51
|
Ali F, Chorsiya A, Anjum V, Khasimbi S, Ali A. A systematic review on phytochemicals for the treatment of dengue. Phytother Res 2020; 35:1782-1816. [PMID: 33118251 DOI: 10.1002/ptr.6917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/23/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
Abstract
Dengue fever is prevalent in subtopic regions, producing mortality and morbidity worldwide, which have been of major concern to different governments and World Health Organization. The search of new anti-dengue agents from phytochemicals was assumed to be highly emergent in past. The phytochemicals have been used in wide distribution of vector ailments such as malaria. The demand of the phytochemicals is based on the medicines which are mostly considered to be safer, less harmful than synthetic drugs and nontoxic. This review mentions majorly about the phytochemicals potentially inhibiting dengue fever around the world. The phytochemicals have been isolated from different species, have potential for the treatment of dengue. Different crude extracts and essential oils obtained from different species showed a broad activity against different phytochemicals. The current studies showed that natural products represent a rich source of medicines toward the dengue fever. Furthermore, ethnobotanical surveys and laboratory investigation established identified natural plants species in the development of drug discovery to control the dengue fever.
Collapse
Affiliation(s)
- Faraat Ali
- Department of Inspection and Licensing, Laboratory Services, Botswana Medicines Regulatory Authority, Gaborone, Botswana
| | - Anushma Chorsiya
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Varisha Anjum
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Shaik Khasimbi
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi, India
| | - Asad Ali
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
52
|
Felicetti T, Manfroni G, Cecchetti V, Cannalire R. Broad-Spectrum Flavivirus Inhibitors: a Medicinal Chemistry Point of View. ChemMedChem 2020; 15:2391-2419. [PMID: 32961008 DOI: 10.1002/cmdc.202000464] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/16/2020] [Indexed: 12/16/2022]
Abstract
Infections by flaviviruses, such as Dengue, West Nile, Yellow Fever and Zika viruses, represent a growing risk for global health. There are vaccines only for few flaviviruses while no effective treatments are available. Flaviviruses share epidemiological, structural, and ecologic features and often different viruses can co-infect the same host. Therefore, the identification of broad-spectrum inhibitors is highly desirable either for known flaviviruses or for viruses that likely will emerge in the future. Strategies targeting both virus and host factors have been pursued to identify broad-spectrum antiflaviviral agents. In this review, we describe the most promising and best characterized targets and their relative broad-spectrum inhibitors, identified by drug repurposing/libraries screenings and by focused medicinal chemistry campaigns. Finally, we discuss about future strategies to identify new broad-spectrum antiflavivirus agents.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Rolando Cannalire
- Department of Pharmacy, University of Napoli "Federico II", via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
53
|
Wang L, Song J, Liu A, Xiao B, Li S, Wen Z, Lu Y, Du G. Research Progress of the Antiviral Bioactivities of Natural Flavonoids. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:271-283. [PMID: 32948973 PMCID: PMC7500501 DOI: 10.1007/s13659-020-00257-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/24/2020] [Indexed: 05/05/2023]
Abstract
Flavonoids are now considered as an indispensable component in a variety of nutraceutical and pharmaceutical applications. Most recent researches have focused on the health aspects of flavonoids for humans. Especially, different flavonoids have been investigated for their potential antiviral activities, and several natural flavonoids exhibited significant antiviral properties both in vitro and in vivo. This review provides a survey of the literature regarding the evidence for antiviral bioactivities of natural flavonoids, highlights the cellular and molecular mechanisms of natural flavonoids on viruses, and presents the details of most reported flavonoids. Meanwhile, future perspectives on therapeutic applications of flavonoids against viral infections were discussed.
Collapse
Affiliation(s)
- Lin Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Junke Song
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Ailin Liu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Bin Xiao
- Laboratory of Clinical Pharmacy, Ordos Central Hospital, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Ordos, 017000, China
| | - Sha Li
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Zhang Wen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Yang Lu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China.
| |
Collapse
|
54
|
The anti-Zika virus and anti-tumoral activity of the citrus flavanone lipophilic naringenin-based compounds. Chem Biol Interact 2020; 331:109218. [PMID: 32916141 DOI: 10.1016/j.cbi.2020.109218] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
Flavonoids are natural products widely recognized for their plurality of applications such as antiviral, antiproliferative, antitumor activities and, antioxidant properties. The flavanone naringenin is presented in citrus fruits and has been studied to combat recurrent diseases that still lack effective treatment. Research groups have been investing efforts to the development of new, safe and active candidates to combat these agents or conditions and despite good results recently reported against the Zika virus (ZIKV) and tumor cells, the use of citrus naringenin is limited due to its low bioavailability. Structural exchanges through functionalization, for example, attaching lipophilic groups instead of hydroxyl groups, can further enhance biological properties. Here, the synthesis and characterization of regioselective naringenin mono-7-O-ethers and both mono and di-fatty acid esters, structurally lipophilic ones were demonstrated. Finally, in vitro studies of anti-ZIKV action and antiproliferative activities against melanoma (B16-F10) and breast carcinoma (4T1) cells showed the ether derivatives were actives, with IC50 ranging from 6.76, 18.5 and 22.6 μM to 28.53, 45.1 and 32.3 μM referring to ZIKV, B16-F10 and 4T1 cell lines, respectively. The lipophilic ethers present the ability to inhibit selectively ZIKV-replication in human cells and inhibitions. This class of modifications in flavonoid molecules could be further explore in the future development of specific anti-ZIKV compounds.
Collapse
|
55
|
Yang T, Sui X, Yu B, Shen Y, Cong H. Recent Advances in the Rational Drug Design Based on Multi-target Ligands. Curr Med Chem 2020; 27:4720-4740. [DOI: 10.2174/0929867327666200102120652] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
Multi-target drugs have gained considerable attention in the last decade owing to their
advantages in the treatment of complex diseases and health conditions linked to drug resistance.
Single-target drugs, although highly selective, may not necessarily have better efficacy or fewer
side effects. Therefore, more attention is being paid to developing drugs that work on multiple
targets at the same time, but developing such drugs is a huge challenge for medicinal chemists.
Each target must have sufficient activity and have sufficiently characterized pharmacokinetic parameters.
Multi-target drugs, which have long been known and effectively used in clinical practice,
are briefly discussed in the present article. In addition, in this review, we will discuss the
possible applications of multi-target ligands to guide the repositioning of prospective drugs.
Collapse
Affiliation(s)
- Ting Yang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xin Sui
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
56
|
Crystal structures of full length DENV4 NS2B-NS3 reveal the dynamic interaction between NS2B and NS3. Antiviral Res 2020; 182:104900. [PMID: 32763315 DOI: 10.1016/j.antiviral.2020.104900] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/24/2022]
Abstract
Flavivirus is a genus of the Flaviviridae family which includes significant emerging and re-emerging human disease-causing arboviruses such as dengue and Zika viruses. Flaviviral non-structural protein 3 (NS3) protease-helicase plays essential roles in viral replication and is an attractive antiviral target. A construct which connects the cytoplasmic cofactor region of NS2B and NS3 protease with an artificial glycine-rich flexible linker has been widely used for structural, biochemical and drug-screening studies. The effect of this linker on the dynamics and enzymatic activity of the protease has been studied by several biochemical and NMR methods but the findings remained inconclusive. Here, we designed and carried out a comparative study of constructs of NS2B cofactor joined to the full length DENV4 NS3 in three different ways, namely bNS2B47NS3 (bivalent), eNS2B47NS3(enzymatically cleavable) and gNS2B47NS3 (glycine-rich linker). We report the crystal structures of linked and unlinked NS2B47-NS3 constructs in their free state and in complex with bovine pancreatic trypsin inhibitor (BPTI). These structures demonstrate that the NS2B cofactor predominantly adopts a closed conformation in complex with full-length NS3. The glycine-rich linker between NS2B and NS3 may promote the open conformation which interferes with protease activity. This negative impact on the enzyme structure and function is restricted to the protease activity as the ATPase activity is not affected in vitro.
Collapse
|
57
|
Shanmugam A, Ramakrishnan C, Velmurugan D, Gromiha MM. Identification of Potential Inhibitors for Targets Involved in Dengue Fever. Curr Top Med Chem 2020; 20:1742-1760. [PMID: 32552652 DOI: 10.2174/1568026620666200618123026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/05/2019] [Accepted: 01/10/2020] [Indexed: 01/16/2023]
Abstract
Lethality due to dengue infection is a global threat. Nearly 400 million people are affected every year, which approximately costs 500 million dollars for surveillance and vector control itself. Many investigations on the structure-function relationship of proteins expressed by the dengue virus are being made for more than a decade and had come up with many reports on small molecule drug discovery. In this review, we present a detailed note on viral proteins and their functions as well as the inhibitors discovered/designed so far using experimental and computational methods. Further, the phytoconstituents from medicinal plants, specifically the extract of the papaya leaves, neem and bael, which combat dengue infection via dengue protease, helicase, methyl transferase and polymerase are summarized.
