51
|
Do SARS-CoV-2 Variants Differ in Their Neuropathogenicity? mBio 2023; 14:e0292022. [PMID: 36651750 PMCID: PMC9973339 DOI: 10.1128/mbio.02920-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neurological complications associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are a huge societal problem. Although the neuropathogenicity of SARS-CoV-2 is not yet fully understood, there is evidence that SARS-CoV-2 can invade and infect cells of the central nervous system. Kong et al. (https://doi.org/10.1128/mbio.02308-22) shows that the mechanism of virus entry into astrocytes in brain organoids and primary astrocytes differs from entry into respiratory epithelial cells. However, how SARS-CoV-2 enters susceptible CNS cells and whether there are differences among SARS-CoV-2 variants is still unclear. In vivo and in vitro models are useful to study these important questions and may reveal important differences among SARS-CoV-2 variants in their neuroinvasive, neurotropic, and neurovirulent potential. In this commentary we address how this study contributes to the understanding of the neuropathology of SARS-CoV-2 and its variants.
Collapse
|
52
|
Bhatia-Dey N, Csoka AB, Heinbockel T. Chemosensory Ability and Sensitivity in Health and Disease: Epigenetic Regulation and COVID-19. Int J Mol Sci 2023; 24:4179. [PMID: 36835589 PMCID: PMC9959623 DOI: 10.3390/ijms24044179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Throughout the animal kingdom, our two chemical senses, olfaction and gustation, are defined by two primary factors: genomic architecture of the organisms and their living environment. During the past three years of the global COVID-19 pandemic, these two sensory modalities have drawn much attention at the basic science and clinical levels because of the strong association of olfactory and gustatory dysfunction with viral infection. Loss of our sense of smell alone, or together with a loss of taste, has emerged as a reliable indicator of COVID-19 infection. Previously, similar dysfunctions have been detected in a large cohort of patients with chronic conditions. The research focus remains on understanding the persistence of olfactory and gustatory disturbances in the post-infection phase, especially in cases with long-term effect of infection (long COVID). Also, both sensory modalities show consistent age-related decline in studies aimed to understand the pathology of neurodegenerative conditions. Some studies using classical model organisms show an impact on neural structure and behavior in offspring as an outcome of parental olfactory experience. The methylation status of specific odorant receptors, activated in parents, is passed on to the offspring. Furthermore, experimental evidence indicates an inverse correlation of gustatory and olfactory abilities with obesity. Such diverse lines of evidence emerging from basic and clinical research studies indicate a complex interplay of genetic factors, evolutionary forces, and epigenetic alterations. Environmental factors that regulate gustation and olfaction could induce epigenetic modulation. However, in turn, such modulation leads to variable effects depending on genetic makeup and physiological status. Therefore, a layered regulatory hierarchy remains active and is passed on to multiple generations. In the present review, we attempt to understand the experimental evidence that indicates variable regulatory mechanisms through multilayered and cross-reacting pathways. Our analytical approach will add to enhancement of prevailing therapeutic interventions and bring to the forefront the significance of chemosensory modalities for the evaluation and maintenance of long-term health.
Collapse
Affiliation(s)
| | | | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
53
|
Andrea XP, Joceline LM, Jose OF, Jose PO. Human Nasal Epithelium Damage as the Probable Mechanism Involved in the Development of Post-COVID-19 Parosmia. Indian J Otolaryngol Head Neck Surg 2023; 75:458-464. [PMID: 36817017 PMCID: PMC9927037 DOI: 10.1007/s12070-023-03559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023] Open
Abstract
Purpose Since the beginning of the COVID-19 pandemic, understanding the physiopathological mechanisms of its manifestations has been crucial to understand the disease and its implications. As the disease evolved, post-infection complications have arisen such as olfactory dysfunctions including parosmia in which odourants are perceived in a distorted or an unpleasant way. Methods In this article, we attempt to clarify these mechanisms and the role of human nasal epithelium in the development of post-COVID-19 parosmia. Results The mechanisms by which SARS-CoV-2 generates olfactory dysfunction have not been elucidated, and multiple theories have been proposed pointing to the sustentacular cells of the olfactory epithelium as the main probable target of the virus. Conclusion Establishing the main physiopathological mechanism of post-COVID-19 parosmia will set a path for further investigations and determine treatment and preventive options for patients who have been reported to be extensively affected in multiple aspects of their lives such as eating habits and mental health.
Collapse
Affiliation(s)
- Xolalpa-Peniche Andrea
- grid.441070.60000 0001 2111 4953Facultad Mexicana de Medicina, Universidad La Salle, Las Fuentes 17, Tlalpan Centro I, Tlalpan, 14000 Ciudad de México, México
| | - Lucas-Mata Joceline
- grid.441070.60000 0001 2111 4953Facultad Mexicana de Medicina, Universidad La Salle, Las Fuentes 17, Tlalpan Centro I, Tlalpan, 14000 Ciudad de México, México
| | - Osante-Forastieri Jose
- grid.441070.60000 0001 2111 4953Facultad Mexicana de Medicina, Universidad La Salle, Las Fuentes 17, Tlalpan Centro I, Tlalpan, 14000 Ciudad de México, México
| | - Pérez-Ochoa Jose
- grid.441070.60000 0001 2111 4953Facultad Mexicana de Medicina, Universidad La Salle, Las Fuentes 17, Tlalpan Centro I, Tlalpan, 14000 Ciudad de México, México
| |
Collapse
|
54
|
Foret-Lucas C, Figueroa T, Coggon A, Houffschmitt A, Dupré G, Fusade-Boyer M, Guérin JL, Delverdier M, Bessière P, Volmer R. In Vitro and In Vivo Characterization of H5N8 High-Pathogenicity Avian Influenza Virus Neurotropism in Ducks and Chickens. Microbiol Spectr 2023; 11:e0422922. [PMID: 36625654 PMCID: PMC9927090 DOI: 10.1128/spectrum.04229-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023] Open
Abstract
H5N8 high-pathogenicity avian influenza virus (HPAIV) of clade 2.3.4.4B, which circulated during the 2016 epizootics in Europe, was notable for causing different clinical signs in ducks and chickens. The clinical signs preceding death were predominantly neurological in ducks versus respiratory in chickens. To investigate the determinants for the predominant neurological signs observed in ducks, we infected duck and chicken primary cortical neurons. Viral replication was identical in neuronal cultures from both species. In addition, we did not detect any major difference in the immune and inflammatory responses. These results suggest that the predominant neurological involvement of H5N8 HPAIV infection in ducks could not be recapitulated in primary neuronal cultures. In vivo, H5N8 HPAIV replication in ducks peaked soon after infection and led to an early colonization of the central nervous system. In contrast, viral replication was delayed in chickens but ultimately burst in the lungs of chickens, and the chickens died of respiratory distress before brain damage became significant. Consequently, the immune and inflammatory responses in the brain were significantly higher in duck brains than those in chickens. Our study thus suggests that early colonization of the central nervous system associated with prolonged survival after the onset of virus replication is the likely primary cause of the sustained inflammatory response and subsequent neurological disorders observed in H5N8 HPAIV-infected ducks. IMPORTANCE The severity of high-pathogenicity avian influenza virus (HPAIV) infection has been linked to its ability to replicate systemically and cause lesions in a variety of tissues. However, the symptomatology depends on the host species. The H5N8 virus of clade 2.3.4.4B had a pronounced neurotropism in ducks, leading to severe neurological disorders. In contrast, neurological signs were rarely observed in chickens, which suffered mostly from respiratory distress. Here, we investigated the determinants of H5N8 HPAIV neurotropism. We provide evidence that the difference in clinical signs was not due to a difference in neurotropism. Our results rather indicate that chickens died of respiratory distress due to intense viral replication in the lungs before viral replication in the brain could produce significant lesions. In contrast, ducks better controlled virus replication in the lungs, thus allowing the virus to replicate for a sufficient duration in the brain, to reach high levels, and to cause significant lesions.
Collapse
Affiliation(s)
- Charlotte Foret-Lucas
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Thomas Figueroa
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Amelia Coggon
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Alexandre Houffschmitt
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Gabriel Dupré
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Maxime Fusade-Boyer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Jean-Luc Guérin
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Maxence Delverdier
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Pierre Bessière
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Romain Volmer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| |
Collapse
|
55
|
Dumenil T, Le TT, Rawle DJ, Yan K, Tang B, Nguyen W, Bishop C, Suhrbier A. Warmer ambient air temperatures reduce nasal turbinate and brain infection, but increase lung inflammation in the K18-hACE2 mouse model of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160163. [PMID: 36395835 PMCID: PMC9659553 DOI: 10.1016/j.scitotenv.2022.160163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Warmer climatic conditions have been associated with fewer COVID-19 cases. Herein we infected K18-hACE2 mice housed at the standard animal house temperature of ∼22 °C, or at ∼31 °C, which is considered to be thermoneutral for mice. On day 2 post infection, RNA-Seq analyses showed no significant differential gene expression lung in lungs of mice housed at the two temperatures, with almost identical viral loads and type I interferon responses. There was also no significant difference in viral loads in lungs on day 5, but RNA-Seq and histology analyses showed clearly elevated inflammatory signatures and infiltrates. Thermoneutrality thus promoted lung inflammation. On day 2 post infection mice housed at 31 °C showed reduced viral loads in nasal turbinates, consistent with increased mucociliary clearance at the warmer ambient temperature. These mice also had reduced virus levels in the brain, and an ensuing amelioration of weight loss and a delay in mortality. Warmer air temperatures may thus reduce infection of the upper respiratory track and the olfactory epithelium, resulting in reduced brain infection. Potential relevance for anosmia and neurological sequelae in COVID-19 patients is discussed.
Collapse
Affiliation(s)
- Troy Dumenil
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Thuy T Le
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Daniel J Rawle
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Kexin Yan
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Bing Tang
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Wilson Nguyen
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Cameron Bishop
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Andreas Suhrbier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia; Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, Queensland 4029, 4072, Australia.
| |
Collapse
|
56
|
Autoimmunity, COVID-19 Omicron Variant, and Olfactory Dysfunction: A Literature Review. Diagnostics (Basel) 2023; 13:diagnostics13040641. [PMID: 36832129 PMCID: PMC9955947 DOI: 10.3390/diagnostics13040641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Smelling is a critical sense utilized daily. Consequently, smelling impairment or anosmia may lead to a reduction in life quality. Systemic diseases and particular autoimmune conditions can impair olfactory function; among others are Systemic Lupus Erythematosus, Sjögren Syndrome, and Rheumatoid Arthritis. Interactions between the olfactory process and the immune systems cause this phenomenon. Alongside autoimmune conditions, in the recent COVID-19 pandemic, anosmia was also described as a prevalent infection symptom. Nevertheless, the occurrence of anosmia is significantly less common in Omicron-infected patients. Several theories have been proposed to explain this phenomenon. One possibility is that the Omicron variant preferentially enters host cells via endocytosis, rather than plasma cell membrane fusion. This endosomal pathway is less dependent on the activation of Transmembrane serine protease 2 (TMPRSS2), expressed at the olfactory epithelium. As a result, the Omicron variant may have reduced efficiency in penetrating the olfactory epithelium, leading to a lower prevalence of anosmia. Furthermore, olfactory changes are known to be associated with inflammatory conditions. The Omicron variant elicits a less robust autoimmune and inflammatory response, believed to reduce the probability of anosmia. This review elaborates on the commonalities and differences in autoimmune and COVID-19 omicron-associated anosmia.
Collapse
|
57
|
Meunier N. [Olfaction and respiratory viruses… A relationship revealed by Covid-19]. Med Sci (Paris) 2023; 39:119-128. [PMID: 36799746 DOI: 10.1051/medsci/2023007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The sense of smell has been underestimated for a long time in humans. It has been brought to the fore by its sudden disappearance during the Covid-19 pandemic of which anosmia (complete loss of smell) is one of the major symptoms. However, respiratory viruses have long been associated with smell disorders, 25% of which are linked to a viral infection. Olfaction begins in the nose within the olfactory epithelium which has the particularity of containing neurons in direct contact with the environment. Several respiratory viruses are known for their replicative capacity within this epithelium. This is particularly the case for the flu virus (influenza) and bronchiolitis (respiratory syncytial virus) but their tropism for this tissue is much lower than SARS-CoV-2. The understanding of the SARS-CoV-2 pathophysiology in the nasal cavity makes it possible to reveal part of the links between viral infection and olfactory disorders.
