51
|
Jun C, Choi Y, Lim SM, Bae S, Hong YS, Kim JE, Lyoo IK. Disturbance of the glutamatergic system in mood disorders. Exp Neurobiol 2014; 23:28-35. [PMID: 24737937 PMCID: PMC3984954 DOI: 10.5607/en.2014.23.1.28] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/24/2014] [Accepted: 02/24/2014] [Indexed: 12/11/2022] Open
Abstract
The role of glutamatergic system in the neurobiology of mood disorders draws increasing attention, as disturbance of this system is consistently implicated in mood disorders including major depressive disorder and bipolar disorder. Thus, the glutamate hypothesis of mood disorders is expected to complement and improve the prevailing monoamine hypothesis, and may indicate novel therapeutic targets. Since the contribution of astrocytes is found to be crucial not only in the modulation of the glutamatergic system but also in the maintenance of brain energy metabolism, alterations in the astrocytic function and neuroenergetic environment are suggested as the potential neurobiological underpinnings of mood disorders. In the present review, the evidence of glutamatergic abnormalities in mood disorders based on postmortem and magnetic resonance spectroscopy (MRS) studies is presented, and disrupted energy metabolism involving astrocytic dysfunction is proposed as the underlying mechanism linking altered energy metabolism, perturbations in the glutamatergic system, and pathogenesis of mood disorders.
Collapse
Affiliation(s)
- Chansoo Jun
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea. ; Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea
| | - Yera Choi
- Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea. ; Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul 151-747, Korea
| | - Soo Mee Lim
- Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea. ; Department of Radiology, Ewha Womans University College of Medicine, Seoul 158-710, Korea
| | - Sujin Bae
- Brain Institute and Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Young Sun Hong
- Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea. ; Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul 158-710, Korea
| | - Jieun E Kim
- Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea. ; Department of Brain and Cognitive Sciences, Ewha Womans University Graduate School, Seoul 120-750, Korea
| | - In Kyoon Lyoo
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea. ; Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
52
|
McCullumsmith RE, Hammond JH, Shan D, Meador-Woodruff JH. Postmortem brain: an underutilized substrate for studying severe mental illness. Neuropsychopharmacology 2014; 39:65-87. [PMID: 24091486 PMCID: PMC3857666 DOI: 10.1038/npp.2013.239] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 02/08/2023]
Abstract
We propose that postmortem tissue is an underutilized substrate that may be used to translate genetic and/or preclinical studies, particularly for neuropsychiatric illnesses with complex etiologies. Postmortem brain tissues from subjects with schizophrenia have been extensively studied, and thus serve as a useful vehicle for illustrating the challenges associated with this biological substrate. Schizophrenia is likely caused by a combination of genetic risk and environmental factors that combine to create a disease phenotype that is typically not apparent until late adolescence. The complexity of this illness creates challenges for hypothesis testing aimed at understanding the pathophysiology of the illness, as postmortem brain tissues collected from individuals with schizophrenia reflect neuroplastic changes from a lifetime of severe mental illness, as well as treatment with antipsychotic medications. While there are significant challenges with studying postmortem brain, such as the postmortem interval, it confers a translational element that is difficult to recapitulate in animal models. On the other hand, data derived from animal models typically provide specific mechanistic and behavioral measures that cannot be generated using human subjects. Convergence of these two approaches has led to important insights for understanding molecular deficits and their causes in this illness. In this review, we discuss the problem of schizophrenia, review the common challenges related to postmortem studies, discuss the application of biochemical approaches to this substrate, and present examples of postmortem schizophrenia studies that illustrate the role of the postmortem approach for generating important new leads for understanding the pathophysiology of severe mental illness.