Collapse
Affiliation(s)
- Anusuya Shanmugam
- Department of Pharmaceutical Engineering, Vinayaka Mission's Kirupananda Variyar Engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem - 636308, India
| | - Chandrasekaran Ramakrishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai - 600036, India
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai - 600025, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai - 600036, India
| |
Collapse
|
58
|
de Amorim VCM, Júnior MSO, da Silva AB, David JM, David JPL, de Fátima Dias Costa M, Butt AM, da Silva VDA, Costa SL. Agathisflavone modulates astrocytic responses and increases the population of neurons in an in vitro model of traumatic brain injury. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1921-1930. [PMID: 32444988 DOI: 10.1007/s00210-020-01905-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/10/2020] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) is a critical health problem worldwide, with a high incidence rate and potentially severe long-term consequences. Depending on the level of mechanical stress, astrocytes react with complex morphological and functional changes known as reactive astrogliosis. In cases of severe tissue injury, astrocytes proliferate in the area immediately adjacent to the lesion to form the glial scar, which is a major barrier to neuronal regeneration in the central nervous system. The flavonoid agathisflavone has been shown to have neuroprotective, neurogenic, and immunomodulatory effects and could have beneficial effects in situations of TBI. In this study, we investigated the effects of agathisflavone on modulating the responses of astrocytes and neurons to injury, using the in vitro scratch wound model of TBI in primary cultures of rat cerebral cortex. In control conditions, the scratch wound induced an astroglial injury response, characterized by upregulation of glial fibrillary acidic protein (GFAP) and hypertrophy, together with the reduction in proportion of neurons within the lesion site. Treatment with agathisflavone (1 μM) decreased astroglial GFAP expression and hypertrophy and induced an increase in the number of neurons and neurite outgrowth into the lesion site. Agathisflavone also induced increased expression of the neurotrophic factors NGF and GDNF, which are associated with the neuroprotective profile of glial cells. These results demonstrate that in an in vitro model of TBI, the flavonoid agathisflavone modulates the astrocytic injury response and glial scar formation, stimulating neural recomposition.
Collapse
Affiliation(s)
- Vanessa Cristina Meira de Amorim
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, Salvador, BA, 40100-902, Brazil
| | - Markley Silva Oliveira Júnior
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, Salvador, BA, 40100-902, Brazil
| | - Alessandra Bispo da Silva
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, Salvador, BA, 40100-902, Brazil
| | - Jorge M David
- Department of General and Inorganic Chemistry, Institute of Chemistry, Federal University of Bahia, R. Barão de Jeremoabo, Salvador, BA, 40170-115, Brazil
| | - Juceni Pereira Lima David
- Department of Medication, Faculty of Pharmacy, Federal University of Bahia, R. Barão de Jeremoabo, Salvador, BA, 40170-115, Brazil
| | - Maria de Fátima Dias Costa
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, Salvador, BA, 40100-902, Brazil
| | - Arthur Morgan Butt
- School of Pharmacy and Biomedical Science, University of Portsmouth, Winston Churchill Avenue, Portsmouth, PO1 2UP, UK
| | - Victor Diogenes Amaral da Silva
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, Salvador, BA, 40100-902, Brazil
| | - Silvia Lima Costa
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, Salvador, BA, 40100-902, Brazil.
| |
Collapse
|
59
|
Filippini A, D'Amore A, Palombi F, Carpaneto A. Could the Inhibition of Endo-Lysosomal Two-Pore Channels (TPCs) by the Natural Flavonoid Naringenin Represent an Option to Fight SARS-CoV-2 Infection? Front Microbiol 2020; 11:970. [PMID: 32425923 PMCID: PMC7204543 DOI: 10.3389/fmicb.2020.00970] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/22/2020] [Indexed: 01/12/2023] Open
Affiliation(s)
- Antonio Filippini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, SAPIENZA University of Rome, Rome, Italy
| | - Antonella D'Amore
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, SAPIENZA University of Rome, Rome, Italy
| | - Fioretta Palombi
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, SAPIENZA University of Rome, Rome, Italy
| | - Armando Carpaneto
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy.,Institute of Biophysics, National Research Council, Genoa, Italy
| |
Collapse
|
60
|
de Freitas CS, Rocha MEN, Sacramento CQ, Marttorelli A, Ferreira AC, Rocha N, de Oliveira AC, de Oliveira Gomes AM, Dos Santos PS, da Silva EO, da Costa JP, de Lima Moreira D, Bozza PT, Silva JL, Barroso SPC, Souza TML. Agathisflavone, a Biflavonoid from Anacardium occidentale L., Inhibits Influenza Virus Neuraminidase. Curr Top Med Chem 2020; 20:111-120. [PMID: 31854280 DOI: 10.2174/1568026620666191219150738] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/31/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Neuraminidase inhibitors (NAIs) are the only class of antivirals in clinical use against influenza virus approved worldwide. However, approximately 1-3% of circulating strains present resistance mutations to oseltamivir (OST), the most used NAI. Therefore, it is important to catalogue new molecules to inhibit influenza virus, especially OST-resistant strains. Natural products from tropical plants used for human consumption represent a worthy class of substances. Their use could be stimulated in resource-limited setting where the access to expensive antiviral therapies is restricted. METHODS We evaluated the anti-influenza virus activity of agathisflavone derived from Anacardium occidentale L. RESULTS The neuraminidase (NA) activity of wild-type and OST-resistant influenza virus was inhibited by agathisflavone, with IC50 values ranging from 20 to 2.0 µM, respectively. Agathisflavone inhibited influenza virus replication with EC50 of 1.3 µM. Sequential passages of the virus in the presence of agathisflavone revealed the emergence of mutation R249S, A250S and R253Q in the NA gene. These changes are outside the OST binding region, meaning that agathisflavone targets this viral enzyme at a region different than conventional NAIs. CONCLUSION Altogether our data suggest that agathisflavone has a promising chemical structure for the development of anti-influenza drugs.
Collapse
Affiliation(s)
- Caroline S de Freitas
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Marco E N Rocha
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil.,Laboratório de Química de Produtos Naturais 5, Farmanguinhos, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Q Sacramento
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Andressa Marttorelli
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - André C Ferreira
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Natasha Rocha
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Andrea Cheble de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Andre Marco de Oliveira Gomes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Patrícia Souza Dos Santos
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Edilene Oliveira da Silva
- Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.,Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Biologia Estrutural, Belém, Pará, Brazil
| | - Josineide Pantoja da Costa
- Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.,Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Biologia Estrutural, Belém, Pará, Brazil
| | - Davyson de Lima Moreira
- Laboratório de Química de Produtos Naturais 5, Farmanguinhos, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Shana Priscila Coutinho Barroso
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.,Instituto de Pesquisas Biomédicas, Hospital Naval Marcílio Dias, Marinha do Brasil, Brazil
| | - Thiago Moreno L Souza
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
61
|
Zou M, Liu H, Li J, Yao X, Chen Y, Ke C, Liu S. Structure-activity relationship of flavonoid bifunctional inhibitors against Zika virus infection. Biochem Pharmacol 2020; 177:113962. [PMID: 32272109 DOI: 10.1016/j.bcp.2020.113962] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/03/2020] [Indexed: 11/30/2022]
Abstract
Zika virus (ZIKV) infection is a global public health problem due to its rapid spread and the possibility of causing microcephaly. Currently, no specific antivirals against ZIKV are available for treatment. In the present study, several flavonoids (galangin, kaempferide, quercetin, myricetin and EGCG) were found to reduce ZIKV induced plaques and viral RNA copies with negligible cytotoxic effects on host cells. In addition, inhibition of ZIKV propagation by flavonoids showed structure-activity relationship. Our results demonstrate flavonoids as inhibitors of ZIKV entry and NS2B-NS3 protease. Hence, these flavonoids could be used as potential bifunctional drugs for treating ZIKV infections.
Collapse
Affiliation(s)
- Min Zou
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Hongmiao Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jingyan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xingang Yao
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yi Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
62
|
Bhowmick S, Alissa SA, Wabaidur SM, Chikhale RV, Islam MA. Structure-guided screening of chemical database to identify NS3-NS2B inhibitors for effective therapeutic application in dengue infection. J Mol Recognit 2020; 33:e2838. [PMID: 32060998 DOI: 10.1002/jmr.2838] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/01/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Dengue infection is the most common arthropod-borne disease caused by dengue viruses, predominantly affecting millions of human beings annually. To find out promising chemical entities for therapeutic application in Dengue, in the current research, a multi-step virtual screening effort was conceived to screen out the entire "screening library" of the Asinex database. Initially, through "Lipinski rule of five" filtration criterion almost 0.6 million compounds were collected and docked with NS3-NS2B protein. Thereby, the chemical space was reduced to about 3500 compounds through the analysis of binding affinity obtained from molecular docking study in AutoDock Vina. Further, the "Virtual Screening Workflow" (VSW) utility of Schrödinger suite was used, which follows a stepwise multiple docking programs such as - high-throughput virtual screening (HTVS), standard precision (SP), and extra precision (XP) docking, and in postprocessing analysis the MM-GBSA based free binding energy calculation. Finally, five potent molecules were proposed as potential inhibitors for the dengue NS3-NS2B protein based on the investigation of molecular interactions map and protein-ligand fingerprint analyses. Different pharmacokinetics and drug-likeness parameters were also checked, which favour the potentiality of selected molecules for being drug-like candidates. The molecular dynamics (MD) simulation analyses of protein-ligand complexes were explained that NS3-NS2B bound with proposed molecules quite stable in dynamic states as observed from the root means square deviation (RMSD) and root means square fluctuation (RMSF) parameters. The binding free energy was calculated using MM-GBSA method from the MD simulation trajectories revealed that all proposed molecules possess such a strong binding affinity towards the dengue NS3-NS2B protein. Therefore, proposed molecules may be potential chemical components for effective inhibition of dengue NS3-NS2B protein subjected to experimental validation.
