm birth leads to a significant reduction in the likelihood of the infant developing cerebral palsy and motor skill dysfunction. It has also been demonstrated that delayed clamping of the umbilical cord after birth reduces the rate of brain hemorrhage among preterm infants by up to 50%. In addition, mesenchymal stem cells seem to have significant neuroprotective potential in animal experiments, as they increase the rate of regeneration of the damaged cerebral area. Clinical tests of these types of therapeutic intervention measures appear to be imminent. In the last trimester of pregnancy, the serum concentrations of estradiol and progesterone increase significantly. Preterm infants are removed abruptly from this estradiol and progesterone rich environment. It has been demonstrated in animal experiments that estradiol and progesterone protect the immature brain from hypoxic-ischemic lesions. However, this neuroprotective strategy has unfortunately not yet been subject to sufficient clinical investigation.
Collapse
|
67
|
Albertsson AM, Zhang X, Leavenworth J, Bi D, Nair S, Qiao L, Hagberg H, Mallard C, Cantor H, Wang X. The effect of osteopontin and osteopontin-derived peptides on preterm brain injury. J Neuroinflammation 2014; 11:197. [PMID: 25465048 PMCID: PMC4266908 DOI: 10.1186/s12974-014-0197-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/07/2014] [Indexed: 12/21/2022] Open
Abstract
Background Osteopontin (OPN) is a highly phosphorylated sialoprotein and a soluble cytokine that is widely expressed in a variety of tissues, including the brain. OPN and OPN-derived peptides have been suggested to have potential neuroprotective effects against ischemic brain injury, but their role in preterm brain injury is unknown. Methods We used a hypoxia-ischemia (HI)-induced preterm brain injury model in postnatal day 5 mice. OPN and OPN-derived peptides were given intracerebroventricularly and intranasally before HI. Brain injury was evaluated at 7 days after the insults. Results There was a significant increase in endogenous OPN mRNA and OPN protein in the mouse brain after the induction of HI at postnatal day 5. Administration of full-length OPN protein and thrombin-cleaved OPN did not affect preterm brain injury. This was demonstrated with both intracerebroventricular and intranasal administration of OPN as well as in OPN-deficient mice. Interestingly, both N134–153 and C154–198 OPN-derived peptides increased the severity of brain injury in this HI-induced preterm brain injury model. Conclusions The neuroprotective effects of OPN are age-dependent, and, in contrast to the more mature brain, OPN-derived peptides potentiate injury in postnatal day 5 mice. Intranasal administration is an efficient way of delivering drugs to the central nervous system (CNS) in neonatal mice and is likely to be an easy and noninvasive method of drug delivery to the CNS in preterm infants.
Collapse
Affiliation(s)
- Anna-Maj Albertsson
- Perinatal Center, Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden.
| | - Xiaoli Zhang
- Perinatal Center, Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden. .,Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Front St, 450052, Zhengzhou, China.
| | - Jianmei Leavenworth
- Department of Cancer, Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 1 Jimmy Fund Way, Boston, MA, 02115, USA. .,Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA, 02115, USA.
| | - Dan Bi
- Perinatal Center, Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden. .,Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Front St, 450052, Zhengzhou, China.
| | - Syam Nair
- Perinatal Center, Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden.
| | - Lili Qiao
- Perinatal Center, Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden. .,Department of Pediatrics, Song Jiang Central Hospital, 746 Songjiang Zhongshan West Rd, 201600, Shanghai, China.
| | - Henrik Hagberg
- Perinatal Center, Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden. .,Perinatal Center, Department of Obstetrics and Gynecology, Sahlgrenska Academy at University of Gothenburg, Journalvägen 6, 41685, Gothenburg, Sweden. .,Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
| | - Carina Mallard
- Perinatal Center, Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden.
| | - Harvey Cantor
- Department of Cancer, Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 1 Jimmy Fund Way, Boston, MA, 02115, USA. .,Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA, 02115, USA.
| | - Xiaoyang Wang
- Perinatal Center, Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden. .,Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Front St, 450052, Zhengzhou, China.
| |
Collapse
|
68
|
Intranasal administration of human MSC for ischemic brain injury in the mouse: in vitro and in vivo neuroregenerative functions. PLoS One 2014; 9:e112339. [PMID: 25396420 PMCID: PMC4232359 DOI: 10.1371/journal.pone.0112339] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 10/14/2014] [Indexed: 01/01/2023] Open
Abstract
Intranasal treatment with C57BL/6 MSCs reduces lesion volume and improves motor and cognitive behavior in the neonatal hypoxic-ischemic (HI) mouse model. In this study, we investigated the potential of human MSCs (hMSCs) to treat HI brain injury in the neonatal mouse. Assessing the regenerative capacity of hMSCs is crucial for translation of our knowledge to the clinic. We determined the neuroregenerative potential of hMSCs in vitro and in vivo by intranasal administration 10 d post-HI in neonatal mice. HI was induced in P9 mouse pups. 1×106 or 2×106 hMSCs were administered intranasally 10 d post-HI. Motor behavior and lesion volume were measured 28 d post-HI. The in vitro capacity of hMSCs to induce differentiation of mouse neural stem cell (mNSC) was determined using a transwell co-culture differentiation assay. To determine which chemotactic factors may play a role in mediating migration of MSCs to the lesion, we performed a PCR array on 84 chemotactic factors 10 days following sham-operation, and at 10 and 17 days post-HI. Our results show that 2×106 hMSCs decrease lesion volume, improve motor behavior, and reduce scar formation and microglia activity. Moreover, we demonstrate that the differentiation assay reflects the neuroregenerative potential of hMSCs in vivo, as hMSCs induce mNSCs to differentiate into neurons in vitro. We also provide evidence that the chemotactic factor CXCL10 may play an important role in hMSC migration to the lesion site. This is suggested by our finding that CXCL10 is significantly upregulated at 10 days following HI, but not at 17 days after HI, a time when MSCs no longer reach the lesion when given intranasally. The results described in this work also tempt us to contemplate hMSCs not only as a potential treatment option for neonatal encephalopathy, but also for a plethora of degenerative and traumatic injuries of the nervous system.