Collapse
Affiliation(s)
- Nicolas Meunier
- Unité de virologie et immunologie moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
58
|
Carpenter KC, Yang J, Xu JJ. Animal Models for the Study of Neurologic Manifestations Of COVID-19. Comp Med 2023; 73:91-103. [PMID: 36744556 PMCID: PMC9948905 DOI: 10.30802/aalas-cm-22-000073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the worldwide coronavirus (COVID-19) pandemic, has infected an estimated 525 million people with over 6 million deaths. Although COVID-19 is primarily a respiratory disease, an escalating number of neurologic symptoms have been reported in humans. Some neurologic symptoms, such as loss of smell or taste, are mild. However, other symptoms, such as meningoencephalitis or stroke, are potentially fatal. Along with surveys and postmortem evaluations on humans, scientists worked with several animal species to try to elucidate the causes of neurologic symptoms. Neurologic sequelae remain challenging to study due to the complexity of the nervous system and difficulties in identification and quantification of neurologic signs. We reviewed animal models used in the study of neurologic COVID-19, specifically research in mice, hamsters, ferrets, and nonhuman primates. We summarized findings on the presence and pathologic effects of SARS-CoV-2 on the nervous system. Given the need to increase understanding of COVID-19 and its effects on the nervous system, scientists must strive to obtain new information from animals to reduce mortality and morbidity with neurologic complications in humans.
Collapse
Affiliation(s)
- Kelsey C Carpenter
- Division of Laboratory Animal Resources, Wayne State University, Detroit, Michigan;,
| | - Jibing Yang
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jiajie J Xu
- Division of Animal Resources, University of Illinois at Urbana-Champaign, Champaign, Illinois
| |
Collapse
|
59
|
Olfactory impairment in patients with coronavirus disease 2019 self-perceived as asymptomatic. J Laryngol Otol 2023; 137:174-177. [PMID: 35469585 PMCID: PMC9767893 DOI: 10.1017/s0022215121004709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Olfactory impairment may be present among patients with coronavirus disease 2019 self-perceived as asymptomatic. This study aimed to assess olfactory function among these individuals. METHODS A cross-sectional study involving patients with coronavirus disease 2019 self-perceived as asymptomatic was conducted. Assessments included the subjective Malaysian Smell and Taste Questionnaire and the culturally adapted Malaysian version of the objective Sniffin' Sticks Identification smell test. RESULTS In 81 participants (mean age of 31.59 ± 12.04 years), with mean time from diagnosis to smell test of 7.47 ± 3.79 days, subjective assessment showed that 80.2 per cent were asymptomatic (questionnaire score of 6) and 19 per cent had mild symptoms (questionnaire score of 7 and 8). The mean objective smell test score was 10.89 ± 2.11. The prevalence of olfactory impairment was 76.6 per cent among patients with coronavirus disease 2019 self-perceived as asymptomatic. There was no association between the questionnaire and the smell test scores (p = 0.25). There was a correlation between the smell test score and the duration from diagnosis to smell test (p = 0.04). CONCLUSION The objective assessment demonstrated that coronavirus disease 2019 patients who perceived themselves as asymptomatic showed olfactory impairment.
Collapse
|
60
|
Brechbühl J, Ferreira F, Lopes AC, Corset E, Gilliand N, Broillet MC. Ocular Symptoms Associated with COVID-19 Are Correlated with the Expression Profile of Mouse SARS-CoV-2 Binding Sites. Viruses 2023; 15:354. [PMID: 36851565 PMCID: PMC9961464 DOI: 10.3390/v15020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The COVID-19 pandemic has engendered significant scientific efforts in the understanding of its infectious agent SARS-CoV-2 and of its associated symptoms. A peculiar characteristic of this virus lies in its ability to challenge our senses, as its infection can lead to anosmia and ageusia. While ocular symptoms, such as conjunctivitis, optic neuritis or dry eyes, are also reported after viral infection, they have lower frequencies and severities, and their functional development is still elusive. Here, using combined technical approaches based on histological and gene profiling methods, we characterized the expression of SARS-CoV-2 binding sites (Ace2/Tmprss2) in the mouse eye. We found that ACE2 was ectopically expressed in subtissular ocular regions, such as in the optic nerve and in the Harderian/intraorbital lacrimal glands. Moreover, we observed an important variation of Ace2/Tmprss2 expression that is not only dependent on the age and sex of the animal, but also highly heterogenous between individuals. Our results thus give new insight into the expression of SARS-CoV-2 binding sites in the mouse eye and propose an interpretation of the human ocular-associated symptoms linked to SARS-CoV-2.
Collapse
Affiliation(s)
- Julien Brechbühl
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| | | | | | | | | | - Marie-Christine Broillet
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| |
Collapse
|
61
|
Neurons, Nose, and Neurodegenerative Diseases: Olfactory Function and Cognitive Impairment. Int J Mol Sci 2023; 24:ijms24032117. [PMID: 36768440 PMCID: PMC9916823 DOI: 10.3390/ijms24032117] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Olfactory capacity declines with aging, but increasing evidence shows that smell dysfunction is one of the early signs of prodromal neurodegenerative diseases such as Alzheimer's and Parkinson's disease. The study of olfactory ability and its role in neurodegenerative diseases arouses much interest in the scientific community. In neurology, olfactory impairment is a potential early marker for the onset of neurodegenerative diseases, but the underlying mechanism is poorly understood. The loss of smell is considered a clinical sign of early-stage disease and a marker of the disease's progression and cognitive impairment. Highlighting the importance of biological bases of smell and molecular pathways could be fundamental to improve neuroprotective and therapeutic strategies. We focused on the review articles and meta-analyses on olfactory and cognitive impairment. We depicted the neurobiology of olfaction and the most common olfactory tests in neurodegenerative diseases. In addition, we underlined the close relationship between the olfactory and cognitive deficit due to nasal neuroepithelium, which is a direct extension of the CNS in communication with the external environment. Neurons, Nose, and Neurodegenerative diseases highlights the role of olfactory dysfunction as a clinical marker for early stages of neurodegenerative diseases when it is associated with molecular, clinical, and neuropathological correlations.
Collapse
|
62
|
Gavid M, Coulomb L, Thomas J, Aouimeur I, Verhoeven P, Mentek M, Dumollard JM, Forest F, Prades JM, Thuret G, Gain P, He Z. Technique of flat-mount immunostaining for mapping the olfactory epithelium and counting the olfactory sensory neurons. PLoS One 2023; 18:e0280497. [PMID: 36649285 PMCID: PMC9844923 DOI: 10.1371/journal.pone.0280497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
The pathophysiology underlying olfactory dysfunction is still poorly understood, and more efficient biomolecular tools are necessary to explore this aspect. Immunohistochemistry (IHC) on cross sections is one of the major tools to study the olfactory epithelium (OE), but does not allow reliable counting of olfactory sensory neurons (OSNs) or cartography of the OE. In this study, we want to present an easy immunostaining technique to compensate for these defects of IHC. Using the rat model, we first validated and pre-screened the key OSN markers by IHC on cross sections of the OE. Tuj-1, OMP, DCX, PGP9.5, and N-cadherin were selected for immunostaining on flat-mounted OE because of their staining of OSN dendrites. A simple technique for immunostaining on flat-mounted septal OE was developed: fixation of the isolated septum mucosa in 0.5% paraformaldehyde (PFA) preceded by pretreatment of the rat head in 1% PFA for 1 hour. This technique allowed us to correctly reveal the olfactory areas using all the 5 selected markers on septum mucosa. By combining the mature OSN marker (OMP) and an immature OSN marker (Tuj-1), we quantified the mature (OMP+, Tuj-1-), immature (OMP-, Tuj-1+), transitory (OMP+, Tuj-1+) and total OSN density on septal OE. They were respectively 42080 ± 11820, 49384 ± 7134, 14448 ± 5865 and 105912 ± 13899 cells per mm2 (mean ± SD). Finally, the same immunostaining technique described above was performed with Tuj-1 for OE cartography on ethmoid turbinates without flat-mount.
Collapse
Affiliation(s)
- Marie Gavid
- Laboratory BIIO (EA2521), Jean Monnet University, Saint-Etienne, France
- Department of Otorhinolaryngology, CHU of Saint-Etienne, Saint-Etienne, France
| | - Louise Coulomb
- Laboratory BIIO (EA2521), Jean Monnet University, Saint-Etienne, France
| | - Justin Thomas
- Laboratory BIIO (EA2521), Jean Monnet University, Saint-Etienne, France
| | - Inès Aouimeur
- Laboratory BIIO (EA2521), Jean Monnet University, Saint-Etienne, France
| | - Paul Verhoeven
- CIRI, GIMAP Team, INSERM U1111, CNRS UMR5308, University of Lyon, University of Saint-Etienne, Saint-Etienne, France
| | - Marielle Mentek
- Laboratory BIIO (EA2521), Jean Monnet University, Saint-Etienne, France
| | - Jean-Marc Dumollard
- Laboratory BIIO (EA2521), Jean Monnet University, Saint-Etienne, France
- Department of Pathology, CHU of Saint-Etienne, Saint-Etienne, France
| | - Fabien Forest
- Laboratory BIIO (EA2521), Jean Monnet University, Saint-Etienne, France
- Department of Pathology, CHU of Saint-Etienne, Saint-Etienne, France
| | - Jean-Michel Prades
- Department of Otorhinolaryngology, CHU of Saint-Etienne, Saint-Etienne, France
| | - Gilles Thuret
- Laboratory BIIO (EA2521), Jean Monnet University, Saint-Etienne, France
| | - Philippe Gain
- Laboratory BIIO (EA2521), Jean Monnet University, Saint-Etienne, France
| | - Zhiguo He
- Laboratory BIIO (EA2521), Jean Monnet University, Saint-Etienne, France
- * E-mail:
| |
Collapse
|
63
|
Olfactory system measurements in COVID-19: a systematic review and meta-analysis. Neuroradiology 2023; 65:25-39. [PMID: 35843987 PMCID: PMC9288925 DOI: 10.1007/s00234-022-03014-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/07/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE The neurotropism of SARS-CoV-2 and the consequential damage to the olfactory system have been proposed as one of the possible underlying causes of olfactory dysfunction in COVID-19. We aimed to aggregate the results of the studies which reported imaging of the olfactory system of patients with COVID-19 versus controls. METHODS PubMed and EMBASE were searched to identify relevant literature reporting the structural imaging characteristics of the olfactory bulb (OB), olfactory cleft, olfactory sulcus (OS), or olfactory tract in COVID-19 patients. Hedge's g and weighted mean difference were used as a measure of effect size. Quality assessment, subgroup analyses, meta-regression, and sensitivity analysis were also conducted. RESULTS Ten studies were included in the qualitative synthesis, out of which seven studies with 183 cases with COVID-19 and 308 controls without COVID-19 were enrolled in the quantitative synthesis. No significant differences were detected in analyses of right OB volume and left OB volume. Likewise, right OS depth and left OS depth were also not significantly different in COVID-19 cases compared to non-COVID-19 controls. Also, we performed subgroup analysis, meta-regression, and sensitivity analysis to investigate the potential effect of confounding moderators. CONCLUSION The findings of this review did not confirm alterations in structural imaging of the olfactory system, including OB volume and OS depth by Covid-19 which is consistent with the results of recent histopathological evaluations.
Collapse
|
64
|
Chee J, Chern B, Loh WS, Mullol J, Wang DY. Pathophysiology of SARS-CoV-2 Infection of Nasal Respiratory and Olfactory Epithelia and Its Clinical Impact. Curr Allergy Asthma Rep 2023; 23:121-131. [PMID: 36598732 PMCID: PMC9811886 DOI: 10.1007/s11882-022-01059-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW While the predominant cause for morbidity and mortality with SARS-CoV-2 infection is the lower respiratory tract manifestations of the disease, the effects of SARS-CoV-2 infection on the sinonasal tract have also come to the forefront especially with the increased recognition of olfactory symptom. This review presents a comprehensive summary of the mechanisms of action of the SARS-CoV-2 virus, sinonasal pathophysiology of COVID-19, and the correlation with the clinical and epidemiological impact on olfactory dysfunction. RECENT FINDINGS ACE2 and TMPRSS2 receptors are key players in the mechanism of infection of SARS-CoV-2. They are present within both the nasal respiratory as well as olfactory epithelia. There are however differences in susceptibility between different groups of individuals, as well as between the different SARS-CoV-2 variants. The sinonasal cavity is an important route for SARS-CoV-2 infection. While the mechanism of infection of SARS-CoV-2 in nasal respiratory and olfactory epithelia is similar, there exist small but significant differences in the susceptibility of these epithelia and consequently clinical manifestations of the disease. Understanding the differences and nuances in sinonasal pathophysiology in COVID-19 would allow the clinician to predict and counsel patients suffering from COVID-19. Future research into molecular pathways and cytokine responses at different stages of infection and different variants of SARS-CoV-2 would evaluate the individual clinical phenotype, prognosis, and possibly response to vaccines and therapeutics.