Collapse
Affiliation(s)
- Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Siham A Alissa
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | | | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,School of Health Sciences, University of Kwazulu-Natal, Westville Campus, Durban, South Africa.,Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
63
|
Yadav R, Selvaraj C, Aarthy M, Kumar P, Kumar A, Singh SK, Giri R. Investigating into the molecular interactions of flavonoids targeting NS2B-NS3 protease from ZIKA virus through in-silico approaches. J Biomol Struct Dyn 2020; 39:272-284. [PMID: 31920173 DOI: 10.1080/07391102.2019.1709546] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Zika virus (ZIKV), belongs to the flavivirus genus and Flaviviridae family that associated with serious diseased conditions like microcephaly and other neurological disorders (Guillan-Barré syndrome). As there is no vaccine or therapies available against ZIKV to date. Hence, it is an unmet need to find potential drug candidates and target sites against Zika virus infection. NS2B-NS3 protease making an attractive target for therapeutic intervention in ZIKV infections because of its critical role in hydrolysis of a single polyprotein encoded by Zika virus. Recently, there are some experimental evidence about the flavonoids as Zika virus NS2B-NS3 protease inhibitors. However, molecular interaction between protease complex and inhibitors at atomic levels has not been explored. Here, we have taken the experimentally validated thirty-eight flavonoids inhibitors against NS2B-NS3 protease to examine the molecular interaction using molecular docking and molecular dynamics simulations. We found out few flavonoids such as EGCG and its two derivatives, isoquercetin, rutin and sanggenon O showing interaction with catalytic triad (His51, Asp75, and Ser135) of the active site of NS2B-NS3 protease and found to be stable throughout the simulation. Therefore it is evident that interaction with the catalytic triad playing a vital role in the inhibition of the enzyme activity as a result inhibition of the virus propagation. However these compounds can be explored further for understanding the mechanism of action of these compounds targeting NS2B-NS3 protease for inhibition of Zika virus.
Collapse
Affiliation(s)
- Rakhi Yadav
- School of Basic Science, Indian Institute of Technology Mandi, Mandi, India
| | - Chandrabose Selvaraj
- School of Basic Science, Indian Institute of Technology Mandi, Mandi, India.,Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Lab, Alagappa University, Karaikudi, India
| | - Murali Aarthy
- Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Lab, Alagappa University, Karaikudi, India
| | - Prateek Kumar
- School of Basic Science, Indian Institute of Technology Mandi, Mandi, India
| | - Ankur Kumar
- School of Basic Science, Indian Institute of Technology Mandi, Mandi, India
| | - Sanjeev Kumar Singh
- Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Lab, Alagappa University, Karaikudi, India
| | - Rajanish Giri
- School of Basic Science, Indian Institute of Technology Mandi, Mandi, India
| |
Collapse
|
64
|
Abdullah AA, Lee YK, Chin SP, Lim SK, Lee VS, Othman R, Othman S, Rahman NA, Yusof R, Heh CH. Discovery of Dengue Virus Inhibitors. Curr Med Chem 2020; 27:4945-5036. [PMID: 30514185 DOI: 10.2174/0929867326666181204155336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/11/2018] [Accepted: 11/22/2018] [Indexed: 11/22/2022]
Abstract
To date, there is still no approved anti-dengue agent to treat dengue infection in the market. Although the only licensed dengue vaccine, Dengvaxia is available, its protective efficacy against serotypes 1 and 2 of dengue virus was reported to be lower than serotypes 3 and 4. Moreover, according to WHO, the risk of being hospitalized and having severe dengue increased in seronegative individuals after they received Dengvaxia vaccination. Nevertheless, various studies had been carried out in search of dengue virus inhibitors. These studies focused on the structural (C, prM, E) and non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) of dengue virus as well as host factors as drug targets. Hence, this article provides an overall up-to-date review of the discovery of dengue virus inhibitors that are only targeting the structural and non-structural viral proteins as drug targets.
Collapse
Affiliation(s)
- Adib Afandi Abdullah
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Yean Kee Lee
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Sek Peng Chin
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - See Khai Lim
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Vannajan Sanghiran Lee
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Rozana Othman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Shatrah Othman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Noorsaadah Abdul Rahman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Rohana Yusof
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Choon Han Heh
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
65
|
Fu Y, Liu D, Zeng H, Ren X, Song B, Hu D, Gan X. New chalcone derivatives: synthesis, antiviral activity and mechanism of action. RSC Adv 2020; 10:24483-24490. [PMID: 35516226 PMCID: PMC9055036 DOI: 10.1039/d0ra03684f] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/19/2020] [Indexed: 01/28/2023] Open
Abstract
In this work, twenty-eight chalcone derivatives containing a purine (sulfur) ether moiety were synthesized and their antiviral activities were evaluated. Biological results showed that compound 5d exhibited outstanding inactive activity against tobacco mosaic virus (TMV) in vivo (EC50 = 65.8 μg mL−1), which is significantly superior to that of ribavirin (EC50 = 154.3 μg mL−1). Transmission electron microscopy indicated that compound 5d can break the integrity of TMV particles. The results of microscale thermophoresis, fluorescence titration and molecular docking showed that compound 5d had stronger combining affinity (Ka = 1.02 ×105 L mol−1, Kd = 13.4 μmol L−1) with TMV coat protein (TMV-CP), which is due to the formation of five hydrogen bonds between compound 5d and the amino-acid residues of TMV-CP. These findings revealed that compound 5d can effectively inhibit the infective ability of TMV. This work provides inspiration and reference for the discovery of new antiviral agents. The chalcone derivatives containing a purine (sulfur) ether moiety were synthesized. The antiviral mechanism suggested that the antiviral activity of compound 5d may depend on its stronger binding affinity with TMV-CP.![]()
Collapse
Affiliation(s)
- Yun Fu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Dan Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Huanan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Xiaoli Ren
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
- Ministry of Education
- Center for Research and Development of Fine Chemicals
- Guizhou University
| |
Collapse
|
66
|
Cataneo AHD, Kuczera D, Koishi AC, Zanluca C, Silveira GF, Arruda TBD, Suzukawa AA, Bortot LO, Dias-Baruffi M, Verri WA, Robert AW, Stimamiglio MA, Duarte Dos Santos CN, Wowk PF, Bordignon J. The citrus flavonoid naringenin impairs the in vitro infection of human cells by Zika virus. Sci Rep 2019; 9:16348. [PMID: 31705028 PMCID: PMC6841724 DOI: 10.1038/s41598-019-52626-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022] Open
Abstract
The Zika virus (ZIKV) is an arthropod-borne virus that belongs to the Flaviviridae family. The ZIKV infection is usually asymptomatic or is associated with mild clinical manifestations; however, increased numbers of cases of microcephaly and birth defects have been recently reported. To date, neither a vaccine nor an antiviral treatment has become available to control ZIKV replication. Among the natural compounds recognized for their medical properties, flavonoids, which can be found in fruits and vegetables, have been found to possess biological activity against a variety of viruses. Here, we demonstrate that the citrus flavanone naringenin (NAR) prevented ZIKV infection in human A549 cells in a concentration-dependent and ZIKV-lineage independent manner. NAR antiviral activity was also observed when primary human monocyte-derived dendritic cells were infected by ZIKV. NAR displayed its antiviral activity when the cells were treated after infection, suggesting that NAR acts on the viral replication or assembly of viral particles. Moreover, a molecular docking analysis suggests a potential interaction between NAR and the protease domain of the NS2B-NS3 protein of ZIKV which could explain the anti-ZIKV activity of NAR. Finally, the results support the potential of NAR as a suitable candidate molecule for developing anti-ZIKV treatments.
Collapse
Affiliation(s)
| | - Diogo Kuczera
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Andrea Cristine Koishi
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Camila Zanluca
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | | | - Thais Bonato de Arruda
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Andréia Akemi Suzukawa
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Leandro Oliveira Bortot
- Laboratório de Física Biológica, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcelo Dias-Baruffi
- Laboratório de Glicoimunologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Waldiceu Aparecido Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Paraná, Brazil
| | - Anny Waloski Robert
- Laboratório de Células Tronco, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | | | | | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil.
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil.
| |
Collapse
|
67
|
Aguiar AC, de Sousa LR, Garcia CR, Oliva G, Guido RV. New Molecular Targets and Strategies for Antimalarial Discovery. Curr Med Chem 2019; 26:4380-4402. [DOI: 10.2174/0929867324666170830103003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023]
Abstract
Malaria remains a major health problem, especially because of the emergence
of resistant P. falciparum strains to artemisinin derivatives. In this context, safe and affordable
antimalarial drugs are desperately needed. New proteins have been investigated
as molecular targets for research and development of innovative compounds with welldefined
mechanism of action. In this review, we highlight genetically and clinically validated
plasmodial proteins as drug targets for the next generation of therapeutics. The enzymes
described herein are involved in hemoglobin hydrolysis, the invasion process,
elongation factors for protein synthesis, pyrimidine biosynthesis, post-translational modifications
such as prenylation, phosphorylation and histone acetylation, generation of ATP
in mitochondrial metabolism and aminoacylation of RNAs. Significant advances on proteomics,
genetics, structural biology, computational and biophysical methods provided
invaluable molecular and structural information about these drug targets. Based on this,
several strategies and models have been applied to identify and improve lead compounds.
This review presents the recent progresses in the discovery of antimalarial drug candidates,
highlighting the approaches, challenges, and perspectives to deliver affordable, safe
and low single-dose medicines to treat malaria.