Collapse
|
69
|
Borghesi A, Cova C, Gazzolo D, Stronati M. Stem cell therapy for neonatal diseases associated with preterm birth. J Clin Neonatol 2014; 2:1-7. [PMID: 24027735 PMCID: PMC3761956 DOI: 10.4103/2249-4847.109230] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the last decades, the prevention and treatment of neonatal respiratory distress syndrome with antenatal steroids and surfactant replacement allowed the survival of infants born at extremely low gestational ages. These extremely preterm infants are highly vulnerable to the detrimental effects of oxidative stress and infection, and are prone to develop lung and brain diseases that eventually evolve in severe sequelae: The so-called new bronchopulmonary dysplasia (BPD) and the noncystic, diffuse form of periventricular leukomalacia (PVL). Tissue simplification and developmental arrest (larger and fewer alveoli and hypomyelination in the lungs and brain, respectively) appears to be the hallmark of these emerging sequelae, while fibrosis is usually mild and contributes to a lesser extent to their pathogenesis. New data suggest that loss of stem/progenitor cell populations in the developing brain and lungs may underlie tissue simplification. These observations constitute the basis for the application of stem cell-based protocols following extremely preterm birth. Transplantation of different cell types (including, but not limited to, mesenchymal stromal cells, endothelial progenitor cells, human amnion epithelial cells) could be beneficial in preterm infants for the prevention and/or treatment of BPD, PVL and other major sequelae of prematurity. However, before this new knowledge can be translated into clinical practice, several issues still need to be addressed in preclinical in vitro and in vivo models.
Collapse
Affiliation(s)
- Alessandro Borghesi
- Neonatal Intensive Care Unit and Laboratory of Neonatal Immunology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | | |
Collapse
|
70
|
Donega V, Nijboer CH, van Tilborg G, Dijkhuizen RM, Kavelaars A, Heijnen CJ. Intranasally administered mesenchymal stem cells promote a regenerative niche for repair of neonatal ischemic brain injury. Exp Neurol 2014; 261:53-64. [PMID: 24945601 DOI: 10.1016/j.expneurol.2014.06.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/30/2014] [Accepted: 06/09/2014] [Indexed: 12/15/2022]
Abstract
Previous work from our group has shown that intranasal MSC-treatment decreases lesion volume and improves motor and cognitive behavior after hypoxic-ischemic (HI) brain damage in neonatal mice. Our aim was to determine the kinetics of MSC migration after intranasal administration, and the early effects of MSCs on neurogenic processes and gliosis at the lesion site. HI brain injury was induced in 9-day-old mice and MSCs were administered intranasally at 10days post-HI. The kinetics of MSC migration were investigated by immunofluorescence and MRI analysis. BDNF and NGF gene expression was determined by qPCR analysis following MSC co-culture with HI brain extract. Nestin, Doublecortin, NeuN, GFAP, Iba-1 and M1/M2 phenotypic expression was assessed over time. MRI and immunohistochemistry analyses showed that MSCs reach the lesion site already within 2h after intranasal administration. At 12h after administration the number of MSCs at the lesion site peaks and decreases significantly at 72h. The number of DCX(+) cells increased 1 to 3days after MSC administration in the SVZ. At the lesion, GFAP(+)/nestin(+) and DCX(+) expression increased 3 to 5days after MSC-treatment. The number of NeuN(+) cells increased within 5days, leading to a dramatic regeneration of the somatosensory cortex and hippocampus at 18days after intranasal MSC administration. Interestingly, MSCs expressed significantly more BDNF gene when exposed to HI brain extract in vitro. Furthermore, MSC-treatment resulted in the resolution of the glial scar surrounding the lesion, represented by a decrease in reactive astrocytes and microglia and polarization of microglia towards the M2 phenotype. In view of the current lack of therapeutic strategies, we propose that intranasal MSC administration is a powerful therapeutic option through its functional repair of the lesion represented by regeneration of the cortical and hippocampal structure and decrease of gliosis.
