51
|
Gupta P, Neupane YR, Parvez S, Kohli K. Recent advances in targeted nanotherapeutic approaches for breast cancer management. Nanomedicine (Lond) 2021; 16:2605-2631. [PMID: 34854336 DOI: 10.2217/nnm-2021-0281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly occurring tumor disease worldwide. Breast cancer is currently managed by conventional chemotherapy, which is inadequate in curbing this heterogeneous disease and results in off-site toxic effects, suggesting effective treatment approaches with better therapeutic profiles are needed. This review, therefore, focuses on the recent advancements in delivering therapeutics to the target site using passive and/or active targeted nanodrug-delivery systems to ameliorate endolysosomal escape. In addition, recent strategies in targeting breast cancer stem cells are discussed. The role of naturally cell-secreted nanovesicles (exosomes) in the management of triple-negative breast cancer is also discussed.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, Singapore, 117559
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.,Lloyd Institute of Management & Technology (Pharm.), Plot No. 11, Knowledge Park-II, Greater Noida, 201308, Uttar Pradesh, India
| |
Collapse
|
52
|
Mehmood Y, Anwar F, Saleem U, Hira S, Ahmad B, Bashir M, Imtiaz MT, Najm S, Ismail T. The anti-cancer potential of 2,4,6 tris-methyphenylamino1,3,5-triazine compound against mammary glands cancer: Via down-regulating the hormonal, inflammatory mediators, and oxidative stress. Life Sci 2021; 285:119994. [PMID: 34592236 DOI: 10.1016/j.lfs.2021.119994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022]
Abstract
AIM OF THE STUDY Breast cancer is caused by abnormal growth of the cells and progressed due to the over-expression of estrogen (ER) and progesterone (PR). The current study was designed to evaluate the anti-tumor activity of 2,4,6 tris-methyphenylamino1,3,5-triazine compound (MPAT) in N-nitroso, N-methyl urea (NMU)-induced mammary gland cancer. METHODS Molecular docking and in-vitro studies were conducted before the in-vivo analysis. Female Albino rats were divided into 5 groups (n = 6). Group I received Carboxymethylcellulose (CMC) (1 mL/100 g). Group II (diseased group) received NMU 50 mg/kg. Group III (standard group) received tamoxifen (5 mg/kg). Group IV-V received MPAT at doses of 30 and 60 mg/kg respectively. All groups received NMU intraperitoneally except the control group at 3 weeks intervals for 12 weeks. After 12 weeks of NMU dosing, MPAT was given for 15 consecutive days. Biochemical, oxidative stress markers, hormonal profile, and inflammatory mediators were analyzed. KEY FINDINGS MPAT showed significant interaction with the selected targets in docking studies. An over-expression of ER and PR was observed in NMU-treated rats which were restored significantly after MPAT administration. Nitrite and MDA levels were high in the diseased group and MPAT treatment attenuated the oxidative damage after treatment. Antioxidants such as superoxide dismutase (SOD), Catalase (CAT), total sulfhydryl (TSH), glutathione (GSH), and Lactate dehydrogenase (LDH) values were low in NMU-treated rats. SIGNIFICANCE This study concluded that MPAT can be used as an anticancer agent due to its significant effects on down-regulating the hormonal profile and oxidative stress markers.
Collapse
Affiliation(s)
- Yumna Mehmood
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Sundas Hira
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Manal Bashir
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Muhammad Tayyab Imtiaz
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Saima Najm
- Faculty of Pharmacy, Lahore College of Pharmaceutical Sciences, Lahore 55150, Pakistan
| | - Tariq Ismail
- COMSAT University, Department of Pharmacy, Abbottabad, Pakistan.
| |
Collapse
|
53
|
Lee HS, Lee IH, Kang K, Park SI, Kwon TW, Lee DY. A Network Pharmacology Analysis of the Systems-Perspective Anticancer Mechanisms of the Herbal Drug FDY2004 for Breast Cancer. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211049133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is a malignant tumor with high incidence, prevalence, and mortality rates in women. In recent years, herbal drugs have been assessed as anticancer therapy against breast cancer, owing to their promising therapeutic effects and reduced toxicity. However, their pharmacological mechanisms have not been fully explored at the systemic level. Here, we conducted a network pharmacology analysis of the systems-perspective molecular mechanisms of FDY2004, an anticancer herbal formula that consists of Moutan Radicis Cortex, Persicae Semen , and Rhei Radix et Rhizoma, against breast cancer. We determined that FDY2004 may contain 28 active compounds that exert pharmacological effects by targeting 113 breast cancer-related human genes/proteins. Based on the gene ontology terms, the FDY2004 targets were involved in modulating biological processes such as cell growth, cell proliferation, and apoptosis. Pathway enrichment analysis identified various breast cancer-associated pathways that may mediate the anticancer activity of FDY2004, including the PI3K-Akt, MAPK, TNF, HIF-1, focal adhesion, estrogen, ErbB, NF-kappa B, p53, and VEGF signaling pathways. Thus, our analysis offers novel insights into the anticancer properties of herbal drugs for breast cancer treatment from a systemic perspective.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, 173 Ogeum-ro, Songpa-gu, Seoul 05641, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
54
|
Shepherd J, Waller A, Sanson-Fisher R, Zdenkowski N, Douglas C, Clark K. Oncology patients’ and oncology nurses’ views on palliative chemotherapy: A cross-sectional comparison. Collegian 2021. [DOI: 10.1016/j.colegn.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
55
|
Plava J, Burikova M, Cihova M, Trnkova L, Smolkova B, Babal P, Krivosikova L, Janega P, Rojikova L, Drahosova S, Bohac M, Danisovic L, Kucerova L, Miklikova S. Chemotherapy-triggered changes in stromal compartment drive tumor invasiveness and progression of breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:302. [PMID: 34579743 PMCID: PMC8477536 DOI: 10.1186/s13046-021-02087-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022]
Abstract
Background Chemotherapy remains a standard treatment option for breast cancer despite its toxic effects to normal tissues. However, the long-lasting effects of chemotherapy on non-malignant cells may influence tumor cell behavior and response to treatment. Here, we have analyzed the effects of doxorubicin (DOX) and paclitaxel (PAC), commonly used chemotherapeutic agents, on the survival and cellular functions of mesenchymal stromal cells (MSC), which comprise an important part of breast tumor microenvironment. Methods Chemotherapy-exposed MSC (DOX-MSC, PAC-MSC) were co-cultured with three breast cancer cell (BCC) lines differing in molecular characteristics to study chemotherapy-triggered changes in stromal compartment of the breast tissue and its relevance to tumor progression in vitro and in vivo. Conditioned media from co-cultured cells were used to determine the cytokine content. Mixture of BCC and exposed or unexposed MSC were subcutaneously injected into the immunodeficient SCID/Beige mice to analyze invasion into the surrounding tissue and possible metastases. The same mixtures of cells were applied on the chorioallantoic membrane to study angiogenic potential. Results Therapy-educated MSC differed in cytokine production compared to un-exposed MSC and influenced proliferation and secretory phenotype of tumor cells in co-culture. Histochemical tumor xenograft analysis revealed increased invasive potential of tumor cells co-injected with DOX-MSC or PAC-MSC and also the presence of nerve fiber infiltration in tumors. Chemotherapy-exposed MSC have also influenced angiogenic potential in the model of chorioallantoic membrane. Conclusions Data presented in this study suggest that neoadjuvant chemotherapy could possibly alter otherwise healthy stroma in breast tissue into a hostile tumor-promoting and metastasis favoring niche. Understanding of the tumor microenvironment and its complex net of signals brings us closer to the ability to recognize the mechanisms that prevent failure of standard therapy and accomplish the curative purpose. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02087-2.
Collapse
Affiliation(s)
- Jana Plava
- Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| | - Monika Burikova
- Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Marina Cihova
- Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Lenka Trnkova
- Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Bozena Smolkova
- Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Pavel Babal
- Department of Pathology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08, Bratislava, Slovakia
| | - Lucia Krivosikova
- Department of Pathology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08, Bratislava, Slovakia
| | - Pavol Janega
- Department of Pathology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08, Bratislava, Slovakia
| | - Lucia Rojikova
- Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Slavka Drahosova
- Hermes LabSystems, s.r.o., Puchovska 12, 831 06, Bratislava, Slovakia
| | - Martin Bohac
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, National Cancer Institute, Klenova 1, 833 10, Bratislava, Slovakia.,Department of Oncosurgery, National Cancer Institute, Klenova 1, Bratislava, Slovakia.,Regenmed Ltd, Medena 29, 811 08, Bratislava, Slovakia
| | - Lubos Danisovic
- Regenmed Ltd, Medena 29, 811 08, Bratislava, Slovakia.,Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08, Bratislava, Slovakia
| | - Lucia Kucerova
- Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Svetlana Miklikova
- Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| |
Collapse
|
56
|
Mirgany TO, Abdalla AN, Arifuzzaman M, Motiur Rahman AFM, Al-Salem HS. Quinazolin-4(3 H)-one based potential multiple tyrosine kinase inhibitors with excellent cytotoxicity. J Enzyme Inhib Med Chem 2021; 36:2055-2067. [PMID: 34551654 PMCID: PMC8462848 DOI: 10.1080/14756366.2021.1972992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A series of quinazolin-4(3H)-one derivatives were synthesised and evaluated for their cytotoxicity against human Caucasian breast adenocarcinoma (MCF-7) and human ovarian carcinoma (A2780) cell lines. Cytotoxicity of the most tested compounds was 2- to 30-fold more than the positive control lapatinib (IC50 of 2j = 3.79 ± 0.96; 3j = 0.20 ± 0.02; and lapatinib = 5.9 ± 0.74) against MCF7 cell lines except two compounds (IC50 of 2 b = 15.72 ± 0.07 and 2e = 14.88 ± 0.99). On the other hand, cytotoxicity was 4 − 87 folds (IC50 of 3a = 3.00 ± 1.20; 3 g = 0.14 ± 0.03) more the positive control lapatinib (IC50 = 12.11 ± 1.03) against A2780 cell lines except compound 2e (IC50 = 16.43 ± 1.80). Among the synthesised quinazolin-4(3H)-one derivatives, potent cytotoxic 2f-j and 3f-j were investigated for molecular mechanism of action. Inhibitory activities of the compounds were tested against multiple tyrosine protein kinases (CDK2, HER2, EGFR and VEGFR2) enzymes. As expected, all the quinazolin-4(3H)-one derivatives were showed comparable inhibitory activity against those kinases tested, especially, compound 2i and 3i showed potent inhibitory activity against CDK2, HER2, EGFR tyrosine kinases. Therefore, molecular docking analysis for quinazolin-4(3H)-one derivatives 2i and 3i were performed, and it was revealed that compounds 2i and 3i act as ATP non-competitive type-II inhibitor against CDK2 kinase enzymes and ATP competitive type-I inhibitor against EGFR kinase enzymes. However, in case of HER2, compounds 2i act as ATP non-competitive type-II inhibitor and 3i act as ATP competitive type-I inhibitor. Docking results of known inhibitors were compared with synthesised compounds and found synthesised 2i and 3i are superior than the known inhibitors in case of interactions. In addition, in silico drug likeness properties of quinazolin-4(3H)-one derivatives showed better predicted ADME values than lapatinib.