Collapse
Affiliation(s)
- Anna Caroline Aguiar
- Sao Carlos Institute of Physics, University of Sao Paulo, PO Box 369, 13560-970, Sao Carlos, SP, Brazil
| | - Lorena R.F. de Sousa
- Sao Carlos Institute of Physics, University of Sao Paulo, PO Box 369, 13560-970, Sao Carlos, SP, Brazil
| | - Celia R.S. Garcia
- Physiology Department, Bioscience Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Glaucius Oliva
- Sao Carlos Institute of Physics, University of Sao Paulo, PO Box 369, 13560-970, Sao Carlos, SP, Brazil
| | - Rafael V.C. Guido
- Sao Carlos Institute of Physics, University of Sao Paulo, PO Box 369, 13560-970, Sao Carlos, SP, Brazil
| |
Collapse
|
68
|
Liu X, Song Z, Bai J, Nauwynck H, Zhao Y, Jiang P. Xanthohumol inhibits PRRSV proliferation and alleviates oxidative stress induced by PRRSV via the Nrf2-HMOX1 axis. Vet Res 2019; 50:61. [PMID: 31506103 PMCID: PMC6737628 DOI: 10.1186/s13567-019-0679-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a prevalent and endemic swine pathogen that causes significant economic losses in the global swine industry. Commercial vaccines provide limited protection against this virus, and no highly effective therapeutic drugs are yet available. In this study, we first screened a library of 386 natural products and found that xanthohumol (Xn), a prenylated flavonoid found in hops, displayed high anti-PRRSV activity by inhibiting PRRSV adsorption onto and internalization into cells. Transcriptome sequencing revealed that Xn treatment stimulates genes associated with the antioxidant response in the nuclear factor-erythroid 2-related factor 2 (Nrf2) signalling pathway. Xn causes increased expression of Nrf2, HMOX1, GCLC, GCLM, and NQO1 in Marc-145 cells. The action of Xn against PRRSV proliferation depends on Nrf2 in Marc-145 cells and porcine alveolar macrophages (PAMs). This finding suggests that Xn significantly inhibits PRRSV proliferation and decreases viral-induced oxidative stress by activating the Nrf2–HMOX1 pathway. This information should be helpful for developing a novel prophylactic and therapeutic strategy against PRRSV infection.
Collapse
Affiliation(s)
- Xuewei Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhongbao Song
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Yongxiang Zhao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
69
|
Boniface PK, Ferreira EI. Flavonoids as efficient scaffolds: Recent trends for malaria, leishmaniasis, Chagas disease, and dengue. Phytother Res 2019; 33:2473-2517. [PMID: 31441148 DOI: 10.1002/ptr.6383] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/04/2019] [Accepted: 04/13/2019] [Indexed: 12/21/2022]
Abstract
Endemic in 149 tropical and subtropical countries, neglected tropical diseases (NTDs) affect more than 1 billion people annually with over 500,000 deaths. Among the NTDs, some of the most severe consist of leishmaniasis, Chagas disease, and dengue. The impact of the combined NTDs closely rivals that of malaria. According to the World Health Organization, 216 million cases of malaria were reported in 2016 with 445,000 deaths. Current treatment options are associated with various limitations including widespread drug resistance, severe adverse effects, lengthy treatment duration, unfavorable toxicity profiles, and complicated drug administration procedures. Flavonoids are a class of compounds that has been the subject of considerable scientific interest. New developments of flavonoids have made promising advances for the potential treatment of malaria, leishmaniasis, Chagas disease, and dengue, with less toxicity, high efficacy, and improved bioavailability. This review summarizes the current standings of the use of flavonoids to treat malaria and neglected diseases such as leishmaniasis, Chagas disease, and dengue. Natural and synthetic flavonoids are leading compounds that can be used for developing antiprotozoal and antiviral agents. However, detailed studies on toxicity, pharmacokinetics, and mechanisms of action of these compounds are required to confirm the in vitro pharmacological claims of flavonoids for pharmaceutical applications. HIGHLIGHTS: In the current review, we have tried to compile recent discoveries on natural and synthetic flavonoids as well as their implication in the treatment of malaria, leishmaniasis, Chagas disease, and dengue. A total of 373 (220 natural and 153 synthetic) flavonoids have been evaluated for antimalarial, antileishmanial, antichagasic, and antidengue activities. Most of these flavonoids showed promising results against the above diseases. Reports on molecular modeling of flavonoid compounds to the disease target indicated encouraging results. Flavonoids can be prospected as potential leads for drug development; however, more rigorously designed studies on toxicity and pharmacokinetics, as well as the quantitative structure-activity relationship studies of these compounds, need to be addressed.
Collapse
Affiliation(s)
- Pone Kamdem Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elizabeth Igne Ferreira
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
70
|
A model to study the inhibition of nsP2B-nsP3 protease of dengue virus with imidazole, oxazole, triazole thiadiazole, and thiazolidine based scaffolds. Heliyon 2019; 5:e02124. [PMID: 31406937 PMCID: PMC6684460 DOI: 10.1016/j.heliyon.2019.e02124] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/26/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022] Open
Abstract
A theoretical model was developed to allosterically inhibit the biological activity of dengue virus (DENV) by targeting the non-structural protein ns2B-nsP3 protease based on the in silico studies. The imidazole, oxazole, triazole, thiadiazole, and thiazolidine based scaffolds were imported from the ZINC database, reported by various research group with different biological activity. They were found biologically active as they contain heterocyclic fragments. Generic evolutionary based molecular docking was performed to screen the highly potent molecule. The docking results show that the molecule having ZINC ID-633972 is best inhibitor. Further, the bioavailability and other physiochemical parameters were also calculated for the top four molecule. The highly potent molecule was further refined by the density functional theory and molecular dynamic (MD) simulation. The MD analysis coroborate the successful docking of the molecule in the binding cavity of nsP2B-nsP3 protease of DENV. The Molecular Mechanics Poisson-Boltzmann Surface Area approach was also applied and result coroborate the docking and MD result.
Collapse
|
71
|
Jasso-Miranda C, Herrera-Camacho I, Flores-Mendoza LK, Dominguez F, Vallejo-Ruiz V, Sanchez-Burgos GG, Pando-Robles V, Santos-Lopez G, Reyes-Leyva J. Antiviral and immunomodulatory effects of polyphenols on macrophages infected with dengue virus serotypes 2 and 3 enhanced or not with antibodies. Infect Drug Resist 2019; 12:1833-1852. [PMID: 31303775 PMCID: PMC6611719 DOI: 10.2147/idr.s210890] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/26/2019] [Indexed: 12/30/2022] Open
Abstract
Background: There is a lack of specific antiviral therapy against dengue virus (DENV) in current use. Therefore, a great proportion of dengue cases progress to severe clinical forms due to a complex interplay between virus and host immune response. It has been hypothesized that heterotypic non-neutralizing antibodies enhance DENV infection in phagocytic cells, and this induces an inflammatory response that is involved in the pathogenesis of severe dengue. Purpose: To identify the antiviral and immunomodulatory effects of polyphenols on dengue virus infection. Methods: Human U937-DC-SIGN macrophages were infected with DENV serotypes 2 or 3 in the presence or not of enhancing antibody 4G2. Viral titers and the secretion of tumor necrosis factor-alpha, IL-6, IL-10 and interferon-alpha were analyzed timely. Results: DENV infection alone induced high production of IL-6 and TNF-α, but in the presence of 4G2 antibody, viral titers and TNF-α secretion were potentiated. Based on anti-inflammatory antecedents, the polyphenols curcumin, fisetin, resveratrol, apigenin, quercetin and rutin were tested for antiviral and immunomodulatory properties. Only quercetin and fisetin inhibited DENV-2 and DENV-3 infection in the absence or presence of enhancing antibody (>90%, p<0.001); they also inhibited TNF-α and IL-6 secretion (p<0.001). Conclusion: Quercetin and fisetin down-regulate the production of proinflammatory cytokines induced by DENV infection enhanced by antibodies a mechanism involved in severe dengue.
Collapse
Affiliation(s)
- Carolina Jasso-Miranda
- Laboratory of Immunology and Virology, East Biomedical Research Center, Mexican Institute of Social Security (IMSS), CP 74360 Metepec, Puebla, México.,Laboratory of Biochemistry and Molecular Biology, Center of Chemistry, Institute of Sciences, Meritorious Autonomous University of Puebla, CP 72570 San Manuel, Puebla, Mexico
| | - Irma Herrera-Camacho
- Laboratory of Biochemistry and Molecular Biology, Center of Chemistry, Institute of Sciences, Meritorious Autonomous University of Puebla, CP 72570 San Manuel, Puebla, Mexico
| | - Lilian Karem Flores-Mendoza
- Department of Chemical, Biologic and Agricultural Sciences, Science and Enginery Division, University of Sonora, CP 85880 Navojoa, Sonora, Mexico
| | - Fabiola Dominguez
- Laboratory of Immunology and Virology, East Biomedical Research Center, Mexican Institute of Social Security (IMSS), CP 74360 Metepec, Puebla, México
| | - Veronica Vallejo-Ruiz
- Laboratory of Immunology and Virology, East Biomedical Research Center, Mexican Institute of Social Security (IMSS), CP 74360 Metepec, Puebla, México
| | | | - Victoria Pando-Robles
- Infectious Disease Research Center, National Institute of Public Health, CP 62100 Cuernavaca, Morelos, Mexico
| | - Gerardo Santos-Lopez
- Laboratory of Immunology and Virology, East Biomedical Research Center, Mexican Institute of Social Security (IMSS), CP 74360 Metepec, Puebla, México
| | - Julio Reyes-Leyva
- Laboratory of Immunology and Virology, East Biomedical Research Center, Mexican Institute of Social Security (IMSS), CP 74360 Metepec, Puebla, México
| |
Collapse
|
72
|
Dighe SN, Ekwudu O, Dua K, Chellappan DK, Katavic PL, Collet TA. Recent update on anti-dengue drug discovery. Eur J Med Chem 2019; 176:431-455. [PMID: 31128447 DOI: 10.1016/j.ejmech.2019.05.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/12/2019] [Accepted: 05/06/2019] [Indexed: 01/27/2023]
Abstract
Dengue is the most important arthropod-borne viral disease of humans, with more than half of the global population living in at-risk areas. Despite the negative impact on public health, there are no antiviral therapies available, and the only licensed vaccine, Dengvaxia®, has been contraindicated in children below nine years of age. In an effort to combat dengue, several small molecules have entered into human clinical trials. Here, we review anti-DENV molecules and their drug targets that have been published within the past five years (2014-2018). Further, we discuss their probable mechanisms of action and describe a role for classes of clinically approved drugs and also an unclassified class of anti-DENV agents. This review aims to enhance our understanding of novel agents and their cognate targets in furthering innovations in the use of small molecules for dengue drug therapies.