Collapse
Affiliation(s)
- Vanessa Donega
- Lab. of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cora H Nijboer
- Lab. of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Geralda van Tilborg
- Biomedical MR Imaging and Spectroscopy Group, Image Sciences Institute, University Medical Center Utrecht, The Netherlands
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Image Sciences Institute, University Medical Center Utrecht, The Netherlands
| | - Annemieke Kavelaars
- Lab. of Neuroimmunology, Department of Symptom Research, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Cobi J Heijnen
- Lab. of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands; Lab. of Neuroimmunology, Department of Symptom Research, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
71
|
Mechanisms of perinatal arterial ischemic stroke. J Cereb Blood Flow Metab 2014; 34:921-32. [PMID: 24667913 PMCID: PMC4050239 DOI: 10.1038/jcbfm.2014.41] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 01/21/2023]
Abstract
The incidence of perinatal stroke is high, similar to that in the elderly, and produces a significant morbidity and severe long-term neurologic and cognitive deficits, including cerebral palsy, epilepsy, neuropsychological impairments, and behavioral disorders. Emerging clinical data and data from experimental models of cerebral ischemia in neonatal rodents have shown that the pathophysiology of perinatal brain damage is multifactorial. These studies have revealed that, far from just being a smaller version of the adult brain, the neonatal brain is unique with a very particular and age-dependent responsiveness to hypoxia-ischemia and focal arterial stroke. In this review, we discuss fundamental clinical aspects of perinatal stroke as well as some of the most recent and relevant findings regarding the susceptibility of specific brain cell populations to injury, the dynamics and the mechanisms of neuronal cell death in injured neonates, the responses of neonatal blood-brain barrier to stroke in relation to systemic and local inflammation, and the long-term effects of stroke on angiogenesis and neurogenesis. Finally, we address translational strategies currently being considered for neonatal stroke as well as treatments that might effectively enhance repair later after injury.
Collapse
|
72
|
Bone marrow mesenchymal stem cell-derived microvesicles protect rat pheochromocytoma PC12 cells from glutamate-induced injury via a PI3K/Akt dependent pathway. Neurochem Res 2014; 39:922-31. [PMID: 24706151 DOI: 10.1007/s11064-014-1288-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/10/2014] [Accepted: 03/18/2014] [Indexed: 12/28/2022]
Abstract
Studies have suggested that mesenchymal stem cells (MSCs) can protect neuronal cells from excitotoxicity, but the underlying mechanisms are still remaining elusive. In the study, we show that microvesicles released by rat bone marrow-derived MSCs (rBMSC-MVs) protect rat pheochromocytoma PC12 cells from glutamate-induced excitotoxicity. BMSC-MVs upregulate Akt phosphorylation and Bcl-2 expression, downregulate Bax expression, and reduce the cleavage of caspase-3 in glutamate-treated PC12 cells. Such protective effects are partially abrogated by inhibiting PI3K, indicating that rBMSC-MVs act via the PI3K/Akt pathway. Transplantation of rBMSC-MVs may, therefore, be a promising strategy to treat cerebral injury or some other neuronal diseases involving excitotoxicity.
Collapse
|
73
|
Torrente D, Avila MF, Cabezas R, Morales L, Gonzalez J, Samudio I, Barreto GE. Paracrine factors of human mesenchymal stem cells increase wound closure and reduce reactive oxygen species production in a traumatic brain injury in vitro model. Hum Exp Toxicol 2013; 33:673-84. [PMID: 24178889 DOI: 10.1177/0960327113509659] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Traumatic brain injury (TBI) consists of a primary and a secondary insult characterized by a biochemical cascade that plays a crucial role in cell death in the brain. Despite the major improvements in the acute care of head injury victims, no effective strategies exist for preventing the secondary injury cascade. This lack of success might be due to that most treatments are aimed at targeting neuronal population, even if studies show that astrocytes play a key role after a brain damage. In this work, we propose a new model of in vitro traumatic brain-like injury and use paracrine factors released by human mesenchymal stem cells (hMSCs) as a neuroprotective strategy. Our results demonstrate that hMSC-conditioned medium increased wound closure and proliferation at 12 h and reduced superoxide production to control conditions. This was accompanied by changes in cell morphology and polarity index, as both parameters reflect the ability of cells to migrate toward the wound. These findings indicate that hMSC is an important regulator of oxidative stress production, enhances cells migration, and shall be considered as a useful neuroprotective approach for brain recovery following injury.
Collapse
Affiliation(s)
- D Torrente
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - M F Avila
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - R Cabezas
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - L Morales
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - J Gonzalez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - I Samudio
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - G E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| |
Collapse
|
74
|
van Velthoven CT, Braccioli L, Willemen HL, Kavelaars A, Heijnen CJ. Therapeutic potential of genetically modified mesenchymal stem cells after neonatal hypoxic-ischemic brain damage. Mol Ther 2013; 22:645-654. [PMID: 24172866 DOI: 10.1038/mt.2013.260] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/10/2013] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been shown to improve outcomes after neonatal hypoxic-ischemic (HI) brain injury possibly by secretion of growth factors stimulating repair processes. We investigated whether MSCs, modified to secrete specific growth factors, can further enhance recovery. Using an in vitro assay, we show that MSC-secreting brain derived neurotrophic factor (BDNF), epidermal growth factor-like 7 (EGFL7), persephin (PSP), or sonic hedgehog (SHH) regulate proliferation and differentiation of neural stem cells. Moreover, mice that received an intranasal application of 100,000 MSC-BDNF showed significantly improved outcomes as demonstrated by improved motor function and decreased lesion volume compared with mice treated with empty vector (EV) MSCs. Treatment with MSC-EGFL7 improved motor function but had no effect on lesion size. Treatment with MSC-PSP or MSC-SHH neither improved outcome nor reduced lesion size in comparison with MSC-EV-treated mice. Moreover, mice treated with MSC-SHH showed even decreased functional outcomes when compared with those treated with MSC-EV. Treatment with MSC-BDNF induced cell proliferation in the ischemic hemisphere lasting at least 18 days after MSC administration, whereas treatment with MSC-EV did not. These data suggest that gene-modified cell therapy might be a useful approach to consider for treatment of neonatal HI brain damage. However, care must be taken when selecting the agent to overexpress.
