51
|
Bui E, King F, Melaragno A. Pharmacotherapy of anxiety disorders in the 21st century: A call for novel approaches. Gen Psychiatr 2019; 32:e100136. [PMID: 31922087 PMCID: PMC6936967 DOI: 10.1136/gpsych-2019-100136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
While limited advances have occurred in the past 30 years in the pharmacological management of anxiety and stress-related disorders, novel molecular pathways both within and without the monoamine systems are currently under investigation and offer promising new avenues for more effective future treatments. Enhancing psychotherapy approaches with pharmacological compounds offers the potential to not only transform the standard of care of these conditions, but more broadly would introduce a paradigm shift in the way medications and their role in psychiatric care are conceptualised. Although further human trials and more translational research are sorely needed, continuing to pursue innovative mechanisms and treatments is hoped to yield substantial results in the coming decades and a departure from the reliance on chemical agents of the 20th century.
Collapse
Affiliation(s)
- Eric Bui
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States
| | - Franklin King
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States
| | - Andrew Melaragno
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
52
|
Uniyal A, Singh R, Akhtar A, Dhaliwal J, Kuhad A, Sah SP. Pharmacological rewriting of fear memories: A beacon for post-traumatic stress disorder. Eur J Pharmacol 2019; 870:172824. [PMID: 31778672 DOI: 10.1016/j.ejphar.2019.172824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a psychopathological response that develops after exposure to an extreme life-threatening traumatic event. Its prevalence ranges from 0.5% to 14.5% worldwide. Due to the complex pathophysiology of PTSD, currently available treatment approaches are associated with high chances of failure, thus further research to identify better pharmacotherapeutic approaches is needed. The traumatic event associated with fear memories plays an important role in the development of PTSD and could be considered as the main culprit. PTSD patient feels frightened in a safe environment as the memories of the traumatic event are revisited. Neurocircuit involving normal processing of fear memories get disturbed in PTSD hence making a fear memory to remain to dominate even after years of trauma. Persistence of fear memories could be explained by acquisition, re-(consolidation) and extinction triad as all of these processes have been widely explored in preclinical as well as clinical studies and set a therapeutic platform for fear memory associated disorders. This review focuses on neurocircuit and pathophysiology of PTSD in context to fear memories and pharmacological targeting of fear memory for the management of PTSD.
Collapse
Affiliation(s)
- Ankit Uniyal
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India; Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.) Varanasi, 221005, Uttar Pradesh, India
| | - Raghunath Singh
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India
| | - Ansab Akhtar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India
| | - Jatinder Dhaliwal
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India
| | - Anurag Kuhad
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India
| | - Sangeeta Pilkhwal Sah
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
53
|
Choy KHC, Chavez CA, Yu J, Mayorov DN. The effect of angiotensin AT 1A inactivation on innate and learned fear responses in mice and its relationship to blood pressure. Psychoneuroendocrinology 2019; 107:208-216. [PMID: 31150966 DOI: 10.1016/j.psyneuen.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 11/26/2022]
Abstract
Angiotensin AT1 receptors are implicated in behavioral and physiological processes associated with fear and stress. However, the precise role of AT1 receptors in modulating fear-related behavior and its relation to their physiological effects remains unclear. Here, we examined innate and learned fear responses and their relationship to cardiovascular arousal in AT1A receptor knockout (AT1A-/-) mice. Using synchronized video and blood pressure telemetry, we found that, in a novel test environment, AT1A-/- mice showed reduced neophobia but a similar rise in blood pressure, as compared to AT1A+/+ mice. In response to a discrete threat, footshock, both flight behavior and cardiovascular arousal were decreased in AT1A-/- mice. Reduced flight behavior was also observed in AT1A-/- mice in the elevated T-maze test. During fear conditioning, the immediate freezing response to the first shock, but not the rate of freezing acquisition was decreased in AT1A-/- mice. Likewise, AT1A-/- mice showed reduced freezing and pressor responses to the first re-exposure, but normal rate of freezing extinction over subsequent trials. Similarly, in the elevated T-maze, the rates of avoidance acquisition and escape learning remained unchanged in AT1A-/- mice. Finally, after re-exposure, AT1A-/- mice displayed altered c-Fos expression, compared to AT1A+/+ mice, in the hypothalamus and periaqueductal gray but not in fear-related limbic-cortical areas, nor in medullary nuclei that convey visceral afferent information. We conclude that AT1A receptor knockout reduces innate fear responses, without affecting learning efficiency in mice. These effects are dissociable from cardiovascular effects and likely reflect altered neurotransmission in hypothalamic-midbrain defense regions.
Collapse
Affiliation(s)
- Kwok H C Choy
- Dept. of Pharmacology, University of Melbourne, Victoria, Australia
| | | | - Jing Yu
- Dept. of Pharmacology, University of Melbourne, Victoria, Australia
| | - Dmitry N Mayorov
- Dept. of Pharmacology, University of Melbourne, Victoria, Australia.
| |
Collapse
|
54
|
Terock J, Hannemann A, Janowitz D, Van der Auwera S, Bahls M, Völzke H, Grabe HJ. Differential activation of the renin-angiotensin-aldosterone-system in response to childhood and adulthood trauma. Psychoneuroendocrinology 2019; 107:232-240. [PMID: 31174161 DOI: 10.1016/j.psyneuen.2019.05.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/10/2019] [Accepted: 05/27/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Previous evidence suggested lasting and cumulative effects of traumatization on the renin-angiotensin-aldosterone-system (RAAS). However, it is unclear whether traumas during childhood and those experienced in adulthood differentially impact the RAAS. In this study, we sought to investigate main and putative interactive effects of childhood and adulthood trauma on RAAS functioning. METHODS Plasma concentrations of renin and aldosterone were measured in a general population sample (n = 2016). Childhood trauma was assessed using the Childhood Trauma Questionnaire (CTQ), adulthood trauma was measured using the PTSD module of the Structured Clinical Interview of the DSM-IV. Linear regression models were calculated to assess the relations between childhood or adulthood traumatization with renin and aldosterone concentrations. RESULTS Exposure to (ß = 0.094; p = 0.01), severity of childhood trauma (ß = 0.004; p = 0.01) were associated with increased aldosterone, but not renin levels. Results were carried by all dimensions of abuse, while childhood neglect was not associated with altered RAAS activity. In contrast, adulthood traumas (ß = 0.113; p < 0.01) were significantly associated with increased renin concentrations. Subjects with PTSD (renin: ß = 0.345; p = 0.01; aldosterone: ß = 0.232; p = 0.04) and those who had been exposed to both childhood and adulthood trauma showed increases in renin (ß = 0.180; p < 0.01) and aldosterone (ß = 0.340; p < 0.01) levels. DISCUSSION These findings indicate that trauma is associated with differential alterations of the RAAS depending on the time of traumatization. Moreover, exposure to childhood or adulthood trauma may act synergistically on the RAAS, resulting in severe dysregulation of the RAAS. The results contribute to explain associations between trauma and enhanced risk for physical disease.
Collapse
Affiliation(s)
- Jan Terock
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; Department of Psychiatry and Psychotherapy, HELIOS Hanseklinikum Stralsund, Stralsund, Germany.
| | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Germany
| | - Deborah Janowitz
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Center for Neurodegenerative Diseases DZNE, Site Rostock/ Greifswald, Germany
| | - Martin Bahls
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany; DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Center for Neurodegenerative Diseases DZNE, Site Rostock/ Greifswald, Germany
| |
Collapse
|
55
|
Pulcu E, Shkreli L, Holst CG, Woud ML, Craske MG, Browning M, Reinecke A. The Effects of the Angiotensin II Receptor Antagonist Losartan on Appetitive Versus Aversive Learning: A Randomized Controlled Trial. Biol Psychiatry 2019; 86:397-404. [PMID: 31155138 DOI: 10.1016/j.biopsych.2019.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/22/2019] [Accepted: 04/06/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Exposure therapy is a first-line treatment for anxiety disorders but remains ineffective in a large proportion of patients. A proposed mechanism of exposure involves inhibitory learning whereby the association between a stimulus and an aversive outcome is suppressed by a new association with an appetitive or neutral outcome. The blood pressure medication losartan augments fear extinction in rodents and may have similar synergistic effects on human exposure therapy, but the exact cognitive mechanisms underlying these effects remain unknown. METHODS We used a reinforcement learning paradigm with compound rewards and punishments to test the prediction that losartan augments learning from appetitive relative to aversive outcomes. In a double-blind parallel design, healthy volunteers were randomly assigned to single-dose losartan (50 mg) (n = 28) versus placebo (n = 25). Participants then performed a reinforcement learning task, which simultaneously probes appetitive and aversive learning. Participant choice behavior was analyzed using both a standard reinforcement learning model and analysis of choice switching behavior. RESULTS Losartan significantly reduced learning rates from aversive events (losses) when participants were first exposed to the novel task environment, while preserving learning from positive outcomes. The same effect was seen in choice switching behavior. CONCLUSIONS This study shows that losartan enhances learning from positive relative to negative events. This effect may represent a computationally defined neurocognitive mechanism by which the drug could enhance the effect of exposure in clinical populations.