Collapse
Affiliation(s)
- Jeremy Chee
- grid.410759.e0000 0004 0451 6143Department of Otolaryngology - Head & Neck Surgery, National University Health System, 1E Kent Ridge Road, Singapore, 119228 Singapore
| | - Beverlyn Chern
- grid.410759.e0000 0004 0451 6143Department of Otolaryngology - Head & Neck Surgery, National University Health System, 1E Kent Ridge Road, Singapore, 119228 Singapore
| | - Woei Shyang Loh
- grid.410759.e0000 0004 0451 6143Department of Otolaryngology - Head & Neck Surgery, National University Health System, 1E Kent Ridge Road, Singapore, 119228 Singapore ,grid.4280.e0000 0001 2180 6431Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joaquim Mullol
- grid.10403.360000000091771775Rhinology Unit & Smell Clinic, Department of Otorhinolaryngology, Hospital Clinic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERES, Barcelona, Catalonia Spain
| | - De Yun Wang
- Department of Otolaryngology - Head & Neck Surgery, National University Health System, 1E Kent Ridge Road, Singapore, 119228, Singapore. .,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
65
|
Butowt R, Bilinska K, von Bartheld CS. Olfactory dysfunction in COVID-19: new insights into the underlying mechanisms. Trends Neurosci 2023; 46:75-90. [PMID: 36470705 PMCID: PMC9666374 DOI: 10.1016/j.tins.2022.11.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
The mechanisms of olfactory dysfunction in COVID-19 are still unclear. In this review, we examine potential mechanisms that may explain why the sense of smell is lost or altered. Among the current hypotheses, the most plausible is that death of infected support cells in the olfactory epithelium causes, besides altered composition of the mucus, retraction of the cilia on olfactory receptor neurons, possibly because of the lack of support cell-derived glucose in the mucus, which powers olfactory signal transduction within the cilia. This mechanism is consistent with the rapid loss of smell with COVID-19, and its rapid recovery after the regeneration of support cells. Host immune responses that cause downregulation of genes involved in olfactory signal transduction occur too late to trigger anosmia, but may contribute to the duration of the olfactory dysfunction.
Collapse
Affiliation(s)
- Rafal Butowt
- Global Consortium of Chemosensory Research - Poland, Przybory Str 3/2, 85-791 Bydgoszcz, Poland
| | - Katarzyna Bilinska
- Department of Molecular Cell Genetics, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, uI. Curie Sklodowskiej 9, 85-94, Bydgoszcz, Poland.
| | - Christopher S von Bartheld
- Center of Biomedical Research Excellence in Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0352, USA; Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0352, USA.
| |
Collapse
|
66
|
Meller AE, Fokeev VA, Shakhova MA, Shakhov AV. [COVID-19-associated anosmia]. Vestn Otorinolaringol 2023; 88:63-68. [PMID: 37450393 DOI: 10.17116/otorino20228803163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The article is a systematic review of the literature data summarizes to date on the issue of COVID-19-associated anosmia. We mainly used full-text and abstract electronic databases (PubMed, Scopus and Web of Science). The paper discusses hypothetical mechanisms of development, clinical features, as well as methods of diagnosis and treatment of COVID-19-associated anosmia.
Collapse
Affiliation(s)
- A E Meller
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russia
| | - V A Fokeev
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russia
| | - M A Shakhova
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russia
| | - A V Shakhov
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russia
| |
Collapse
|
67
|
Wang L, Graziano B, Encalada N, Fernandez-Abascal J, Kaplan DH, Bianchi L. Glial regulators of ions and solutes required for specific chemosensory functions in Caenorhabditis elegans. iScience 2022; 25:105684. [PMID: 36567707 PMCID: PMC9772852 DOI: 10.1016/j.isci.2022.105684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/11/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Glia and accessory cells regulate the microenvironment around neurons and primary sensory cells. However, the impact of specific glial regulators of ions and solutes on functionally diverse primary cells is poorly understood. Here, we systemically investigate the requirement of ion channels and transporters enriched in Caenorhabditis elegans Amsh glia for the function of chemosensory neurons. Although Amsh glia ablated worms show reduced function of ASH, AWC, AWA, and ASE neurons, we show that the loss of glial enriched ion channels and transporters impacts these neurons differently, with nociceptor ASH being the most affected. Furthermore, our analysis underscores the importance of K+, Cl-, and nucleoside homeostasis in the Amphid sensory organ and uncovers the contribution of glial genes implicated in neurological disorders. Our findings build a unique fingerprint of each glial enriched ion channel and transporter and may provide insights into the function of supporting cells of mammalian sensory organs.
Collapse
Affiliation(s)
- Lei Wang
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Bianca Graziano
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Nicole Encalada
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Jesus Fernandez-Abascal
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Daryn H. Kaplan
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Laura Bianchi
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| |
Collapse
|
68
|
Verma AK, Zheng J, Meyerholz DK, Perlman S. SARS-CoV-2 infection of sustentacular cells disrupts olfactory signaling pathways. JCI Insight 2022; 7:e160277. [PMID: 36378534 PMCID: PMC9869979 DOI: 10.1172/jci.insight.160277] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Loss of olfactory function has been commonly reported in SARS-CoV-2 infections. Recovery from anosmia is not well understood. Previous studies showed that sustentacular cells, and occasionally olfactory sensory neurons (OSNs) in the olfactory epithelium (OE), are infected in SARS-CoV-2-infected patients and experimental animals. Here, we show that SARS-CoV-2 infection of sustentacular cells induces inflammation characterized by infiltration of myeloid cells to the olfactory epithelium and variably increased expression of proinflammatory cytokines. We observed widespread damage to, and loss of cilia on, OSNs, accompanied by downregulation of olfactory receptors and signal transduction molecules involved in olfaction. A consequence of OSN dysfunction was a reduction in the number of neurons in the olfactory bulb expressing tyrosine hydroxylase, consistent with reduced synaptic input. Resolution of the infection, inflammation, and olfactory dysfunction occurred over 3-4 weeks following infection in most but not all animals. We also observed similar patterns of OE infection and anosmia/hyposmia in mice infected with other human coronaviruses such as SARS-CoV and MERS-CoV. Together, these results define the downstream effects of sustentacular cell infection and provide insight into olfactory dysfunction in COVID-19-associated anosmia.
Collapse
Affiliation(s)
| | - Jian Zheng
- Department of Microbiology and Immunology and
| | | | | |
Collapse
|
69
|
Finlay JB, Brann DH, Abi-Hachem R, Jang DW, Oliva AD, Ko T, Gupta R, Wellford SA, Moseman EA, Jang SS, Yan CH, Matusnami H, Tsukahara T, Datta SR, Goldstein BJ. Persistent post-COVID-19 smell loss is associated with immune cell infiltration and altered gene expression in olfactory epithelium. Sci Transl Med 2022; 14:eadd0484. [PMID: 36542694 PMCID: PMC10317309 DOI: 10.1126/scitranslmed.add0484] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 causes profound changes in the sense of smell, including total smell loss. Although these alterations are often transient, many patients with COVID-19 exhibit olfactory dysfunction that lasts months to years. Although animal and human autopsy studies have suggested mechanisms driving acute anosmia, it remains unclear how SARS-CoV-2 causes persistent smell loss in a subset of patients. To address this question, we analyzed olfactory epithelial samples collected from 24 biopsies, including from nine patients with objectively quantified long-term smell loss after COVID-19. This biopsy-based approach revealed a diffuse infiltrate of T cells expressing interferon-γ and a shift in myeloid cell population composition, including enrichment of CD207+ dendritic cells and depletion of anti-inflammatory M2 macrophages. Despite the absence of detectable SARS-CoV-2 RNA or protein, gene expression in the barrier supporting cells of the olfactory epithelium, termed sustentacular cells, appeared to reflect a response to ongoing inflammatory signaling, which was accompanied by a reduction in the number of olfactory sensory neurons relative to olfactory epithelial sustentacular cells. These findings indicate that T cell-mediated inflammation persists in the olfactory epithelium long after SARS-CoV-2 has been eliminated from the tissue, suggesting a mechanism for long-term post-COVID-19 smell loss.
Collapse
Affiliation(s)
- John B. Finlay
- Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710
| | - David H. Brann
- Harvard Medical School Department of Neurobiology, Boston, MA 02115
| | - Ralph Abi-Hachem
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710
| | - David W. Jang
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710
| | - Allison D. Oliva
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710
| | - Tiffany Ko
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710
| | - Rupali Gupta
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710
| | | | - E. Ashley Moseman
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710
| | - Sophie S. Jang
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego, San Diego, CA 92037
| | - Carol H. Yan
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego, San Diego, CA 92037
| | - Hiroaki Matusnami
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Duke Institute for Brain Sciences, Duke University School of Medicine, Durham, NC 27710
| | | | | | - Bradley J. Goldstein
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
70
|
Soung AL, Vanderheiden A, Nordvig AS, Sissoko CA, Canoll P, Mariani MB, Jiang X, Bricker T, Rosoklija GB, Arango V, Underwood M, Mann JJ, Dwork AJ, Goldman JE, Boon ACM, Boldrini M, Klein RS. COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis. Brain 2022; 145:4193-4201. [PMID: 36004663 PMCID: PMC9452175 DOI: 10.1093/brain/awac270] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/01/2022] [Accepted: 07/05/2022] [Indexed: 01/14/2023] Open
Abstract
Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with acute and postacute cognitive and neuropsychiatric symptoms including impaired memory, concentration, attention, sleep and affect. Mechanisms underlying these brain symptoms remain understudied. Here we report that SARS-CoV-2-infected hamsters exhibit a lack of viral neuroinvasion despite aberrant blood-brain barrier permeability. Hamsters and patients deceased from coronavirus disease 2019 (COVID-19) also exhibit microglial activation and expression of interleukin (IL)-1β and IL-6, especially within the hippocampus and the medulla oblongata, when compared with non-COVID control hamsters and humans who died from other infections, cardiovascular disease, uraemia or trauma. In the hippocampal dentate gyrus of both COVID-19 hamsters and humans, we observed fewer neuroblasts and immature neurons. Protracted inflammation, blood-brain barrier disruption and microglia activation may result in altered neurotransmission, neurogenesis and neuronal damage, explaining neuropsychiatric presentations of COVID-19. The involvement of the hippocampus may explain learning, memory and executive dysfunctions in COVID-19 patients.
Collapse
Affiliation(s)
- Allison L Soung
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Abigail Vanderheiden
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna S Nordvig
- Division of Neurodegenerative Diseases, Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Cheick A Sissoko
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | | | - Xiaoping Jiang
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Traci Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gorazd B Rosoklija
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Macedonian Academy of Sciences & Arts, Skopje 1000, Republic of Macedonia
| | - Victoria Arango
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Mark Underwood
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - J John Mann
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Andrew J Dwork
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- Macedonian Academy of Sciences & Arts, Skopje 1000, Republic of Macedonia
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Maura Boldrini
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Robyn S Klein
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurosciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
71
|
Bu F, Guan R, Wang W, Liu Z, Yin S, Zhao Y, Chai J. Bioinformatics and systems biology approaches to identify the effects of COVID-19 on neurodegenerative diseases: A review. Medicine (Baltimore) 2022; 101:e32100. [PMID: 36626425 PMCID: PMC9750669 DOI: 10.1097/md.0000000000032100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease (COVID-19), has been devastated by COVID-19 in an increasing number of countries and health care systems around the world since its announcement of a global pandemic on 11 March 2020. During the pandemic, emerging novel viral mutant variants have caused multiple outbreaks of COVID-19 around the world and are prone to genetic evolution, causing serious damage to human health. As confirmed cases of COVID-19 spread rapidly, there is evidence that SARS-CoV-2 infection involves the central nervous system (CNS) and peripheral nervous system (PNS), directly or indirectly damaging neurons and further leading to neurodegenerative diseases (ND), but the molecular mechanisms of ND and CVOID-19 are unknown. We employed transcriptomic profiling to detect several major diseases of ND: Alzheimer 's disease (AD), Parkinson' s disease (PD), and multiple sclerosis (MS) common pathways and molecular biomarkers in association with COVID-19, helping to understand the link between ND and COVID-19. There were 14, 30 and 19 differentially expressed genes (DEGs) between COVID-19 and Alzheimer 's disease (AD), Parkinson' s disease (PD) and multiple sclerosis (MS), respectively; enrichment analysis showed that MAPK, IL-17, PI3K-Akt and other signaling pathways were significantly expressed; the hub genes (HGs) of DEGs between ND and COVID-19 were CRH, SST, TAC1, SLC32A1, GAD2, GAD1, VIP and SYP. Analysis of transcriptome data suggests multiple co-morbid mechanisms between COVID-19 and AD, PD, and MS, providing new ideas and therapeutic strategies for clinical prevention and treatment of COVID-19 and ND.