Collapse
Affiliation(s)
- Cindy Tj van Velthoven
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Luca Braccioli
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hanneke Ldm Willemen
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annemieke Kavelaars
- Department of Symptom Research, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Symptom Research, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
75
|
Castillo-Melendez M, Yawno T, Jenkin G, Miller SL. Stem cell therapy to protect and repair the developing brain: a review of mechanisms of action of cord blood and amnion epithelial derived cells. Front Neurosci 2013; 7:194. [PMID: 24167471 PMCID: PMC3807037 DOI: 10.3389/fnins.2013.00194] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 10/07/2013] [Indexed: 12/12/2022] Open
Abstract
In the research, clinical, and wider community there is great interest in the use of stem cells to reduce the progression, or indeed repair brain injury. Perinatal brain injury may result from acute or chronic insults sustained during fetal development, during the process of birth, or in the newborn period. The most readily identifiable outcome of perinatal brain injury is cerebral palsy, however, this is just one consequence in a spectrum of mild to severe neurological deficits. As we review, there are now clinical trials taking place worldwide targeting cerebral palsy with stem cell therapies. It will likely be many years before strong evidence-based results emerge from these trials. With such trials underway, it is both appropriate and timely to address the physiological basis for the efficacy of stem-like cells in preventing damage to, or regenerating, the newborn brain. Appropriate experimental animal models are best placed to deliver this information. Cell availability, the potential for immunological rejection, ethical, and logistical considerations, together with the propensity for native cells to form teratomas, make it unlikely that embryonic or fetal stem cells will be practical. Fortunately, these issues do not pertain to the use of human amnion epithelial cells (hAECs), or umbilical cord blood (UCB) stem cells that are readily and economically obtained from the placenta and umbilical cord discarded at birth. These cells have the potential for transplantation to the newborn where brain injury is diagnosed or even suspected. We will explore the novel characteristics of hAECs and undifferentiated UCB cells, as well as UCB-derived endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs), and how immunomodulation and anti-inflammatory properties are principal mechanisms of action that are common to these cells, and which in turn may ameliorate the cerebral hypoxia and inflammation that are final pathways in the pathogenesis of perinatal brain injury.
Collapse
Affiliation(s)
- Margie Castillo-Melendez
- The Ritchie Centre, Monash Institute of Medical Research, Monash University Clayton, VIC, Australia
| | | | | | | |
Collapse
|
76
|
Jellema RK, Wolfs TGAM, Lima Passos V, Zwanenburg A, Ophelders DRMG, Kuypers E, Hopman AHN, Dudink J, Steinbusch HW, Andriessen P, Germeraad WTV, Vanderlocht J, Kramer BW. Mesenchymal stem cells induce T-cell tolerance and protect the preterm brain after global hypoxia-ischemia. PLoS One 2013; 8:e73031. [PMID: 23991170 PMCID: PMC3753351 DOI: 10.1371/journal.pone.0073031] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/23/2013] [Indexed: 12/11/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) in preterm infants is a severe disease for which no curative treatment is available. Cerebral inflammation and invasion of activated peripheral immune cells have been shown to play a pivotal role in the etiology of white matter injury, which is the clinical hallmark of HIE in preterm infants. The objective of this study was to assess the neuroprotective and anti-inflammatory effects of intravenously delivered mesenchymal stem cells (MSC) in an ovine model of HIE. In this translational animal model, global hypoxia-ischemia (HI) was induced in instrumented preterm sheep by transient umbilical cord occlusion, which closely mimics the clinical insult. Intravenous administration of 2 x 10(6) MSC/kg reduced microglial proliferation, diminished loss of oligodendrocytes and reduced demyelination, as determined by histology and Diffusion Tensor Imaging (DTI), in the preterm brain after global HI. These anti-inflammatory and neuroprotective effects of MSC were paralleled by reduced electrographic seizure activity in the ischemic preterm brain. Furthermore, we showed that MSC induced persistent peripheral T-cell tolerance in vivo and reduced invasion of T-cells into the preterm brain following global HI. These findings show in a preclinical animal model that intravenously administered MSC reduced cerebral inflammation, protected against white matter injury and established functional improvement in the preterm brain following global HI. Moreover, we provide evidence that induction of T-cell tolerance by MSC might play an important role in the neuroprotective effects of MSC in HIE. This is the first study to describe a marked neuroprotective effect of MSC in a translational animal model of HIE.