Collapse
Affiliation(s)
- Satish N Dighe
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia.
| | - O'mezie Ekwudu
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Peter L Katavic
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Trudi A Collet
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
73
|
Majerová T, Novotný P, Krýsová E, Konvalinka J. Exploiting the unique features of Zika and Dengue proteases for inhibitor design. Biochimie 2019; 166:132-141. [PMID: 31077760 DOI: 10.1016/j.biochi.2019.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
Zika and Dengue viruses have attracted substantial attention from researchers in light of recent outbreaks of Dengue fever and increases in cases of congenital microcephaly in areas with Zika incidence. This review summarizes the current state of knowledge about Zika and Dengue proteases. These enzymes have several interesting features: 1) NS3 serine protease requires the activating co-factor NS2B, which is anchored in the membrane of the endoplasmic reticulum; 2) NS2B displays extensive conformational dynamics; 3) NS3 is a multidomain protein with proteolytic, NTPase, RNA 5' triphosphatase and helicase activity and has many protein-protein interaction partners; 4) NS3 is autoproteolytically released from its precursor. Attempts to design tight-binding and specific active-site inhibitors are complicated by the facts that the substrate pocket of the NS2B-NS3 protease is flat and the active-site ligands are charged. The ionic character of potential active-site inhibitors negatively influences their cell permeability. Possibilities to block cis-autoprocessing of the protease precursor have recently been considered. Additionally, potential allosteric sites on NS2B-NS3 proteases have been identified and allosteric compounds have been designed to impair substrate binding and/or block the NS2B-NS3 interaction. Such compounds could be specific to viral proteases, without off-target effects on host serine proteases, and could have favorable pharmacokinetic profiles. This review discusses various groups of inhibitors of these proteases according to their mechanisms of action and chemical structures.
Collapse
Affiliation(s)
- Taťána Majerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague 6, Czech Republic
| | - Pavel Novotný
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University in Prague, 12843, Prague, Czech Republic
| | - Eliška Krýsová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague 6, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, 12843, Prague, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University in Prague, 12843, Prague, Czech Republic.
| |
Collapse
|
74
|
Islam MT, Zihad SMNK, Rahman MS, Sifat N, Khan MR, Uddin SJ, Rouf R. Agathisflavone: Botanical sources, therapeutic promises, and molecular docking study. IUBMB Life 2019; 71:1192-1200. [DOI: 10.1002/iub.2053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/04/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Muhammad Torequl Islam
- Department for Management of Science and Technology DevelopmentTon Duc Thang University Ho Chi Minh City Vietnam
- Faculty of PharmacyTon Duc Thang University Ho Chi Minh City Vietnam
| | - S. M. Neamul Kabir Zihad
- Pharmacy Discipline, Life Science SchoolKhulna University Khulna Bangladesh
- Department of PharmacyAtish Dipankar University of Science & Technology Dhaka Bangladesh
| | - Md. Shamim Rahman
- Biotechnology & Genetic Engineering Discipline, Life Science SchoolKhulna University Khulna Bangladesh
| | - Nazifa Sifat
- Pharmacy Discipline, Life Science SchoolKhulna University Khulna Bangladesh
| | - Md. Roich Khan
- Department of Pharmacy, Life Science FacultyBangabandhu Sheikh Mujibur Rahman Science & Technology University Gopalganj Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science SchoolKhulna University Khulna Bangladesh
| | - Razina Rouf
- Department of Pharmacy, Life Science FacultyBangabandhu Sheikh Mujibur Rahman Science & Technology University Gopalganj Bangladesh
| |
Collapse
|
75
|
Ma L, Cao X, Wang H, Lu K, Wang Y, Tu C, Dai Y, Meng Y, Li Y, Yu P, Man S, Diao A. Discovery of Myricetin as a Potent Inhibitor of Human Flap Endonuclease 1, Which Potentially Can Be Used as Sensitizing Agent against HT-29 Human Colon Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1656-1665. [PMID: 30694659 DOI: 10.1021/acs.jafc.8b05447] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Human flap endonuclease 1 (hFEN1) is instrumental in DNA replication and repair. It is able to cleave the 5' single-stranded protrusion (also known as 5' flap) resulting from strand displacement reactions. In light of its crucial functions, hFEN1 is now deemed as a nontrivial target in the DNA damage response system for anticancer drug development. Herein, we report that myricetin and some natural flavonoids are able to inhibit hFEN1. Structure-activity relationship, inhibitory mechanisms, molecular docking, and cancer cell-based assays have been performed. Our original findings expand the activity of flavonoids and may pave the way for flavonoid-assisted targeted cancer therapy.
Collapse
Affiliation(s)
- Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology (MOE), Tianjin Key Laboratory of Industrial Microbiology, School of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , China
| | - Xiuqi Cao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology (MOE), Tianjin Key Laboratory of Industrial Microbiology, School of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , China
| | - Haiyue Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology (MOE), Tianjin Key Laboratory of Industrial Microbiology, School of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , China
| | - Kui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology (MOE), Tianjin Key Laboratory of Industrial Microbiology, School of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , China
| | - Ying Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology (MOE), Tianjin Key Laboratory of Industrial Microbiology, School of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , China
| | - Chunhao Tu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology (MOE), Tianjin Key Laboratory of Industrial Microbiology, School of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , China
| | - Yujie Dai
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology (MOE), Tianjin Key Laboratory of Industrial Microbiology, School of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , China
| | - Yuanyuan Meng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology (MOE), Tianjin Key Laboratory of Industrial Microbiology, School of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , China
| | - Yuyin Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology (MOE), Tianjin Key Laboratory of Industrial Microbiology, School of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , China
| | - Peng Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology (MOE), Tianjin Key Laboratory of Industrial Microbiology, School of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology (MOE), Tianjin Key Laboratory of Industrial Microbiology, School of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , China
| | - Aipo Diao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology (MOE), Tianjin Key Laboratory of Industrial Microbiology, School of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , China
| |
Collapse
|
76
|
Hariono M, Choi SB, Roslim RF, Nawi MS, Tan ML, Kamarulzaman EE, Mohamed N, Yusof R, Othman S, Abd Rahman N, Othman R, Wahab HA. Thioguanine-based DENV-2 NS2B/NS3 protease inhibitors: Virtual screening, synthesis, biological evaluation and molecular modelling. PLoS One 2019; 14:e0210869. [PMID: 30677071 PMCID: PMC6345492 DOI: 10.1371/journal.pone.0210869] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/03/2019] [Indexed: 12/25/2022] Open
Abstract
Dengue virus Type 2 (DENV-2) is predominant serotype causing major dengue epidemics. There are a number of studies carried out to find its effective antiviral, however to date, there is still no molecule either from peptide or small molecules released as a drug. The present study aims to identify small molecules inhibitor from National Cancer Institute database through virtual screening. One of the hits, D0713 (IC50 = 62 μM) bearing thioguanine scaffold was derivatised into 21 compounds and evaluated for DENV-2 NS2B/NS3 protease inhibitory activity. Compounds 18 and 21 demonstrated the most potent activity with IC50 of 0.38 μM and 16 μM, respectively. Molecular dynamics and MM/PBSA free energy of binding calculation were conducted to study the interaction mechanism of these compounds with the protease. The free energy of binding of 18 calculated by MM/PBSA is -16.10 kcal/mol compared to the known inhibitor, panduratin A (-11.27 kcal/mol), which corroborates well with the experimental observation. Results from molecular dynamics simulations also showed that both 18 and 21 bind in the active site and stabilised by the formation of hydrogen bonds with Asn174.
Collapse
Affiliation(s)
- Maywan Hariono
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
- Faculty of Pharmacy, Sanata Dharma University, Maguwoharjo, Sleman, Yogyakarta, Indonesia
| | - Sy Bing Choi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
- School of Data Sciences, Perdana University, Blok B and d1, MARDI Complex, Jalan MAEPS Perdana, Serdang, Selangor
| | - Ros Fatihah Roslim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Mohamed Sufian Nawi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
- Department of Pharmaceutical Chemistry, Kulliyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Mei Lan Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Pulau Pinang, Malaysia
| | | | - Nornisah Mohamed
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Rohana Yusof
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shatrah Othman
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Noorsaadah Abd Rahman
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Rozana Othman
- Department of Pharmacy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, Halaman Bukit Gambir, Bayan Lepas, Pulau Pinang, Malaysia
- * E-mail: ,
| |
Collapse
|
77
|
Wolff T, Berrueta LA, Valente LMM, Barboza RS, Neris RLS, Guimarães-Andrade IP, Assunção-Miranda I, Nascimento AC, Gomes M, Gallo B, Iriondo C. Comprehensive characterisation of polyphenols in leaves and stems of three anti-dengue virus type-2 active Brazilian Faramea species (Rubiaceae) by HPLC-DAD-ESI-MS/MS. PHYTOCHEMICAL ANALYSIS : PCA 2019; 30:62-72. [PMID: 30191624 DOI: 10.1002/pca.2790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/22/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION The methanol (MeOH) leaf extracts of the species Faramea bahiensis, F. hyacinthina and F. truncata (Rubiaceae) have previously shown in vitro non-cytotoxic and anti-dengue virus serotype 2 (DENV2) activities in human hepatocarcinoma cell lineage (HepG2). Chemical studies have led to the isolation of major flavonoids, but quite complex fractions of phenolic compounds still remain. OBJECTIVE To complete the study of phenolic compounds in the leaves and to access the presence of these compounds in the stems of these Faramea spp. by online high-performance liquid chromatography-diode array detector-electrospray ionisation tandem mass spectrometry (HPLC-DAD-ESI-MS/MS), as well as to evaluate the in vitro cytotoxic and anti-DENV2 activities of their MeOH stem extracts. METHODOLOGY The identification was performed by comparing retention times, UV and mass spectra with those of available standards and by using the mechanisms and fragmentation patterns established in previous studies. The effects of the extracts in DENV2 infected HepG2 cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The virus titer was quantified by plaque assay. RESULTS The study led to the characterisation of 31 phenolic compounds including flavonoid O- and C-glycosides, phenolic acids and one coumarin. The stem extracts from F. hyacinthina and F. bahiensis presented a similar bioactivity to those of their leaves but a loss of cytoprotective activity of F. bahiensis and a higher cytotoxicity of F. truncata were observed. CONCLUSIONS This research allowed a detailed phenolic composition of three bioactive Faramea species to be achieved, thus contributing to the study of this genus and providing valuable information for further phytotherapeutic applications.