Collapse
Affiliation(s)
| | - John H Hammond
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Dan Shan
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| |
Collapse
|
53
|
Eid T, Lee TSW, Wang Y, Perez E, Peréz E, Drummond J, Lauritzen F, Bergersen LH, Meador-Woodruff JH, Spencer DD, de Lanerolle NC, McCullumsmith RE. Gene expression of glutamate metabolizing enzymes in the hippocampal formation in human temporal lobe epilepsy. Epilepsia 2013; 54:228-38. [PMID: 23384343 PMCID: PMC3578420 DOI: 10.1111/epi.12008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Increased interictal concentrations of extracellular hippocampal glutamate have been implicated in the pathophysiology of temporal lobe epilepsy (TLE). Recent studies suggest that perturbations of the glutamate metabolizing enzymes glutamine synthetase (GS) and phosphate activated glutaminase (PAG) may underlie the glutamate excess in TLE. However, the molecular mechanism of the enzyme perturbations remains unclear. A better understanding of the regulatory mechanisms of GS and PAG could facilitate the discovery of novel therapeutics for TLE. METHODS We used in situ hybridization on histologic sections to assess the distribution and quantity of messenger RNA (mRNA) for GS and PAG in subfields of hippocampal formations from the following: (1) patients with TLE and concomitant hippocampal sclerosis, (2) patients with TLE and no hippocampal sclerosis, and (3) nonepilepsy autopsy subjects. KEY FINDINGS GS mRNA was increased by ~50% in the CA3 in TLE patients without hippocampal sclerosis versus in TLE patients with sclerosis and in nonepilepsy subjects. PAG mRNA was increased by >100% in the subiculum in both TLE patient categories versus in nonepilepsy subjects. PAG mRNA was also increased in the CA1, CA2, CA3, and dentate hilus in TLE without hippocampal sclerosis versus in TLE with sclerosis. Finally, PAG mRNA was increased in the dentate gyrus in TLE with sclerosis versus in nonepilepsy subjects, and also increased in the hilus in TLE without sclerosis versus in TLE with sclerosis. SIGNIFICANCE These findings demonstrate complex changes in the expression of mRNAs for GS and PAG in the hippocampal formation in TLE, and raise the possibility that both transcriptional and posttranscriptional mechanisms may underlie the regulation of GS and PAG proteins in the epileptic brain.
Collapse
Affiliation(s)
- Tore Eid
- Departments of Laboratory Medicine Psychiatry Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520-8035, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Suicide and bipolar disorder (BD) are challenging, complex, and intertwined areas of study in contemporary psychiatry. Indeed, BD is associated with the highest lifetime risk for suicide attempt and completion of all the psychiatric conditions. Given that several clinical risk factors for both suicide and BD have been well noted in the literature, exploring the neurobiological aspects of suicide in BD may provide insights into both preventive measures and future novel treatments. This review synthesizes findings regarding the neurobiological aspects of suicide and, when applicable, their link to BD. Neurochemical findings, genes/epigenetics, and potential molecular targets for current or future treatments are discussed. The role of endophenotypes and related proximal and distal risk factors underlying suicidal behavior are also explored. Lastly, we discuss the manner in which preclinical work on aggression and impulsivity may provide additional insights for the future development of novel treatments.
Collapse
|
55
|
Stuber GD, Mason AO. Integrating optogenetic and pharmacological approaches to study neural circuit function: current applications and future directions. Pharmacol Rev 2013; 65:156-70. [PMID: 23319548 PMCID: PMC3565921 DOI: 10.1124/pr.111.005611] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Optogenetic strategies to control genetically distinct populations of neurons with light have been rapidly evolving and widely adopted by the neuroscience community as one of the most important tool sets to study neural circuit function. Although optogenetics have already reshaped neuroscience by allowing for more precise control of circuit function compared with traditional techniques, current limitations of these approaches should be considered. Here, we discuss several strategies that combine optogenetic and contemporary pharmacological techniques to further increase the specificity of neural circuit manipulation. We also discuss recent advances that allow for the selective modulation of cellular function and gene expression with light. In addition, we outline a novel application of optogenetic circuit analysis for causally addressing the role of pathway-specific neural activity in mediating alterations in postsynaptic transcriptional processing in genetically defined neurons. By determining how optogenetic activation of specific neural circuits causally contributes to alterations in gene expression in a high-throughput fashion, novel biologic targets for future pharmacological intervention may be uncovered. Lastly, extending this experimental pipeline to selectively target pharmacotherapies to genetically defined neuronal populations or circuits will not only provide more selective control of neural circuits, but also may lead to the development of neural circuit specific pharmacological therapeutics.