Collapse
Affiliation(s)
- Erdem Pulcu
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Lorika Shkreli
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Department of Psychology, Ruhr-Universität Bochum, Bochum, Germany
| | - Carolina Guzman Holst
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Marcella L Woud
- Department of Psychology, Ruhr-Universität Bochum, Bochum, Germany
| | - Michelle G Craske
- Department of Psychology, University of California, Los Angeles, Los Angeles, California; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Michael Browning
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Health National Health Service Trust, Oxford, United Kingdom
| | - Andrea Reinecke
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
56
|
Cunha Silva C, Fontes MAP. Cardiovascular reactivity to emotional stress: The hidden challenge for pets in the urbanized environment. Physiol Behav 2019; 207:151-158. [PMID: 31100295 DOI: 10.1016/j.physbeh.2019.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/06/2019] [Accepted: 05/11/2019] [Indexed: 01/16/2023]
Abstract
Emotional stress is currently considered an important risk factor for cardiovascular diseases. Experimental evidence clearly shows robust autonomic cardiovascular effects in animals exposed to stress stimuli. Considering the remarkable variability of stressors, the urban environment can pose a severe challenge to cardiovascular control. Interestingly, pet ownership is indicated as an efficient non-pharmacological therapy to attenuate stress effects that can reduce the risk of cardiovascular disease. However, the risk of cardiovascular diseases in pets themselves living in urban environment has not received attention it deserves. Here, we review the central mechanisms involved in the autonomic cardiovascular response to emotional stress. Next, we discuss experimental evidence showing the cardiovascular effects produced by emotional stressors in animals, aiming to establish a parallel with common urban stressors. Association of additional risk factors such as sedentarism, obesity and ambient temperature are also considered. Our aim is to identify and raise awareness of the risk of cardiovascular disease in pets exposed to quotidian emotional stressors present in the urban environment.
Collapse
Affiliation(s)
- Carina Cunha Silva
- Department of Physiology & Biophysics, Institute of Biological Sciences Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Marco Antônio Peliky Fontes
- Department of Physiology & Biophysics, Institute of Biological Sciences Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.
| |
Collapse
|
57
|
Winter A, Ahlbrand R, Sah R. Recruitment of central angiotensin II type 1 receptor associated neurocircuits in carbon dioxide associated fear. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:378-386. [PMID: 30776402 DOI: 10.1016/j.pnpbp.2019.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/15/2019] [Accepted: 02/14/2019] [Indexed: 11/29/2022]
Abstract
Individuals with fear-associated conditions such as panic disorder (PD) and posttraumatic stress disorder (PTSD) display increased emotional responses to interoceptive triggers, such as CO2 inhalation, that signal a threat to physiological homeostasis. Currently, effector systems and mechanisms underlying homeostatic modulation of fear memory are not well understood. In this regard, the renin angiotensin system (RAS), particularly the angiotensin receptor type 1 (AT1R), a primary homeostatic regulatory target, has gained attention. RAS polymorphisms have been reported in PD and PTSD, and recent studies report AT1R-mediated modulation of fear extinction. However, contribution of AT1Rs in fear evoked by the interoceptive threat of CO2 has not been investigated. Using pharmacological, behavioral, and AT1R/ACE gene transcription analyses, we assessed central AT1R recruitment in CO2-associated fear. CO2 inhalation led to significant AT1R and ACE mRNA upregulation in homeostatic regulatory regions, subfornical organ (SFO) and paraventricular nucleus (PVN), in a temporal manner. Intracerebroventricular infusion of selective AT1R antagonist, losartan, significantly attenuated freezing during CO2 inhalation, and during re-exposure to CO2 context, suggestive of AT1R modulation of contextual fear. Regional Fos mapping in losartan-treated mice post-behavior revealed significantly attenuated labeling in areas regulating defensive behavior, contextual fear, and threat responding; such as, the bed nucleus of stria terminalis, dorsal periaqueductal gray, hypothalamic nuclei, hippocampus, and prefrontal areas such as the prelimbic, infralimbic, and anterior cingulate cortices. Sub-regions of the amygdala did not show CO2-associated AT1R regulation or altered Fos labeling. Collectively, our data suggests central AT1R recruitment in modulation of fear behaviors associated with CO2 inhalation via engagement of neurocircuits regulating homeostasis and defensive behaviors. Our data provides mechanistic insights into the interoceptive regulation of fear, relevant to fear related disorders such as PD and PTSD.
Collapse
Affiliation(s)
- Andrew Winter
- Dept. of Pharmacology and Systems Physiology, University of Cincinnati, United States; Neuroscience Graduate Program, University of Cincinnati, United States
| | - Rebecca Ahlbrand
- Dept. of Pharmacology and Systems Physiology, University of Cincinnati, United States; VA Medical Center, Cincinnati, OH, 45221, United States
| | - Renu Sah
- Dept. of Pharmacology and Systems Physiology, University of Cincinnati, United States; Neuroscience Graduate Program, University of Cincinnati, United States; VA Medical Center, Cincinnati, OH, 45221, United States.
| |
Collapse
|
58
|
Quitterer U, AbdAlla S. Improvements of symptoms of Alzheimer`s disease by inhibition of the angiotensin system. Pharmacol Res 2019; 154:104230. [PMID: 30991105 DOI: 10.1016/j.phrs.2019.04.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 01/30/2023]
Abstract
With ageing of the global society, the frequency of ageing-related neurodegenerative diseases such as Alzheimer`s disease (AD) is on the rise worldwide. Currently, there is no cure for AD, and the four drugs approved for AD only have very small effects on AD symptoms. Consequently, there are enormous efforts worldwide to identify new targets for treatment of AD. Approaches that interfere with classical neuropathologic features of AD, such as extracellular senile plaques formed of aggregated amyloid-beta (Abeta), and intracellular neurofibrillary tangles of hyperphosphorylated tau have not been successful so far. In search for a treatment approach of AD, we found that inhibition of the angiotensin-converting enzyme (ACE) by a centrally acting ACE inhibitor retards symptoms of neurodegeneration, Abeta plaque formation and tau hyperphosphorylation in experimental models of AD. Our approach is currently being investigated in a clinical setting. Initial evidence with AD patients shows that a brain-penetrating ACE inhibitor counteracts the process of neurodegeneration and dementia. Moreover, centrally acting ACE inhibitors given in addition to the standard therapy, cholinesterase inhibition, can improve cognitive function of AD patients for several months. This is one of the most promising results for AD treatment since more than a decade.
Collapse
Affiliation(s)
- Ursula Quitterer
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Institute of Pharmacology and Toxicology, Department of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| | - Said AbdAlla
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
59
|
Terock J, Hannemann A, Janowitz D, Freyberger HJ, Felix SB, Dörr M, Nauck M, Völzke H, Grabe HJ. Associations of trauma exposure and post-traumatic stress disorder with the activity of the renin-angiotensin-aldosterone-system in the general population. Psychol Med 2019; 49:843-851. [PMID: 29909779 DOI: 10.1017/s0033291718001496] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Previous studies suggested that exposure to traumatic events during childhood and adulthood and post-traumatic stress disorder (PTSD) are associated with a dysregulation of different neuroendocrine systems. However, the activity of the renin-angiotensin-aldosterone-system (RAAS) in relation to trauma/PTSD has been largely neglected. METHODS Traumatization, PTSD, and plasma concentrations of renin and aldosterone were measured in 3092 individuals from the general population. Subgroups according to the status of traumatization ('without trauma'; 'trauma, without PTSD', 'PTSD') were formed and compared regarding renin and aldosterone concentrations. Additionally, we calculated the associations between the number of traumata, renin, and aldosterone concentrations. Finally, associations of PTSD with renin/aldosterone levels were controlled for the number of traumata ('trauma load'). RESULTS Levels of renin, but not aldosterone, were increased in traumatized persons without PTSD (p = 0.02) and, even stronger, with PTSD (p < 0.01). Moreover, we found a dose-response relation between the number of traumata and renin levels (β = 0.065; p < 0.001). Regression analyses showed PTSD as a significant predictor of renin (β = 0.38; p < 0.01). This effect was only slightly attenuated when controlled for trauma load (β = 0.32; p < 0.01). CONCLUSIONS Our results suggest that traumatization has lasting and cumulative effects on RAAS activity. Finding elevated renin levels in PTSD independent from trauma load supports the concept of PTSD as a disorder with specific neuroendocrine characteristics. Alternatively, elevated renin levels in traumatized persons may increase the risk for developing PTSD. Our findings contribute to explain the relationship between traumatic stress/PTSD and physical disorders.