Collapse
Affiliation(s)
- Fan Bu
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
- * Correspondence: Fan Bu, Heilongjiang University of Chinese Medicine, Haerbin 150040, Heilongjiang Province, China (e-mail: )
| | - Ruiqian Guan
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
- Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Haerbin, Heilongjiang Province, China
| | - Wanyu Wang
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| | - Zhao Liu
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| | - Shijie Yin
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| | - Yonghou Zhao
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
- Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Haerbin, Heilongjiang Province, China
| | - Jianbo Chai
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| |
Collapse
|
72
|
Meller S, Al Khatri MSA, Alhammadi HK, Álvarez G, Alvergnat G, Alves LC, Callewaert C, Caraguel CGB, Carancci P, Chaber AL, Charalambous M, Desquilbet L, Ebbers H, Ebbers J, Grandjean D, Guest C, Guyot H, Hielm-Björkman A, Hopkins A, Kreienbrock L, Logan JG, Lorenzo H, Maia RDCC, Mancilla-Tapia JM, Mardones FO, Mutesa L, Nsanzimana S, Otto CM, Salgado-Caxito M, de los Santos F, da Silva JES, Schalke E, Schoneberg C, Soares AF, Twele F, Vidal-Martínez VM, Zapata A, Zimin-Veselkoff N, Volk HA. Expert considerations and consensus for using dogs to detect human SARS-CoV-2-infections. Front Med (Lausanne) 2022; 9:1015620. [PMID: 36569156 PMCID: PMC9773891 DOI: 10.3389/fmed.2022.1015620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sebastian Meller
- Department of Small Animal Medicine & Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | | | - Hamad Khatir Alhammadi
- International Operations Department, Ministry of Interior of the United Arab Emirates, Abu Dhabi, United Arab Emirates
| | - Guadalupe Álvarez
- Faculty of Veterinary Science, University of Buenos Aires, Buenos Aires, Argentina
| | - Guillaume Alvergnat
- International Operations Department, Ministry of Interior of the United Arab Emirates, Abu Dhabi, United Arab Emirates
| | - Lêucio Câmara Alves
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, Brazil
| | - Chris Callewaert
- Center for Microbial Ecology and Technology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Charles G. B. Caraguel
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Paula Carancci
- Faculty of Veterinary Science, University of Buenos Aires, Buenos Aires, Argentina
| | - Anne-Lise Chaber
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Marios Charalambous
- Department of Small Animal Medicine & Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Loïc Desquilbet
- École Nationale Vétérinaire d’Alfort, IMRB, Université Paris Est, Maisons-Alfort, France
| | | | | | - Dominique Grandjean
- École Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Claire Guest
- Medical Detection Dogs, Milton Keynes, United Kingdom
| | - Hugues Guyot
- Clinical Department of Production Animals, Fundamental and Applied Research for Animals & Health Research Unit, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Anna Hielm-Björkman
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Amy Hopkins
- Medical Detection Dogs, Milton Keynes, United Kingdom
| | - Lothar Kreienbrock
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Hanover, Germany
| | - James G. Logan
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Arctech Innovation, The Cube, Dagenham, United Kingdom
| | - Hector Lorenzo
- Faculty of Veterinary Science, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | - Fernando O. Mardones
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal and Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leon Mutesa
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
- Rwanda National Joint Task Force COVID-19, Kigali, Rwanda
| | | | - Cynthia M. Otto
- Penn Vet Working Dog Center, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Marília Salgado-Caxito
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal and Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | - Esther Schalke
- Bundeswehr Medical Service Headquarters, Koblenz, Germany
| | - Clara Schoneberg
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Anísio Francisco Soares
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Friederike Twele
- Department of Small Animal Medicine & Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Victor Manuel Vidal-Martínez
- Laboratorio de Parasitología y Patología Acuática, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN Unidad Mérida, Mérida, Yucatán, Mexico
| | - Ariel Zapata
- Faculty of Veterinary Science, University of Buenos Aires, Buenos Aires, Argentina
| | - Natalia Zimin-Veselkoff
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal and Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Holger A. Volk
- Department of Small Animal Medicine & Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
- Center for Systems Neuroscience Hannover, Hanover, Germany
| |
Collapse
|
73
|
Bourgon C, Albin AS, Ando-Grard O, Da Costa B, Domain R, Korkmaz B, Klonjkowski B, Le Poder S, Meunier N. Neutrophils play a major role in the destruction of the olfactory epithelium during SARS-CoV-2 infection in hamsters. Cell Mol Life Sci 2022; 79:616. [PMID: 36460750 PMCID: PMC9734468 DOI: 10.1007/s00018-022-04643-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022]
Abstract
The loss of smell (anosmia) related to SARS-CoV-2 infection is one of the most common symptoms of COVID-19. Olfaction starts in the olfactory epithelium mainly composed of olfactory sensory neurons surrounded by supporting cells called sustentacular cells. It is now clear that the loss of smell is related to the massive infection by SARS-CoV-2 of the sustentacular cells in the olfactory epithelium leading to its desquamation. However, the molecular mechanism behind the destabilization of the olfactory epithelium is less clear. Using golden Syrian hamsters infected with an early circulating SARS-CoV-2 strain harboring the D614G mutation in the spike protein; we show here that rather than being related to a first wave of apoptosis as proposed in previous studies, the innate immune cells play a major role in the destruction of the olfactory epithelium. We observed that while apoptosis remains at a low level in the damaged area of the infected epithelium, the latter is invaded by Iba1+ cells, neutrophils and macrophages. By depleting the neutrophil population or blocking the activity of neutrophil elastase-like proteinases, we could reduce the damage induced by the SARS-CoV-2 infection. Surprisingly, the impairment of neutrophil activity led to a decrease in SARS-CoV-2 infection levels in the olfactory epithelium. Our results indicate a counterproductive role of neutrophils leading to the release of infected cells in the lumen of the nasal cavity and thereby enhanced spreading of the virus in the early phase of the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Clara Bourgon
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Audrey St Albin
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ophélie Ando-Grard
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bruno Da Costa
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Roxane Domain
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, 37032, Tours, France
| | - Brice Korkmaz
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, 37032, Tours, France
| | - Bernard Klonjkowski
- UMR 1161 Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94704, Paris, France
| | - Sophie Le Poder
- UMR 1161 Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94704, Paris, France
| | - Nicolas Meunier
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France.
| |
Collapse
|
74
|
Alves de Sousa F, Tarrio J, Sousa Machado A, Costa JR, Pinto C, Nóbrega Pinto A, Moreira B, Meireles L. Olfactory Cleft Length: A Possible Risk Factor for Persistent Post-COVID-19 Olfactory Dysfunction. ORL J Otorhinolaryngol Relat Spec 2022; 85:119-127. [PMID: 36318894 PMCID: PMC9747724 DOI: 10.1159/000527141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/14/2022] [Indexed: 06/03/2023]
Abstract
INTRODUCTION To date, little is known about predisposing factors for persistent COVID-19-induced olfactory dysfunction (pCIOD). The objective was to determine whether olfactory cleft (OC) measurements associate with pCIOD risk. MATERIAL AND METHODS Three subgroups were recruited: group A included patients with pCIOD, group B included patients without olfactory dysfunction following SARS-CoV-2 infection (ntCIOD), and group C consisted in controls without past history of SARS-CoV-2 infection (noCOVID-19). Olfactory perception threshold (OPT) and visual analog scale for olfactory impairment (VAS-olf) were obtained. OC measurements were obtained through computed tomography scans. Results were subsequently compared. RESULTS A total of 55 patients with a mean age of 39 ± 10 years were included. OPT was significantly lower in pCIOD patients (group A: 4.2 ± 2.1 vs. group B: 12.3 ± 1.8 and group C: 12.2 ± 1.5, p < 0.001). VAS-olf was significantly higher in pCIOD (group A: 6 ± 2.6 vs. group B: 1.7 ± 1.6 and group C: 1.6 ± 1.5, p < 0.001). OC length was significantly higher in group A (42.8 ± 4.6) compared to group B (39.7 ± 3.4, p = 0.047) and C (39.8 ± 4, p = 0.037). The odd of pCIOD occurring after COVID-19 infection increased by 21% (95% CI [0.981, 1.495]) for a one unit (mm) increase in OC length. The odd of pCIOD occurring was 6.9 times higher when OC length >40 mm. CONCLUSION Longer OC may be a predisposing factor for pCIOD. This study is expected to encourage further research on OC morphology and its impact on olfactory disorders.
Collapse
Affiliation(s)
- Francisco Alves de Sousa
- Otorhinolaryngology and Head & Neck Surgery Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - João Tarrio
- Neurorradiology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
- Neurorradiology Department, Hospital Central do Funchal Dr. Nélio Mendonça, Funchal, Portugal
| | - André Sousa Machado
- Otorhinolaryngology and Head & Neck Surgery Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Joana Raquel Costa
- Otorhinolaryngology and Head & Neck Surgery Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Catarina Pinto
- Neurorradiology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ana Nóbrega Pinto
- Otorhinolaryngology and Head & Neck Surgery Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Bruno Moreira
- Neurorradiology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Luís Meireles
- Otorhinolaryngology and Head & Neck Surgery Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| |
Collapse
|
75
|
Ueha R, Ito T, Ueha S, Furukawa R, Kitabatake M, Ouji-Sageshima N, Uranaka T, Tanaka H, Nishijima H, Kondo K, Yamasoba T. Evidence for the spread of SARS-CoV-2 and olfactory cell lineage impairment in close-contact infection Syrian hamster models. Front Cell Infect Microbiol 2022; 12:1019723. [PMCID: PMC9634532 DOI: 10.3389/fcimb.2022.1019723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/11/2022] [Indexed: 01/08/2023] Open
Abstract
Objectives Close contact with patients with COVID-19 is speculated to be the most common cause of viral transmission, but the pathogenesis of COVID-19 by close contact remains to be elucidated. In addition, despite olfactory impairment being a unique complication of COVID-19, the impact of SARS-CoV-2 on the olfactory cell lineage has not been fully validated. This study aimed to elucidate close-contact viral transmission to the nose and lungs and to investigate the temporal damage in the olfactory receptor neuron (ORN) lineage caused by SARS-CoV-2. Methods Syrian hamsters were orally administered SARS-CoV-2 nonvariant nCoV-19/JPN/TY/WK521/2020 as direct-infection models. On day 3 after inoculation, infected and uninfected hamsters were housed in the same cage for 30 minutes. These uninfected hamsters were subsequently assigned to a close-contact group. First, viral presence in the nose and lungs was verified in the infection and close-contact groups at several time points. Next, the impacts on the olfactory epithelium, including olfactory progenitors, immature ORNs, and mature ORNs were examined histologically. Then, the viral transmission status and chronological changes in tissue damage were compared between the direct-infection and close-contact groups. Results In the close-contact group, viral presence could not be detected in both the nose and lungs on day 3, and the virus was identified in both tissues on day 7. In the direct-infection group, the viral load was highest in the nose and lungs on day 3, decreased on day 7, and was no longer detectable on day 14. Histologically, in the direct-infection group, mature ORNs were most depleted on day 3 (p <0.001) and showed a recovery trend on day 14, with similar trends for olfactory progenitors and immature ORNs. In the close-contact group, there was no obvious tissue damage on day 3, but on day 7, the number of all ORN lineage cells significantly decreased (p <0.001). Conclusion SARS-CoV-2 was transmitted even after brief contact and subsequent olfactory epithelium and lung damage occurred more than 3 days after the trigger of infection. The present study also indicated that SARS-CoV-2 damages all ORN lineage cells, but this damage can begin to recover approximately 14 days post infection.