Collapse
Affiliation(s)
- Garret D Stuber
- Departments of Psychiatry & Cell Biology and Physiology, UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | |
Collapse
|
56
|
Munkholm K, Vinberg M, Berk M, Kessing LV. State-related alterations of gene expression in bipolar disorder: a systematic review. Bipolar Disord 2012; 14:684-96. [PMID: 23043691 DOI: 10.1111/bdi.12005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Alterations in gene expression in bipolar disorder have been found in numerous studies. It is unclear whether such alterations are related to specific mood states. As a biphasic disorder, mood state-related alterations in gene expression have the potential to point to markers of disease activity, and trait-related alterations might indicate vulnerability pathways. This review therefore evaluated the evidence for whether gene expression in bipolar disorder is state or trait related. METHODS A systematic review, using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guideline for reporting systematic reviews, based on comprehensive database searches for studies on gene expression in patients with bipolar disorder in specific mood states, was conducted. We searched Medline, Embase, PsycINFO, and The Cochrane Library, supplemented by manually searching reference lists from retrieved publications. RESULTS A total of 17 studies were included, comprising 565 patients and 418 control individuals. Six studies evaluated intraindividual alterations in gene expression across mood states. Two of five studies found evidence of intraindividual alterations in gene expression between a depressed state and a euthymic state. No studies evaluated intraindividual differences in gene expression between a manic state and a euthymic state, while only one case study evaluated differences between a manic state and a depressed state, finding altered expression in seven genes. No study investigated intraindividual variations in gene expression between a euthymic state and multiple states of various polarities (depressive, manic, hypomanic). Intraindividual alterations in expression of the same genes were not investigated across studies. Only one gene (the brain-derived neurotrophic factor gene; BDNF) was investigated across multiple studies, showing no alteration between bipolar disorder patients and control individuals. CONCLUSIONS There is evidence of some genes exhibiting state-related alterations in expression in bipolar disorder; however, this finding is limited by the lack of replication across studies. Further prospective studies are warranted, measuring gene expression in various affective phases, allowing for assessment of intraindividual differences.
Collapse
Affiliation(s)
- Klaus Munkholm
- Psychiatric Center Copenhagen, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
57
|
Mapping the spatio-temporal pattern of the mammalian target of rapamycin (mTOR) activation in temporal lobe epilepsy. PLoS One 2012; 7:e39152. [PMID: 22761730 PMCID: PMC3384628 DOI: 10.1371/journal.pone.0039152] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/16/2012] [Indexed: 01/08/2023] Open
Abstract
Growing evidence from rodent models of temporal lobe epilepsy (TLE) indicates that dysregulation of the mammalian target of rapamycin (mTOR) pathway is involved in seizures and epileptogenesis. However, the role of the mTOR pathway in the epileptogenic process remains poorly understood. Here, we used an animal model of TLE and sclerotic hippocampus from patients with refractory TLE to determine whether cell-type specific activation of mTOR signaling occurs during each stage of epileptogenesis. In the TLE mouse model, we found that hyperactivation of the mTOR pathway is present in distinct hippocampal subfields at three different stages after kainate-induced seizures, and occurs in neurons of the granular and pyramidal cell layers, in reactive astrocytes, and in dispersed granule cells, respectively. In agreement with the findings in TLE mice, upregulated mTOR was observed in the sclerotic hippocampus of TLE patients. All sclerotic hippocampus (n = 13) exhibited widespread reactive astrocytes with overactivated mTOR, some of which invaded the dispersed granular layer. Moreover, two sclerotic hippocampus exhibited mTOR activation in some of the granule cells, which was accompanied by cell body hypertrophy. Taken together, our results indicate that mTOR activation is most prominent in reactive astrocytes in both an animal model of TLE and the sclerotic hippocampus from patients with drug resistant TLE.
Collapse
|
58
|
Gallego JA, Gordon ML, Claycomb K, Bhatt M, Lencz T, Malhotra AK. In vivo microRNA detection and quantitation in cerebrospinal fluid. J Mol Neurosci 2012; 47:243-8. [PMID: 22402993 DOI: 10.1007/s12031-012-9731-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/20/2012] [Indexed: 11/30/2022]
Abstract
Alterations in microRNA (miRNA) expression in postmortem brain tissue or peripheral blood have been linked to schizophrenia. Cerebrospinal fluid might provide an in vivo biomarker more directly reflecting functional changes in the brain. The goals of this study were to determine the feasibility of detecting miRNAs in cerebrospinal fluid and to compare miRNA levels in cerebrospinal fluid versus blood. Four healthy volunteers and four patients with psychotic disorders underwent a lumbar puncture and a blood draw. Expression of 378 validated miRNAs was assessed from each biofluid type for each subject using microarray technology. Five miRNAs were chosen for validation with quantitative polymerase chain reaction. A substantial number of miRNAs (n = 95) were exclusively or predominately detected in cerebrospinal fluid (CSF). Levels of 35 miRNAs detected in both CSF and blood samples in all subjects were poorly correlated. The investigation of miRNAs in CSF can help advance the understanding of psychiatric diseases and particularly schizophrenia.