Collapse
Affiliation(s)
- Tebyan O Mirgany
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Md Arifuzzaman
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - A F M Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Huda S Al-Salem
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
57
|
Ahmed S, Mirzaei H, Aschner M, Khan A, Al-Harrasi A, Khan H. Marine peptides in breast cancer: Therapeutic and mechanistic understanding. Biomed Pharmacother 2021; 142:112038. [PMID: 34411915 DOI: 10.1016/j.biopha.2021.112038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most prevalent invasive form of cancer in females and posing a great challenge for overcoming disease burden. The growth in global cancer deaths mandates the discovery of new efficacious natural anti-tumor treatments. In this regard, aquatic species offer a rich supply of possible drugs. Studies have shown that several marine peptides damage cancer cells by a broad range of pathways, including apoptosis, microtubule balance disturbances, and suppression of angiogenesis. Traditional chemotherapeutic agents are characterized by a plethora of side effects, including immune response suppression. The discovery of novel putative anti-cancer peptides with lesser toxicity is therefore necessary and timely, especially those able to thwart multi drug resistance (MDR). This review addresses marine anti-cancer peptides for the treatment of breast cancer.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Postal Code, 616, Birkat Al Mauz, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Postal Code, 616, Birkat Al Mauz, Nizwa, Oman.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
58
|
Wu W, Yang Y, Liang Z, Song X, Huang Y, Qiu L, Qiu X, Yu S, Xue W. Near infrared II laser controlled free radical releasing nanogenerator for synergistic nitric oxide and alkyl radical therapy of breast cancer. NANOSCALE 2021; 13:11169-11187. [PMID: 34137412 DOI: 10.1039/d1nr01859k] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, alkyl radicals have attracted much attention in cancer therapy due to their oxygen-independent generation property. For the first time, alkyl radical and nitric oxide (NO) combined therapy is demonstrated as an effective strategy for tumor inhibition. As a proof of concept, a biocompatible free radical nanogenerator with near-infrared (NIR) II laser-induced simultaneous NO and alkyl radical release property was elaborately fabricated. In particular, an NIR II molecule (IR 1061), NO donor (BNN6) and alkyl radical initiator (AIPH) were firstly encapsulated in a natural lecithin stabilized phase change material, and then further functionalized by an amphiphile of DSPE-PEG-RGD with specific tumor targeting ability, finally obtaining biocompatible P(IR/BNN6/AIPH)@Lip-RGD. Upon NIR II laser irradiation, the photothermal effect generated from IR 1061 could trigger the phase change of the nanogenerator by releasing the encapsulated BNN6 and AIPH, and subsequently decompose them to generate highly active NO and alkyl radicals. Remarkably, NO and alkyl radical release profiles of P(IR/BNN6/AIPH)@Lip-RGD could be precisely controlled using intermittent NIR II laser irradiation. Moreover, P(IR/BNN6/AIPH)@Lip-RGD displayed a synergistic NO and alkyl radicals' anticancer effect by significantly inhibiting the growth of breast tumors, upon NIR II laser exposure. Furthermore, an in depth mechanistic study revealed that synergistic NO and alkyl radical effect induced cancer cell apoptosis through a mitochondria-mediated apoptotic pathway. The synergistic effect jointly caused a burst generation of mitochondrial ROS, which significantly down-regulated Bcl-2 protein expression, accelerated cytochrome c release and triggered a cascade of apoptosis-related proteins of Caspase-3 and Caspase-9.
Collapse
Affiliation(s)
- Weiwei Wu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Español A, Salem A, Sanchez Y, Sales ME. Breast cancer: Muscarinic receptors as new targets for tumor therapy. World J Clin Oncol 2021; 12:404-428. [PMID: 34189066 PMCID: PMC8223712 DOI: 10.5306/wjco.v12.i6.404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/26/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
The development of breast cancer is a complex process that involves the participation of different factors. Several authors have demonstrated the overexpression of muscarinic acetylcholine receptors (mAChRs) in different tumor tissues and their role in the modulation of tumor biology, positioning them as therapeutic targets in cancer. The conventional treatment for breast cancer involves surgery, radiotherapy, and/or chemotherapy. The latter presents disadvantages such as limited specificity, the appearance of resistance to treatment and other side effects. To prevent these side effects, several schedules of drug administration, like metronomic therapy, have been developed. Metronomic therapy is a type of chemotherapy in which one or more drugs are administered at low concentrations repetitively. Recently, two chemotherapeutic agents usually used to treat breast cancer have been considered able to activate mAChRs. The combination of low concentrations of these chemotherapeutic agents with muscarinic agonists could be a useful option to be applied in breast cancer treatment, since this combination not only reduces tumor cell survival without affecting normal cells, but also decreases pathological neo-angiogenesis, the expression of drug extrusion proteins and the cancer stem cell fraction. In this review, we focus on the previous evidences that have positioned mAChRs as relevant therapeutic targets in breast cancer and analyze the effects of administering muscarinic agonists in combination with conventional chemotherapeutic agents in a metronomic schedule.
Collapse
Affiliation(s)
- Alejandro Español
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Agustina Salem
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Yamila Sanchez
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - María Elena Sales
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
60
|
Liu Z, Shan J, Yu Q, Wang X, Song X, Wang F, Li C, Yu Z, Yu J. Real-World Data on Apatinib Efficacy - Results of a Retrospective Study in Metastatic Breast Cancer Patients Pretreated With Multiline Treatment. Front Oncol 2021; 11:643654. [PMID: 34178630 PMCID: PMC8224527 DOI: 10.3389/fonc.2021.643654] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives The NCCN guidelines recommend that the addition of bevacizumab should be considered in metastatic breast cancers in some circumstances, but there are no recommendations for the similar antiangiogenic drug apatinib. The aim of this study was to evaluate the safety and efficacy of apatinib in metastatic breast cancer patients pretreated with multiline treatment in a real-world setting. Materials and Methods Metastatic breast cancer patients pretreated with multiline treatment who had apatinib treatment initiated from September 2015 to August 2019 at Shandong Cancer Hospital and Institute were included. The primary endpoints included PFS and OS, and the secondary endpoint was treatment-related toxicity. Results A total of 66 patients with metastatic breast cancer received apatinib treatment after failure of multiline chemotherapy in this study. The median PFS and OS of all 66 patients were 6.0 months and 10.0 months, respectively. The clinical beneficial rate was 40.9%. All patients tolerated treatment well, and no patients died of toxicity. The common toxicities of apatinib were hand and foot syndrome, secondary hypertension and fatigue events. The number of prior chemotherapy regimens was significantly associated with DFS and OS. Capecitabine may be a better choice for combination with a longer median OS of 19 months, while apatinib combined with other drugs was 9 months, and the apatinib monotherapy was 10 months. Conclusion Apatinib produced moderate efficacy in metastatic breast cancer patients pretreated with multiline treatment with no significant treatment-related adverse events. Apatinib might be a choice for women as a maintenance salvage therapy following multiline chemotherapy failure.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Shan
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qian Yu
- Department of Surgery, Cleveland Clinic, Cleveland, OH, United States
| | - Xinzhao Wang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiang Song
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Fukai Wang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chao Li
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhiyong Yu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
61
|
Dar TUH, Dar SA, Islam SU, Mangral ZA, Dar R, Singh BP, Verma P, Haque S. Lichens as a repository of bioactive compounds: an open window for green therapy against diverse cancers. Semin Cancer Biol 2021; 86:1120-1137. [PMID: 34052413 DOI: 10.1016/j.semcancer.2021.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023]
Abstract
Lichens, algae and fungi-based symbiotic associations, are sources of many important secondary metabolites, such as antibiotics, anti-inflammatory, antioxidants, and anticancer agents. Wide range of experiments based on in vivo and in vitro studies revealed that lichens are a rich treasure of anti-cancer compounds. Lichen extracts and isolated lichen compounds can interact with all biological entities currently identified to be responsible for tumor development. The critical ways to control the cancer development include induction of cell cycle arrests, blocking communication of growth factors, activation of anti-tumor immunity, inhibition of tumor-friendly inflammation, inhibition of tumor metastasis, and suppressing chromosome dysfunction. Also, lichen-based compounds induce the killing of cells by the process of apoptosis, autophagy, and necrosis, that inturn positively modulates metabolic networks of cells against uncontrolled cell division. Many lichen-based compounds have proven to possess potential anti-cancer activity against a wide range of cancer cells, either alone or in conjunction with other anti-cancer compounds. This review primarily emphasizes on an updated account of the repository of secondary metabolites reported in lichens. Besides, we discuss the anti-cancer potential and possible mechanism of the most frequently reported secondary metabolites derived from lichens.
Collapse
Affiliation(s)
- Tanvir Ul Hassan Dar
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir, India.
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shahid Ul Islam
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir, India
| | - Zahid Ahmed Mangral
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir, India
| | - Rubiya Dar
- Centre of Research for Development, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Bhim Pratap Singh
- Department of Agriculture & Environmental Sciences, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Sonepat, Haryana, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
62
|
Dai Y, Zhu Y, Cheng J, Shen J, Huang H, Liu M, Chen Z, Liu Y. Nitric oxide-releasing platinum(IV) prodrug efficiently inhibits proliferation and metastasis of cancer cells. Chem Commun (Camb) 2021; 56:14051-14054. [PMID: 33103676 DOI: 10.1039/d0cc05422d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A dual-functional Pt(iv) prodrug, Pt-furoxan, can release cytotoxic cisplatin and signaling molecule NO upon cellular internalization. NO modulates the cellular response towards cisplatin, leading to a synergistic anti-proliferation effect and a promising anti-metastasis effect both in vitro and in vivo.
Collapse
Affiliation(s)
- Yi Dai
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China. and College of Pharmaceutical Sciences, Anhui Xinhua University, Hefei, Anhui 230088, China
| | - Yang Zhu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Junjie Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Juan Shen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Hai Huang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Manman Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Zhaolin Chen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Pharmacy, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
63
|
Alanazi MM, Mahdy HA, Alsaif NA, Obaidullah AJ, Alkahtani HM, Al-Mehizia AA, Alsubaie SM, Dahab MA, Eissa IH. New bis([1,2,4]triazolo)[4,3-a:3',4'-c]quinoxaline derivatives as VEGFR-2 inhibitors and apoptosis inducers: Design, synthesis, in silico studies, and anticancer evaluation. Bioorg Chem 2021; 112:104949. [PMID: 34023640 DOI: 10.1016/j.bioorg.2021.104949] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/08/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
A new series of bis([1,2,4]triazolo)[4,3-a:3',4'-c]quinoxaline derivatives were designed and synthesized to have the main essential pharmacophoric features of VEGFR-2 inhibitors. VEGFR-2 inhibitory activities were assessed for the designed compounds. In addition, cytotoxic activity was evaluated for all derivatives against two human cancer cell lines namely, HepG-2 and MCF-7. The most cytotoxic compound 20 h was subjected to further biological investigations including cell cycle, apoptosis, caspase-3, caspase-9, BAX, and Bcl-2 analyses. Different in silico studies as docking, ADMET and toxicity were carried out. The results exhibited that compounds 20b, 20e, 20h and20mshowed promising VEGFR-2 inhibitory activities with IC50values of 5.7, 6.7, 3.2, and 3.1 µM, respectively. Moreover, these promising members exhibited the highest antiproliferative activities against the two cell lines with IC50values ranging from 3.3 to 14.2 µM, comparing to sorafenib (IC50 = 2.17 and 3.43 µM against HepG2 and MCF-7, respectively). Additionally, compound 20h induced cell cycle arrest of HepG2 cells at G2/M phase. Also, such compound increased the progress of apoptosis by 3.5-fold compared to the control. As well, compound 20h showed a significant increase in the level of caspase-3 (2.07-fold), caspase-9 (1.72-fold), and BAX (1.83-fold), and a significant decrease in Bcl-2 level (1.92-fold). The in silico studies revealed that the synthesized compounds have binding pattern like that of sorafenib.