Collapse
Affiliation(s)
- Rumi Ueha
- Swallowing Center, The University of Tokyo Hospital, Tokyo, Japan
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- *Correspondence: Rumi Ueha, ;
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Nara, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | | | | | | | - Tsukasa Uranaka
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirotaka Tanaka
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hironobu Nishijima
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Kondo
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
76
|
Pieniak M, Oleszkiewicz A, Avaro V, Calegari F, Hummel T. Olfactory training - Thirteen years of research reviewed. Neurosci Biobehav Rev 2022; 141:104853. [PMID: 36064146 DOI: 10.1016/j.neubiorev.2022.104853] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
The sense of smell is interrelated with psychosocial functioning. Olfactory disorders often decrease quality of life but treatment options for people with olfactory loss are limited. Additionally, olfactory loss accompanies and precedes psychiatric and neurodegenerative diseases. Regular, systematic exposure to a set of odors, i.e., olfactory training (OT) has been offered for rehabilitation of the sense of smell in clinical practice. As signals from the olfactory bulb are directly projected to the limbic system it has been also debated whether OT might benefit psychological functioning, i.e., mitigate cognitive deterioration or improve emotional processing. In this review we synthesize key findings on OT utility in the clinical practice and highlight the molecular, cellular, and neuroanatomical changes accompanying olfactory recovery in people with smell loss as well as in experimental animal models. We discuss how OT and its modifications have been used in interventions aiming to support cognitive functions and improve well-being. We delineate main methodological challenges in research on OT and suggest areas requiring further scientific attention.
Collapse
Affiliation(s)
- Michal Pieniak
- Smell and Taste Clinic, Technische Universitat Dresden, Dresden, Germany; University of Wrocław, Faculty of Historical and Pedagogical Sciences, Institute of Psychology, Wroclaw, Poland.
| | - Anna Oleszkiewicz
- Smell and Taste Clinic, Technische Universitat Dresden, Dresden, Germany; University of Wrocław, Faculty of Historical and Pedagogical Sciences, Institute of Psychology, Wroclaw, Poland
| | - Vittoria Avaro
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Federico Calegari
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Thomas Hummel
- Smell and Taste Clinic, Technische Universitat Dresden, Dresden, Germany
| |
Collapse
|
77
|
Karimian A, Behjati M, Karimian M. Molecular mechanisms involved in anosmia induced by SARS-CoV-2, with a focus on the transmembrane serine protease TMPRSS2. Arch Virol 2022; 167:1931-1946. [PMID: 35939103 PMCID: PMC9358639 DOI: 10.1007/s00705-022-05545-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022]
Abstract
Since 2020, SARS-CoV-2 has caused a pandemic virus that has posed many challenges worldwide. Infection with this virus can result in a number of symptoms, one of which is anosmia. Olfactory dysfunction can be a temporary or long-term viral complication caused by a disorder of the olfactory neuroepithelium. Processes such as inflammation, apoptosis, and neuronal damage are involved in the development of SARS-CoV-2-induced anosmia. One of the receptors that play a key role in the entry of SARS-CoV-2 into the host cell is the transmembrane serine protease TMPRSS2, which facilitates this process by cleaving the viral S protein. The gene encoding TMPRSS2 is located on chromosome 21. It contains 15 exons and has many genetic variations, some of which increase the risk of disease. Delta strains have been shown to be more dependent on TMPRSS2 for cell entry than Omicron strains. Blockade of this receptor by serine protease inhibitors such as camostat and nafamostat can be helpful for treating SARS-CoV-2 symptoms, including anosmia. Proper understanding of the different functional aspects of this serine protease can help to overcome the therapeutic challenges of SARS-CoV-2 symptoms, including anosmia. In this review, we describe the cellular and molecular events involved in anosmia induced by SARS-CoV-2 with a focus on the function of the TMPRSS2 receptor.
Collapse
Affiliation(s)
- Ali Karimian
- Department of Otorhinolaryngology, School of Medicine, Kashan University of Medical Science, Kashan, Iran
| | - Mohaddeseh Behjati
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| |
Collapse
|
78
|
Abstract
SARS-CoV-2, the virus that causes coronavirus disease (COVID)-19, has become a persistent global health threat. Individuals who are symptomatic for COVID-19 frequently exhibit respiratory illness, which is often accompanied by neurological symptoms of anosmia and fatigue. Mounting clinical data also indicate that many COVID-19 patients display long-term neurological disorders postinfection such as cognitive decline, which emphasizes the need to further elucidate the effects of COVID-19 on the central nervous system. In this review article, we summarize an emerging body of literature describing the impact of SARS-CoV-2 infection on central nervous system (CNS) health and highlight important areas of future investigation.
Collapse
Affiliation(s)
- Nick R. Natale
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
| | - John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
79
|
Mercier J, Osman M, Bouiller K, Tipirdamaz C, Gendrin V, Chirouze C, Lepiller Q, Bouvier E, Royer P, Pierron A, Toko L, Plantin J, Kadiane‐Oussou N, Zayet S, Klopfenstein T. Olfactory dysfunction in COVID-19, new insights from a cohort of 353 patients: The ANOSVID study. J Med Virol 2022; 94:4762-4775. [PMID: 35672249 PMCID: PMC9347548 DOI: 10.1002/jmv.27918] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/15/2022] [Accepted: 06/05/2022] [Indexed: 12/15/2022]
Abstract
Olfactory disorders (OD) pathogenesis, underlying conditions, and prognostic in coronavirus disease 2019 (COVID-19) remain partially described. ANOSVID is a retrospective study in Nord Franche-Comté Hospital (France) that included COVID-19 patients from March 1 2020 to May 31 2020. The aim was to compare COVID-19 patients with OD (OD group) and patients without OD (no-OD group). A second analysis compared patients with anosmia (high OD group) and patients with hyposmia or no OD (low or no-OD group). The OD group presented less cardiovascular and other respiratory diseases compared to the no-OD group (odds ratio [OR] = 0.536 [0.293-0.981], p = 0.041 and OR = 0.222 [0.056-0.874], p = 0.037 respectively). Moreover, history of malignancy was less present in the high OD group compared with the low or no-OD group (OR = 0.170 [0.064-0.455], p < 0.001). The main associated symptoms (OR > 5) with OD were loss of taste (OR = 24.059 [13.474-42.959], p = 0.000) and cacosmia (OR = 5.821 [2.246-15.085], p < 0.001). Most of all ORs decreased in the second analysis, especially for general, digestive, and ENT symptoms. Only two ORs increased: headache (OR = 2.697 [1.746-4.167], p < 0.001) and facial pain (OR = 2.901 [1.441-5.842], p = 0.002). The high OD group had a higher creatinine clearance CKD than the low or no-OD group (89.0 ± 21.1 vs. 81.0 ± 20.5, p = 0.040). No significant difference was found concerning the virological, radiological, and severity criteria. OD patients seem to have less comorbidity, especially better cardiovascular and renal function. Associated symptoms with OD were mostly neurological symptoms. We did not find a significant relationship between OD and less severity in COVID-19 possibly due to methodological bias.
Collapse
Affiliation(s)
- Julien Mercier
- Department of Infectious DiseaseNord Franche‐Comté HospitalTrévenansFrance
| | - Molka Osman
- Faculty of Medicine of TunisUniversity Tunis El ManarTunisTunisia
| | - Kevin Bouiller
- Department of Infectious DiseaseUniversity Hospital of BesançonBesançonFrance
| | - Can Tipirdamaz
- Department of Infectious DiseaseNord Franche‐Comté HospitalTrévenansFrance
| | - Vincent Gendrin
- Department of Infectious DiseaseNord Franche‐Comté HospitalTrévenansFrance
| | - Catherine Chirouze
- Department of Infectious DiseaseUniversity Hospital of BesançonBesançonFrance
| | - Quentin Lepiller
- Department of VirologyUniversity Hospital of BesançonBesançonFrance
| | - Elodie Bouvier
- Clinical Research Unit, Nord Franche‐Comté HospitalTrévenansFrance
| | - Pierre‐Yves Royer
- Department of Infectious DiseaseNord Franche‐Comté HospitalTrévenansFrance
| | - Alix Pierron
- Department of Infectious DiseaseNord Franche‐Comté HospitalTrévenansFrance
| | - Lynda Toko
- Department of Infectious DiseaseNord Franche‐Comté HospitalTrévenansFrance
| | - Julie Plantin
- Department of MicrobiologyNord Franche‐Comté HospitalTrévenansFrance
| | | | - Souheil Zayet
- Department of Infectious DiseaseNord Franche‐Comté HospitalTrévenansFrance
| | | |
Collapse
|
80
|
Shahbaz MA, De Bernardi F, Alatalo A, Sachana M, Clerbaux LA, Muñoz A, Parvatam S, Landesmann B, Kanninen KM, Coecke S. Mechanistic Understanding of the Olfactory Neuroepithelium Involvement Leading to Short-Term Anosmia in COVID-19 Using the Adverse Outcome Pathway Framework. Cells 2022; 11:3027. [PMID: 36230989 PMCID: PMC9563945 DOI: 10.3390/cells11193027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 12/23/2022] Open
Abstract
Loss of the sense of smell (anosmia) has been included as a COVID-19 symptom by the World Health Organization. The majority of patients recover the sense of smell within a few weeks postinfection (short-term anosmia), while others report persistent anosmia. Several studies have investigated the mechanisms leading to anosmia in COVID-19; however, the evidence is scattered, and the mechanisms remain poorly understood. Based on a comprehensive review of the literature, we aim here to evaluate the current knowledge and uncertainties regarding the mechanisms leading to short-term anosmia following SARS-CoV-2 infection. We applied an adverse outcome pathway (AOP) framework, well established in toxicology, to propose a sequence of measurable key events (KEs) leading to short-term anosmia in COVID-19. Those KEs are (1) SARS-CoV-2 Spike proteins binding to ACE-2 expressed by the sustentacular (SUS) cells in the olfactory epithelium (OE); (2) viral entry into SUS cells; (3) viral replication in the SUS cells; (4) SUS cell death; (5) damage to the olfactory sensory neurons and the olfactory epithelium (OE). This AOP-aligned approach allows for the identification of gaps where more research should be conducted and where therapeutic intervention could act. Finally, this AOP gives a frame to explain several disease features and can be linked to specific factors that lead to interindividual differences in response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Muhammad Ali Shahbaz
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Francesca De Bernardi
- Division of Otorhinolaryngology, Department of Biotechnologies and Life Sciences, University of Insubria, Ospedale di Circolo e Fondazione Macchi, 21100 Varese, Italy
| | - Arto Alatalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Magdalini Sachana
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Cooperation and Development (OECD), 75775 Paris, France
| | | | - Amalia Muñoz
- European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium
| | - Surat Parvatam
- Centre for Predictive Human Model Systems, Atal Incubation Centre-Centre for Cellular and Molecular Biology (AIC-CCMB), Habsiguda, Hyderabad 500039, India
| | | | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| |
Collapse
|
81
|
Chen Y, Yang W, Chen F, Cui L. COVID-19 and cognitive impairment: neuroinvasive and blood‒brain barrier dysfunction. J Neuroinflammation 2022; 19:222. [PMID: 36071466 PMCID: PMC9450840 DOI: 10.1186/s12974-022-02579-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global pandemic. Although COVID-19 was initially described as a respiratory disease, there is growing evidence that SARS-CoV-2 is able to invade the brains of COVID-19 patients and cause cognitive impairment. It has been reported that SARS-CoV-2 may have invasive effects on a variety of cranial nerves, including the olfactory, trigeminal, optic, and vagus nerves, and may spread to other brain regions via infected nerve endings, retrograde transport, and transsynaptic transmission. In addition, the blood-brain barrier (BBB), composed of neurovascular units (NVUs) lining the brain microvasculature, acts as a physical barrier between nerve cells and circulating cells of the immune system and is able to regulate the transfer of substances between the blood and brain parenchyma. Therefore, the BBB may be an important structure for the direct and indirect interaction of SARS-CoV-2 with the brain via the blood circulation. In this review, we assessed the potential involvement of neuroinvasion under the SARS-CoV-2 infection, and the potential impact of BBB disorder under SARS-CoV-2 infection on cognitive impairment.