Collapse
Affiliation(s)
- Jan Terock
- Department of Psychiatry and Psychotherapy,University Medicine Greifswald,Greifswald,Germany
| | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald,Greifswald,Germany
| | - Deborah Janowitz
- Department of Psychiatry and Psychotherapy,University Medicine Greifswald,Greifswald,Germany
| | - Harald J Freyberger
- Department of Psychiatry and Psychotherapy,University Medicine Greifswald,Greifswald,Germany
| | - Stephan B Felix
- Department of Internal Medicine B,University Medicine Greifswald,Greifswald,Germany
| | - Marcus Dörr
- Department of Internal Medicine B,University Medicine Greifswald,Greifswald,Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald,Greifswald,Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald,Greifswald,Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy,University Medicine Greifswald,Greifswald,Germany
| |
Collapse
|
60
|
Lebois LAM, Seligowski AV, Wolff JD, Hill SB, Ressler KJ. Augmentation of Extinction and Inhibitory Learning in Anxiety and Trauma-Related Disorders. Annu Rev Clin Psychol 2019; 15:257-284. [PMID: 30698994 DOI: 10.1146/annurev-clinpsy-050718-095634] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although the fear response is an adaptive response to threatening situations, a number of psychiatric disorders feature prominent fear-related symptoms caused, in part, by failures of extinction and inhibitory learning. The translational nature of fear conditioning paradigms has enabled us to develop a nuanced understanding of extinction and inhibitory learning based on the molecular substrates to systems neural circuitry and psychological mechanisms. This knowledge has facilitated the development of novel interventions that may augment extinction and inhibitory learning. These interventions include nonpharmacological techniques, such as behavioral methods to implement during psychotherapy, as well as device-based stimulation techniques that enhance or reduce activity in different regions of the brain. There is also emerging support for a number of psychopharmacological interventions that may augment extinction and inhibitory learning specifically if administered in conjunction with exposure-based psychotherapy. This growing body of research may offer promising novel techniques to address debilitating transdiagnostic fear-related symptoms.
Collapse
Affiliation(s)
- Lauren A M Lebois
- Division of Depression and Anxiety Disorders, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA;
| | - Antonia V Seligowski
- Division of Depression and Anxiety Disorders, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA;
| | - Jonathan D Wolff
- Division of Depression and Anxiety Disorders, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA;
| | - Sarah B Hill
- Division of Depression and Anxiety Disorders, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA;
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA;
| |
Collapse
|
61
|
Estradiol modulation of the renin-angiotensin system and the regulation of fear extinction. Transl Psychiatry 2019; 9:36. [PMID: 30696810 PMCID: PMC6351608 DOI: 10.1038/s41398-019-0374-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/20/2018] [Accepted: 01/01/2019] [Indexed: 01/31/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is more prevalent in women than men, yet much remains to be determined regarding the mechanism underlying this sex difference. Clinical and preclinical studies have shown that low estradiol levels during extinction of fear conditioning in rodents (i.e., cue exposure therapy in humans) leads to poor extinction consolidation and increased fear during extinction recall. The renin-angiotensin system (RAS) is also associated with stress-related pathologies, and RAS antagonists can enhance extinction consolidation in males. However, less is known about how estradiol and the RAS converge to alter fear extinction consolidation in females. Since estradiol downregulates the RAS, we determined the role of surgically (via ovariectomy [OVX]) and pharmacologically (via the hormonal contraceptive [HC], levonorgestrel) clamping estradiol at low levels in female rats on fear-related behavior, serum estradiol and angiotensin II (Ang II) levels, and angiotensin II type I receptor (AT1R) binding in the brain. We then tested whether the AT1R antagonist losartan would alter fear-related behavior in an estradiol-dependent manner. We found that both OVX and HC treatment produced extinction consolidation deficits relative to intact female rats in proestrus (when estradiol levels are high), and that losartan treatment mitigated these deficits and reduced freezing. OVX, but not HC, altered AT1R ligand binding, though HC reduced estradiol and increased Ang II levels in plasma. These findings have significant clinical implications, indicating that administration of an AT1R antagonist, especially if estradiol levels are low, prior to an exposure therapy session may improve treatment outcomes in females.
Collapse
|
62
|
Swiercz AP, Seligowski AV, Park J, Marvar PJ. Extinction of Fear Memory Attenuates Conditioned Cardiovascular Fear Reactivity. Front Behav Neurosci 2018; 12:276. [PMID: 30483079 PMCID: PMC6244092 DOI: 10.3389/fnbeh.2018.00276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/25/2018] [Indexed: 11/21/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is characterized by a heightened emotional and physiological state and an impaired ability to suppress or extinguish traumatic fear memories. Exaggerated physiological responses may contribute to increased cardiovascular disease (CVD) risk in this population, but whether treatment for PTSD can offset CVD risk remains unknown. To further evaluate physiological correlates of fear learning, we used a novel pre-clinical conditioned cardiovascular testing paradigm and examined the effects of Pavlovian fear conditioning and extinction training on mean arterial pressure (MAP) and heart rate (HR) responses. We hypothesized that a fear conditioned cardiovascular response could be detected in a novel context and attenuated by extinction training. In a novel context, fear conditioned mice exhibited marginal increases in MAP (∼3 mmHg) and decreases in HR (∼20 bpm) during CS presentation. In a home cage context, the CS elicited significant increases in both HR (100 bpm) and MAP (20 mmHg). Following extinction training, the MAP response was suppressed while CS-dependent HR responses were variable. These pre-clinical data suggest that extinction learning attenuates the acute MAP responses to conditioned stimuli over time, and that MAP and HR responses may extinguish at different rates. These results suggest that in mouse models of fear learning, conditioned cardiovascular responses are modified by extinction training. Understanding these processes in pre-clinical disease models and in humans with PTSD may be important for identifying interventions that facilitate fear extinction and attenuate hyper-physiological responses, potentially leading to improvements in the efficacy of exposure therapy and PTSD–CVD comorbidity outcomes.
Collapse
Affiliation(s)
- Adam P Swiercz
- Department of Pharmacology and Physiology and Institute for Neuroscience, George Washington University, Washington, DC, United States
| | | | - Jeanie Park
- Atlanta VA Medical Center, Division of Renal Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Paul J Marvar
- Department of Pharmacology and Physiology and Institute for Neuroscience, George Washington University, Washington, DC, United States.,Department of Psychiatry and Behavioral Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
63
|
Angiotensin Regulation of Amygdala Response to Threat in High-Trait-Anxiety Individuals. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:826-835. [DOI: 10.1016/j.bpsc.2018.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022]
|
64
|
Craske MG, Hermans D, Vervliet B. State-of-the-art and future directions for extinction as a translational model for fear and anxiety. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170025. [PMID: 29352025 PMCID: PMC5790824 DOI: 10.1098/rstb.2017.0025] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2017] [Indexed: 01/10/2023] Open
Abstract
Through advances in both basic and clinical scientific research, Pavlovian fear conditioning and extinction have become an exemplary translational model for understanding and treating anxiety disorders. Discoveries in associative and neurobiological mechanisms underlying extinction have informed techniques for optimizing exposure therapy that enhance the formation of inhibitory associations and their consolidation and retrieval over time and context. Strategies that enhance formation include maximizing prediction-error correction by violating expectancies, deepened extinction, occasional reinforced extinction, attentional control and removal of safety signals/behaviours. Strategies that enhance consolidation include pharmacological agonists of NMDA (i.e. d-cycloserine) and mental rehearsal. Strategies that enhance retrieval include multiple contexts, retrieval cues, and pharmacological blockade of contextual encoding. Stimulus variability and positive affect are posited to influence the formation and the retrieval of inhibitory associations. Inhibitory regulation through affect labelling is considered a complement to extinction. The translational value of extinction will be increased by more investigation of elements central to extinction itself, such as extinction generalization, and interactions with other learning processes, such as instrumental avoidance reward learning, and with other clinically relevant cognitive-emotional processes, such as self-efficacy, threat appraisal and emotion regulation, will add translational value. Moreover, framing fear extinction and related processes within a developmental context will increase their clinical relevance.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.