Collapse
Affiliation(s)
- Reint K. Jellema
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tim G. A. M. Wolfs
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
- School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Valéria Lima Passos
- Department of Methodology & Statistics, Maastricht University, Maastricht, The Netherlands
| | - Alex Zwanenburg
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Biomedical Engineering, Maastricht University, Maastricht, The Netherlands
| | - Daan R. M. G. Ophelders
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Elke Kuypers
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Anton H. N. Hopman
- School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
- Department of Molecular Cell Biology, Maastricht University, Maastricht, The Netherlands
| | - Jeroen Dudink
- Department of Neonatology and Neuroscience, Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Harry W. Steinbusch
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Peter Andriessen
- Department of Pediatrics, Máxima Medical Centre, Veldhoven, The Netherlands
| | - Wilfred T. V. Germeraad
- School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
- Department of Internal Medicine, Division of Haematology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joris Vanderlocht
- School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Boris W. Kramer
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
- School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
77
|
Nessler J, Bénardais K, Gudi V, Hoffmann A, Salinas Tejedor L, Janßen S, Prajeeth CK, Baumgärtner W, Kavelaars A, Heijnen CJ, van Velthoven C, Hansmann F, Skripuletz T, Stangel M. Effects of murine and human bone marrow-derived mesenchymal stem cells on cuprizone induced demyelination. PLoS One 2013; 8:e69795. [PMID: 23922802 PMCID: PMC3724887 DOI: 10.1371/journal.pone.0069795] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/17/2013] [Indexed: 11/24/2022] Open
Abstract
For the treatment of patients with multiple sclerosis there are no regenerative approaches to enhance remyelination. Mesenchymal stem cells (MSC) have been proposed to exert such regenerative functions. Intravenous administration of human MSC reduced the clinical severity of experimental autoimmune encephalomyelitis (EAE), an animal model mimicking some aspects of multiple sclerosis. However, it is not clear if this effect was achieved by systemic immunomodulation or if there is an active neuroregeneration in the central nervous system (CNS). In order to investigate remyelination and regeneration in the CNS we analysed the effects of intravenously and intranasally applied murine and human bone marrow-derived MSC on cuprizone induced demyelination, a toxic animal model which allows analysis of remyelination without the influence of the peripheral immune system. In contrast to EAE no effects of MSC on de- and remyelination and glial cell reactions were found. In addition, neither murine nor human MSC entered the lesions in the CNS in this toxic model. In conclusion, MSC are not directed into CNS lesions in the cuprizone model where the blood-brain-barrier is intact and thus cannot provide support for regenerative processes.
Collapse
Affiliation(s)
- Jasmin Nessler
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Karelle Bénardais
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Viktoria Gudi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Andrea Hoffmann
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Laura Salinas Tejedor
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Stefanie Janßen
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | | | - Wolfgang Baumgärtner
- Center for Systems Neuroscience, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Annemieke Kavelaars
- Department of Symptom Research, University of Texas, M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Laboratory for Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cobi J. Heijnen
- Department of Symptom Research, University of Texas, M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Laboratory for Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cindy van Velthoven
- Laboratory for Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
78
|
Pluripotent possibilities: human umbilical cord blood cell treatment after neonatal brain injury. Pediatr Neurol 2013; 48:346-54. [PMID: 23583051 DOI: 10.1016/j.pediatrneurol.2012.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/29/2012] [Indexed: 12/14/2022]
Abstract
Perinatal hypoxic-ischemic brain injury and stroke in the developing brain remain important causes of chronic neurologic morbidity. Emerging data suggest that transplantation of umbilical cord blood-derived stem cells may have therapeutic potential for neuroregeneration and improved functional outcome. The pluripotent capacity of stem cells from the human umbilical cord blood provides simultaneous targeting of multiple neuropathologic events initiated by a hypoxic-ischemic insult. Their high regenerative potential and naïve immunologic phenotype makes them a preferable choice for transplantation. A multiplicity of transplantation protocols have been studied with a variety of brain injury models; however, only a few have been conducted on immature animals. Biological recipient characteristics, such as age and sex, appear to differentially modulate responses of the animals to the transplanted cord blood stem cells. Survival, migration, and function of the transplanted cells have also been studied and reveal insights into the mechanisms of cord blood stem cell effects. Data from preclinical studies have informed current clinical safety trials of human cord blood in neonates, and further work is needed to continue progress in this field.
Collapse
|
79
|
The endogenous regenerative capacity of the damaged newborn brain: boosting neurogenesis with mesenchymal stem cell treatment. J Cereb Blood Flow Metab 2013; 33:625-34. [PMID: 23403379 PMCID: PMC3652688 DOI: 10.1038/jcbfm.2013.3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neurogenesis continues throughout adulthood. The neurogenic capacity of the brain increases after injury by, e.g., hypoxia-ischemia. However, it is well known that in many cases brain damage does not resolve spontaneously, indicating that the endogenous regenerative capacity of the brain is insufficient. Neonatal encephalopathy leads to high mortality rates and long-term neurologic deficits in babies worldwide. Therefore, there is an urgent need to develop more efficient therapeutic strategies. The latest findings indicate that stem cells represent a novel therapeutic possibility to improve outcome in models of neonatal encephalopathy. Transplanted stem cells secrete factors that stimulate and maintain neurogenesis, thereby increasing cell proliferation, neuronal differentiation, and functional integration. Understanding the molecular and cellular mechanisms underlying neurogenesis after an insult is crucial for developing tools to enhance the neurogenic capacity of the brain. The aim of this review is to discuss the endogenous capacity of the neonatal brain to regenerate after a cerebral ischemic insult. We present an overview of the molecular and cellular mechanisms underlying endogenous regenerative processes during development as well as after a cerebral ischemic insult. Furthermore, we will consider the potential to use stem cell transplantation as a means to boost endogenous neurogenesis and restore brain function.