Collapse
Affiliation(s)
- Yanting Chen
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Wenren Yang
- Department of Trauma Center, Hengyang Medical School, Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, China
| | - Feng Chen
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Lili Cui
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China.
| |
Collapse
|
82
|
Bauer L, Rissmann M, Benavides FFW, Leijten L, van Run P, Begeman L, Veldhuis Kroeze EJB, Lendemeijer B, Smeenk H, de Vrij FMS, Kushner SA, Koopmans MPG, Rockx B, van Riel D. In vitro and in vivo differences in neurovirulence between D614G, Delta And Omicron BA.1 SARS-CoV-2 variants. Acta Neuropathol Commun 2022; 10:124. [PMID: 36058935 PMCID: PMC9441226 DOI: 10.1186/s40478-022-01426-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/09/2022] [Indexed: 01/16/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with various neurological complications. Although the mechanism is not fully understood, several studies have shown that neuroinflammation occurs in the acute and post-acute phase. As these studies have predominantly been performed with isolates from 2020, it is unknown if there are differences among SARS-CoV-2 variants in their ability to cause neuroinflammation. Here, we compared the neuroinvasiveness, neurotropism and neurovirulence of the SARS-CoV-2 ancestral strain D614G, the Delta (B.1.617.2) and Omicron BA.1 (B.1.1.529) variants using in vitro and in vivo models. The Omicron BA.1 variant showed reduced neurotropism and neurovirulence compared to Delta and D614G in human induced pluripotent stem cell (hiPSC)-derived cortical neurons co-cultured with astrocytes. Similar differences were obtained in Syrian hamsters inoculated with D614G, Delta and the Omicron BA.1 variant 5 days post infection. Replication in the olfactory mucosa was observed in all hamsters, but most prominently in D614G inoculated hamsters. Furthermore, neuroinvasion into the CNS via the olfactory nerve was observed in D614G, but not Delta or Omicron BA.1 inoculated hamsters. Furthermore, neuroinvasion was associated with neuroinflammation in the olfactory bulb of hamsters inoculated with D614G. Altogether, our findings suggest differences in the neuroinvasive, neurotropic and neurovirulent potential between SARS-CoV-2 variants using in vitro hiPSC-derived neural cultures and in vivo in hamsters during the acute phase of the infection.
Collapse
Affiliation(s)
- Lisa Bauer
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Melanie Rissmann
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Lonneke Leijten
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Peter van Run
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lineke Begeman
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Bas Lendemeijer
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hilde Smeenk
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Femke M S de Vrij
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Barry Rockx
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Debby van Riel
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
83
|
Jansen EB, Orvold SN, Swan CL, Yourkowski A, Thivierge BM, Francis ME, Ge A, Rioux M, Darbellay J, Howland JG, Kelvin AA. After the virus has cleared-Can preclinical models be employed for Long COVID research? PLoS Pathog 2022; 18:e1010741. [PMID: 36070309 PMCID: PMC9451097 DOI: 10.1371/journal.ppat.1010741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) can cause the life-threatening acute respiratory disease called COVID-19 (Coronavirus Disease 2019) as well as debilitating multiorgan dysfunction that persists after the initial viral phase has resolved. Long COVID or Post-Acute Sequelae of COVID-19 (PASC) is manifested by a variety of symptoms, including fatigue, dyspnea, arthralgia, myalgia, heart palpitations, and memory issues sometimes affecting between 30% and 75% of recovering COVID-19 patients. However, little is known about the mechanisms causing Long COVID and there are no widely accepted treatments or therapeutics. After introducing the clinical aspects of acute COVID-19 and Long COVID in humans, we summarize the work in animals (mice, Syrian hamsters, ferrets, and nonhuman primates (NHPs)) to model human COVID-19. The virology, pathology, immune responses, and multiorgan involvement are explored. Additionally, any studies investigating time points longer than 14 days post infection (pi) are highlighted for insight into possible long-term disease characteristics. Finally, we discuss how the models can be leveraged for treatment evaluation, including pharmacological agents that are currently in human clinical trials for treating Long COVID. The establishment of a recognized Long COVID preclinical model representing the human condition would allow the identification of mechanisms causing disease as well as serve as a vehicle for evaluating potential therapeutics.
Collapse
Affiliation(s)
- Ethan B. Jansen
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Spencer N. Orvold
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cynthia L. Swan
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anthony Yourkowski
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Brittany M. Thivierge
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Magen E. Francis
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anni Ge
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Melissa Rioux
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joseph Darbellay
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John G. Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alyson A. Kelvin
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
84
|
Thébault S, Lejal N, Dogliani A, Donchet A, Urvoas A, Valerio-Lepiniec M, Lavie M, Baronti C, Touret F, Da Costa B, Bourgon C, Fraysse A, Saint-Albin-Deliot A, Morel J, Klonjkowski B, de Lamballerie X, Dubuisson J, Roussel A, Minard P, Le Poder S, Meunier N, Delmas B. Biosynthetic proteins targeting the SARS-CoV-2 spike as anti-virals. PLoS Pathog 2022; 18:e1010799. [PMID: 36067253 PMCID: PMC9481167 DOI: 10.1371/journal.ppat.1010799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/16/2022] [Accepted: 08/06/2022] [Indexed: 12/04/2022] Open
Abstract
The binding of the SARS-CoV-2 spike to angiotensin-converting enzyme 2 (ACE2) promotes virus entry into the cell. Targeting this interaction represents a promising strategy to generate antivirals. By screening a phage-display library of biosynthetic protein sequences build on a rigid alpha-helicoidal HEAT-like scaffold (named αReps), we selected candidates recognizing the spike receptor binding domain (RBD). Two of them (F9 and C2) bind the RBD with affinities in the nM range, displaying neutralisation activity in vitro and recognizing distinct sites, F9 overlapping the ACE2 binding motif. The F9-C2 fusion protein and a trivalent αRep form (C2-foldon) display 0.1 nM affinities and EC50 of 8-18 nM for neutralization of SARS-CoV-2. In hamsters, F9-C2 instillation in the nasal cavity before or during infections effectively reduced the replication of a SARS-CoV-2 strain harbouring the D614G mutation in the nasal epithelium. Furthermore, F9-C2 and/or C2-foldon effectively neutralized SARS-CoV-2 variants (including delta and omicron variants) with EC50 values ranging from 13 to 32 nM. With their high stability and their high potency against SARS-CoV-2 variants, αReps provide a promising tool for SARS-CoV-2 therapeutics to target the nasal cavity and mitigate virus dissemination in the proximal environment.
Collapse
Affiliation(s)
- Stéphanie Thébault
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nathalie Lejal
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Alexis Dogliani
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR, Marseille, France
| | - Amélie Donchet
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Agathe Urvoas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette cedex, France
| | - Marie Valerio-Lepiniec
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette cedex, France
| | - Muriel Lavie
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Cécile Baronti
- Unité des Virus Émergents (UVE), Aix Marseille Université, IRD 190, INSERM 1207, Marseille, France
| | - Franck Touret
- Unité des Virus Émergents (UVE), Aix Marseille Université, IRD 190, INSERM 1207, Marseille, France
| | - Bruno Da Costa
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Clara Bourgon
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Audrey Fraysse
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Audrey Saint-Albin-Deliot
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jessica Morel
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bernard Klonjkowski
- UMR Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, Paris, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE), Aix Marseille Université, IRD 190, INSERM 1207, Marseille, France
| | - Jean Dubuisson
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Alain Roussel
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR, Marseille, France
| | - Philippe Minard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette cedex, France
| | - Sophie Le Poder
- UMR Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, Paris, France
| | - Nicolas Meunier
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bernard Delmas
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
85
|
COVID-19, sens chimiques et pathologies métaboliques. MÉDECINE DES MALADIES MÉTABOLIQUES 2022. [PMCID: PMC9433342 DOI: 10.1016/j.mmm.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Une réduction importante de l’odorat, indépendamment de l’obstruction nasale, et du goût, a été signalée comme un des symptômes majeurs suite à l’infection par la COVID-19. Cette réduction est si fréquente qu’elle a été proposée comme un des prédicteurs le plus relevant pour diagnostiquer l’infection. Différents mécanismes par lesquels les virus affectent l’odorat et le goût ont été proposés. L’ACE2 (enzyme de conversion de l’angiotensine 2) a été caractérisé comme le principal récepteur d’entrée du virus SARS-CoV-2 qui interagit avec les protéines « spikes » du virus, ce qui permet à ce dernier d’entrer dans la cellule hôte par un domaine de fusion. Il est principalement exprimé dans la partie supérieure des voies respiratoires, et la plus forte densité de ces protéines se trouve dans les épithéliums olfactif et gustatif. Les données actuellement disponibles indiquent que la cause la plus probable de l’anosmie pendant la COVID-19 est une altération de la fonction des neurones sensoriels olfactifs, associée à l’infection et à la mort des cellules microvillaires, et des péricytes vasculaires. Les mécanismes généraux sont les mêmes en ce qui concerne le goût. La pathogenèse des troubles olfactifs et gustatifs dans la COVID-19 peut entraîner des altérations diverses, dont des modifications de la prise alimentaire et du métabolisme énergétique. Les individus porteurs de pathologies métaboliques ayant une plus forte susceptibilité à la COVID-19 sont, de ce fait, plus exposés aux perturbations des sens chimiques et à leurs conséquences. De plus, des études récentes montrent que la COVID-19 augmenterait la susceptibilité au diabète en s’attaquant directement aux cellules β-pancréatiques.
Collapse
|
86
|
Mendes Paranhos AC, Nazareth Dias ÁR, Machado da Silva LC, Vieira Hennemann Koury G, de Jesus Sousa E, Cerasi AJ, Souza GS, Simões Quaresma JA, Magno Falcão LF. Sociodemographic Characteristics and Comorbidities of Patients With Long COVID and Persistent Olfactory Dysfunction. JAMA Netw Open 2022; 5:e2230637. [PMID: 36074464 PMCID: PMC9459661 DOI: 10.1001/jamanetworkopen.2022.30637] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPORTANCE Determining the characteristics, type, and severity of olfactory dysfunction in patients with long COVID is important for the prognosis and potential treatment of the affected population. OBJECTIVE To describe the sociodemographic and clinical features of patients with long COVID who develop persistent olfactory dysfunction. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study, conducted at a rehabilitation center at a public university in the Amazon region of Brazil between September 9, 2020, and October 20, 2021, comprised 219 patients with long COVID and self-reported neurologic symptoms. Of these 219 patients, 139 received a diagnosis of chronic olfactory dysfunction, as confirmed by the Connecticut Chemosensory Clinical Research Center (CCCRC) test. EXPOSURE Clinical diagnosis of long COVID. MAIN OUTCOMES AND MEASURES Electronic case report forms were prepared for the collection of sociodemographic and clinical data. Patients' sense of smell was evaluated via a CCCRC test, and the association of olfactory dysfunction with aspects of daily life was recorded using a questionnaire. RESULTS Of the 219 patients included in the study, 164 (74.9%) were women, 194 (88.6%) were between 18 and 59 years of age (mean [SD] age, 43.2 [12.9] years), 206 (94.1%) had more than 9 years of education, and 115 (52.5%) had a monthly income of up to US $192.00. In the study group, 139 patients (63.5%) had some degree of olfactory dysfunction, whereas 80 patients (36.5%) had normosmia. Patients with olfactory dysfunction had a significantly longer duration of long COVID symptoms than those in the normosmia group (mean [SD], 242.7 [101.9] vs 221.0 [97.5] days; P = .01). Among patients with anosmia, there was a significant association between olfactory dysfunction and daily activities, especially in terms of impairment in hazard detection (21 of 31 patients [67.7%]), personal hygiene (21 of 31 patients [67.7%]), and food intake (21 of 31 patients [67.7%]). Univariable logistic regression analyses found that ageusia symptoms were associated with the occurrence of olfactory dysfunction (odds ratio [OR], 11.14 [95% CI, 4.76-26.07]; P < .001), whereas headache (OR, 0.41 [95% CI, 0.22-0.76]; P < .001) and sleep disorders (OR, 0.48 [95% CI, 0.26-0.92]; P = .02) showed an inverse association with the occurrence of olfactory dysfunction. CONCLUSIONS AND RELEVANCE Olfactory dysfunction is one of the most important long-term neurologic symptoms of COVID-19, with the highest prevalence seen among women, adults, and outpatients. Patients with olfactory dysfunction may experience persistent severe hyposmia or anosmia more than 1 year from the onset of symptoms, suggesting the possibility of the condition becoming a permanent sequela.