Collapse
|
59
|
Lin CY, Sawa A, Jaaro-Peled H. Better understanding of mechanisms of schizophrenia and bipolar disorder: from human gene expression profiles to mouse models. Neurobiol Dis 2011; 45:48-56. [PMID: 21914480 DOI: 10.1016/j.nbd.2011.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/22/2011] [Accepted: 08/26/2011] [Indexed: 01/01/2023] Open
Abstract
The molecular mechanisms of major mental illnesses, such as schizophrenia and bipolar disorder, are unclear. To address this fundamental question, many groups have studied molecular expression profiles in postmortem brains and other tissues from patients compared with those from normal controls. Development of unbiased high-throughput approaches, such as microarray, RNA-seq, and proteomics, have supported and facilitated this endeavor. In addition to genes directly involved in neuron/glia signaling, especially those encoding for synaptic proteins, genes for metabolic cascades are differentially expressed in the brains of patients with schizophrenia and bipolar disorder, compared with those from normal controls in DNA microarray studies. Here we propose the importance and usefulness of genetic mouse models in which such differentially expressed molecules are modulated. These animal models allow us to dissect the mechanisms of how such molecular changes in patient brains may play a role in neuronal circuitries and overall behavioral phenotypes. We also point out that models in which the metabolic genes are modified are obviously untested from mental illness viewpoints, suggesting the potential to re-address these models with behavioral assays and neurochemical assessments.
Collapse
Affiliation(s)
- Chi-Ying Lin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
60
|
Choi K, Le T, Xing G, Johnson LR, Ursano RJ. Analysis of kinase gene expression in the frontal cortex of suicide victims: implications of fear and stress. Front Behav Neurosci 2011; 5:46. [PMID: 21847376 PMCID: PMC3148763 DOI: 10.3389/fnbeh.2011.00046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/16/2011] [Indexed: 01/03/2023] Open
Abstract
Suicide is a serious public health issue that results from an interaction between multiple risk factors including individual vulnerabilities to complex feelings of hopelessness, fear, and stress. Although kinase genes have been implicated in fear and stress, including the consolidation and extinction of fearful memories, expression profiles of those genes in the brain of suicide victims are less clear. Using gene expression microarray data from the Online Stanley Genomics Database and a quantitative PCR, we investigated the expression profiles of multiple kinase genes including the calcium calmodulin-dependent kinase (CAMK), the cyclin-dependent kinase, the mitogen-activated protein kinase (MAPK), and the protein kinase C (PKC) in the prefrontal cortex (PFC) of mood disorder patients died with suicide (N = 45) and without suicide (N = 38). We also investigated the expression pattern of the same genes in the PFC of developing humans ranging in age from birth to 49 year (N = 46). The expression levels of CAMK2B, CDK5, MAPK9, and PRKCI were increased in the PFC of suicide victims as compared to non-suicide controls (false discovery rate, FDR-adjusted p < 0.05, fold change >1.1). Those genes also showed changes in expression pattern during the postnatal development (FDR-adjusted p < 0.05). These results suggest that multiple kinase genes undergo age-dependent changes in normal brains as well as pathological changes in suicide brains. These findings may provide an important link to protein kinases known to be important for the development of fear memory, stress associated neural plasticity, and up-regulation in the PFC of suicide victims. More research is needed to better understand the functional role of these kinase genes that may be associated with the pathophysiology of suicide.
Collapse
Affiliation(s)
- Kwang Choi
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of Health Sciences Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
61
|
Harrison PJ. Using our brains: the findings, flaws, and future of postmortem studies of psychiatric disorders. Biol Psychiatry 2011; 69:102-3. [PMID: 21183008 DOI: 10.1016/j.biopsych.2010.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/06/2010] [Accepted: 09/09/2010] [Indexed: 11/19/2022]
Affiliation(s)
- Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital,Oxford, United Kingdom.
| |
Collapse
|