Collapse
Affiliation(s)
- Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia.
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Abdulrahman A Al-Mehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Sultan M Alsubaie
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
64
|
The Affinity of Carboplatin to B-Vitamins and Nucleobases. Int J Mol Sci 2021; 22:ijms22073634. [PMID: 33807309 PMCID: PMC8037198 DOI: 10.3390/ijms22073634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 11/17/2022] Open
Abstract
Platinum compounds have found wide application in the treatment of various types of cancer and carboplatin is one of the main platinum-based drugs used as antitumor agents. The anticancer activity of carboplatin arises from interacting with DNA and inducing programmed cell death. However, such interactions may occur with other chemical compounds, such as vitamins containing aromatic rings with lone-pair orbitals, which reduces the anti-cancer effect of carboplatin. The most important aspect of the conducted research was related to the evaluation of carboplatin affinity to vitamins from the B group and the potential impact of such interactions on the reduction of therapeutic capabilities of carboplatin in anticancer therapy. Realized computations, including estimation of Gibbs Free Energies, allowed for the identification of the most reactive molecule, namely vitamin B6 (pyridoxal phosphate). In this case, the computational estimations indicating carboplatin reactivity were confirmed by spectrophotometric measurements.
Collapse
|
65
|
Cayetano-Salazar L, Olea-Flores M, Zuñiga-Eulogio MD, Weinstein-Oppenheimer C, Fernández-Tilapa G, Mendoza-Catalán MA, Zacapala-Gómez AE, Ortiz-Ortiz J, Ortuño-Pineda C, Navarro-Tito N. Natural isoflavonoids in invasive cancer therapy: From bench to bedside. Phytother Res 2021; 35:4092-4110. [PMID: 33720455 DOI: 10.1002/ptr.7072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 01/23/2023]
Abstract
Cancer is a public health problem worldwide, and one of the crucial steps within tumor progression is the invasion and metastasis of cancer cells, which are directly related to cancer-associated deaths in patients. Recognizing the molecular markers involved in invasion and metastasis is essential to find targeted therapies in cancer. Interestingly, about 50% of the discovered drugs used in chemotherapy have been obtained from natural sources such as plants, including isoflavonoids. Until now, most drugs are used in chemotherapy targeting proliferation and apoptosis-related molecules. Here, we review recent studies about the effect of isoflavonoids on molecular targets and signaling pathways related to invasion and metastasis in cancer cell cultures, in vivo assays, and clinical trials. This review also reports that glycitein, daidzein, and genistein are the isoflavonoids most studied in preclinical and clinical trials and displayed the most anticancer activity targeting invasion-related proteins such as MMP-2 and MMP-9 and also EMT-associated proteins. Therefore, the diversity of isoflavonoids is promising molecules to be used as chemotherapeutic in invasive cancer. In the future, more clinical trials are needed to validate the effectiveness of the various natural isoflavonoids in the treatment of invasive cancer.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miriam D Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | | | - Gloria Fernández-Tilapa
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Ana E Zacapala-Gómez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Carlos Ortuño-Pineda
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| |
Collapse
|
66
|
Hanna K, Mayden K. Chemotherapy Treatment Considerations in Metastatic Breast Cancer. J Adv Pract Oncol 2021; 12:6-12. [PMID: 34113474 PMCID: PMC8020942 DOI: 10.6004/jadpro.2021.12.2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Historically, metastatic breast cancer (MBC) was primarily treated with surgery and chemotherapy. To that end, a wide array of chemotherapy agents are currently available for the treatment of MBC. To date, there has been considerable progress in the understanding of the molecular underpinnings of breast cancer, which has led to the development of targeted agents. Despite this, eventually all patients with metastatic disease will receive single-agent or combination chemotherapy either to control spread or as a palliative measure. Currently, combinations of targeted agents and chemotherapy are under investigation, thereby indicating that chemotherapeutic agents will continue to be the backbone of future breast cancer therapy. However, there remains an unmet need to optimize the sequencing of chemotherapy agents based on individual patient characteristics and gene expression profiles in order to reduce toxicities and improve outcomes for patients.
Collapse
Affiliation(s)
| | - Kelley Mayden
- Ballad Health Cancer Care-Bristol, Bristol, Tennessee
| |
Collapse
|
67
|
Lee HS, Lee IH, Kang K, Park SI, Moon SJ, Lee CH, Lee DY. A Network Pharmacology Study on the Molecular Mechanisms of FDY003 for Breast Cancer Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3919143. [PMID: 33628298 PMCID: PMC7881938 DOI: 10.1155/2021/3919143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Herbal medicines have drawn considerable attention with regard to their potential applications in breast cancer (BC) treatment, a frequently diagnosed malignant disease, considering their anticancer efficacy with relatively less adverse effects. However, their mechanisms of systemic action have not been understood comprehensively. Based on network pharmacology approaches, we attempted to unveil the mechanisms of FDY003, an herbal drug comprised of Lonicera japonica Thunberg, Artemisia capillaris Thunberg, and Cordyceps militaris, against BC at a systemic level. We found that FDY003 exhibited pharmacological effects on human BC cells. Subsequently, detailed data regarding the biochemical components contained in FDY003 were obtained from comprehensive herbal medicine-related databases, including TCMSP and CancerHSP. By evaluating their pharmacokinetic properties, 18 chemical compounds in FDY003 were shown to be potentially active constituents interacting with 140 BC-associated therapeutic targets to produce the pharmacological activity. Gene ontology enrichment analysis using g:Profiler indicated that the FDY003 targets were involved in the modulation of cellular processes, involving the cell proliferation, cell cycle process, and cell apoptosis. Based on a KEGG pathway enrichment analysis, we further revealed that a variety of oncogenic pathways that play key roles in the pathology of BC were significantly enriched with the therapeutic targets of FDY003; these included PI3K-Akt, MAPK, focal adhesion, FoxO, TNF, and estrogen signaling pathways. Here, we present a network-perspective of the molecular mechanisms via which herbal drugs treat BC.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, 173 Ogeum-ro, Songpa-gu, Seoul 05641, Republic of Korea
| | - Seung-Joon Moon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Chol Hee Lee
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
68
|
Zhu X, Li Q, Song W, Peng X, Zhao R. P2X7 receptor: a critical regulator and potential target for breast cancer. J Mol Med (Berl) 2021; 99:349-358. [PMID: 33486566 DOI: 10.1007/s00109-021-02041-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer is currently the most common cancer and the leading cause of cancer death among women worldwide. Advanced breast cancer is prone to metastasis, and there is currently no drug to cure metastatic breast cancer. The purinergic ligand-gated ion channel 7 receptor is an ATP-gated nonselective cation channel receptor and is involved in signal transduction, growth regulation, cytokine secretion, and tumor cell development. Recent studies have shown that upregulation of the P2X7 receptor in breast cancer can mediate AKT signaling pathways, Ca2 þ-activated SK3 potassium channels, and EMT and regulate the secretion of small extracellular vesicles to promote breast cancer invasion and migration, which are affected by factors such as hypoxia and ATP. In addition, studies have shown that microRNAs can bind to the 3' untranslated region of the P2X7 receptor, which affects the occurrence and development of breast cancer by upregulating and downregulating P2X7 receptor expression. Studies have shown that new P2X7 receptor inhibitors, such as emodin and Uncaria tomentosa, can inhibit P2X7 receptor-mediated breast cancer invasion and are expected to be used clinically. This article reviews the research progress on the relationship between the P2X7 receptor and breast cancer to provide new ideas and a basis for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaodi Zhu
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Qianqian Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Wei Song
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
69
|
Hu Y, Ran M, Wang B, Lin Y, Cheng Y, Zheng S. Co-Delivery of Docetaxel and Curcumin via Nanomicelles for Enhancing Anti-Ovarian Cancer Treatment. Int J Nanomedicine 2020; 15:9703-9715. [PMID: 33299312 PMCID: PMC7721301 DOI: 10.2147/ijn.s274083] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/06/2020] [Indexed: 02/05/2023] Open
Abstract
Introductions Ovarian cancer is a stubborn malignancy of gynecological system with a high mortality rate. Docetaxel (DTX), the second-generation of anti-tumor drug Taxane, has shown superior efficacy over classic paclitaxel (PTX) in certain cancers. However, its clinical application is hindered by poor bioavailability. The natural spice extract curcumin (Cur) has been discovered to improve the bioavailability of DTX. Therefore, it is meaningful to develop a combined drug strategy of DTX and Cur with methoxy poly (ethylene glycol)-poly (L-lactic acid) (MPEG-PLA) copolymers in ovarian cancer therapy. Methods Injectable DTX-Cur/M nanomicelles were synthesized and characterized in the study. The molecular interactions between DTX, Cur and copolymer were simulated and the drug release behavior was investigated. The anti-tumor activity and anti-tumor mechanisms of DTX-Cur/M were evaluated and explored in both cells and mice model of xenograft human ovarian cancer. Results DTX-Cur/M nanomicelles with an average particle size of 37.63 nm were obtained. The drug release experiment showed sustained drug release from DTX-Cur/M nanomicelles. The MTT assay and apoptotic study indicated that DTX-Cur/M exhibited stronger inhibition and pro-apoptotic effects on A2780 cells compared with DTX or Cur alone. In vivo anti-tumor experiment results confirmed that the DTX-Cur/M played the most effective role in anti-ovarian cancer therapy by inhibiting tumor proliferation, suppressing tumor angiogenesis and promoting tumor apoptosis. Conclusion We designed injectable DTX-Cur/M nanomicelles for co-delivery of DTX and Cur agents to the tumor site through systemic administration. The DTX-Cur/M nanomicelle would be a biodegradable, sustainable and powerful anti-tumor drug candidate with great potential in ovarian cancer treatment.