Collapse
Affiliation(s)
- Thiago Wolff
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis A Berrueta
- Departamento de Química Analítica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - Ligia M M Valente
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodolfo S Barboza
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rômulo L S Neris
- Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iris P Guimarães-Andrade
- Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iranaia Assunção-Miranda
- Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana C Nascimento
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mário Gomes
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Blanca Gallo
- Departamento de Química Analítica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - Carmen Iriondo
- Departamento de Química Orgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| |
Collapse
|
78
|
Development of a NS2B/NS3 protease inhibition assay using AlphaScreen ® beads for screening of anti-dengue activities. Heliyon 2018; 4:e01023. [PMID: 30560214 PMCID: PMC6289942 DOI: 10.1016/j.heliyon.2018.e01023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/27/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
Background Dengue infection is an endemic infectious disease and it can lead to dengue fever, dengue hemorrhagic fever, and/or dengue shock syndromes. Dengue NS2B/NS3 protease complex is essential for viral replication and is a primary target for anti-dengue drug development. In this study, a NS2B/NS3 protease inhibition assay was developed using AlphaScreen® beads and was used to screen compounds for their protease inhibition activities. Methods The assay system utilized a known NS2B/NS3 peptide substrate, a recombinant of NS2B/NS3 protease with proprietary StrepTactin® donor and nickel chelate acceptor beads in 384-well format. Results The optimized assay to screen for NS2B/NS3 protease inhibitors was demonstrated to be potentially useful with reasonable zʹ factor, coefficient variance and signal to background ratio. However, screening of synthesized thioguanine derivatives using the optimized AlphaScreen® assay revealed weak NS2B/NS3 inhibition activities. Conclusion The AlphaScreen® assay to screen for NS2B/NS3 protease inhibitors is potentially applicable for high throughput screening.
Collapse
|
79
|
Motoshima RA, Rosa TDF, Mendes LDC, Silva EVD, Viana SR, Amaral BSD, de Souza DH, Lião LM, Corradi da Silva MDL, de Sousa LR, Carbonero ER. Inhibition of Leishmania amazonensis arginase by fucogalactan isolated from Agrocybe aegerita mushroom. Carbohydr Polym 2018; 201:532-538. [DOI: 10.1016/j.carbpol.2018.08.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022]
|
80
|
Viana JDO, Félix MB, Maia MDS, Serafim VDL, Scotti L, Scotti MT. Drug discovery and computational strategies in the multitarget drugs era. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000001010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
81
|
Coronado MA, Eberle RJ, Bleffert N, Feuerstein S, Olivier DS, de Moraes FR, Willbold D, Arni RK. Zika virus NS2B/NS3 proteinase: A new target for an old drug - Suramin a lead compound for NS2B/NS3 proteinase inhibition. Antiviral Res 2018; 160:118-125. [PMID: 30393012 DOI: 10.1016/j.antiviral.2018.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/25/2018] [Accepted: 10/24/2018] [Indexed: 01/15/2023]
Abstract
Zika virus infection is the focus of much research due to the medical and social repercussions. Due the role of the viral NS2B/NS3 proteinase in maturation of the viral proteins, it had become an attractive antiviral target. Numerous investigations on viral epidemiology, structure and function analysis, vaccines, and therapeutic drugs have been conducted around the world. At present, no approved vaccine or even drugs have been reported. Thus, there is an urgent need to develop therapeutic agents to cure this epidemic disease. In the present study, we identified the polyanion suramin, an approved antiparasitic drug with antiviral properties, as a potential inhibitor of Zika virus complex NS2B/NS3 proteinase with IC50 of 47 μM. Using fluorescence spectroscopy results we could determine a kd value of 28 μM and had shown that the ligand does not affect the thermal stability of the protein. STD NMR spectroscopy experiments and molecular docking followed by molecular dynamics simulation identified the binding epitopes of the molecule and shows the mode of interaction, respectively. The computational analysis showed that suramin block the Ser135 residue and interact with the catalytically histidine residue.
Collapse
Affiliation(s)
- Monika Aparecida Coronado
- Multiuser Center for Biomolecular Innovation, Department of Physics, Universidade Estadual Paulista (UNESP), São José do Rio Preto SP, 15054-000, Brazil.
| | - Raphael Josef Eberle
- Multiuser Center for Biomolecular Innovation, Department of Physics, Universidade Estadual Paulista (UNESP), São José do Rio Preto SP, 15054-000, Brazil
| | - Nicole Bleffert
- Institute of Complex System, Structural Biochemistry (ICS-6), Forchungszentrum Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, Germany
| | - Sophie Feuerstein
- Institute of Complex System, Structural Biochemistry (ICS-6), Forchungszentrum Jülich, Germany; Institute of Complex System, Structural Biochemistry (ICS-6), Forchungszentrum Jülich, Germany
| | - Danilo Silva Olivier
- Multiuser Center for Biomolecular Innovation, Department of Physics, Universidade Estadual Paulista (UNESP), São José do Rio Preto SP, 15054-000, Brazil
| | - Fabio Rogerio de Moraes
- Multiuser Center for Biomolecular Innovation, Department of Physics, Universidade Estadual Paulista (UNESP), São José do Rio Preto SP, 15054-000, Brazil
| | - Dieter Willbold
- Institute of Complex System, Structural Biochemistry (ICS-6), Forchungszentrum Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, Germany
| | - Raghuvir Krishnaswamy Arni
- Multiuser Center for Biomolecular Innovation, Department of Physics, Universidade Estadual Paulista (UNESP), São José do Rio Preto SP, 15054-000, Brazil.
| |
Collapse
|
82
|
Andrade AWL, Machado KDC, Machado KDC, Figueiredo DDR, David JM, Islam MT, Uddin SJ, Shilpi JA, Costa JP. In vitro antioxidant properties of the biflavonoid agathisflavone. Chem Cent J 2018; 12:75. [PMID: 29959550 PMCID: PMC6026112 DOI: 10.1186/s13065-018-0443-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/22/2018] [Indexed: 12/14/2022] Open
Abstract
Purpose Free radicals are considered as the causative agents of a variety of acute and chronic pathologies. Natural antioxidants have drawn attention of the researchers in recent years for their ability to scavenge free radicals with minimal or even no side effects. This study evaluates the antioxidant capacity of agathisflavone, a naturally occurring biflavonoid by a number of in vitro methods. Methods Agathisflavone was subjected to DPPH, ABTS, OH and NO radical scavenging assay, reducing potential and inhibition of lipid peroxidation (TBARS) test using trolox as a standard. Results Agathisflavone showed concentration-dependent antioxidant activity against all types of free radicals used in this study. The antioxidant capacity, reducing potential and inhibition of lipid peroxidation showed by agathisflavone were comparable to that of trolox. Conclusion Agathisflavone exhibited antioxidant capacity, which suggests considering this biflavonoid for the use in the prevention and/or treatment of diseases precipitated by oxidative stress.
Collapse
Affiliation(s)
| | | | - Katia da Conceição Machado
- Laboratory of Research in Experimental Neurochemistry, Federal University of Piauí (UFPI), Teresina, Brazil
| | | | | | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam. .,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Jamil A Shilpi
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Jéssica Pereira Costa
- Laboratory of Research in Experimental Neurochemistry, Federal University of Piauí (UFPI), Teresina, Brazil
| |
Collapse
|
83
|
Oliveira AFCDS, de Souza APM, de Oliveira AS, da Silva ML, de Oliveira FM, Santos EG, da Silva ÍEP, Ferreira RS, Villela FS, Martins FT, Leal DH, Vaz BG, Teixeira RR, de Paula SO. Zirconium catalyzed synthesis of 2-arylidene Indan-1,3-diones and evaluation of their inhibitory activity against NS2B-NS3 WNV protease. Eur J Med Chem 2018; 149:98-109. [DOI: 10.1016/j.ejmech.2018.02.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/02/2018] [Accepted: 02/10/2018] [Indexed: 01/13/2023]
|
84
|
Taraxacum officinale and Urtica dioica extracts inhibit dengue virus serotype 2 replication in vitro. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:95. [PMID: 29548293 PMCID: PMC5857124 DOI: 10.1186/s12906-018-2163-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 03/08/2018] [Indexed: 11/17/2022]
Abstract
Background Urtica dioica, Taraxacum officinale, Calea integrifolia and Caesalpinia pulcherrima are widely used all over the world for treatment of different illnesses. In Mexico, these plants are traditionally used to alleviate or counteract rheumatism and inflammatory muscle diseases. In the present study we evaluated the activity of aqueous and methanolic extracts of these four plants, on the replication of dengue virus serotype 2 (DENV2). Methods Extraction process was carried out in a Soxtherm® system at 60, 85 and 120 °C; a chemical fractionation in silica gel chromatography was performed and compounds present in the active fractions were identified by HPLC-DAD-ESI/MSn. The cytotoxic concentration and the inhibitory effect of extracts or fractions on the DENV2 replication were analyzed in the BHK-21 cell line (plaque forming assay). The half maximal inhibitory concentration (IC50) and the selectivity index (SI) were calculated for the extracts and fractions. Results The methanolic extracts at 60 °C of T. officinale and U. dioica showed the higher inhibitory effects on DENV2 replication. After the chemical fractionation, the higher activity fraction was found for U. dioica and T. officinale, presenting IC50 values of 165.7 ± 3.85 and 126.1 ± 2.80 μg/ml, respectively; SI values were 5.59 and 6.01 for each fraction. The compounds present in T. officinale, were luteolin and caffeoylquinic acids derivatives and quercertin diclycosides. The compounds in the active fraction of U. dioica, were, chlorogenic acid, quercertin derivatives and flavonol glycosides (quercetin and kaempferol). Conclusions Two fractions from U. dioica and T. officinale methanolic extracts with anti-dengue activity were found. The compounds present in both fractions were identified, several recognized molecules have demonstrated activity against other viral species. Subsequent biological analysis of the molecules, alone or in combination, contained in the extracts will be carried out to develop therapeutics against DENV2.