Collapse
Affiliation(s)
- Michelle G Craske
- Department of Psychology, University of California, 405 Hilgard Avenue, Los Angeles, CA, USA
| | - Dirk Hermans
- Center for Excellence on Generalization, University of Leuven, Leuven, Belgium
| | - Bram Vervliet
- Center for Excellence on Generalization, University of Leuven, Leuven, Belgium
| |
Collapse
|
65
|
Craske MG. Honoring the Past, Envisioning the Future: ABCT's 50th Anniversary Presidential Address. Behav Ther 2018; 49:151-164. [PMID: 29530256 DOI: 10.1016/j.beth.2017.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022]
Abstract
The theme of the Association for Behavioral and Cognitive Therapies (ABCT) 50th Anniversary was to honor the past and envision the future. From the wisdom, foresight, and determination of the pioneers of our organization, and the continuous upholding of the scientific method over the last 50 years, cognitive behavioral therapy (CBT) has become the most empirically supported psychological treatment for a wide array of mental health problems. Yet, we still have a long way to go. This address outlines a vision for the future of CBT, which involves greater collaborative science, with all minds working together on the same problem, and greater attention to the risk factors and critical processes that underlie psychopathology and explain treatment change. Such knowledge generation can inform the development of new, more efficient and more effective therapies that are tailored with more precision to the needs of each person. Latest technologies provide tools for a precision focus while at the same time increasing the reach of our treatments to the many for whom traditional therapies are unavailable. Our impact will be greatly enhanced by large samples with common methods and measures that inform a precision approach. We have come a long way since ABCT was founded in 1966, and we are poised to make even larger strides in our mission to enhance health and well-being by harnessing science, our major guiding principle.
Collapse
|
66
|
Holmes EA, Ghaderi A, Harmer CJ, Ramchandani PG, Cuijpers P, Morrison AP, Roiser JP, Bockting CLH, O'Connor RC, Shafran R, Moulds ML, Craske MG. The Lancet Psychiatry Commission on psychological treatments research in tomorrow's science. Lancet Psychiatry 2018; 5:237-286. [PMID: 29482764 DOI: 10.1016/s2215-0366(17)30513-8] [Citation(s) in RCA: 364] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/10/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Emily A Holmes
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Ata Ghaderi
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Catherine J Harmer
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health NHS Trust Foundation, Warneford Hospital, Oxford, UK
| | | | - Pim Cuijpers
- Department of Clinical, Neuro and Developmental Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Anthony P Morrison
- Psychosis Research Unit, Greater Manchester Mental Heath Trust, Manchester, UK; School of Psychological Sciences, University of Manchester, Manchester, UK
| | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Claudi L H Bockting
- Academic Medical Center, Department of Psychiatry, University of Amsterdam, Amsterdam, Netherlands
| | - Rory C O'Connor
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Roz Shafran
- University College London Great Ormond Street Institute of Child Health, London, UK
| | - Michelle L Moulds
- School of Psychology, The University of New South Wales, UNSW, Sydney, NSW, Australia
| | - Michelle G Craske
- Department of Psychology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
67
|
Saavedra J. Beneficial effects of Angiotensin II receptor blockers in brain disorders. Pharmacol Res 2017; 125:91-103. [DOI: 10.1016/j.phrs.2017.06.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/17/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
|
68
|
Jaimes R, Swiercz A, Sherman M, Muselimyan N, Marvar PJ, Posnack NG. Plastics and cardiovascular health: phthalates may disrupt heart rate variability and cardiovascular reactivity. Am J Physiol Heart Circ Physiol 2017; 313:H1044-H1053. [PMID: 28842438 PMCID: PMC5792203 DOI: 10.1152/ajpheart.00364.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022]
Abstract
Plastics have revolutionized medical device technology, transformed hematological care, and facilitated modern cardiology procedures. Despite these advances, studies have shown that phthalate chemicals migrate out of plastic products and that these chemicals are bioactive. Recent epidemiological and research studies have suggested that phthalate exposure adversely affects cardiovascular function. Our objective was to assess the safety and biocompatibility of phthalate chemicals and resolve the impact on cardiovascular and autonomic physiology. Adult mice were implanted with radiofrequency transmitters to monitor heart rate variability, blood pressure, and autonomic regulation in response to di-2-ethylhexyl-phthalate (DEHP) exposure. DEHP-treated animals displayed a decrease in heart rate variability (-17% SD of normal beat-to-beat intervals and -36% high-frequency power) and an exaggerated mean arterial pressure response to ganglionic blockade (31.5% via chlorisondamine). In response to a conditioned stressor, DEHP-treated animals displayed enhanced cardiovascular reactivity (-56% SD major axis Poincarè plot) and prolonged blood pressure recovery. Alterations in cardiac gene expression of endothelin-1, angiotensin-converting enzyme, and nitric oxide synthase may partly explain these cardiovascular alterations. This is the first study to show an association between phthalate chemicals that are used in medical devices with alterations in autonomic regulation, heart rate variability, and cardiovascular reactivity. Because changes in autonomic balance often precede clinical manifestations of hypertension, atherosclerosis, and conduction abnormalities, future studies are warranted to assess the downstream impact of plastic chemical exposure on end-organ function in sensitive patient populations. This study also highlights the importance of adopting safer biomaterials, chemicals, and/or surface coatings for use in medical devices.NEW & NOTEWORTHY Phthalates are widely used in the manufacturing of consumer and medical products. In the present study, di-2-ethylhexyl-phthalate exposure was associated with alterations in heart rate variability and cardiovascular reactivity. This highlights the importance of investigating the impact of phthalates on health and identifying suitable alternatives for medical device manufacturing.
Collapse
Affiliation(s)
- Rafael Jaimes
- 1Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, District of Columbia; ,2Children’s National Heart Institute, Children’s National Health System, Washington, District of Columbia; and
| | - Adam Swiercz
- 3Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia
| | - Meredith Sherman
- 1Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, District of Columbia;
| | - Narine Muselimyan
- 3Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia
| | - Paul J. Marvar
- 3Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, District of Columbia; .,Children's National Heart Institute, Children's National Health System, Washington, District of Columbia; and.,Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia
| |
Collapse
|
69
|
Nitric oxide pathway presumably does not contribute to antianxiety and memory retrieval effects of losartan. Behav Pharmacol 2017; 28:420-427. [PMID: 28541956 DOI: 10.1097/fbp.0000000000000311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nitric oxide (NO) and angiotensin (AT) receptors have demonstrated well-established interactions in various physiological phenomena. AT1 receptors can play a part in stress-induced activation of the hypothalamic-pituitary-adrenal axis; also, angiotensinergic neurotransmission plays a pivotal role in stress-evoked physiological responses. On the basis of the stress-modulating characteristics of NO, AT1, and AT2 receptors, the present study evaluated the roles of NO and AT1 receptors in the attenuation of stress-induced anxiety-like behaviors after administration of losartan, an AT1 antagonist. Male Wistar rats were exposed to the communication stress box, using a novel method to induce physical or emotional stress, and losartan (10 mg/kg), losartan+L-NG-nitroargininemethyl ester (L-NAME), L-NAME (1, 10, and 100 mg/kg), and normal saline-treated groups were compared. Losartan had reduced behavioral changes induced by both types of stressor and enhanced memory retrieval. Anxiety-like behaviors were significantly attenuated by administration of losartan, to a greater extent in the emotional rather than physical stress group. None of the injected dosages of L-NAME reversed the antianxiety and memory retrieval effects of losartan. Our results indicate that losartan probably improves memory retrieval and lessens anxiety-like behaviors through mechanisms other than the NO pathway.
Collapse
|
70
|
A Unique "Angiotensin-Sensitive" Neuronal Population Coordinates Neuroendocrine, Cardiovascular, and Behavioral Responses to Stress. J Neurosci 2017; 37:3478-3490. [PMID: 28219987 DOI: 10.1523/jneurosci.3674-16.2017] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/20/2017] [Accepted: 02/13/2017] [Indexed: 01/19/2023] Open
Abstract
Stress elicits neuroendocrine, autonomic, and behavioral responses that mitigate homeostatic imbalance and ensure survival. However, chronic engagement of such responses promotes psychological, cardiovascular, and metabolic impairments. In recent years, the renin-angiotensin system has emerged as a key mediator of stress responding and its related pathologies, but the neuronal circuits that orchestrate these interactions are not known. These studies combine the use of the Cre-recombinase/loxP system in mice with optogenetics to structurally and functionally characterize angiotensin type-1a receptor-containing neurons of the paraventricular nucleus of the hypothalamus, the goal being to determine the extent of their involvement in the regulation of stress responses. Initial studies use neuroanatomical techniques to reveal that angiotensin type-1a receptors are localized predominantly to the parvocellular neurosecretory neurons of the paraventricular nucleus of the hypothalamus. These neurons are almost exclusively glutamatergic and send dense projections to the exterior portion of the median eminence. Furthermore, these neurons largely express corticotrophin-releasing hormone or thyrotropin-releasing hormone and do not express arginine vasopressin or oxytocin. Functionally, optogenetic stimulation of these neurons promotes the activation of the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-thyroid axes, as well as a rise in systolic blood pressure. When these neurons are optogenetically inhibited, the activity of these neuroendocrine axes are suppressed and anxiety-like behavior in the elevated plus maze is dampened. Collectively, these studies implicate this neuronal population in the integration and coordination of the physiological responses to stress and may therefore serve as a potential target for therapeutic intervention for stress-related pathology.SIGNIFICANCE STATEMENT Chronic stress leads to an array of physiological responses that ultimately rouse psychological, cardiovascular, and metabolic impairments. As a consequence, there is an urgent need for the development of novel therapeutic approaches to prevent or dampen deleterious aspects of "stress." While the renin-angiotensin system has received some attention in this regard, the neural mechanisms by which this endocrine system may impact stress-related pathologies and consequently serve as targets for therapeutic intervention are not clear. The present studies provide substantial insight in this regard. That is, they reveal that a distinct population of angiotensin-sensitive neurons is integral to the coordination of stress responses. The implication is that this neuronal phenotype may serve as a target for stress-related disease.