Collapse
Affiliation(s)
- Alna Carolina Mendes Paranhos
- Tropical Medicine Center, Federal University of Pará, Belém, Brazil
- Biological and Health Center, Pará State University, Belém, Brazil
| | | | | | | | | | - Antônio José Cerasi
- Biological Science Center, Federal University of Pará, Belém, Brazil
- Cosmopolita College, Belém, Brazil
| | - Givago Silva Souza
- Tropical Medicine Center, Federal University of Pará, Belém, Brazil
- Biological Science Center, Federal University of Pará, Belém, Brazil
| | - Juarez Antônio Simões Quaresma
- Tropical Medicine Center, Federal University of Pará, Belém, Brazil
- Biological and Health Center, Pará State University, Belém, Brazil
| | - Luiz Fábio Magno Falcão
- Biological and Health Center, Pará State University, Belém, Brazil
- University of São Paulo, São Paulo, Brazil
| |
Collapse
|
87
|
Pietzner M, Chua RL, Wheeler E, Jechow K, Willett JDS, Radbruch H, Trump S, Heidecker B, Zeberg H, Heppner FL, Eils R, Mall MA, Richards JB, Sander LE, Lehmann I, Lukassen S, Wareham NJ, Conrad C, Langenberg C. ELF5 is a potential respiratory epithelial cell-specific risk gene for severe COVID-19. Nat Commun 2022; 13:4484. [PMID: 35970849 PMCID: PMC9378714 DOI: 10.1038/s41467-022-31999-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
Despite two years of intense global research activity, host genetic factors that predispose to a poorer prognosis of COVID-19 infection remain poorly understood. Here, we prioritise eight robust (e.g., ELF5) or suggestive but unreported (e.g., RAB2A) candidate protein mediators of COVID-19 outcomes by integrating results from the COVID-19 Host Genetics Initiative with population-based plasma proteomics using statistical colocalisation. The transcription factor ELF5 (ELF5) shows robust and directionally consistent associations across different outcome definitions, including a >4-fold higher risk (odds ratio: 4.88; 95%-CI: 2.47-9.63; p-value < 5.0 × 10-6) for severe COVID-19 per 1 s.d. higher genetically predicted plasma ELF5. We show that ELF5 is specifically expressed in epithelial cells of the respiratory system, such as secretory and alveolar type 2 cells, using single-cell RNA sequencing and immunohistochemistry. These cells are also likely targets of SARS-CoV-2 by colocalisation with key host factors, including ACE2 and TMPRSS2. In summary, large-scale human genetic studies together with gene expression at single-cell resolution highlight ELF5 as a risk gene for severe COVID-19, supporting a role of epithelial cells of the respiratory system in the adverse host response to SARS-CoV-2.
Collapse
Affiliation(s)
- Maik Pietzner
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
| | - Robert Lorenz Chua
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Katharina Jechow
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julian D S Willett
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- Lady Davis Institute, Jewish General Hospital, Montréal, QC, Canada
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
| | - Saskia Trump
- Molecular Epidemiology Unit, Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina Heidecker
- Department of Cardiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hugo Zeberg
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Health Data Science Unit, Heidelberg University Hospital and BioQuant, Heidelberg, Germany
- German Center for Lung Research (DZL), associated partner site, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Marcus A Mall
- German Center for Lung Research (DZL), associated partner site, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - J Brent Richards
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- Lady Davis Institute, Jewish General Hospital, Montréal, QC, Canada
- Departments of Medicine, Human Genetics, Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
- Department of Twin Research, King's College London, London, United Kingdom
| | - Leif-Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Irina Lehmann
- Molecular Epidemiology Unit, Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sören Lukassen
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Christian Conrad
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Claudia Langenberg
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
88
|
The residual effect of coronovirus disease 2019 on olfactory acuity and mucociliary clearance time: a cross-sectional, controlled study. The Journal of Laryngology & Otology 2022; 136:742-746. [PMID: 35382920 PMCID: PMC9203362 DOI: 10.1017/s0022215122000925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Objective This study evaluated the olfactory, sinonasal and mucociliary functions of patients with post-coronavirus disease 2019 long-term persistent olfactory dysfunction. Method Three groups of 30 patients each were formed: patients with a history of coronavirus disease 2019 infection with self-reported, persistent, sudden-onset olfactory dysfunction (group 1), patients with a history of coronavirus disease 2019 infection without any self-reported olfactory dysfunction (group 2) and healthy controls with no history of coronavirus disease 2019 infection (group 3). Saccharin time, Sniffin’ Sticks, Turkish Nasal Obstruction Symptom Evaluation and Sino-Nasal Outcome Test 22 scores were compared. Results Turkish Nasal Obstruction Symptom Evaluation scores were similar between groups (p = 0.252). Sino-Nasal Outcome Test-22 scores were higher in group 1 than groups 2 and 3 (p < 0.01 and p < 0.001, respectively). Saccharin time was significantly longer in group 1 than groups 2 and 3 (p < 0.05 and p < 0.01, respectively). Group 1 had lower olfactory scores than groups 2 and 3 (p < 0.001 and p < 0.001, respectively). Conclusion Mucociliary clearance time was significantly prolonged in patients with post-coronavirus disease 2019 persistent olfactory dysfunction. Coronavirus disease 2019 infection was likely to cause asymptomatic olfactory dysfunction.
Collapse
|
89
|
Chen M, Ma Y, Chang W. SARS-CoV-2 and the Nucleus. Int J Biol Sci 2022; 18:4731-4743. [PMID: 35874947 PMCID: PMC9305274 DOI: 10.7150/ijbs.72482] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
The ongoing COVID-19 pandemic is caused by an RNA virus, SARS-CoV-2. The genome of SARS-CoV-2 lacks a nuclear phase in its life cycle and is replicated in the cytoplasm. However, interfering with nuclear trafficking using pharmacological inhibitors greatly reduces virus infection and virus replication of other coronaviruses is blocked in enucleated cells, suggesting a critical role of the nucleus in virus infection. Here, we summarize the alternations of nuclear pathways caused by SARS-CoV-2, including nuclear translocation pathways, innate immune responses, mRNA metabolism, epigenetic mechanisms, DNA damage response, cytoskeleton regulation, and nuclear rupture. We consider how these alternations contribute to virus replication and discuss therapeutic treatments that target these pathways, focusing on small molecule drugs that are being used in clinical studies.
Collapse
Affiliation(s)
- Mengqi Chen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yue Ma
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wakam Chang
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
90
|
Park JW, Wang X, Xu RH. Revealing the mystery of persistent smell loss in Long COVID patients. Int J Biol Sci 2022; 18:4795-4808. [PMID: 35874953 PMCID: PMC9305264 DOI: 10.7150/ijbs.73485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/09/2022] [Indexed: 11/05/2022] Open
Abstract
COVID-19 is hopefully approaching its end in many countries as herd immunity develops and weaker strains of SARS-CoV-2 dominate. However, a new concern occurs over the long-term effects of COVID-19, collectively called "Long COVID", as some symptoms of the nervous system last even after patients recover from COVID-19. This review focuses on studies of anosmia, i.e., impairment of smell, which is the most common sensory defect during the disease course and is caused by olfactory dysfunctions. It remains mysterious how the olfactory functions are affected since the virus can't invade olfactory receptor neurons. We describe several leading hypotheses about the mystery in hope to provide insights into the pathophysiology and treatment strategies for anosmia.
Collapse
Affiliation(s)
- Jung Woo Park
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Xiaoyan Wang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Ren-He Xu
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| |
Collapse
|
91
|
Purja S, Oh S, Kim E. A Systematic Review on Neurological Aspects of COVID-19: Exploring the Relationship Between COVID-19-Related Olfactory Dysfunction and Neuroinvasion. Front Neurol 2022; 13:887164. [PMID: 35911902 PMCID: PMC9334857 DOI: 10.3389/fneur.2022.887164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesTo identify neurological aspects of Coronavirus disease 2019 (COVID-19) and to investigate COVID-19 infected patients with and without olfactory dysfunction in relation to polymerase chain reaction (PCR) assay results for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in the cerebrospinal fluid (CSF).MethodsPubMed and EMBASE databases were searched until March 26, 2021, for observational studies with COVID-19 patients that had performed CSF PCR assay due to the neurologic symptom and reported anosmia status.ResultsInitially, 2,387 studies were identified;167 studies performed SARS-CoV-2 CSF PCR assay, of which our review comprised 45 observational studies that conducted CSF PCR assay for SARS-CoV-2 in 101 patients and reported anosmia status in 55 of 101 patients. Central and peripheral neurological manifestations observed in COVID-19 patients were diverse. The most common neurological diagnoses were Guillain-Barré syndrome (GBS) and its variants (24%), followed by encephalopathy (21%). The SARS-CoV-2 PCR assay was positive in only four CSF samples, of which two patients had olfactory dysfunction while the others did not.ConclusionsThe neurological spectrum of COVID-19 is diverse, and direct neuroinvasion of SARS-CoV-2 is rare. The neuroprotection against SARS-CoV-2 in COVID-19 patients with anosmia is controversial, as an equal number of patients with and without olfactory dysfunction had positive CSF PCR results for SARS-CoV-2 in our study, and further studies are required to provide more insight into this topic.
Collapse
Affiliation(s)
- Sujata Purja
- Evidence-Based and Clinical Research Laboratory, Department of Health, Social and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - SuA Oh
- Evidence-Based and Clinical Research Laboratory, Department of Health, Social and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - EunYoung Kim
- Evidence-Based and Clinical Research Laboratory, Department of Health, Social and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, South Korea
- The Graduate School for Food and Drug Administration, The Graduate School for Pharmaceutical Industry Management, College of Pharmacy, Chung-Ang University, Seoul, South Korea
- *Correspondence: EunYoung Kim
| |
Collapse
|
92
|
Sousa FAD, Machado AS, da Costa JC, Silva AC, Pinto AN, Coutinho MB, Meireles L, Sousa CAE. Tailored Approach for Persistent Olfactory Dysfunction After SARS-CoV-2 Infection: A Pilot Study. Ann Otol Rhinol Laryngol 2022; 132:657-666. [PMID: 35822286 DOI: 10.1177/00034894221111093] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE So far, no original studies explored non-randomized, standardized protocols for COVID-19 associated olfactory dysfunction. The main objective was to determine the efficacy of a new protocol for post-COVID olfactopathy while assessing the benefit of adding adjuvant therapies to olfactory training. METHODS Patients suffering from long-lasting post-COVID-19 olfactory dysfunction were evaluated. A non-randomized protocol based on individual nasal endoscopy findings and patient's preferences was applied. Patients were assigned for olfactory training alone or olfactory training + adjuvant therapy. Participants performed olfactory objective and subjective evaluations at first consultation and 3 months after treatment, and results were compared. RESULTS A total of 47 patients were enrolled. All groups showed significant improvement in olfactory thresholds at 3-month follow-up suggesting protocol effectiveness (olfactory training group alone showed a mean threshold difference of 2.9, P < .001; Olfactory training + Topical Corticosteroid showed a mean threshold difference of 4, P = .006; Olfactory training + Topical Corticosteroid + Vitamin B complex showed a mean threshold difference of 4.4, P = .006; Olfactory training + Intranasal Vitamin A and E showed a mean threshold difference of 4.4, P < .001). Olfactory training alone showed lower mean olfactory threshold improvement, when compared to patients undergoing olfactory training + adjuvant therapy (olfactory training alone mean improvement 2.9 ± 2.3 vs olfactory training + adjuvants mean improvement 4.3 ± 2.458, P = .03). CONCLUSIONS This is one of the first studies to demonstrate results in the treatment of post-COVID-19 persistent olfactory impairment. A customized approach based on endoscopy findings and patient's preferences may be a valid option for the management of persistent post-COVID-19 olfactory disorder. Adjuvant therapy could be considered in addition to olfactory training, but further studies are needed in order to confirm their effectiveness in this setting. LEVEL OF EVIDENCE 2c (outcomes research).
Collapse
Affiliation(s)
- Francisco Alves de Sousa
- Serviço de Otorrinolaringologia e Cirurgia da Cabeça e Pescoço (Otorhinolaryngology and Head & Neck Surgery), Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - André Sousa Machado
- Serviço de Otorrinolaringologia e Cirurgia da Cabeça e Pescoço (Otorhinolaryngology and Head & Neck Surgery), Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Joana Carvalho da Costa
- Serviço de Otorrinolaringologia e Cirurgia da Cabeça e Pescoço (Otorhinolaryngology and Head & Neck Surgery), Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ana Costa Silva
- Serviço de Otorrinolaringologia e Cirurgia da Cabeça e Pescoço (Otorhinolaryngology and Head & Neck Surgery), Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ana Nóbrega Pinto
- Serviço de Otorrinolaringologia e Cirurgia da Cabeça e Pescoço (Otorhinolaryngology and Head & Neck Surgery), Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Miguel Bebiano Coutinho
- Serviço de Otorrinolaringologia e Cirurgia da Cabeça e Pescoço (Otorhinolaryngology and Head & Neck Surgery), Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Luís Meireles
- Serviço de Otorrinolaringologia e Cirurgia da Cabeça e Pescoço (Otorhinolaryngology and Head & Neck Surgery), Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Cecília Almeida E Sousa
- Serviço de Otorrinolaringologia e Cirurgia da Cabeça e Pescoço (Otorhinolaryngology and Head & Neck Surgery), Centro Hospitalar Universitário do Porto, Porto, Portugal
| |
Collapse
|
93
|
Xu W, Sunavala‐Dossabhoy G, Spielman AI. Chemosensory loss in
COVID
‐19. Oral Dis 2022; 28 Suppl 2:2337-2346. [PMID: 35790059 PMCID: PMC9349612 DOI: 10.1111/odi.14300] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/08/2023]
Abstract
The COVID‐19 pandemic caused by SARS‐CoV‐2 virus quickly spread globally, infecting over half a billion individuals, and killing over 6 million*. One of the more unusual symptoms was patients' complaints of sudden loss of smell and/or taste, a symptom that has become more apparent as the virus mutated into different variants. Anosmia and ageusia, the loss of smell and taste, respectively, seem to be transient for some individuals, but for others persists even after recovery from the infection. Causes for COVID‐19‐associated chemosensory loss have undergone several hypotheses. These include non‐functional or destroyed olfactory neurons and gustatory receptors or of their supporting cells, disruption of the signaling protein Neuropilin‐1, and disruption in the interaction with semaphorins, key molecules in the gustatory and olfactory axon guidance. The current paper will review these hypotheses and chart out potential therapeutic avenues.