Collapse
|
85
|
Vander dos Santos R, Villalta-Romero F, Stanisic D, Borro L, Neshich G, Tasic L. Citrus bioflavonoid, hesperetin, as inhibitor of two thrombin-like snake venom serine proteases isolated from Crotalus simus. Toxicon 2018; 143:36-43. [DOI: 10.1016/j.toxicon.2018.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/20/2017] [Accepted: 01/10/2018] [Indexed: 01/09/2023]
|
86
|
Srivarangkul P, Yuttithamnon W, Suroengrit A, Pankaew S, Hengphasatporn K, Rungrotmongkol T, Phuwapraisirisan P, Ruxrungtham K, Boonyasuppayakorn S. A novel flavanone derivative inhibits dengue virus fusion and infectivity. Antiviral Res 2018; 151:27-38. [PMID: 29360474 DOI: 10.1016/j.antiviral.2018.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/10/2017] [Accepted: 01/17/2018] [Indexed: 01/24/2023]
Abstract
Dengue infection is a global burden affecting millions of world population. Previous studies indicated that flavanones were potential dengue virus inhibitors. We discovered that a novel flavanone derivative, 5-hydroxy-7-methoxy-6-methylflavanone (FN5Y), inhibited DENV2 pH-dependent fusion in cell-based system with strong binding efficiency to DENV envelope protein at K (P83, L107, K128, L198), K' (T48, E49, A50, L198, Q200, L277), X' (Y138, V354, I357), and Y' (V97, R99, N103, K246) by molecular dynamic simulation. FN5Y inhibited DENV2 infectivity with EC50s (and selectivity index) of 15.99 ± 5.38 (>6.25), and 12.31 ± 1.64 (2.23) μM in LLC/MK2 and Vero cell lines, respectively, and inhibited DENV4 at 11.70 ± 6.04 (>8.55) μM. CC50s in LLC/MK2, HEK-293, and HepG2 cell lines at 72 h were higher than 100 μM. Time-of-addition study revealed that the maximal efficacy was achieved at early after infection corresponded with pH-dependent fusion. Inactivating the viral particle, interfering with cellular receptors, inhibiting viral protease, or the virus replication complex were not major targets of this compound. FN5Y could become a potent anti-flaviviral drug and can be structurally modified for higher potency using simulation to DENV envelope as a molecular target.
Collapse
Affiliation(s)
- Pimsiri Srivarangkul
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wanchalerm Yuttithamnon
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aphinya Suroengrit
- Graduate Program, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Saran Pankaew
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kowit Hengphasatporn
- Bioinformatics and Computational Biology Program, Graduated School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanyada Rungrotmongkol
- Bioinformatics and Computational Biology Program, Graduated School, Chulalongkorn University, Bangkok, 10330, Thailand; Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Kiat Ruxrungtham
- Chula Vaccine Research Center (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siwaporn Boonyasuppayakorn
- Chula Vaccine Research Center (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
87
|
Halogenated Chrysins Inhibit Dengue and Zika Virus Infectivity. Sci Rep 2017; 7:13696. [PMID: 29057920 PMCID: PMC5651866 DOI: 10.1038/s41598-017-14121-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/04/2017] [Indexed: 11/08/2022] Open
Abstract
Dengue virus infection is a global threat for which no specific treatment has not been established. Previous reports suggested chrysin and flavanone derivatives were potential flaviviral inhibitors. Here, we reported two halogenated chrysins, abbreviated FV13 and FV14, were highly potent against DENV1-4 and ZIKV infectivities with the FV13 EC50 values of 2.30 ± 1.04, 1.47 ± 0.86, 2.32 ± 1.46, 1.78 ± 0.72 and 1.65 ± 0.86 µM; and FV14 EC50 values of 2.30 ± 0.92, 2.19 ± 0.31, 1.02 ± 0.31, 1.29 ± 0.60 and 1.39 ± 0.11 µM, respectively. The CC50s to LLC/MK2 of FV13 and FV14 were 44.28 ± 2.90 μM, 42.51 ± 2.53 µM, respectively. Mechanism of drug action studies suggested multiple targets but maximal efficiency was achieved with early post infection treatment. This is the first report showing a high potency of halogenated chrysins for development as a broad-spectrum anti-flaviviral drug.
Collapse
|
88
|
Saleh NA, Elshemey WM. Structure-based drug design of novel peptidomimetic cellulose derivatives as HCV-NS3 protease inhibitors. Life Sci 2017; 187:58-63. [PMID: 28842311 DOI: 10.1016/j.lfs.2017.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/15/2017] [Accepted: 08/21/2017] [Indexed: 12/28/2022]
Abstract
Hepatitis C Virus (HCV) represents a global health threat not only due to the large number of reported worldwide HCV infections, but also due to the absence of a reliable vaccine for its prevention. HCV NS3 protease is one of the most important targets for drug design aiming at the deactivation of HCV. In the present work, molecular docking simulations are carried out for suggested novel NS3 protease inhibitors applied to the Egyptian genotype 4. These inhibitors are modifications of dimer cellulose by adding a hexa-peptide to the cellulose at one of the positions 2, 3, 6, 2', 3' or 6'. Results show that the inhibitor compound with the hexa-peptide at position 6 shows significantly higher simulation docking score with HCV NS3 protease active site. This is supported by low total energy value of docking system, formation of two H-bonds with HCV NS3 protease active site residues, high binding affinity and increased stability in the interaction system.
Collapse
Affiliation(s)
- Noha A Saleh
- Biophysic Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Wael M Elshemey
- Biophysic Department, Faculty of Science, Cairo University, Giza 12613, Egypt,.
| |
Collapse
|
89
|
Powers CN, Setzer WN. An In-Silico Investigation of Phytochemicals as Antiviral Agents Against Dengue Fever. Comb Chem High Throughput Screen 2017; 19:516-36. [PMID: 27151482 PMCID: PMC5411999 DOI: 10.2174/1386207319666160506123715] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 01/28/2016] [Accepted: 04/13/2016] [Indexed: 01/19/2023]
Abstract
A virtual screening analysis of our library of phytochemical structures with dengue virus protein targets has been carried out using a molecular docking approach. A total of 2194 plant-derived secondary metabolites have been docked. This molecule set comprised of 290 alkaloids (68 indole alkaloids, 153 isoquinoline alkaloids, 5 quinoline alkaloids, 13 piperidine alkaloids, 14 steroidal alkaloids, and 37 miscellaneous alkaloids), 678 terpenoids (47 monoterpenoids, 169 sesquiterpenoids, 265 diterpenoids, 81 steroids, and 96 triterpenoids), 20 aurones, 81 chalcones, 349 flavonoids, 120 isoflavonoids, 74 lignans, 58 stilbenoids, 169 miscellaneous polyphenolic compounds, 100 coumarins, 28 xanthones, 67 quinones, and 160 miscellaneous phytochemicals. Dengue virus protein targets examined included dengue virus protease (NS2B-NS3pro), helicase (NS3 helicase), methyltransferase (MTase), RNA-dependent RNA polymerase (RdRp), and the dengue virus envelope protein. Polyphenolic compounds, flavonoids, chalcones, and other phenolics were the most numerous of the strongly docking ligands for dengue virus protein targets.
Collapse
Affiliation(s)
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
90
|
Roy A, Lim L, Srivastava S, Lu Y, Song J. Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from edible plants. PLoS One 2017; 12:e0180632. [PMID: 28700665 PMCID: PMC5503262 DOI: 10.1371/journal.pone.0180632] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/19/2017] [Indexed: 12/20/2022] Open
Abstract
The recent Zika viral (ZIKV) epidemic has been associated with severe neurological pathologies such as neonatal microcephaly and Guillain-Barre syndrome but unfortunately no vaccine or medication is effectively available yet. Zika NS2B-NS3pro is essential for the proteolysis of the viral polyprotein and thereby viral replication. Thus NS2B-NS3pro represents an attractive target for anti-Zika drug discovery/design. Here, we have characterized the solution conformations and catalytic parameters of both linked and unlinked Zika NS2B-NS3pro complexes and found that the unlinked complex manifested well-dispersed NMR spectra. Subsequently with selective isotope-labeling using NMR spectroscopy, we demonstrated that C-terminal residues (R73-K100) of NS2B is highly disordered without any stable tertiary and secondary structures in the Zika NS2B-NS3pro complex in the free state. Upon binding to the well-characterized serine protease inhibitor, bovine pancreatic trypsin inhibitor (BPTI), only the extreme C-terminal residues (L86-K100) remain disordered. Additionally, we have identified five flavonoids and one natural phenol rich in edible plants including fruits and vegetables, which inhibit Zika NS2B-NS3pro in a non-competitive mode, with Ki ranging from 770 nM for Myricetin to 34.02 μM for Apigenin. Molecular docking showed that they all bind to a pocket on the back of the active site and their structure-activity relationship was elucidated. Our study provides valuable insights into the solution conformation of Zika NS2B-NS3pro and further deciphers its susceptibility towards allosteric inhibition by natural products. As these natural product inhibitors fundamentally differ from the currently-known active site inhibitors in terms of both inhibitory mode and chemical scaffold, our finding might open a new avenue for development of better allosteric inhibitors to fight ZIKV infection.