Collapse
|
71
|
Keifer OP, Hurt RC, Ressler KJ, Marvar PJ. The Physiology of Fear: Reconceptualizing the Role of the Central Amygdala in Fear Learning. Physiology (Bethesda) 2016; 30:389-401. [PMID: 26328883 DOI: 10.1152/physiol.00058.2014] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The historically understood role of the central amygdala (CeA) in fear learning is to serve as a passive output station for processing and plasticity that occurs elsewhere in the brain. However, recent research has suggested that the CeA may play a more dynamic role in fear learning. In particular, there is growing evidence that the CeA is a site of plasticity and memory formation, and that its activity is subject to tight regulation. The following review examines the evidence for these three main roles of the CeA as they relate to fear learning. The classical role of the CeA as a routing station to fear effector brain structures like the periaqueductal gray, the lateral hypothalamus, and paraventricular nucleus of the hypothalamus will be briefly reviewed, but specific emphasis is placed on recent literature suggesting that the CeA 1) has an important role in the plasticity underlying fear learning, 2) is involved in regulation of other amygdala subnuclei, and 3) is itself regulated by intra- and extra-amygdalar input. Finally, we discuss the parallels of human and mouse CeA involvement in fear disorders and fear conditioning, respectively.
Collapse
Affiliation(s)
- Orion P Keifer
- Department of Psychiatry and Behavioural Sciences, Emory University School of Medicine, Atlanta, Georgia; Yerkes National Primate Research Center, Atlanta, Georgia
| | - Robert C Hurt
- Department of Psychiatry and Behavioural Sciences, Emory University School of Medicine, Atlanta, Georgia; Yerkes National Primate Research Center, Atlanta, Georgia
| | - Kerry J Ressler
- Department of Psychiatry and Behavioural Sciences, Emory University School of Medicine, Atlanta, Georgia; Howard Hughes Medical Institute, Bethesda, Maryland; and Yerkes National Primate Research Center, Atlanta, Georgia
| | - Paul J Marvar
- Department of Pharmacology and Physiology, George Washington University, Washington, D.C.;
| |
Collapse
|
72
|
Amygdala-Dependent Molecular Mechanisms of the Tac2 Pathway in Fear Learning. Neuropsychopharmacology 2016; 41:2714-22. [PMID: 27238620 PMCID: PMC5026739 DOI: 10.1038/npp.2016.77] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/04/2016] [Accepted: 05/08/2016] [Indexed: 02/03/2023]
Abstract
Recently we determined that activation of the tachykinin 2 (Tac2) pathway in the central amygdala (CeA) is necessary and sufficient for the modulation of fear memories. The Tac2 pathway includes the Tac2 gene, which encodes the neuropeptide neurokinin B and its corresponding receptor neurokinin 3 receptor (NK3R). In this study, using Tac2-cre and Tac2-GFP mice, we applied a combination of in vivo (optogenetics) and multiple in vitro techniques to further explore the mechanisms of action within the Tac2 pathway. In transgenic mice that express ChR2 solely in Tac2 neurons, in vivo optogenetic stimulation of CeA Tac2-expressing neurons during fear acquisition enhanced fear memory consolidation and drove action potential firing in vitro. In addition, Tac2-CeA neurons were shown to co-express striatal-enriched protein tyrosine phosphatase, which may have an important role in regulating Nk3R signaling during fear conditioning. These data extend our current understanding for the underlying mechanism(s) for the role of the Tac2 pathway in the regulation of fear memory, which may serve as a new therapeutic target in the treatment of fear-related disorders.
Collapse
|
73
|
Michopoulos V, Vester A, Neigh G. Posttraumatic stress disorder: A metabolic disorder in disguise? Exp Neurol 2016; 284:220-229. [PMID: 27246996 PMCID: PMC5056806 DOI: 10.1016/j.expneurol.2016.05.038] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/30/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a heterogeneous psychiatric disorder that affects individuals exposed to trauma and is highly co-morbid with other adverse health outcomes, including cardiovascular disease and obesity. The unique pathophysiological feature of PTSD is the inability to inhibit fear responses, such that individuals suffering from PTSD re-experience traumatic memories and are unable to control psychophysiological responses to trauma-associated stimuli. However, underlying alterations in sympathetic nervous system activity, neuroendocrine systems, and metabolism associated with PTSD are similar to those present in traditional metabolic disorders, such as obesity and diabetes. The current review highlights existing clinical, translational, and preclinical data that support the notion that underneath the primary indication of impaired fear inhibition, PTSD is itself also a metabolic disorder and proposes altered function of inflammatory responses as a common underlying mechanism. The therapeutic implications of treating PTSD as a whole-body condition are significant, as targeting any underlying biological system whose activity is altered in both PTSD and metabolic disorders, (i.e. HPA axis, sympathetic nervous systems, inflammation) may elicit symptomatic relief in individuals suffering from these whole-body adverse outcomes.
Collapse
Affiliation(s)
- Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Aimee Vester
- Department of Environmental Health Sciences, Rollins School of Public Health, Atlanta, GA, United States
| | - Gretchen Neigh
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Atlanta, GA, United States; Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
74
|
Fontes MAP, Martins Lima A, Santos RASD. Brain angiotensin-(1-7)/Mas axis: A new target to reduce the cardiovascular risk to emotional stress. Neuropeptides 2016; 56:9-17. [PMID: 26584971 DOI: 10.1016/j.npep.2015.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/30/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023]
Abstract
Emotional stress is now considered a risk factor for several diseases including cardiac arrhythmias and hypertension. It is well known that the activation of neuroendocrine and autonomic mechanisms features the response to emotional stress. However, its link to cardiovascular diseases and the regulatory mechanisms involved remain to be further comprehended. The renin-angiotensin system (RAS) plays an important role in homeostasis on all body systems. Specifically in the brain, the RAS regulates a number of physiological aspects. Recent data indicate that the activation of angiotensin-converting enzyme/angiotensin II/AT1 receptor axis facilitates the emotional stress responses. On the other hand, growing evidence indicates that its counterregulatory axis, the angiotensin-converting enzyme 2 (ACE2)/(Ang)iotensin-(1-7)/Mas axis, reduces anxiety and attenuates the physiological responses to emotional stress. The present review focuses on angiotensin-(1-7)/Mas axis as a promising target to attenuate the physiological response to emotional stress reducing the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Marco Antônio Peliky Fontes
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT - Nanobiofar), Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Augusto Martins Lima
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Robson Augusto Souza dos Santos
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT - Nanobiofar), Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Institute of Cardiology, University Foundation of Cardiology, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
75
|
Quiñones MM, Maldonado L, Velazquez B, Porter JT. Candesartan ameliorates impaired fear extinction induced by innate immune activation. Brain Behav Immun 2016; 52:169-177. [PMID: 26520214 PMCID: PMC4715962 DOI: 10.1016/j.bbi.2015.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/24/2015] [Accepted: 10/26/2015] [Indexed: 01/08/2023] Open
Abstract
Patients with post-traumatic stress disorder (PTSD) tend to show signs of a relatively increased inflammatory state suggesting that activation of the immune system may contribute to the development of PTSD. In the present study, we tested whether activation of the innate immune system can disrupt acquisition or recall of auditory fear extinction using an animal model of PTSD. Male adolescent rats received auditory fear conditioning in context A. The next day, an intraperitoneal injection of lipopolysaccharide (LPS; 100 μg/kg) prior to auditory fear extinction in context B impaired acquisition and recall of extinction. LPS (100 μg/kg) given after extinction training did not impair extinction recall suggesting that LPS did not affect consolidation of extinction. In contrast to cued fear extinction, contextual fear extinction was not affected by prior injection of LPS (100 μg/kg). Although LPS also reduced locomotion, we could dissociate the effects of LPS on extinction and locomotion by using a lower dose of LPS (50 μg/kg) which impaired locomotion without affecting extinction. In addition, 15 h after an injection of 250 μg/kg LPS in adult rats, extinction learning and recall were impaired without affecting locomotion. A sub-chronic treatment with candesartan, an angiotensin II type 1 receptor blocker, prevented the LPS-induced impairment of extinction in adult rats. Our results demonstrate that activation of the innate immune system can disrupt auditory fear extinction in adolescent and adult animals. These findings also provide direction for clinical studies of novel treatments that modulate the innate immune system for stress-related disorders like PTSD.