Collapse
|
80
|
van Velthoven CTJ, Sheldon RA, Kavelaars A, Derugin N, Vexler ZS, Willemen HLDM, Maas M, Heijnen CJ, Ferriero DM. Mesenchymal stem cell transplantation attenuates brain injury after neonatal stroke. Stroke 2013; 44:1426-32. [PMID: 23539530 DOI: 10.1161/strokeaha.111.000326] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND PURPOSE Brain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem cells (MSC) have been shown to improve outcome after neonatal hypoxic-ischemic brain injury mainly by secretion of growth factors stimulating repair processes. We investigated whether MSC treatment improves recovery after neonatal stroke and whether MSC overexpressing brain-derived neurotrophic factor (MSC-BDNF) further enhances recovery. METHODS We performed 1.5-hour transient middle cerebral artery occlusion in 10-day-old rats. Three days after reperfusion, pups with evidence of injury by diffusion-weighted MRI were treated intranasally with MSC, MSC-BDNF, or vehicle. To determine the effect of MSC treatment, brain damage, sensorimotor function, and cerebral cell proliferation were analyzed. RESULTS Intranasal delivery of MSC- and MSC-BDNF significantly reduced infarct size and gray matter loss in comparison with vehicle-treated rats without any significant difference between MSC- and MSC-BDNF-treatment. Treatment with MSC-BDNF significantly reduced white matter loss with no significant difference between MSC- and MSC-BDNF-treatment. Motor deficits were also improved by MSC treatment when compared with vehicle-treated rats. MSC-BDNF-treatment resulted in an additional significant improvement of motor deficits 14 days after middle cerebral artery occlusion, but there was no significant difference between MSC or MSC-BDNF 28 days after middle cerebral artery occlusion. Furthermore, treatment with either MSC or MSC-BDNF induced long-lasting cell proliferation in the ischemic hemisphere. CONCLUSIONS Intranasal administration of MSC after neonatal stroke is a promising therapy for treatment of neonatal stroke. In this experimental paradigm, MSC- and BNDF-hypersecreting MSC are equally effective in reducing ischemic brain damage.
Collapse
Affiliation(s)
- Cindy T J van Velthoven
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Park D, Yang G, Bae DK, Lee SH, Yang YH, Kyung J, Kim D, Choi EK, Choi KC, Kim SU, Kang SK, Ra JC, Kim YB. Human adipose tissue-derived mesenchymal stem cells improve cognitive function and physical activity in ageing mice. J Neurosci Res 2013; 91:660-70. [PMID: 23404260 DOI: 10.1002/jnr.23182] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/19/2012] [Accepted: 10/31/2012] [Indexed: 12/12/2022]
Abstract
Brain ageing leads to atrophy and degeneration of the cholinergic nervous system, resulting in profound neurobehavioral and cognitive dysfunction from decreased acetylcholine biosynthesis and reduced secretion of growth and neurotrophic factors. Human adipose tissue-derived mesenchymal stem cells (ADMSCs) were intravenously (1 × 10(6) cells) or intracerebroventricularly (4 × 10(5) cells) transplanted into the brains of 18-month-old mice once or four times at 2-week intervals. Transplantation of ADMSCs improved both locomotor activity and cognitive function in the aged animals, in parallel with recovery of acetylcholine levels in brain tissues. Transplanted cells differentiated into neurons and, in part, into astrocytes and produced choline acetyltransferase proteins. Transplantation of ADMSCs restored microtubule-associated protein 2 in brain tissue and enhanced Trk B expression and the concentrations of brain-derived neurotrophic factor and nerve growth factor. These results indicate that human ADMSCs differentiate into neural cells in the brain microenvironment and can restore physical and cognitive functions of aged mice not only by increasing acetylcholine synthesis but also by restoring neuronal integrity that may be mediated by growth/neurotrophic factors. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dongsun Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Park D, Lee SH, Bae DK, Yang YH, Yang G, Kyung J, Kim D, Choi EK, Hong JT, Shin IS, Kang SK, Ra JC, Kim YB. Transplantation of Human Adipose Tissue-Derived Mesenchymal Stem Cells Restores the Neurobehavioral Disorders of Rats With Neonatal Hypoxic-Ischemic Encephalopathy. CELL MEDICINE 2013; 5:17-28. [PMID: 26858861 DOI: 10.3727/215517913x658936] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Improving the effects of human adipose tissue-derived mesenchymal stem cells (ASCs) on the demyelination and neurobehavioral function was investigated in an experimental model of neonatal hypoxic-ischemic encephalopathy (HIE). Seven-day-old male rats were subjected to hypoxia-ischemia-lipopolysaccharide and intracerebroventricularly transplanted with human ASCs (4 × 10(5) cells/rat) once at postnatal day 10 (PND10) or repeatedly at PND10, 17, 27, and 37. Neurobehavioral abnormalities (at PND20, 30, and 40) and cognitive functions (at PND41-44) were evaluated using multiple test systems. Human ASCs recovered the using ratio of forelimb contralateral to the injured brain, improved locomotor activity, and restored rota-rod performance of HIE animals, in addition to showing a marked improvement of cognitive functions. It was confirmed that transplanted human ASCs migrated to injured areas and differentiated into oligodendrocytes expressing myelin basic protein (MBP). Moreover, transplanted ASCs restored production of growth and neurotrophic factors and expression of decreased inflammatory cytokines, leading to attenuation of host MBP loss. The results indicate that transplanted ASCs restored neurobehavioral functions by producing MBP as well as by preserving host myelins, which might be mediated by ASCs' anti-inflammatory activity and release of growth and neurotrophic factors.