Collapse
Affiliation(s)
- Yuzhu Hu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, People's Republic of China.,Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China
| | - Mengni Ran
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, People's Republic of China
| | - Bilan Wang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yunzhu Lin
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, People's Republic of China
| | - Songping Zheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, People's Republic of China
| |
Collapse
|
70
|
Aderibigbe BA, Naki T, Steenkamp V, Nwamadi M, Ray SS, Balogun MO, Matshe WMR. Physicochemical and in vitro cytotoxicity evaluation of polymeric drugs for combination cancer therapy. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1667802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Tobeka Naki
- Department of Chemistry, University of Fort Hare, Alice, South Africa
| | - Vanessa Steenkamp
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Mutshinyalo Nwamadi
- Department of Chemistry, Auckland Park Campus, University of Johannesburg, Johannesburg, South Africa
| | - Suprakas Sinha Ray
- DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria, South Africa
| | | | | |
Collapse
|
71
|
Lipophilic effect of various pluronic-grafted gelatin copolymers on the quercetin delivery efficiency in these self-assembly nanogels. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02216-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
72
|
Dobrucka R, Romaniuk-Drapała A, Kaczmarek M. Biologically synthesized of Au/Pt/ZnO nanoparticles using Arctium lappa extract and cytotoxic activity against leukemia. Biomed Microdevices 2020; 22:72. [PMID: 33037930 PMCID: PMC7547980 DOI: 10.1007/s10544-020-00526-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/24/2022]
Abstract
The main objective of this work was to assess the cytotoxic activity of Au/Pt/ZnO nanoparticles synthesized using Arctium lappa extract against leukemia. The Au/Pt/ZnO nanoparticles obtained as a result of biological synthesis were characterized by UV-Vis, Scanning (SEM) and Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Atomic Force Microscopy (AFM). The applied methods showed that the size of nanoparticles ranged from 10 to 40 nm. This work also assessed the cytotoxicity of Au/Pt/ZnO nanoparticles by means of MTT assay, and analyzed apoptosis as well as the influence of the cultivation time and concentration of Au/Pt/ZnO nanoparticles on the percentage of dead cells. The studies showed that the percentage of dead leukemia cells increased with the cultivation time and concentration of Au/Pt/ZnO nanoparticles. There was observed an increase in the percentage of cells in the G2/M phase, which suggests the stoppage of G2/M leading to cell death. The cytotoxicity of Au/Pt/ZnO nanoparticles determined by means of the MTT test indicated that the viability of leukemia cells practically disappeared when the concentration of the tested nanoparticles was 10 mol.
Collapse
Affiliation(s)
- Renata Dobrucka
- Department of Non-Food Products Quality and Packaging Development, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875, Poznań, Poland
| | - Aleksandra Romaniuk-Drapała
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St, 60-355, Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Garbary 15 Str, 61-866, Poznan, Poland.
- Gene Therapy Laboratory, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Garbary 15 Str, 61-866, Poznan, Poland.
| |
Collapse
|
73
|
Guo R, Long Y, Lu Z, Deng M, He P, Li M, He Q. Enhanced stability and efficacy of GEM-TOS prodrug by co-assembly with antimetastatic shell LMWH-TOS. Acta Pharm Sin B 2020; 10:1977-1988. [PMID: 33163348 PMCID: PMC7606181 DOI: 10.1016/j.apsb.2019.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/08/2019] [Accepted: 06/20/2019] [Indexed: 01/01/2023] Open
Abstract
Chemotherapy agents have been widely used for cancer treatment, while the insolubility, instability and toxicity seriously restrict their efficacy. Thus, prodrug strategy was devised. Since some prodrugs are still with poor solubility or stability, a synergy strategy is needed to enhance their efficacy. Gemcitabine (GEM) is a prescribed anticancer drug, however, the rapid clearance, growing resistance and serious side effects limit its clinical efficacy. Conjugating GEM with d-α-tocopherol succinate (TOS) is an effective solution, while the GEM-TOS (GT) is unstable in aqueous solution. d-α-Tocopherol polyethylene glycol succinate (TPGS) has been used to enhance the stability, but GT stabilized by TPGS (GTT) has limited effect on tumor metastases. Tumor metastases lead to high mortality in patients suffering from cancers. In order to further achieve antimetastatic effect, an amphiphilic polymer (LT) was synthesized by connecting low-molecular-weight heparin (LMWH) with TOS, and eventually obtained desired self-delivery micellar NPs (GLT) by co-assembly GT with LT. The GLT not only possessed excellent stability, but also inhibited the metastases by acting on different phases of the metastatic cascade. The hydrophobic TOS inhibited the secretion of matrix metalloproteinase-9 (MMP-9), the hydrophilic LMWH inhibited the interaction between tumor cells and platelets. As a result, GLT reduced tumor cells entering the blood and implanting at the distant organs, leading to a much more excellent inhibitory effect on the lung metastasis than GEM and GTT.
Collapse
|
74
|
Cao L, Yao M, Sasano H, Sun PL, Gao H. YAP increases response to Trastuzumab in HER2-positive Breast Cancer by enhancing P73-induced apoptosis. J Cancer 2020; 11:6748-6759. [PMID: 33046997 PMCID: PMC7545685 DOI: 10.7150/jca.48535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
The role of the Yes-associated protein (YAP) in oncogenesis and progression of breast cancer remains controversial. Meanwhile, development of therapeutic resistance to trastuzumab, a common breast cancer treatment administered after chemotherapy, is a significant challenge in the treatment of HER2-positive breast cancer. We, therefore, analyzed the role of YAP in trastuzumab resistance in HER2-positive-breast carcinoma cells in vitro and evaluated the status of YAP and related proteins in patient-derived breast carcinoma tissues by immunohistochemistry. YAP expression was observed in both BT474-TS (trastuzumab-sensitive) and BT474-TR (trastuzumab-resistant) cells. Treatment with trastuzumab increased expression of nuclear-YAP (N-YAP) in BT474-TS cells, whereas BT474-TR cells showed a decrease in N-YAP expression following trastuzumab treatment. YAP silencing significantly reduced trastuzumab-induced inhibitory effects in BT474-TS cells. YAP-silenced cells also showed decreased apoptosis and significantly lower p73 levels following trastuzumab treatment. Combined protein kinase B (AKT) inhibitor-trastuzumab treatment significantly inhibited BT474-TR cell proliferation, resulting in increased N-YAP and p73 expression, as well as apoptosis. In both paclitaxel, doxorubicin and cyclophosphamide (TAC)-treated, and docetaxel, carboplatin, and trastuzumab (TCbH)-treated groups; the pathological complete response (pCR) ratios were inversely correlated with p-AKT status in biopsy specimens, while YAP and p73 status were positively correlated with the pCR ratio in the biopsy specimens of the TCbH group. Our results show that YAP is involved in trastuzumab resistance in HER2-positive breast carcinoma cells and that YAP and AKT may be developed as prognostic markers of neoadjuvant trastuzumab therapy in patients with HER2-positive breast cancer.
Collapse
Affiliation(s)
- Lanqing Cao
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Min Yao
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine and Tohoku University Hospital, 2-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi 980-8575, Japan
| | - Ping-Li Sun
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Hongwen Gao
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| |
Collapse
|
75
|
Bostan M, Petrică-Matei GG, Radu N, Hainarosie R, Stefanescu CD, Diaconu CC, Roman V. The Effect of Resveratrol or Curcumin on Head and Neck Cancer Cells Sensitivity to the Cytotoxic Effects of Cisplatin. Nutrients 2020; 12:nu12092596. [PMID: 32859062 PMCID: PMC7551591 DOI: 10.3390/nu12092596] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022] Open
Abstract
Natural compounds can modulate all three major phases of carcinogenesis. The role of the natural compounds such as resveratrol (RSV) and curcumin (CRM) in modulation of anticancer potential of platinum-based drugs (CisPt) is still a topic of considerable debate. In order to enhance head and neck cancer (HNSCC) cells’ sensitivity to the cytotoxic effects of CisPt combined treatments with RSV or CRM were used. The study aim was to evaluate how the RSV or CRM associated to CisPt treatment modulated some cellular processes such as proliferation, P21 gene expression, apoptotic process, and cell cycle development in HNSCC tumor cell line (PE/CA-PJ49) compared to a normal cell line (HUVEC). The results showed that RSV or CRM treatment affected the viability of tumor cells more than normal cells. These natural compounds act against proliferation and sustain the effects of cisplatin by cell cycle arrest, induction of apoptosis and amplification of P21 expression in tumor cells. In conclusion, using RSV or CRM as adjuvants in CisPt therapy might have a beneficial effect by supporting the effects induced by CisPt.
Collapse
Affiliation(s)
- Marinela Bostan
- Center of Immunology, Stefan S. Nicolau’ Institute of Virology, 030304 Bucharest, Romania;
- Department of Immunology, Victor Babeș’ National Institute of Pathology, 050096 Bucharest, Romania
| | | | - Nicoleta Radu
- Department of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Βucharest, Romania;
- Biotechnology Department, National Institute for Chemistry and Petrochemistry R&D of Bucharest, 060021 Bucharest, Romania
| | - Razvan Hainarosie
- Otorhinolaryngology and Head and Neck Surgery Department-University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania; (R.H.); (C.D.S.)
| | - Cristian Dragos Stefanescu
- Otorhinolaryngology and Head and Neck Surgery Department-University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania; (R.H.); (C.D.S.)
| | - Carmen Cristina Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
- Correspondence: (C.C.D.); (V.R.)
| | - Viviana Roman
- Center of Immunology, Stefan S. Nicolau’ Institute of Virology, 030304 Bucharest, Romania;
- Correspondence: (C.C.D.); (V.R.)
| |
Collapse
|
76
|
Sootome H, Miura A, Masuko N, Suzuki T, Uto Y, Hirai H. Aurora A Inhibitor TAS-119 Enhances Antitumor Efficacy of Taxanes In Vitro and In Vivo: Preclinical Studies as Guidance for Clinical Development and Trial Design. Mol Cancer Ther 2020; 19:1981-1991. [PMID: 32788206 DOI: 10.1158/1535-7163.mct-20-0036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/04/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022]
Abstract
TAS-119 is a novel orally active, selective inhibitor of Aurora kinase A identified as a clinical candidate for efficacy testing in combination with taxanes. In vitro, TAS-119 enhanced cell growth inhibition of paclitaxel in multiple human cancer cell lines derived from various tissues, including paclitaxel-resistant cell lines. Interestingly, TAS-119 did not enhance paclitaxel antitumor activity in normal lung diploid fibroblast cell lines WI-38 and MRC5. In vivo, TAS-119 enhanced the antitumor efficacy of paclitaxel and docetaxel in multiple models at doses inhibitory to Aurora A in tumors. Moreover, the drug combination was well tolerated, and TAS-119 did not exaggerate clinically documented side effects of taxanes, neutropenia and neurotoxicity, in rats. The same TAS-119 concentration enhanced the cell growth inhibitory activity of three clinically approved taxanes, paclitaxel, docetaxel, and cabazitaxel. The degree of enhancement calculated as fold of change of the IC50 value for each taxane was almost the same among the three taxanes. We conducted in vitro and in vivo experiments to develop an optimized combination therapy regimen for TAS-119 with paclitaxel/docetaxel. Using in vitro and in vivo models, we tested the drug administration order for TAS-119 combined with paclitaxel and the TAS-119 treatment duration. The best regimen in preclinical models was combining paclitaxel or docetaxel treatment with 4 days of TAS-119 dosing, which was initiated on the same day as the paclitaxel or docetaxel administration or one day later. This information provided guidance for the design of a clinical trial of TAS-119 and paclitaxel or docetaxel combination.