Collapse
Affiliation(s)
- Winnie Xu
- Department of Molecular Pathobiology New York University College of Dentistry New York NY
| | - Gulshan Sunavala‐Dossabhoy
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport and Feist Weiller Cancer Center Shreveport LA
| | - Andrew I. Spielman
- Department of Molecular Pathobiology New York University College of Dentistry New York NY
| |
Collapse
|
94
|
Yu P, Deng W, Bao L, Qu Y, Xu Y, Zhao W, Han Y, Qin C. Comparative pathology of the nasal epithelium in K18-hACE2 Tg mice, hACE2 Tg mice, and hamsters infected with SARS-CoV-2. Vet Pathol 2022; 59:602-612. [PMID: 35094625 PMCID: PMC9208069 DOI: 10.1177/03009858211071016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes severe viral pneumonia and is associated with a high fatality rate. A substantial proportion of patients infected by SARS-CoV-2 suffer from mild hyposmia to complete loss of olfactory function, resulting in anosmia. However, the pathogenesis of the olfactory dysfunction and comparative pathology of upper respiratory infections with SARS-CoV-2 are unknown. We describe the histopathological, immunohistochemical, and in situ hybridization findings from rodent models of SARS-CoV-2 infection. The main histopathological findings in the olfactory epithelia of K8-hACE2 Tg mice, hACE2 Tg mice, and hamsters were varying degrees of inflammatory lesions, including disordered arrangement, necrosis, exfoliation, and macrophage infiltration of the olfactory epithelia, and inflammatory exudation. On the basis of these observations, the nasal epithelia of these rodent models appeared to develop moderate, mild, and severe rhinitis, respectively. Correspondingly, SARS-CoV-2 viral RNA and antigen were mainly identified in the olfactory epithelia and lamina propria. Moreover, viral RNA was abundant in the cerebrum of K18-hACE2 Tg mice, including the olfactory bulb. The K8-hACE2 Tg mouse, hACE2 Tg mouse, and hamster models could be used to investigate the pathology of SARS-CoV-2 infection in the upper respiratory tract and central nervous system. These models could help to provide a better understanding of the pathogenic process of this virus and to develop effective medications and prophylactic treatments.
Collapse
Affiliation(s)
- Pin Yu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC); Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing, China
| | - Wei Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC); Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing, China
| | - Linlin Bao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC); Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing, China
| | - Yajin Qu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC); Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing, China
| | - Yanfeng Xu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC); Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing, China
| | - Wenjie Zhao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC); Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing, China
| | - Yunlin Han
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC); Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC); Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing, China
| |
Collapse
|
95
|
Abstract
The dramatic global consequences of the coronavirus disease 2019 (COVID-19) pandemic soon fueled quests for a suitable model that would facilitate the development and testing of therapies and vaccines. In contrast to other rodents, hamsters are naturally susceptible to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the Syrian hamster (Mesocricetus auratus) rapidly developed into a popular model. It recapitulates many characteristic features as seen in patients with a moderate, self-limiting course of the disease such as specific patterns of respiratory tract inflammation, vascular endothelialitis, and age dependence. Among 4 other hamster species examined, the Roborovski dwarf hamster (Phodopus roborovskii) more closely mimics the disease in highly susceptible patients with frequent lethal outcome, including devastating diffuse alveolar damage and coagulopathy. Thus, different hamster species are available to mimic different courses of the wide spectrum of COVID-19 manifestations in humans. On the other hand, fewer diagnostic tools and information on immune functions and molecular pathways are available than in mice, which limits mechanistic studies and inference to humans in several aspects. Still, under pandemic conditions with high pressure on progress in both basic and clinically oriented research, the Syrian hamster has turned into the leading non-transgenic model at an unprecedented pace, currently used in innumerable studies that all aim to combat the impact of the virus with its new variants of concern. As in other models, its strength rests upon a solid understanding of its similarities to and differences from the human disease, which we review here.
Collapse
|
96
|
SARS-CoV-2 Omicron variant causes mild pathology in the upper and lower respiratory tract of hamsters. Nat Commun 2022; 13:3519. [PMID: 35725735 PMCID: PMC9207884 DOI: 10.1038/s41467-022-31200-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022] Open
Abstract
Since its discovery in 2019, multiple variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have been identified. This study investigates virus spread and associated pathology in the upper and lower respiratory tracts of Syrian golden hamsters at 4 days post intranasal SARS-CoV-2 Omicron infection, in comparison to infection with variants of concern (VOCs) Gamma and Delta as well as ancestral strain 614 G. Pathological changes in the upper and lower respiratory tract of VOC Omicron infected hamsters are milder than those caused by other investigated strains. VOC Omicron infection causes a mild rhinitis with little involvement of the olfactory epithelium and minimal lesions in the lung, with frequent sparing of the alveolar compartment. Similarly, viral antigen, RNA and infectious virus titers are lower in respiratory tissues of VOC Omicron infected hamsters. These findings demonstrate that the variant has a decreased pathogenicity for the upper and lower respiratory tract of hamsters. Since the emergence of SARS-CoV-2 several variants of concerns have been identified, with altered disease progression and transmission dynamics. Here, Armando et al. compare virus spread and pathology in the upper and lower respiratory tracts of Syrian golden hamster after 4 days post infection for VOCs Gamma, Delta and Omicron and find milder pathology for Omicron.
Collapse
|
97
|
Olfactory and gustatory disorders in COVID-19. ALLERGO JOURNAL INTERNATIONAL 2022; 31:243-250. [PMID: 35755859 PMCID: PMC9208356 DOI: 10.1007/s40629-022-00216-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/28/2022] [Indexed: 12/05/2022]
Abstract
Loss of olfaction is one of the symptoms most commonly reported by patients with coronavirus disease 2019 (COVID-19). Although the spontaneous recovery rate is high, recent studies have shown that up to 7% of patients remain anosmic for more than 12 months after the onset of infection, leaving millions of people worldwide suffering from severe olfactory impairment. Olfactory training remains the first recommended treatment. With the continued lack of approved drug treatments, new therapeutic options are being explored. This article reviews the current state of science on COVID-19-related olfactory disorders, focusing on epidemiology, pathophysiology, cure rates, currently available treatment options, and research on new treatments.
Collapse
|
98
|
Zhang Y, Chen X, Jia L, Zhang Y. Potential mechanism of SARS-CoV-2-associated central and peripheral nervous system impairment. Acta Neurol Scand 2022; 146:225-236. [PMID: 35699161 PMCID: PMC9349396 DOI: 10.1111/ane.13657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is more than merely a respiratory disease, as it also presents with various neurological symptoms. SARS‐CoV‐2 may infect the central nervous system (CNS) and thus is neurotropic. However, the pathophysiological mechanism of coronavirus disease 2019 (COVID‐19)‐associated neuropathy remains unclear. Many studies have reported that SARS‐CoV‐2 enters the CNS through the hematogenous and neuronal routes, as well as through the main host neurological immune responses and cells involved in these responses. The neurological immune responses to COVID‐19 and potential mechanisms of the extensive neuroinflammation induced by SARS‐CoV‐2 have been investigated. Although CNS infection with SARS‐CoV‐2 was shown to lead to neuronal impairment, certain aspects of this mechanism remain controversial and require further analysis. In this review, we discussed the pathway and mechanisms of SARS‐CoV‐2 invasion in the CNS, and associated clinical manifestations, such as anosmia, headache, and hyposmia. Moreover, the mechanism of neurological damage caused by SARS‐CoV‐2 may provide potential treatment methods for patients presenting with SARS‐CoV‐2‐associated neuropathy.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Xue Chen
- Department of Respiratory, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lin Jia
- Department of Respiratory, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yulin Zhang
- Department of Respiratory, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
99
|
Ueha R, Ito T, Furukawa R, Kitabatake M, Ouji-Sageshima N, Ueha S, Koyama M, Uranaka T, Kondo K, Yamasoba T. Oral SARS-CoV-2 Inoculation Causes Nasal Viral Infection Leading to Olfactory Bulb Infection: An Experimental Study. Front Cell Infect Microbiol 2022; 12:924725. [PMID: 35770069 PMCID: PMC9234459 DOI: 10.3389/fcimb.2022.924725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/19/2022] [Indexed: 12/26/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can cause long-lasting anosmia, but the impact of SARS-CoV-2 infection, which can spread to the nasal cavity via the oral route, on the olfactory receptor neuron (ORN) lineage and olfactory bulb (OB) remains undetermined. Using Syrian hamsters, we explored whether oral SARS-CoV-2 inoculation can lead to nasal viral infection, examined how SARS-CoV-2 affects the ORN lineage by site, and investigated whether SARS-CoV-2 infection can spread to the OB and induce inflammation. On post-inoculation day 7, SARS-CoV-2 presence was confirmed in the lateral area (OCAM-positive) but not the nasal septum of NQO1-positive and OCAM-positive areas. The virus was observed partially infiltrating the olfactory epithelium, and ORN progenitor cells, immature ORNs, and mature ORNs were fewer than in controls. The virus was found in the olfactory nerve bundles to the OB, suggesting the nasal cavity as a route for SARS-CoV-2 brain infection. We demonstrated that transoral SARS-CoV-2 infection can spread from the nasal cavity to the central nervous system and the possibility of central olfactory dysfunction due to SARS-CoV-2 infection. The virus was localized at the infection site and could damage all ORN-lineage cells.
Collapse
Affiliation(s)
- Rumi Ueha
- Swallowing Center, the University of Tokyo Hospital, Tokyo, Japan
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
- *Correspondence: Rumi Ueha, ;
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Nara, Japan
| | | | | | | | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Misaki Koyama
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
| | - Tsukasa Uranaka
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
| | - Kenji Kondo
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
100
|
Narayanan SN, Shivappa P, Padiyath S, Bhaskar A, Li YW, Merghani TH. The Prevalence and Pathophysiology of Chemical Sense Disorder Caused by the Novel Coronavirus. Front Public Health 2022; 10:839182. [PMID: 35734755 PMCID: PMC9207763 DOI: 10.3389/fpubh.2022.839182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/20/2022] [Indexed: 12/27/2022] Open
Abstract
Emerging viral infections are a ceaseless challenge and remain a global public health concern. The world has not yet come back to normal from the devastating effects of the highly contagious and pathogenic novel coronavirus, or Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Olfactory and taste dysfunction is common in patients infected by the novel coronavirus. In light of the emergence of different coronavirus variants, it is important to update the prevalence and pathophysiology of these side effects. In this review, articles published on the prevalence of olfactory and taste dysfunction from coronavirus disease (COVID-19) and their possible pathophysiologic mechanisms have been reviewed and reported. The modulatory role of different SARS-CoV-2 variants on the chemical senses is then described. The clinical relevance of chemical sense disorder and its long-term morbidity and management is also discussed.
Collapse
Affiliation(s)
- Sareesh Naduvil Narayanan
- Department of Physiology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- *Correspondence: Sareesh Naduvil Narayanan ; orcid.org/0000-0002-2980-2352
| | - Pooja Shivappa
- Department of Basic Sciences, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Sreeshma Padiyath
- Independent Microbiology Researcher, Ras Al Khaimah, United Arab Emirates
| | - Anand Bhaskar
- Department of Biomedical Sciences, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Yan Wa Li
- Department of Biomedical Sciences, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Tarig Hakim Merghani
- Department of Physiology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|