Collapse
Affiliation(s)
| | - Lizette Maldonado
- Dept of Chemistry, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico
| | - Bethzaly Velazquez
- Dept. of Basic Sciences, Ponce Health Sciences University-Medical School/Ponce Research Institute, Ponce, Puerto Rico
| | - James T. Porter
- Dept. of Basic Sciences, Ponce Health Sciences University-Medical School/Ponce Research Institute, Ponce, Puerto Rico
| |
Collapse
|
76
|
Wang L, de Kloet AD, Pati D, Hiller H, Smith JA, Pioquinto DJ, Ludin JA, Oh SP, Katovich MJ, Frazier CJ, Raizada MK, Krause EG. Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors. Neuropharmacology 2016; 105:114-123. [PMID: 26767952 DOI: 10.1016/j.neuropharm.2015.12.026] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/04/2015] [Accepted: 12/31/2015] [Indexed: 12/25/2022]
Abstract
Over-activation of the brain renin-angiotensin system (RAS) has been implicated in the etiology of anxiety disorders. Angiotensin converting enzyme 2 (ACE2) inhibits RAS activity by converting angiotensin-II, the effector peptide of RAS, to angiotensin-(1-7), which activates the Mas receptor (MasR). Whether increasing brain ACE2 activity reduces anxiety by stimulating central MasR is unknown. To test the hypothesis that increasing brain ACE2 activity reduces anxiety-like behavior via central MasR stimulation, we generated male mice overexpressing ACE2 (ACE2 KI mice) and wild type littermate controls (WT). ACE2 KI mice explored the open arms of the elevated plus maze (EPM) significantly more than WT, suggesting increasing ACE2 activity is anxiolytic. Central delivery of diminazene aceturate, an ACE2 activator, to C57BL/6 mice also reduced anxiety-like behavior in the EPM, but centrally administering ACE2 KI mice A-779, a MasR antagonist, abolished their anxiolytic phenotype, suggesting that ACE2 reduces anxiety-like behavior by activating central MasR. To identify the brain circuits mediating these effects, we measured Fos, a marker of neuronal activation, subsequent to EPM exposure and found that ACE2 KI mice had decreased Fos in the bed nucleus of stria terminalis but had increased Fos in the basolateral amygdala (BLA). Within the BLA, we determined that ∼62% of GABAergic neurons contained MasR mRNA and expression of MasR mRNA was upregulated by ACE2 overexpression, suggesting that ACE2 may influence GABA neurotransmission within the BLA via MasR activation. Indeed, ACE2 overexpression was associated with increased frequency of spontaneous inhibitory postsynaptic currents (indicative of presynaptic release of GABA) onto BLA pyramidal neurons and central infusion of A-779 eliminated this effect. Collectively, these results suggest that ACE2 may reduce anxiety-like behavior by activating central MasR that facilitate GABA release onto pyramidal neurons within the BLA.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - Annette D de Kloet
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, USA
| | - Dipanwita Pati
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - Helmut Hiller
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - Justin A Smith
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - David J Pioquinto
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, USA
| | - Jacob A Ludin
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, USA
| | - S Paul Oh
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, USA
| | - Michael J Katovich
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - Charles J Frazier
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, USA
| | - Eric G Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA.
| |
Collapse
|
77
|
Prieto I, Segarra A, de Gasparo M, Ramírez-Sánchez M. Neuropeptidases, Stress, and Memory—A Promising Perspective. AIMS Neurosci 2016. [DOI: 10.3934/neuroscience.2016.4.487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
78
|
Lazaroni TLDN, Bastos CP, Moraes MFD, Santos RS, Pereira GS. Angiotensin-(1-7)/Mas axis modulates fear memory and extinction in mice. Neurobiol Learn Mem 2015; 127:27-33. [PMID: 26642920 DOI: 10.1016/j.nlm.2015.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/23/2015] [Accepted: 11/17/2015] [Indexed: 01/02/2023]
Abstract
Inappropriate defense-alerting reaction to fear is a common feature of neuropsychiatric diseases. Therefore, impairments in brain circuits, as well as in molecular pathways underlying the neurovegetative adjustments to fear may play an essential role on developing neuropsychiatric disorders. Here we tested the hypothesis that interfering with angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis homeostasis, which appears to be essential to arterial pressure control, would affect fear memory and extinction. Mas knockout (MasKO) mice, in FVB/N background, showed normal cued fear memory and extinction, but increased freezing in response to context. Next, as FVB/N has poor performance in contextual fear memory, we tested MasKO in mixed 129xC57BL/6 background. MasKO mice behaved similarly to wild-type (WT), but memory extinction was slower in contextual fear conditioning to a weak protocol (1CS/US). In addition, delayed extinction in MasKO mice was even more pronounced after a stronger protocol (3CS/US). We showed previously that Angiotensin II receptor AT1 antagonist, losantan, rescued object recognition memory deficit in MasKO mice. Here, losartan was also effective. Memory extinction was accelerated in MasKO mice after treatment with losartan. In conclusion, we showed for the first time that Ang-(1-7)/Mas axis may modulate fear memory extinction. Furthermore, we suggest MasKO mice as an animal model to study post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Thiago Luiz do Nascimento Lazaroni
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Cristiane Perácio Bastos
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Márcio Flávio Dutra Moraes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Robson Souza Santos
- Laboratório de Hipertensão, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Grace Schenatto Pereira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
79
|
Hurt RC, Garrett JC, Keifer OP, Linares A, Couling L, Speth RC, Ressler KJ, Marvar PJ. Angiotensin type 1a receptors on corticotropin-releasing factor neurons contribute to the expression of conditioned fear. GENES BRAIN AND BEHAVIOR 2015; 14:526-33. [PMID: 26257395 DOI: 10.1111/gbb.12235] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/23/2015] [Accepted: 07/26/2015] [Indexed: 01/17/2023]
Abstract
Although generally associated with cardiovascular regulation, angiotensin II receptor type 1a (AT1a R) blockade in mouse models and humans has also been associated with enhanced fear extinction and decreased post-traumatic stress disorder (PTSD) symptom severity, respectively. The mechanisms mediating these effects remain unknown, but may involve alterations in the activities of corticotropin-releasing factor (CRF)-expressing cells, which are known to be involved in fear regulation. To test the hypothesis that AT1a R signaling in CRFergic neurons is involved in conditioned fear expression, we generated and characterized a conditional knockout mouse strain with a deletion of the AT1a R gene from its CRF-releasing cells (CRF-AT1a R((-/-)) ). These mice exhibit normal baseline heart rate, blood pressure, anxiety and locomotion, and freeze at normal levels during acquisition of auditory fear conditioning. However, CRF-AT1a R((-/-)) mice exhibit less freezing than wild-type mice during tests of conditioned fear expression-an effect that may be caused by a decrease in the consolidation of fear memory. These results suggest that central AT1a R activity in CRF-expressing cells plays a role in the expression of conditioned fear, and identify CRFergic cells as a population on which AT1 R antagonists may act to modulate fear extinction.
Collapse
Affiliation(s)
- R C Hurt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine.,Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA
| | - J C Garrett
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine.,Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA
| | - O P Keifer
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine.,Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA
| | - A Linares
- Farquhar College of Arts and Sciences.,Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL
| | - L Couling
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL
| | - R C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL.,Department of Pharmacology and Physiology, College of Medicine, Georgetown University, Washington, DC
| | - K J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine.,Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA.,Howard Hughes Medical Institute, Bethesda, MD
| | - P J Marvar
- Department of Pharmacology and Physiology, The George Washington University School of Medical and Health Sciences, Washington, DC, USA
| |
Collapse
|
80
|
Brudey C, Park J, Wiaderkiewicz J, Kobayashi I, Mellman TA, Marvar PJ. Autonomic and inflammatory consequences of posttraumatic stress disorder and the link to cardiovascular disease. Am J Physiol Regul Integr Comp Physiol 2015; 309:R315-21. [PMID: 26062635 PMCID: PMC4538229 DOI: 10.1152/ajpregu.00343.2014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 06/02/2015] [Indexed: 01/29/2023]
Abstract
Stress- and anxiety-related disorders are on the rise in both military and general populations. Over the next decade, it is predicted that treatment of these conditions, in particular, posttraumatic stress disorder (PTSD), along with its associated long-term comorbidities, will challenge the health care system. Multiple organ systems are adversely affected by PTSD, and PTSD is linked to cancer, arthritis, digestive disease, and cardiovascular disease. Evidence for a strong link between PTSD and cardiovascular disease is compelling, and this review describes current clinical data linking PTSD to cardiovascular disease, via inflammation, autonomic dysfunction, and the renin-angiotensin system. Recent clinical and preclinical evidence regarding the role of the renin-angiotensin system in the extinction of fear memory and relevance in PTSD-related immune and autonomic dysfunction is also addressed.