Collapse
Affiliation(s)
- Dongsun Park
- College of Veterinary Medicine, Chungbuk National University , Cheongju , Republic of Korea
| | - Sun Hee Lee
- College of Veterinary Medicine, Chungbuk National University , Cheongju , Republic of Korea
| | - Dae Kwon Bae
- College of Veterinary Medicine, Chungbuk National University , Cheongju , Republic of Korea
| | - Yun-Hui Yang
- College of Veterinary Medicine, Chungbuk National University , Cheongju , Republic of Korea
| | - Goeun Yang
- College of Veterinary Medicine, Chungbuk National University , Cheongju , Republic of Korea
| | - Jangbeen Kyung
- College of Veterinary Medicine, Chungbuk National University , Cheongju , Republic of Korea
| | - Dajeong Kim
- College of Veterinary Medicine, Chungbuk National University , Cheongju , Republic of Korea
| | - Ehn-Kyoung Choi
- College of Veterinary Medicine, Chungbuk National University , Cheongju , Republic of Korea
| | - Jin Tae Hong
- † College of Pharmacy, Chungbuk National University , Cheongju , Republic of Korea
| | - Il Seob Shin
- ‡ Stem Cell Research Center, RNL BIO Co., Ltd. , Seoul , Republic of Korea
| | - Sung Keun Kang
- ‡ Stem Cell Research Center, RNL BIO Co., Ltd. , Seoul , Republic of Korea
| | - Jeong Chan Ra
- ‡ Stem Cell Research Center, RNL BIO Co., Ltd. , Seoul , Republic of Korea
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University , Cheongju , Republic of Korea
| |
Collapse
|
83
|
Current world literature. Curr Opin Organ Transplant 2013; 18:111-30. [PMID: 23299306 DOI: 10.1097/mot.0b013e32835daf68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
84
|
Torensma R, Prins HJ, Schrama E, Verwiel ETP, Martens ACM, Roelofs H, Jansen BJH. The impact of cell source, culture methodology, culture location, and individual donors on gene expression profiles of bone marrow-derived and adipose-derived stromal cells. Stem Cells Dev 2012; 22:1086-96. [PMID: 23145933 DOI: 10.1089/scd.2012.0384] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bone marrow (BM) stromal cells (MSCs), also known as mesenchymal stem cells, display a high degree of heterogeneity. To shed light on the causes of this heterogeneity, MSCs were collected from either human BM (n=5) or adipose tissue (AT) (n=5), and expanded using 2 different culture methods: one based on fetal calf serum, and one based on human platelet lysate. After initial expansion, MSCs were frozen, and the vials were transported to 3 different laboratories and grown for 1 passage using the same brand of culture plastic, medium, and supplements. Subsequently, the cells were harvested and assayed for their gene expression profile using the Affymetrix exon microarray platform. Based on gene expression profiles, the most discriminative feature was the anatomical harvesting site, followed by culture methodology. Remarkably, genes in the WNT pathway were expressed at higher levels in BM-derived MSCs than in AT-derived MSCs. Although differences were found between laboratories, cell culture location only slightly affects heterogeneity. Furthermore, individual donors contributed marginally to the observed differences in transcriptomes. Finally, BM-derived MSCs displayed the highest level of similarity, irrespective their culture conditions, when compared to AT-derived cells.
Collapse
Affiliation(s)
- Ruurd Torensma
- Department of Tumorimmunology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
85
|
Bennet L, Tan S, Van den Heuij L, Derrick M, Groenendaal F, van Bel F, Juul S, Back SA, Northington F, Robertson NJ, Mallard C, Gunn AJ. Cell therapy for neonatal hypoxia-ischemia and cerebral palsy. Ann Neurol 2012; 71:589-600. [PMID: 22522476 DOI: 10.1002/ana.22670] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Perinatal hypoxic-ischemic brain injury remains a major cause of cerebral palsy. Although therapeutic hypothermia is now established to improve recovery from hypoxia-ischemia (HI) at term, many infants continue to survive with disability, and hypothermia has not yet been tested in preterm infants. There is increasing evidence from in vitro and in vivo preclinical studies that stem/progenitor cells may have multiple beneficial effects on outcome after hypoxic-ischemic injury. Stem/progenitor cells have shown great promise in animal studies in decreasing neurological impairment; however, the mechanisms of action of stem cells, and the optimal type, dose, and method of administration remain surprisingly unclear, and some studies have found no benefit. Although cell-based interventions after completion of the majority of secondary cell death appear to have potential to improve functional outcome for neonates after HI, further rigorous testing in translational animal models is required before randomized controlled trials should be considered.