Collapse
Affiliation(s)
- Hiroshi Sootome
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Akihiro Miura
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan.,Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Norio Masuko
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Takamasa Suzuki
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Yoshihiro Uto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Hiroshi Hirai
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan.
| |
Collapse
|
77
|
Bisoli E, Freire TV, Yoshida NC, Garcez WS, Queiróz LMM, Matos MDFC, Perdomo RT, Garcez FR. Cytotoxic Phenanthrene, Dihydrophenanthrene, and Dihydrostilbene Derivatives and Other Aromatic Compounds from Combretum laxum. Molecules 2020; 25:molecules25143154. [PMID: 32664233 PMCID: PMC7397156 DOI: 10.3390/molecules25143154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
The chemical investigation of the roots and stems of Combretum laxum yielded a new dihydrostilbene derivative, 4'-hydroxy-3,3',4-trimethoxy-5-(3,4,5-trimethoxyphenoxy)-bibenzyl (1), two phenanthrenes (2-3), and three dihydrophenanthrenes (4-6), along with one lignan, three triterpenoids, one aurone, one flavone, one naphthoquinone, and two benzoic acid derivatives. Their structures were determined by 1D and 2D nuclear magnetic resonance (NMR) spectroscopic techniques and/or mass spectrometry data. The occurrence of dihydrostilbenoid, phenanthrene and dihydrophenanthrene derivatives is unprecedented in a Combretum species native to the American continent. 2,7-Dihydroxy-4,6-dimethoxyphenanthrene, 2,6-dihydroxy-4,7-dimethoxy-9,10-dihydrophenanthrene and 5-O-methyl apigenin are novel findings in the Combretaceae, as is the isolation of compounds belonging to the chemical classes of aurones and naphthoquinones, while (+)-syringaresinol is reported for the first time in the genus Combretum. Compounds 1-6 were also evaluated for their in vitro cytotoxicity against five human cancer cell lines, and radical-scavenging ability against 1,1-diphenyl-2-picryl-hydrazyl (DPPH). 6-Methoxycoelonin (4) was the most cytotoxic against melanoma cells (IC50 2.59 ± 0.11 µM), with a high selectivity index compared with its toxicity against nontumor mammalian cells (SI 25.1). Callosin (6), despite exhibiting the strongest DPPH-scavenging activity (IC50 17.7 ± 0.3 µM), proved marginally inhibitory to the five cancer cell lines tested, indicating that, at least for these cells, antioxidant potential is unrelated to antiproliferative activity.
Collapse
Affiliation(s)
- Eder Bisoli
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Campo Grande 79074-460, MS, Brazil; (E.B.); (T.V.F.); (N.C.Y.); (W.S.G.)
| | - Talita Vilalva Freire
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Campo Grande 79074-460, MS, Brazil; (E.B.); (T.V.F.); (N.C.Y.); (W.S.G.)
| | - Nídia Cristiane Yoshida
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Campo Grande 79074-460, MS, Brazil; (E.B.); (T.V.F.); (N.C.Y.); (W.S.G.)
| | - Walmir Silva Garcez
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Campo Grande 79074-460, MS, Brazil; (E.B.); (T.V.F.); (N.C.Y.); (W.S.G.)
| | - Lyara Meira Marinho Queiróz
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (L.M.M.Q.); (M.d.F.C.M.); (R.T.P.)
| | - Maria de Fátima Cepa Matos
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (L.M.M.Q.); (M.d.F.C.M.); (R.T.P.)
| | - Renata Trentin Perdomo
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (L.M.M.Q.); (M.d.F.C.M.); (R.T.P.)
| | - Fernanda Rodrigues Garcez
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Campo Grande 79074-460, MS, Brazil; (E.B.); (T.V.F.); (N.C.Y.); (W.S.G.)
- Correspondence:
| |
Collapse
|
78
|
Ferraro MG, Piccolo M, Misso G, Maione F, Montesarchio D, Caraglia M, Paduano L, Santamaria R, Irace C. Breast Cancer Chemotherapeutic Options: A General Overview on the Preclinical Validation of a Multi-Target Ruthenium(III) Complex Lodged in Nucleolipid Nanosystems. Cells 2020; 9:E1412. [PMID: 32517101 PMCID: PMC7349411 DOI: 10.3390/cells9061412] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
In this review we have showcased the preclinical development of original amphiphilic nanomaterials designed for ruthenium-based anticancer treatments, to be placed within the current metallodrugs approach leading over the past decade to advanced multitarget agents endowed with limited toxicity and resistance. This strategy could allow for new options for breast cancer (BC) interventions, including the triple-negative subtype (TNBC) with poor therapeutic alternatives. BC is currently the second most widespread cancer and the primary cause of cancer death in women. Hence, the availability of novel chemotherapeutic weapons is a basic requirement to fight BC subtypes. Anticancer drugs based on ruthenium are among the most explored and advanced next-generation metallotherapeutics, with NAMI-A and KP1019 as two iconic ruthenium complexes having undergone clinical trials. In addition, many nanomaterial Ru complexes have been recently conceived and developed into anticancer drugs demonstrating attractive properties. In this field, we focused on the evaluation of a Ru(III) complex-named AziRu-incorporated into a suite of both zwitterionic and cationic nucleolipid nanosystems, which proved to be very effective for the in vivo targeting of breast cancer cells (BBC). Mechanisms of action have been widely explored in the context of preclinical evaluations in vitro, highlighting a multitarget action on cell death pathways which are typically deregulated in neoplasms onset and progression. Moreover, being AziRu inspired by the well-known NAMI-A complex, information on non-nanostructured Ru-based anticancer agents have been included in a precise manner.
Collapse
Affiliation(s)
- Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (G.M.); (M.C.)
| | - Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 421, 80126 Naples, Italy; (D.M.); (L.P.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (G.M.); (M.C.)
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 421, 80126 Naples, Italy; (D.M.); (L.P.)
| | - Rita Santamaria
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Carlo Irace
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| |
Collapse
|
79
|
Costa B, Amorim I, Gärtner F, Vale N. Understanding Breast cancer: from conventional therapies to repurposed drugs. Eur J Pharm Sci 2020; 151:105401. [PMID: 32504806 DOI: 10.1016/j.ejps.2020.105401] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Breast cancer is the most common cancer among women and is considered a developed country disease. Moreover, is a heterogenous disease, existing different types and stages of breast cancer development, therefore, better understanding of cancer biology, helps to improve the development of therapies. The conventional treatments accessible after diagnosis, have the main goal of controlling the disease, by improving survival. In more advance stages the aim is to prolong life and symptom palliation care. Surgery, radiation therapy and chemotherapy are the main options available, which must be adapted to each person individually. However, patients are developing resistance to the conventional therapies. This resistance is due to alterations in important regulatory pathways such as PI3K/AKt/mTOR, this pathway contributes to trastuzumab resistance, a reference drug to treat breast cancer. Therefore, is proposed the repurposing of drugs, instead of developing drugs de novo, for example, to seek new medical treatments within the drugs available, to be used in breast cancer treatment. Providing safe and tolerable treatments to patients, and new insights to efficacy and efficiency of breast cancer treatments. The economic and social burden of cancer is enormous so it must be taken measures to relieve this burden and to ensure continued access to therapies to all patients. In this review we focus on how conventional therapies against breast cancer are leading to resistance, by reviewing those mechanisms and discussing the efficacy of repurposed drugs to fight breast cancer.
Collapse
Affiliation(s)
- Bárbara Costa
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Fátima Gärtner
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo 228, 4050-313 Porto, Portugal; Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal.
| |
Collapse
|
80
|
Henamayee S, Banik K, Sailo BL, Shabnam B, Harsha C, Srilakshmi S, VGM N, Baek SH, Ahn KS, Kunnumakkara AB. Therapeutic Emergence of Rhein as a Potential Anticancer Drug: A Review of Its Molecular Targets and Anticancer Properties. Molecules 2020; 25:molecules25102278. [PMID: 32408623 PMCID: PMC7288145 DOI: 10.3390/molecules25102278] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
According to the World Health Organization (WHO), cancer is the second-highest cause of mortality in the world, and it kills nearly 9.6 million people annually. Besides the fatality of the disease, poor prognosis, cost of conventional therapies, and associated side-effects add more burden to patients, post-diagnosis. Therefore, the search for alternatives for the treatment of cancer that are safe, multi-targeted, effective, and cost-effective has compelled us to go back to ancient systems of medicine. Natural herbs and plant formulations are laden with a variety of phytochemicals. One such compound is rhein, which is an anthraquinone derived from the roots of Rheum spp. and Polygonum multiflorum. In ethnomedicine, these plants are used for the treatment of inflammation, osteoarthritis, diabetes, and bacterial and helminthic infections. Increasing evidence suggests that this compound can suppress breast cancer, cervical cancer, colon cancer, lung cancer, ovarian cancer, etc. in both in vitro and in vivo settings. Recent studies have reported that this compound modulates different signaling cascades in cancer cells and can prevent angiogenesis and progression of different types of cancers. The present review highlights the cancer-preventing and therapeutic properties of rhein based on the available literature, which will help to extend further research to establish the chemoprotective and therapeutic roles of rhein compared to other conventional drugs. Future pharmacokinetic and toxicological studies could support this compound as an effective anticancer agent.
Collapse
Affiliation(s)
- Sahu Henamayee
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Bano Shabnam
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Satti Srilakshmi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER, Guwahati), Assam 781125, India; (S.S.); (N.V.)
| | - Naidu VGM
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER, Guwahati), Assam 781125, India; (S.S.); (N.V.)
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea;
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence: (K.S.A.); or (A.B.K.); Tel.: +82-2-961-2316 (K.S.A.)
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
- Correspondence: (K.S.A.); or (A.B.K.); Tel.: +82-2-961-2316 (K.S.A.)
| |
Collapse
|
81
|
Duan M, Hu F, Li D, Wu S, Peng N. Silencing KPNA2 inhibits IL-6-induced breast cancer exacerbation by blocking NF-κB signaling and c-Myc nuclear translocation in vitro. Life Sci 2020; 253:117736. [PMID: 32360571 DOI: 10.1016/j.lfs.2020.117736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 01/16/2023]
Abstract
AIMS Recently, studies indicated that inflammation could exacerbate the development of BC. Karyopherin α-2 (KPNA2) is a molecule which modulates nucleocytoplasmic transport and is involved in malignant cellular behavior and carcinogenesis. Our study aims to elucidate the role of KPNA2 in BC pathogenesis and explore the mechanism of KPNA2 in regulating inflammation-induced BC exacerbations. MAIN METHODS We measured the expression of KPNA2 in BC cells. Through loss-of-function experiments, the functional role of KPNA2 in MCF-7 and MDA-MB-468 cells was evaluated. SK-BR-3 cells were treated with IL-6 as an inflammatory in vitro model of BC. ELISA determination exhibited the contents of cytokines. RANKL and leptomycin B treatments activated NF-κB signaling and inhibited the nuclear translocation of c-Myc, respectively. KEY FINDINGS The results showed that KPNA2 was significantly up-regulated in BC and silencing KPNA2 inhibited the proliferation, migration and invasion of BC cells, while the cycle arrest was induced, via blocking NF-κB signaling and c-Myc nuclear translocation. IL-6 stimulated the secretions of IL-8 and IL-17 in BC cells, and elevated KPNA2 expression. However, KPNA2 knockdown suppressed the inflammatory responses and malignant progression of BC induced by IL-6. SIGNIFICANCE In conclusion, our study illustrated that KPNA2 regulated BC development, as well as IL-6-induced inflammation and exacerbation, via NF-κB signaling and c-Myc nuclear translocation. This may provide a novel target for BC therapy.