Collapse
Affiliation(s)
- Chevelle Brudey
- Department of Internal Medicine at the University of Texas Southwestern, Dallas, Texas
| | - Jeanie Park
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, and Research Service Line, Department of Veterans Affairs Medical Center, Decatur, Georgia
| | - Jan Wiaderkiewicz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Ihori Kobayashi
- Howard University College of Medicine Center for Clinical and Translational Research, Washington, DC; and the
| | - Thomas A Mellman
- Howard University College of Medicine Center for Clinical and Translational Research, Washington, DC; and the
| | - Paul J Marvar
- Department of Pharmacology and Physiology, George Washington University, Washington, DC
| |
Collapse
|
81
|
Sladek CD, Michelini LC, Stachenfeld NS, Stern JE, Urban JH. Endocrine‐Autonomic Linkages. Compr Physiol 2015; 5:1281-323. [DOI: 10.1002/cphy.c140028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
82
|
Nylocks KM, Michopoulos V, Rothbaum AO, Almli L, Gillespie CF, Wingo A, Schwartz AC, Habib L, Gamwell KL, Marvar PJ, Bradley B, Ressler KJ. An angiotensin-converting enzyme (ACE) polymorphism may mitigate the effects of angiotensin-pathway medications on posttraumatic stress symptoms. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:307-15. [PMID: 25921615 DOI: 10.1002/ajmg.b.32313] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/23/2015] [Indexed: 11/06/2022]
Abstract
Angiotensin, which regulates blood pressure may also act within the brain to mediate stress and fear responses. Common antihypertensive medication classes of angiotensin-converting enzyme inhibitors (ACE-Is) and angiotensin receptor blockers (ARBs) have been associated with lower PTSD symptoms. Here we examine the rs4311 SNP in the ACE gene, previously implicated in panic attacks, in the relationship between ACE-I/ARB medications and PTSD symptoms. Participants were recruited from outpatient wait rooms between 2006 and March 2014 (n= 803). We examined the interaction between rs4311 genotype and the presence of blood pressure medication on PTSD symptoms and diagnosis. PTSD symptoms were lower in individuals taking ACE-Is or ARBs (N = 776). The rs4311 was associated with PTSD symptoms and diagnosis (N = 3803), as the T-carriers at the rs4311 SNP had significantly greater likelihood of a PTSD diagnosis. Lastly, the rs4311 genotype modified the effect of ACE-Is or ARBs on PTSD symptoms (N = 443; F1,443 = 4.41, P < 0.05). Individuals with the CC rs4311 genotype showed lower PTSD symptoms in the presence of ACE-Is or ARBs. In contrast, T- carriers showed the opposite, such that the presence of ACE-Is or ARBs was associated with higher PTSD symptoms. These data suggest that the renin-angiotensin system may be important in PTSD, as ACE-I/ARB usage associates with lower symptoms. Furthermore, we provide genetic evidence that some individuals are comparatively more benefitted by ACE-Is/ARBs in PTSD treatment. Future research should examine the mechanisms by which ACE-Is/ARBs affect PTSD symptoms such that pharmaco-genetically informed interventions may be used to treat PTSD.
Collapse
Affiliation(s)
- K M Nylocks
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - V Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.,Yerkes National Primate Research Center, Atlanta, Georgia
| | - A O Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - L Almli
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - C F Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - A Wingo
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - A C Schwartz
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - L Habib
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - K L Gamwell
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - P J Marvar
- Department of Pharmacology & Physiology, Institute of Neuroscience, George Washington University, Washington, District of Columbia
| | - B Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.,Atlanta Veterans Affairs Medical Center, Mental Health Services, Atlanta, Georgia
| | - K J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.,Yerkes National Primate Research Center, Atlanta, Georgia
| |
Collapse
|
83
|
Smith JA, Pati D, Wang L, de Kloet AD, Frazier CJ, Krause EG. Hydration and beyond: neuropeptides as mediators of hydromineral balance, anxiety and stress-responsiveness. Front Syst Neurosci 2015; 9:46. [PMID: 25873866 PMCID: PMC4379895 DOI: 10.3389/fnsys.2015.00046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/06/2015] [Indexed: 11/13/2022] Open
Abstract
Challenges to body fluid homeostasis can have a profound impact on hypothalamic regulation of stress responsiveness. Deficiencies in blood volume or sodium concentration leads to the generation of neural and humoral signals relayed through the hindbrain and circumventricular organs that apprise the paraventricular nucleus of the hypothalamus (PVH) of hydromineral imbalance. Collectively, these neural and humoral signals converge onto PVH neurons, including those that express corticotrophin-releasing factor (CRF), oxytocin (OT), and vasopressin, to influence their activity and initiate compensatory responses that alleviate hydromineral imbalance. Interestingly, following exposure to perceived threats to homeostasis, select limbic brain regions mediate behavioral and physiological responses to psychogenic stressors, in part, by influencing activation of the same PVH neurons that are known to maintain body fluid homeostasis. Here, we review past and present research examining interactions between hypothalamic circuits regulating body fluid homeostasis and those mediating behavioral and physiological responses to psychogenic stress.
Collapse
Affiliation(s)
- Justin A. Smith
- Laboratory of Dr. Eric Krause, Department of Pharmacodynamics, College of Pharmacy, University of FloridaGainesville, FL, USA
| | - Dipanwita Pati
- Laboratory of Dr. Charles Frazier, Department of Pharmacodynamics, College of Pharmacy, University of FloridaGainesville, FL, USA
| | - Lei Wang
- Laboratory of Dr. Eric Krause, Department of Pharmacodynamics, College of Pharmacy, University of FloridaGainesville, FL, USA
| | - Annette D. de Kloet
- Laboratory of Dr. Colin Sumners, Department of Physiology and Functional Genomics, College of Medicine, University of FloridaGainesville, FL, USA
| | - Charles J. Frazier
- Laboratory of Dr. Charles Frazier, Department of Pharmacodynamics, College of Pharmacy, University of FloridaGainesville, FL, USA
| | - Eric G. Krause
- Laboratory of Dr. Eric Krause, Department of Pharmacodynamics, College of Pharmacy, University of FloridaGainesville, FL, USA
| |
Collapse
|
84
|
Abstract
Angiotensin II receptor blockers (ARBs, collectively called sartans) are widely used compounds therapeutically effective in cardiovascular disorders, renal disease, the metabolic syndrome, and diabetes. It has been more recently recognized that ARBs are neuroprotective and have potential therapeutic use in many brain disorders. ARBs ameliorate inflammatory and apoptotic responses to glutamate, interleukin 1β and bacterial endotoxin in cultured neurons, astrocytes, microglial, and endothelial cerebrovascular cells. When administered systemically, ARBs enter the brain, protecting cerebral blood flow, maintaining blood brain barrier function and decreasing cerebral hemorrhage, excessive brain inflammation and neuronal injury in animal models of stroke, traumatic brain injury, Alzheimer's and Parkinson's disease and other brain conditions. Epidemiological analyses reported that ARBs reduced the progression of Alzheimer's disease, and clinical studies suggested amelioration of cognitive loss following stroke and aging. ARBs are pharmacologically heterogeneous; their effects are not only the result of Ang II type 1(AT1) receptor blockade but also of additional mechanisms selective for only some compounds of the class. These include peroxisome proliferator-activated receptor gamma activation and other still poorly defined mechanisms. However, the complete pharmacological spectrum and therapeutic efficacy of individual ARBs have never been systematically compared, and the neuroprotective efficacy of these compounds has not been rigorously determined in controlled clinical studies. The accumulation of pre-clinical evidence should promote further epidemiological and controlled clinical studies. Repurposing ARBs for the treatment of brain disorders, currently without effective therapy, may be of immediate and major translational value.