Collapse
Affiliation(s)
- Laura Bennet
- Department of Physiology, University of Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
van Velthoven CTJ, van de Looij Y, Kavelaars A, Zijlstra J, van Bel F, Huppi PS, Sizonenko S, Heijnen CJ. Mesenchymal stem cells restore cortical rewiring after neonatal ischemia in mice. Ann Neurol 2012; 71:785-96. [PMID: 22718545 DOI: 10.1002/ana.23543] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE A study was undertaken to investigate the effect of neonatal hypoxic-ischemic (HI) brain damage and mesenchymal stem cell (MSC) treatment on the structure and contralesional connectivity of motor function-related cerebral areas. METHODS Brain remodeling after HI±MSC treatment in neonatal mice was analyzed using diffusion tensor magnetic resonance imaging, immunohistochemistry, anterograde tracing with biotinylated dextran amine (BDA), and retrograde tracing with fluorescent pseudorabies virus (PRV). RESULTS MSC treatment after HI reduced contralesional rewiring taking place after HI. Following MSC treatment, fractional anisotropy values, which were increased in both ipsi- and contralesional cortices and decreased in the corpus callosum (CC) after HI, were normalized to the level observed in sham-operated mice. These results were corroborated by myelin basic protein intensity and staining pattern in these areas. Anterograde tracing of ipsilesional motor neurons showed that after MSC treatment, fewer BDA-positive fibers crossed the CC and extended into the contralesional motor cortex compared to HI mice. This remodeling was functional, because retrograde labeling showed increased connectivity between impaired (left) forepaw and the contralesional (left) motor cortex after HI, whereas MSC treatment reduced this connection and increased the connection between the impaired (left) forepaw and the ipsilesional (right) motor cortex. Finally, the extent of contralesional rewiring measured with BDA and PRV tracing was related to sensorimotor dysfunction. INTERPRETATION This is the first study to describe MSC treatment after neonatal HI markedly reducing contralesional axonal remodeling induced by HI brain injury.
Collapse
Affiliation(s)
- Cindy T J van Velthoven
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Lundlaan 6, Utrecht, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
87
|
van Velthoven CTJ, Kavelaars A, Heijnen CJ. Mesenchymal stem cells as a treatment for neonatal ischemic brain damage. Pediatr Res 2012; 71:474-81. [PMID: 22430383 DOI: 10.1038/pr.2011.64] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cell (MSC)-based therapies have been proven effective in experimental models of numerous disorders. Treatment of ischemic brain injury by transplantation of MSCs in neonatal animal models has been shown to be effective in reducing lesion volume and improving functional outcome. The beneficial effect of MSC transplantation to treat neonatal brain injury might be explained by the great plasticity of the neonatal brain. The neonatal brain is still in a developmentally active phase, leading to a better efficiency of MSC transplantation than that observed in experiments using adult models of stroke. Enhanced neurogenesis and axonal remodeling likely underlie the improved functional outcome following MSC treatment after neonatal hypoxic-ischemic (HI) brain injury. With respect to the mechanism of repair by MSCs, MSCs do not survive long term and replace damaged tissue themselves. We propose that MSCs react to the needs of the ischemic cerebral environment by secretion of several growth factors, cytokines, and other bioactive molecules to regulate damage and repair processes. Parenchymal cells react to the secretome of the MSCs and contribute to stimulate repair processes. These intrinsic adaptive properties of MSCs make them excellent candidates for a novel therapy to treat the devastating effects of HI encephalopathy in the human neonate.
Collapse
Affiliation(s)
- Cindy T J van Velthoven
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
88
|
Morales P, Bustamante D, Espina-Marchant P, Neira-Peña T, Gutiérrez-Hernández MA, Allende-Castro C, Rojas-Mancilla E. Pathophysiology of perinatal asphyxia: can we predict and improve individual outcomes? EPMA J 2011. [PMID: 23199150 PMCID: PMC3405380 DOI: 10.1007/s13167-011-0100-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Perinatal asphyxia occurs still with great incidence whenever delivery is prolonged, despite improvements in perinatal care. After asphyxia, infants can suffer from short- to long-term neurological sequelae, their severity depend upon the extent of the insult, the metabolic imbalance during the re-oxygenation period and the developmental state of the affected regions. Significant progresses in understanding of perinatal asphyxia pathophysiology have achieved. However, predictive diagnostics and personalised therapeutic interventions are still under initial development. Now the emphasis is on early non-invasive diagnosis approach, as well as, in identifying new therapeutic targets to improve individual outcomes. In this review we discuss (i) specific biomarkers for early prediction of perinatal asphyxia outcome; (ii) short and long term sequelae; (iii) neurocircuitries involved; (iv) molecular pathways; (v) neuroinflammation systems; (vi) endogenous brain rescue systems, including activation of sentinel proteins and neurogenesis; and (vii) therapeutic targets for preventing or mitigating the effects produced by asphyxia.
Collapse
Affiliation(s)
- Paola Morales
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Diego Bustamante
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Pablo Espina-Marchant
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Tanya Neira-Peña
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Manuel A. Gutiérrez-Hernández
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Camilo Allende-Castro
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Edgardo Rojas-Mancilla
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| |
Collapse
|