Collapse
Affiliation(s)
- Mingyue Duan
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, China; Shaanxi Institute of Pediatric Diseases, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an 710003, China
| | - Fei Hu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, China
| | - Dan Li
- Department of Immunology and Rheumatology, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an 710003, China
| | - Shouzhen Wu
- Department of Clinical Laboratory, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an 710003, China
| | - Niancai Peng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, China; The Biomedical-information Engineering Laboratory of State Ministry of Education Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
82
|
de la Fuente B, López-García G, Máñez V, Alegría A, Barberá R, Cilla A. Antiproliferative Effect of Bioaccessible Fractions of Four Brassicaceae Microgreens on Human Colon Cancer Cells Linked to Their Phytochemical Composition. Antioxidants (Basel) 2020; 9:E368. [PMID: 32354116 PMCID: PMC7278869 DOI: 10.3390/antiox9050368] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
The antiproliferative effect of the bioaccessible fractions (BFs) of four hydroponic Brassicaceae microgreens (broccoli, kale, mustard and radish) was evaluated on colon cancer Caco-2 cells vs. normal colon CCD18-Co cells after 24 h treatment with BFs diluted 1:10 v/v in cell culture medium. Their bioactivity was compared with the digestion blank, while the colon cancer chemotherapeutic drug 5-fluorouracil was used as a positive control. Cell viability (mitochondrial enzyme activity assay (MTT test) and Trypan blue test) and mechanisms related to antiproliferative activity (cell cycle, apoptosis/necrosis, mitochondrial membrane potential, reactive oxygen species (ROS) production, Ca2+ and glutathione (GSH) intracellular content) were studied. All microgreen BFs increased ROS and decreased GSH, altering the redox status and causing mitochondrial membrane dissipation followed by a general cell cycle arrest in G2/M and apoptotic cell death via a Ca2+-independent mechanism. As a result, the antioxidant bioactive compounds present in these microgreen species reduced the proliferation of tumoral cells (10 to 12.8% -MTT or 20 to 41.9% -Trypan blue), showing lesser effects with broccoli microgreens, in line with their lower ascorbic acid content and total antioxidant capacity. Therefore, the daily intake of microgreens within a balanced diet could be a preventive nutritional strategy to reduce the burden of chronic degenerative diseases such as colon cancer.
Collapse
Affiliation(s)
- Beatriz de la Fuente
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Gabriel López-García
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Vicent Máñez
- CIAM (Centro de Innovación Agronómica_Grupo Alimentario Citrus), Av. dels Gremis, Parcela 28. Pol. Ind. Sector 13, Riba-roja de Túria, 46394 Valencia, Spain
| | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Reyes Barberá
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| |
Collapse
|
83
|
Zhang X, Gu G, Song L, Wang D, Xu Y, Yang S, Xu B, Cao Z, Liu C, Zhao C, Zong Y, Qin Y, Xu J. ID4 Promotes Breast Cancer Chemotherapy Resistance via CBF1-MRP1 Pathway. J Cancer 2020; 11:3846-3857. [PMID: 32328189 PMCID: PMC7171490 DOI: 10.7150/jca.31988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/27/2020] [Indexed: 12/21/2022] Open
Abstract
Chemo-resistance is considered a key problem in triple negative breast cancer (TNBC) chemotherapy and as such, an urgent need exists to identify its exact mechanisms. Inhibitor of DNA binding factor 4 (ID4) was reported to play diverse roles in different breast cancer molecular phenotypes. In addition, ID4 was associated with mammary carcinoma drug resistance however its functions and contributions remain insufficiently defined. The expression of ID4 in MCF-7, MCF-7/Adr and MDA-MB-231 breast cancer cell lines and patients' tissues were detected by RT-PCR, western blot and immunohistochemistry. Furthermore, TCGA database was applied to confirm these results. Edu and CCK8 assay were performed to detect the proliferation and drug resistance in breast cancer cell lines. Transwell and scratch migration assay were used to detected metastasis. Western blot, TCGA database, Immunoprecipitation (IP), Chromatin Immunoprecipitation (ChIP) and Luciferase reporter assay were used to investigate the tumor promotion mechanisms of ID4. In this study, we report that the expression levels of ID4 appeared to correlate with breast cancers subtype differentiation biomarkers (including ER, PR) and chemo-resistance related proteins (including MRP1, ABCG2, P-gp). Down-regulation of ID4 in MCF-7/Adr and MDA-MB-231 breast cancer cell lines significantly suppressed cell proliferation and invasion, however enhanced Adriamycin sensitivity. We further demonstrated that the oncogenic and chemo-resistant effects of ID4 could be mediated by binding to CBF1 promoter region though combination with MyoD1, and then the downstream target MRP1 could be activated. We reveal for the first time that ID4 performs its function via a CBF1-MRP1 signaling axis, and this finding provides a novel perspective to find potential therapeutic targets for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Guangyan Gu
- Department of Histology and Embryology, Shandong University Cheeloo College of Medicine, Jinan, 250012, Shandong, China
| | - Lin Song
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Dan Wang
- Department of Science and education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Science and education, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Yali Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Shuping Yang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Bin Xu
- Department of Pathology, Shengli Oil Field Central Hospital, Dongying, Shandong Province, 257034, P.R China
| | - Zhixin Cao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Chunmei Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Chunming Zhao
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Yuanyuan Zong
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Yejun Qin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Jiawen Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| |
Collapse
|
84
|
Dai Y, Huang H, Zhu Y, Cheng J, Shen AZ, Liu Y. Combating metastasis of breast cancer cells with a carboplatin analogue containing an all-trans retinoic acid ligand. Dalton Trans 2020; 49:5039-5043. [PMID: 32242881 DOI: 10.1039/d0dt00507j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pt-ATRA, a carboplatin analogue containing an all-trans retinoic acid (ATRA) derivative ligand, was synthesized via a click reaction. Upon cellular internalization, Pt-ATRA exhibits a dual function, releasing an active Pt(ii) moiety to induce cell apoptosis and ATRA to inhibit tumor metastasis.
Collapse
Affiliation(s)
- Yi Dai
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | |
Collapse
|
85
|
González-González A, González A, Rueda N, Alonso-González C, Menéndez JM, Martínez-Campa C, Mitola S, Cos S. Usefulness of melatonin as complementary to chemotherapeutic agents at different stages of the angiogenic process. Sci Rep 2020; 10:4790. [PMID: 32179814 PMCID: PMC7076026 DOI: 10.1038/s41598-020-61622-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/22/2020] [Indexed: 02/07/2023] Open
Abstract
Chemotherapeutics are sometimes administered with drugs, like antiangiogenic compounds, to increase their effectiveness. Melatonin exerts antitumoral actions through antiangiogenic actions. We studied if melatonin regulates the response of HUVECs to chemotherapeutics (docetaxel and vinorelbine). The inhibition that these agents exert on some of the processes involved in angiogenesis, such as, cell proliferation, migratory capacity or vessel formation, was enhanced by melatonin. Regarding to estrogen biosynthesis, melatonin impeded the negative effect of vinorelbine, by decreasing the activity and expression of aromatase and sulfatase. Docetaxel and vinorelbine increased the expression of VEGF-A, VEGF-B, VEGF-C, VEGFR-1, VEGFR-3, ANG1 and/or ANG-2 and melatonin inhibited these actions. Besides, melatonin prevented the positive actions that docetaxel exerts on the expression of other factors related to angiogenesis like JAG1, ANPEP, IGF-1, CXCL6, AKT1, ERK1, ERK2, MMP14 and NOS3 and neutralized the stimulating actions of vinorelbine on the expression of FIGF, FGFR3, CXCL6, CCL2, ERK1, ERK2, AKT1, NOS3 and MMP14. In CAM assay melatonin inhibited new vascularization in combination with chemotherapeutics. Melatonin further enhanced the chemotherapeutics-induced inhibition of p-AKT and p-ERK and neutralized the chemotherapeutics-caused stimulatory effect on HUVECs permeability by modifying the distribution of VE cadherin. Our results confirm that melatonin blocks proangiogenic and potentiates antiangiogenic effects induced by docetaxel and vinorelbine enhancing their antitumor effectiveness.
Collapse
Affiliation(s)
- Alicia González-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Alicia González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011, Santander, Spain.
| | - Noemi Rueda
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Javier Menéndez Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011, Santander, Spain.
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, Laboratory for Preventive and Personalized Medicine, University of Brescia, 25123, Brescia, Italy
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011, Santander, Spain
| |
Collapse
|
86
|
Anticancer Potential of Lichens' Secondary Metabolites. Biomolecules 2020; 10:biom10010087. [PMID: 31948092 PMCID: PMC7022966 DOI: 10.3390/biom10010087] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Lichens produce different classes of phenolic compounds, including anthraquinones, xanthones, dibenzofuranes, depsides and depsidones. Many of them have revealed effective biological activities such as antioxidant, antiviral, antibiotics, antifungal, and anticancer. Although no clinical study has been conducted yet, there are number of in vitro and in vivo studies demonstrating anticancer effects of lichen metabolites. The main goal of our work was to review most recent published papers dealing with anticancer activities of secondary metabolites of lichens and point out to their perspective clinical use in cancer management.
Collapse
|
87
|
Zhang X, Li Y, Feng Z, Zhang Y, Gong Y, Song H, Ding X, Yan Y. Multifloroside Suppressing Proliferation and Colony Formation, Inducing S Cell Cycle Arrest, ROS Production, and Increasing MMP in Human Epidermoid Carcinoma Cell Lines A431. Molecules 2019; 25:molecules25010007. [PMID: 31861384 PMCID: PMC6983163 DOI: 10.3390/molecules25010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Multifloroside (4), together with 10-hydroxyoleoside 11-methyl ester (1), 10-hydroxyoleoside dimethyl ester (2), and 10-hydroxyligustroside (3), are all secoiridoids, which are naturally occurring compounds that possess a wide range of biological and pharmacological activities. However, the anti-cancer activity of 1–4 has not been evaluated yet. The objective of this work was to study the anti-cancer activities of 1–4 in the human epidermoid carcinoma cell lines A431 and the human non-small cell lung cancer (NSCLC) cell lines A549. The results indicate that 1–4 differ in potency in their ability to inhibit the proliferation of human A431 and A549 cells, and multifloroside (4) display the highest inhibitory activity against A431 cells. The structure-activity relationships suggest that the o-hydroxy-p-hydroxy-phenylethyl group may contribute to the anti-cancer activity against A431 cells. Multifloroside treatment can also inhibit cell colony formation, arrest the cell cycle in the S-phase, increase the levels of reactive-oxygen-species (ROS), and mitochondrial membrane potential (MMP), but it did not significantly induce cell apoptosis at low concentrations. The findings indicated that multifloroside (4) has the tendency to show selective anti-cancer effects in A431 cells, along with suppressing the colony formation, inducing S cell cycle arrest, ROS production, and increasing MMP.