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA.
| |
Collapse
|
85
|
Friedman A, Bar-Klein G, Serlin Y, Parmet Y, Heinemann U, Kaufer D. Should losartan be administered following brain injury? Expert Rev Neurother 2014; 14:1365-75. [PMID: 25346269 DOI: 10.1586/14737175.2014.972945] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brain injury is a major health concern and associated with delayed neurological complications, including post-injury epilepsy, cognitive and emotional disabilities. Currently, there is no strategy to prevent post-injury delayed complications. We recently showed that dysfunction of the blood-brain barrier, often reported in brain injuries, can lead to epilepsy and neurodegeneration via activation of inflammatory TGF-β signaling in astrocytes. We further showed that the FDA approved angiotensin II type 1 receptor antagonist, losartan, blocks brain TGF-β signaling and prevents epilepsy in the albumin or blood-brain barrier breakdown models of epileptogenesis. Here we discuss the potential of losartan as an anti-epileptogenic and a neuroprotective drug, the rationale of its use following brain injury and the challenges of designing clinical trials. We highlight the urgent need to develop reliable biomarkers for epileptogenesis (and other complications) after brain injury as a pre-requisite to challenge neuroprotective therapies.
Collapse
Affiliation(s)
- Alon Friedman
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, PO Box 15000, 5850 College Street, Halifax Nova Scotia B3H 4R2, Canada
| | | | | | | | | | | |
Collapse
|
86
|
Bukalo O, Pinard CR, Holmes A. Mechanisms to medicines: elucidating neural and molecular substrates of fear extinction to identify novel treatments for anxiety disorders. Br J Pharmacol 2014; 171:4690-718. [PMID: 24835117 DOI: 10.1111/bph.12779] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/28/2014] [Accepted: 05/04/2014] [Indexed: 12/11/2022] Open
Abstract
The burden of anxiety disorders is growing, but the efficacy of available anxiolytic treatments remains inadequate. Cognitive behavioural therapy for anxiety disorders focuses on identifying and modifying maladaptive patterns of thinking and behaving, and has a testable analogue in rodents in the form of fear extinction. A large preclinical literature has amassed in recent years describing the neural and molecular basis of fear extinction in rodents. In this review, we discuss how this work is being harnessed to foster translational research on anxiety disorders and facilitate the search for new anxiolytic treatments. We begin by summarizing the anatomical and functional connectivity of a medial prefrontal cortex (mPFC)-amygdala circuit that subserves fear extinction, including new insights from optogenetics. We then cover some of the approaches that have been taken to model impaired fear extinction and associated impairments with mPFC-amygdala dysfunction. The principal goal of the review is to evaluate evidence that various neurotransmitter and neuromodulator systems mediate fear extinction by modulating the mPFC-amygdala circuitry. To that end, we describe studies that have tested how fear extinction is impaired or facilitated by pharmacological manipulations of dopamine, noradrenaline, 5-HT, GABA, glutamate, neuropeptides, endocannabinoids and various other systems, which either directly target the mPFC-amygdala circuit, or produce behavioural effects that are coincident with functional changes in the circuit. We conclude that there are good grounds to be optimistic that the progress in defining the molecular substrates of mPFC-amygdala circuit function can be effectively leveraged to identify plausible candidates for extinction-promoting therapies for anxiety disorders.
Collapse
Affiliation(s)
- Olena Bukalo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | | | | |
Collapse
|
87
|
Fear-potentiated behaviour is modulated by central amygdala angiotensin II AT1 receptors stimulation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:183248. [PMID: 25003108 PMCID: PMC4070540 DOI: 10.1155/2014/183248] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/14/2014] [Indexed: 11/18/2022]
Abstract
Central nucleus of the amygdala (CeA) is one of the most important regulatory centres for the emotional processes. Among the different neurotransmitter systems present in this nucleus, AT1 receptors have been also found, but their role in the generation and modulation of emotions is not fully understood. The present work evaluated the effect of intra-amygdalar injection of losartan (AT1 receptor antagonist) and angiotensin II (Ang II) in the anxiety state induced by fear-potentiated plus maze in male Wistar rats. Fear in the elevated plus maze can be potentiated by prior inescapable footshock stress. The decrease in the time spent in the open arms induced by the inescapable footshock was totally prevented by losartan (4 pmol) administration in CeA. It was also found that Ang II (48 fmol) administration decreased the time spent in the open arms in animals with or without previous footshock exposure. The locomotor activity and grooming behaviour were also evaluated. The results obtained from the different parameters analyzed allowed us to conclude that the Ang II AT1 receptors in CeA are involved in the anxiety state induced by stress in the fear-potentiated plus-maze behaviour.
Collapse
|
88
|
Angiotensin type 1 receptor antagonists-a novel approach to augmenting posttraumatic stress disorder and phobia therapies? Biol Psychiatry 2014; 75:836-7. [PMID: 24837620 DOI: 10.1016/j.biopsych.2014.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 11/20/2022]
|
89
|
Morrison FG, Ressler KJ. From the neurobiology of extinction to improved clinical treatments. Depress Anxiety 2014; 31:279-90. [PMID: 24254958 PMCID: PMC4293038 DOI: 10.1002/da.22214] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/18/2013] [Indexed: 11/08/2022] Open
Abstract
The neural circuitry underlying the fear response is extremely well conserved across mammalian species, which has allowed for the rapid translation of research findings in rodent models of fear to therapeutic interventions in human populations. Many aspects of exposure-based psychotherapy treatments in humans, which are widely used in the treatment of PTSD, panic disorder, phobias, and other anxiety disorders, are closely paralleled by extinction training in rodent fear conditioning models. Here, we discuss how the neural circuitry of fear learning and extinction in rodent animal models may be used to understand the underlying neural circuitry of fear-related disorders, such as PTSD in humans. We examine the factors that contribute to the pathology and development of PTSD. Next, we will review how fear is measured in animal models using classical Pavlovian fear conditioning paradigms, as well as brain regions such as the amygdala, which are involved in the fear response across species. Finally, we highlight the following three systems involved in the extinction of fear, all of which represent promising avenues for therapeutic interventions in the clinic: (1) the role of the glutamatergic N-methyl-d-aspartate (NMDA) receptor, (2) the role of the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) induced signaling pathway, and (3) the role of the renin-angiotensin system. The modulation of pathways underlying fear learning and extinction, such as the ones presented in this review, in combination with extinction-based exposure therapy, represents promising avenues for therapeutic intervention in the treatment of human fear related disorders.
Collapse
Affiliation(s)
- Filomene G. Morrison
- Yerkes National Primate Research Center, Atlanta, Georgia,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Kerry J. Ressler
- Yerkes National Primate Research Center, Atlanta, Georgia,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia,Howard Hughes Medical Institute, Chevy Chase, Maryland,Correspondence to: Kerry J. Ressler, Yerkes Research Center, 954 Gatewood Drive, Atlanta, Georgia 30329.
| |
Collapse
|
90
|
Briscione MA, Jovanovic T, Norrholm SD. Conditioned fear associated phenotypes as robust, translational indices of trauma-, stressor-, and anxiety-related behaviors. Front Psychiatry 2014; 5:88. [PMID: 25101010 PMCID: PMC4104832 DOI: 10.3389/fpsyt.2014.00088] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/08/2014] [Indexed: 12/12/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a heterogeneous disorder that affects individuals exposed to trauma (e.g., combat, interpersonal violence, and natural disasters). It is characterized by hyperarousal, intrusive reminders of the trauma, avoidance of trauma-related cues, and negative cognition and mood. This heterogeneity indicates the presence of multiple neurobiological mechanisms underlying the development and maintenance of PTSD. Fear conditioning is a robust, translational experimental paradigm that can be employed to elucidate these mechanisms by allowing for the study of fear-related dimensions of PTSD (e.g., fear extinction, fear inhibition, and generalization of fear) across multiple units of analysis. Fear conditioning experiments have identified varying trajectories of the dimensions described, highlighting exciting new avenues of targeted, focused study. Additionally, fear conditioning studies provide a translational platform to develop novel interventions. The current review highlights the versatility of fear conditioning paradigms, the implications for pharmacological and non-pharmacological treatments, the robustness of these paradigms to span an array of neuroscientific measures (e.g., genetic studies), and finally the need to understand the boundary conditions under which these paradigms are effective. Further understanding these paradigms will ultimately allow for optimization of fear conditioning paradigms, a necessary step towards the advancement of PTSD treatment methods.
Collapse
Affiliation(s)
- Maria Anne Briscione
- Trauma Recovery Program, Mental Health Service Line, Atlanta Veterans Affairs Medical Center , Decatur, GA , USA ; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine , Atlanta, GA , USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine , Atlanta, GA , USA
| | - Seth Davin Norrholm
- Trauma Recovery Program, Mental Health Service Line, Atlanta Veterans Affairs Medical Center , Decatur, GA , USA ; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine , Atlanta, GA , USA
| |
Collapse
|