Collapse
Affiliation(s)
- Xin Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; College of Life Science, Shaanxi Normal University, Xi’an 710062, China; (X.Z.); (Y.L.); (Z.F.); (Y.G.); (H.S.); (X.D.)
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi’an 710062, China
| | - Yamei Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; College of Life Science, Shaanxi Normal University, Xi’an 710062, China; (X.Z.); (Y.L.); (Z.F.); (Y.G.); (H.S.); (X.D.)
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi’an 710062, China
| | - Zhengping Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; College of Life Science, Shaanxi Normal University, Xi’an 710062, China; (X.Z.); (Y.L.); (Z.F.); (Y.G.); (H.S.); (X.D.)
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi’an 710062, China
| | - Yaling Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; College of Life Science, Shaanxi Normal University, Xi’an 710062, China; (X.Z.); (Y.L.); (Z.F.); (Y.G.); (H.S.); (X.D.)
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi’an 710062, China
- Correspondence: (Y.Z.); (Y.Y.); Tel./Fax: +86-029-8531-0623 (Y.Y.)
| | - Ye Gong
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; College of Life Science, Shaanxi Normal University, Xi’an 710062, China; (X.Z.); (Y.L.); (Z.F.); (Y.G.); (H.S.); (X.D.)
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi’an 710062, China
| | - Huanhuan Song
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; College of Life Science, Shaanxi Normal University, Xi’an 710062, China; (X.Z.); (Y.L.); (Z.F.); (Y.G.); (H.S.); (X.D.)
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi’an 710062, China
| | - Xiaoli Ding
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; College of Life Science, Shaanxi Normal University, Xi’an 710062, China; (X.Z.); (Y.L.); (Z.F.); (Y.G.); (H.S.); (X.D.)
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi’an 710062, China
| | - Yaping Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; College of Life Science, Shaanxi Normal University, Xi’an 710062, China; (X.Z.); (Y.L.); (Z.F.); (Y.G.); (H.S.); (X.D.)
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi’an 710062, China
- Correspondence: (Y.Z.); (Y.Y.); Tel./Fax: +86-029-8531-0623 (Y.Y.)
| |
Collapse
|
88
|
Liu Y, Khan AR, Du X, Zhai Y, Tan H, Zhai G. Progress in the polymer-paclitaxel conjugate. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
89
|
Abu Samaan TM, Samec M, Liskova A, Kubatka P, Büsselberg D. Paclitaxel's Mechanistic and Clinical Effects on Breast Cancer. Biomolecules 2019; 9:biom9120789. [PMID: 31783552 PMCID: PMC6995578 DOI: 10.3390/biom9120789] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Paclitaxel (PTX), the most widely used anticancer drug, is applied for the treatment of various types of malignant diseases. Mechanisms of PTX action represent several ways in which PTX affects cellular processes resulting in programmed cell death. PTX is frequently used as the first-line treatment drug in breast cancer (BC). Unfortunately, the resistance of BC to PTX treatment is a great obstacle in clinical applications and one of the major causes of death associated with treatment failure. Factors contributing to PTX resistance, such as ABC transporters, microRNAs (miRNAs), or mutations in certain genes, along with side effects of PTX including peripheral neuropathy or hypersensitivity associated with the vehicle used to overcome its poor solubility, are responsible for intensive research concerning the use of PTX in preclinical and clinical studies. Novelties such as albumin-bound PTX (nab-PTX) demonstrate a progressive approach leading to higher efficiency and decreased risk of side effects after drug administration. Moreover, PTX nanoparticles for targeted treatment of BC promise a stable and efficient therapeutic intervention. Here, we summarize current research focused on PTX, its evaluations in preclinical research and application clinical practice as well as the perspective of the drug for future implication in BC therapy.
Collapse
Affiliation(s)
- Tala M. Abu Samaan
- Department of Pre-Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
- Correspondence: (T.M.A.S.); (D.B.); Tel.: +974-4492-8334 (D.B.); Fax: +974-4492-8333 (D.B.)
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
- Correspondence: (T.M.A.S.); (D.B.); Tel.: +974-4492-8334 (D.B.); Fax: +974-4492-8333 (D.B.)
| |
Collapse
|
90
|
|
91
|
Greenshields AL, Power Coombs MR, Fernando W, Holbein BE, Hoskin DW. DIBI, a novel 3-hydroxypyridin-4-one chelator iron-binding polymer, inhibits breast cancer cell growth and functions as a chemosensitizer by promoting S-phase DNA damage. Biometals 2019; 32:909-921. [PMID: 31624972 DOI: 10.1007/s10534-019-00222-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022]
Abstract
Breast cancer is a leading cause of cancer-related death in women; however, chemotherapy of breast cancer is often hindered by dose-limiting toxicities, demonstrating the need for less toxic approaches to treatment. Since the rapid growth and metabolism of breast cancer cells results in an increased requirement for iron, withdrawal of bioavailable iron using highly selective iron chelators has been suggested to represent a new approach to breast cancer treatment. Here we show that the recently developed iron-binding polymer DIBI inhibited the growth of five different breast cancer cell lines (SK-BR3, MDA-MB-468, MDA-MB-231, MCF-7, and T47D). In cultures of MDA-MB-468 breast cancer cells, which were most sensitive to DIBI-mediated growth inhibition, iron withdrawal was associated with increased expression of transferrin receptor 1 and ferritin H mRNA but decreased expression of ferroportin mRNA. MDA-MB-468 cells that were exposed to DIBI experienced double-strand DNA breaks during the S phase of the cell cycle. DNA damage was not mediated by reactive oxygen species (ROS) since DIBI-treated MDA-MB-468 cells exhibited a reduction in intracellular ROS. DIBI-treated MDA-MB-468 cells also showed increased sensitivity to growth inhibition by the chemotherapeutic drugs cisplatin, doxorubicin, and 4-hydroperoxy cyclophosphamide (active metabolite of cyclophosphamide). Combination treatment of MDA-MB-468 cells with DIBI and cisplatin caused greater DNA damage than either treatment alone, which was also associated with an increase in apoptotic cell death. Taken together, these findings suggest that DIBI-mediated iron withdrawal may enhance the effect of chemotherapeutic agents used in breast cancer treatment.
Collapse
Affiliation(s)
- Anna L Greenshields
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | | | - Wasundara Fernando
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | | | - David W Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada. .,Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, 5850 College Street, P.O. Box 15000, Halifax, NS, B3H 4R2, Canada. .,Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
92
|
Mahdavi B, Shokrani P, Hejazi SH, Talebi A, Taheri A. Doxorubicin-loaded PVP coated Gd2O3 NPs for effective chemoradiotherapy in melanoma. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
93
|
Yang K, Zeng L, Ge A, Chen Z, Bao T, Long Z, Ge J, Huang L. Investigating the regulation mechanism of baicalin on triple negative breast cancer's biological network by a systematic biological strategy. Biomed Pharmacother 2019; 118:109253. [PMID: 31545288 DOI: 10.1016/j.biopha.2019.109253] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To investigate the regulation mechanism of baicalin on triple negative breast cancer (TNBC)'s biological network by a systematic biological strategy and cytology experiment. METHODS A systematic biological methodology is utilized to predict the potential targets of baicalin, collect the genes of TNBC, and analyze the TNBC and baicalin's network. After the systematic biological analysis is performed, the cytology experiment, real-time quantitative PCR (qPCR) is used to validate the key biological processes and signaling pathways. RESULTS After systematic biological analysis, two networks were constructed and analyzed: (1) TNBC network; (2) Baicalin-TNBC protein-protein interaction (PPI) network. Several TNBC-related, treatment-related targets, clusters, signaling pathways and biological processes were found. Cytology experiment shows that baicalin can inhibit the proliferation, migration and invasion of breast cancer MDA-MB-231 cells in vitro (P < 0.05). The results of qPCR showed that baicalin increase the expression of E-cadherin mRNA, and decrease the expression of vimentin, β-catenin, c-Myc and MMP-7 mRNA in LPS-induced breast cancer MDA-MB-231 cells (P < 0.05). CONCLUSION Baicalin may achieve anti-tumor effects through regulating the targets, biological processes and pathways found in this research.
Collapse
Affiliation(s)
- Kailin Yang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Capital Medical University, Beijing, China
| | - Liuting Zeng
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Anqi Ge
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Zhouhua Chen
- The Second People's Hospital of Xiangtan City, Xiangtan, Hunan Province, China
| | - Tingting Bao
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhiyong Long
- Shantou University Medical College, Shantou, Guangdong Province, China
| | - Jinwen Ge
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Lizhong Huang
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| |
Collapse
|
94
|
Liu YT, Hsiao CH, Tzang BS, Hsu TC. In vitro and in vivo effects of traditional Chinese medicine formula T33 in human breast cancer cells. Altern Ther Health Med 2019; 19:211. [PMID: 31409331 PMCID: PMC6693224 DOI: 10.1186/s12906-019-2630-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023]
Abstract
Background Breast cancer is the leading cause of cancer-related death in women worldwide. Although traditional Chinese medicine (TCM) is commonly used by patients with breast cancer, little is known about TCM prescriptions for breast cancer. This study investigated the effects of a new TCM formula, T33, comprising Radix Kansui, Rheum rhabarbarum, Paeonia lactiflora, Jiangbanxia, and Zhigancao on breast cancer cells in vitro and in vivo. Methods To evaluate the effects of T33 on human breast cancer, HMEpiC, MDA-MB231 and MCF-7 cells were treated with different concentrations of T33 and then analyzed using MTT and Transwell migration assays. To elucidate the involvement of autophagy in the T33-induced death of MDA-MB231 and MCF-7 cells, immunofluorescence staining with LC3-II-specific antibodies was performed. Tumor xenografts were generated by subcutaneously injecting either MDA-MB231 or MCF-7 cells into BALB/c nude mice to determine the effects of T33 on these cell lines in vivo. Results The experimental results revealed that 0.1 mg/mL, 0.5 mg/mL, 2.5 mg/mL, 5 mg/mL and 10 mg/mL T33 significantly inhibited the proliferation and invasion of MDA-MB231 and MCF-7 cells. Moreover, significant autophagy was observed in MDA-MB231 and MCF-7 cells in the presence of 2.5 mg/mL, 5 mg/mL and 10 mg/mL T33. An animal study further revealed that both low (200 mg/kg) and high (600 mg/kg) doses of T33 inhibited the proliferation of xenografted breast cancer cells in BALB/c nude mice. Conclusion These findings demonstrate for the first time that T33 has potential in the treatment of breast cancer owing to its antiproliferative effects and induction of autophagy.
Collapse
|
95
|
The Impact of Magnesium-Aluminum-Layered Double Hydroxide-Based Polyvinyl Alcohol Coated on Magnetite on the Preparation of Core-Shell Nanoparticles as a Drug Delivery Agent. Int J Mol Sci 2019; 20:ijms20153764. [PMID: 31374834 PMCID: PMC6695672 DOI: 10.3390/ijms20153764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/05/2019] [Accepted: 07/23/2019] [Indexed: 12/02/2022] Open
Abstract
One of the current developments in drug research is the controlled release formulation of drugs, which can be released in a controlled manner at a specific target in the body. Due to the diverse physical and chemical properties of various drugs, a smart drug delivery system is highly sought after. The present study aimed to develop a novel drug delivery system using magnetite nanoparticles as the core and coated with polyvinyl alcohol (PVA), a drug 5-fluorouracil (5FU) and Mg–Al-layered double hydroxide (MLDH) for the formation of FPVA-FU-MLDH nanoparticles. The existence of the coated nanoparticles was supported by various physico-chemical analyses. In addition, the drug content, kinetics, and mechanism of drug release also were studied. 5-fluorouracil (5FU) was found to be released in a controlled manner from the nanoparticles at pH = 4.8 (representing the cancerous cellular environment) and pH = 7.4 (representing the blood environment), governed by pseudo-second-order kinetics. The cytotoxicity study revealed that the anticancer delivery system of FPVA-FU-MLDH nanoparticles showed much better anticancer activity than the free drug, 5FU, against liver cancer and HepG2 cells, and at the same time, it was found to be less toxic to the normal fibroblast 3T3 cells.
Collapse
|
96
|
Zuo A, Zhao P, Zheng Y, Hua H, Wang X. Tripterine inhibits proliferation, migration and invasion of breast cancer MDA-MB-231 cells by up-regulating microRNA-15a. Biol Chem 2019; 400:1069-1078. [PMID: 30913029 DOI: 10.1515/hsz-2018-0469] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/19/2019] [Indexed: 01/17/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer in women worldwide. Tripterine is an important active component isolated from Triperygium wilfordii Hook F. This study investigated the effects of tripterine on breast cancer cell proliferation, migration, invasion and apoptosis, as well as microRNA-15a (miR-15a) expression. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to measure the expression of miR-15a. Cell transfection was conducted to change the expression of miR-15a. Viability, proliferation, migration, invasion and apoptosis of MDA-MB-231 cells were assessed using the cell counting kit-8 (CCK-8) assay, BrdU incorporation assay, Annexin V-FITC/PI apoptosis detection kit and two-chamber Transwell assay, respectively. Expression of key factors involving in cell proliferation, migration, invasion and apoptosis, as well as the PI3K/AKT and JNK pathways, were evaluated using Western blotting. We found that tripterine inhibited MDA-MB-231 cell viability, proliferation, migration and invasion, but induced cell apoptosis. Moreover, tripterine up-regulated the expression of miR-15a in a concentration-dependent manner and miR-15a participated in the effects of tripterine on MDA-MB-231 cell proliferation, migration, invasion and apoptosis. In addition, tripterine inactivated PI3K/AKT and JNK pathways in MDA-MB-231 cells by up-regulating miR-15a. In conclusion, tripterine inhibited proliferation, migration and invasion of breast cancer MDA-MB-231 cells by up-regulating miR-15a and inactivating PI3K/AKT and JNK pathways.
Collapse
Affiliation(s)
- Anjun Zuo
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Peng Zhao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yu Zheng
- Department of General Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hui Hua
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xingang Wang
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266000, China
| |
Collapse
|
97
|
Yue Z, Guan X, Chao R, Huang C, Li D, Yang P, Liu S, Hasegawa T, Guo J, Li M. Diallyl Disulfide Induces Apoptosis and Autophagy in Human Osteosarcoma MG-63 Cells through the PI3K/Akt/mTOR Pathway. Molecules 2019; 24:molecules24142665. [PMID: 31340526 PMCID: PMC6681087 DOI: 10.3390/molecules24142665] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 02/08/2023] Open
Abstract
Diallyl disulfide (DADs), a natural organic compound, is extracted from garlic and scallion and has anti-tumor effects against various tumors. This study investigated the anti-tumor activity of DADs in human osteosarcoma cells and the mechanisms. MG-63 cells were exposed to DADs (0, 20, 40, 60, 80, and 100 μM) for different lengths of time (24, 48, and 72 h). The CCK8 assay results showed that DADs inhibited osteosarcoma cell viability in a dose-and time-dependent manner. FITC-Annexin V/propidium iodide staining and flow cytometry demonstrated that the apoptotic ratio increased and the cell cycle was arrested at the G2/M phase as the DADs concentration was increased. A Western blot analysis was employed to detect the levels of caspase-3, Bax, Bcl-2, LC3-II/LC3-I, and p62 as well as suppression of the mTOR pathway. High expression of LC3-II protein revealed that DADs induced formation of autophagosome. Furthermore, DADs-induced apoptosis was weakened after adding 3-methyladenine, demonstrating that the DADs treatment resulted in autophagy-mediated death of MG-63 cells. In addition, DADs depressed p-mTOR kinase activity, and the inhibited PI3K/Akt/mTOR pathway increased DADs-induced apoptosis and autophagy. In conclusion, our results reveal that DADs induced G2/M arrest, apoptosis, and autophagic death of human osteosarcoma cells by inhibiting the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Ziqi Yue
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Xin Guan
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Rui Chao
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Cancan Huang
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Dongfang Li
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Panpan Yang
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Shanshan Liu
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Jie Guo
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Minqi Li
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China.
| |
Collapse
|
98
|
Wang X, Yang Y, An Y, Fang G. The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer. Biomed Pharmacother 2019; 117:109086. [PMID: 31200254 DOI: 10.1016/j.biopha.2019.109086] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 01/09/2023] Open
Abstract
In the last century, natural compounds have achieved remarkable achievements in the treatment of tumors through chemotherapy. This inspired scientists to continuously explore anticancer agents from natural compounds. Kaempferol is an ordinary natural compound, the most common flavonoid, which is widely existed in vegetables and fruits. It has been reported to have various anticancer activities, including breast cancer, prostate cancer, bladder cancer, cervical cancer, colon cancer, liver cancer, lung cancer, ovarian cancer, leukemia, etc. Meanwhile, we found that there were more reports on breast cancer among these cancers although there are limited clinical studies that have addressed the benefits of kaempferol as an anti-cancer agent for breast cancer treatment. Then we realize that although kaempferol has been reported to have anti-breast cancer effect many times, it is still far from becoming a real anti-breast cancer agent. Therefore, in this review, we talk about the options for improving the anti-breast cancer effect of kaempferol, including various techniques and methods to improve the bioavailability of kaempferol, the idea of combining other compounds to produce synergistic effects, and the possibility of developing kaempferol into a targeted drug delivery system.
Collapse
Affiliation(s)
- Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China.
| | - Yuting Yang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China; Faculty of pharmacy, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China.
| | - Yating An
- Department of pharmacy, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, 354 North road, Hongqiao District, Tianjin, 300120, China.
| | - Gang Fang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China; Laboratory of Zhuang Medicine Prescriptions Basis and application Research, Guangxi University of Chinese medicine, 179 Mingxiudong Road, Xixiangtang District, Nanning, 530001, China.
| |
Collapse
|
99
|
Hsieh F, Miao N, Tseng I, Chiu H, Kao C, Liu D, Chen R, Tsai H, Chou K. Effect of home‐based music intervention versus ambient music on breast cancer survivors in the community: A feasibility study in Taiwan. Eur J Cancer Care (Engl) 2019; 28:e13064. [DOI: 10.1111/ecc.13064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 01/25/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Feng‐Chi Hsieh
- Department of Radiology Yuan's General Hospital Kaohsiung Taiwan
| | - Nae‐Fang Miao
- Post‐Baccalaureate Program in Nursing, College of Nursing Taipei Medical University Taipei Taiwan
| | - Ing‐Jy Tseng
- School of Gerontology Health Management, College of Nursing Taipei Medical University Taipei Taiwan
| | - Huei‐Ling Chiu
- School of Gerontology Health Management, College of Nursing Taipei Medical University Taipei Taiwan
| | - Ching‐Chiu Kao
- School of Nursing, College of Nursing Taipei Medical University Taipei Taiwan
- Department of Nursing Wanfang Hospital, Taipei Medical University Taipei Taiwan
| | - Doresses Liu
- School of Nursing, College of Nursing Taipei Medical University Taipei Taiwan
- Department of Nursing Wanfang Hospital, Taipei Medical University Taipei Taiwan
| | - Ruey Chen
- School of Nursing, College of Nursing Taipei Medical University Taipei Taiwan
- Department of Nursing Taipei Medical University‐Shuang Ho Hospital Taipei Taiwan
| | - Hsiu‐Fen Tsai
- Department of Nursing Hsin Sheng College of Medical Care and Management Taoyuan Taiwan
| | - Kuei‐Ru Chou
- Post‐Baccalaureate Program in Nursing, College of Nursing Taipei Medical University Taipei Taiwan
- Department of Nursing Taipei Medical University‐Shuang Ho Hospital Taipei Taiwan
- Dean of College of Nursing Taipei Medical University Hospital Taipei Taiwan
| |
Collapse
|
100
|
Wang M, Jiang S, Zhou L, Yu F, Ding H, Li P, Zhou M, Wang K. Potential Mechanisms of Action of Curcumin for Cancer Prevention: Focus on Cellular Signaling Pathways and miRNAs. Int J Biol Sci 2019; 15:1200-1214. [PMID: 31223280 PMCID: PMC6567807 DOI: 10.7150/ijbs.33710] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
Despite significant progressions in treatment modalities over the last decade, either cancer incidence or mortality is continuously on the rise throughout the world. Current anticancer agents display limited efficacy, accompanied by severe side effects. In order to improve therapeutic outcomes in patients with cancer, it is crucial to identify novel, highly efficacious pharmacological agents. Curcumin, a hydrophobic polyphenol extracted from turmeric, has gained increasing attention due to its powerful anticancer properties. Curcumin can inhibit the growth, invasion and metastasis of various cancers. The anticancer mechanisms of curcumin have been extensively studied. The anticancer effects of curcumin are mainly mediated through its regulation of multiple cellular signaling pathways, including Wnt/β-catenin, PI3K/Akt, JAK/STAT, MAPK, p53 and NF-ĸB signaling pathways. Moreover, curcumin also orchestrates the expression and activity of oncogenic and tumor-suppressive miRNAs. In this review, we summarized the regulation of these signaling pathways by curcumin in different cancers. We also discussed the modulatory function of curcumin in the downregulation of oncogenic miRNAs and the upregulation of tumor-suppressive miRNAs. An in-depth understanding of the anticancer mechanisms of curcumin will be helpful for developing this promising compound as a therapeutic agent in clinical management of cancer.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li Zhou
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University School of Medicine, Wuhan 430071, China
| | - Fei Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Han Ding
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Meng Zhou
- Department of Dermatology, Qilu Hospital of Shandong University (Qingdao), Qingdao 266000, China
| | - Kun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| |
Collapse
|