Collapse
Affiliation(s)
- Amrita Roy
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Shagun Srivastava
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yimei Lu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
91
|
Pan A, Saw WG, Subramanian Manimekalai MS, Grüber A, Joon S, Matsui T, Weiss TM, Grüber G. Structural features of NS3 of Dengue virus serotypes 2 and 4 in solution and insight into RNA binding and the inhibitory role of quercetin. Acta Crystallogr D Struct Biol 2017; 73:402-419. [PMID: 28471365 PMCID: PMC5417341 DOI: 10.1107/s2059798317003849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/09/2017] [Indexed: 11/10/2022] Open
Abstract
Dengue virus (DENV), which has four serotypes (DENV-1 to DENV-4), is the causative agent of the viral infection dengue. DENV nonstructural protein 3 (NS3) comprises a serine protease domain and an RNA helicase domain which has nucleotide triphosphatase activities that are essential for RNA replication and viral assembly. Here, solution X-ray scattering was used to provide insight into the overall structure and flexibility of the entire NS3 and its recombinant helicase and protease domains for Dengue virus serotypes 2 and 4 in solution. The DENV-2 and DENV-4 NS3 forms are elongated and flexible in solution. The importance of the linker residues in flexibility and domain-domain arrangement was shown by the compactness of the individual protease and helicase domains. Swapping of the 174PPAVP179 linker stretch of the related Hepatitis C virus (HCV) NS3 into DENV-2 NS3 did not alter the elongated shape of the engineered mutant. Conformational alterations owing to RNA binding are described in the protease domain, which undergoes substantial conformational alterations that are required for the optimal catalysis of bound RNA. Finally, the effects of ATPase inhibitors on the enzymatically active DENV-2 and DENV-4 NS3 and the individual helicases are presented, and insight into the allosteric effect of the inhibitor quercetin is provided.
Collapse
Affiliation(s)
- Ankita Pan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Wuan Geok Saw
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | - Ardina Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Shin Joon
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center National Laboratory, Menlo Park, California, USA
| | - Thomas M. Weiss
- Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center National Laboratory, Menlo Park, California, USA
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
92
|
Tambunan USF, Nasution MAF, Azhima F, Parikesit AA, Toepak EP, Idrus S, Kerami D. Modification of S-Adenosyl-l-Homocysteine as Inhibitor of Nonstructural Protein 5 Methyltransferase Dengue Virus Through Molecular Docking and Molecular Dynamics Simulation. Drug Target Insights 2017; 11:1177392817701726. [PMID: 28469408 PMCID: PMC5404899 DOI: 10.1177/1177392817701726] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/01/2017] [Indexed: 01/01/2023] Open
Abstract
Dengue fever is still a major threat worldwide, approximately threatening two-fifths of the world's population in tropical and subtropical countries. Nonstructural protein 5 (NS5) methyltransferase enzyme plays a vital role in the process of messenger RNA capping of dengue by transferring methyl groups from S-adenosyl-l-methionine to N7 atom of the guanine bases of RNA and the RNA ribose group of 2'OH, resulting in S-adenosyl-l-homocysteine (SAH). The modification of SAH compound was screened using molecular docking and molecular dynamics simulation, along with computational ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity) test. The 2 simulations were performed using Molecular Operating Environment (MOE) 2008.10 software, whereas the ADME-Tox test was performed using various software. The modification of SAH compound was done using several functional groups that possess different polarities and properties, resulting in 3460 ligands to be docked. After conducting docking simulation, we earned 3 best ligands (SAH-M331, SAH-M2696, and SAH-M1356) based on ΔGbinding and molecular interactions, which show better results than the standard ligands. Moreover, the results of molecular dynamics simulation show that the best ligands are still able to maintain the active site residue interaction with the binding site until the end of the simulation. After a series of molecular docking and molecular dynamics simulation were performed, we concluded that SAH-M1356 ligand is the most potential SAH-based compound to inhibit NS5 methyltransferase enzyme for treating dengue fever.
Collapse
Affiliation(s)
- Usman Sumo Friend Tambunan
- Bioinformatics Research Group, Department of Chemistry, Faculty of Mathematics and Natural Science, University of Indonesia, Depok, Indonesia
| | | | - Fauziah Azhima
- Bioinformatics Research Group, Department of Chemistry, Faculty of Mathematics and Natural Science, University of Indonesia, Depok, Indonesia
| | - Arli Aditya Parikesit
- Bioinformatics Research Group, Department of Chemistry, Faculty of Mathematics and Natural Science, University of Indonesia, Depok, Indonesia
| | - Erwin Prasetya Toepak
- Bioinformatics Research Group, Department of Chemistry, Faculty of Mathematics and Natural Science, University of Indonesia, Depok, Indonesia
| | - Syarifuddin Idrus
- Industrial Standardization Laboratory, Ministry of Industrial Affair, Ambon, Indonesia
| | - Djati Kerami
- Mathematics Computation Research Group, Department of Mathematics, Faculty of Mathematics and Natural Science, University of Indonesia, Depok, Indonesia
| |
Collapse
|
93
|
Structural features of Zika virus non-structural proteins 3 and -5 and its individual domains in solution as well as insights into NS3 inhibition. Antiviral Res 2017; 141:73-90. [PMID: 28202376 DOI: 10.1016/j.antiviral.2017.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 11/20/2022]
Abstract
Zika virus (ZIKV) has emerged as a pathogen of major health concern. The virus relies on its non-structural protein 5 (NS5) including a methyl-transferase (MTase) and a RNA-dependent RNA polymerase (RdRp) for capping and synthesis of the viral RNA and the nonstructural protein 3 (NS3) with its protease and helicase domain for polyprotein possessing, unwinding dsRNA proceeding replication, and NTPase/RTPase activities. In this study we present for the first time insights into the overall structure of the entire French Polynesia ZIKV NS3 in solution. The protein is elongated and flexible in solution. Solution studies of the individual protease- and helicase domains show the compactness of the two monomeric enzymes as well as the contribution of the 10-residues linker region to the flexibility of the entire NS3. We show also the solution X-ray scattering data of the French Polynesia ZIKV NS5, which is dimeric in solution and switches to oligomers in a concentration-dependent manner. The solution shapes of the MTase and RdRp domains are described. The dimer arrangement of ZIKV NS5 is discussed in terms of its importance for MTase-RdRp communication and concerted interaction with its flexible and monomeric counterpart NS3 during viral replication and capping. The comparison of ZIKV NS3 and -NS5 solution data with the related DENV nonstructural proteins shed light into the similarities and diversities of these classes of enzymes. Finally, the effect of ATPase inhibitors to the enzymatic active ZIKV NS3 and the individual helicase are provided.
Collapse
|
94
|
Frabasile S, Koishi AC, Kuczera D, Silveira GF, Verri WA, Duarte dos Santos CN, Bordignon J. The citrus flavanone naringenin impairs dengue virus replication in human cells. Sci Rep 2017; 7:41864. [PMID: 28157234 PMCID: PMC5291091 DOI: 10.1038/srep41864] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/04/2017] [Indexed: 02/02/2023] Open
Abstract
Dengue is one of the most significant health problems in tropical and sub-tropical regions throughout the world. Nearly 390 million cases are reported each year. Although a vaccine was recently approved in certain countries, an anti-dengue virus drug is still needed. Fruits and vegetables may be sources of compounds with medicinal properties, such as flavonoids. This study demonstrates the anti-dengue virus activity of the citrus flavanone naringenin, a class of flavonoid. Naringenin prevented infection with four dengue virus serotypes in Huh7.5 cells. Additionally, experiments employing subgenomic RepDV-1 and RepDV-3 replicon systems confirmed the ability of naringenin to inhibit dengue virus replication. Antiviral activity was observed even when naringenin was used to treat Huh7.5 cells 24 h after dengue virus exposure. Finally, naringenin anti-dengue virus activity was demonstrated in primary human monocytes infected with dengue virus sertoype-4, supporting the potential use of naringenin to control dengue virus replication. In conclusion, naringenin is a suitable candidate molecule for the development of specific dengue virus treatments.
Collapse
Affiliation(s)
- Sandra Frabasile
- Sección Virologia, Facultad de Ciencias, Universidad de La República, 11400, Montevideo, Uruguay
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/FIOCRUZ/PR, Curitiba, Paraná, Brazil
| | - Andrea Cristine Koishi
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/FIOCRUZ/PR, Curitiba, Paraná, Brazil
| | - Diogo Kuczera
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/FIOCRUZ/PR, Curitiba, Paraná, Brazil
| | | | - Waldiceu Aparecido Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Paraná, Brazil
| | | | - Juliano Bordignon
- Sección Virologia, Facultad de Ciencias, Universidad de La República, 11400, Montevideo, Uruguay
| |
Collapse
|
95
|
Xue G, Gong L, Yuan C, Xu M, Wang X, Jiang L, Huang M. A structural mechanism of flavonoids in inhibiting serine proteases. Food Funct 2017. [DOI: 10.1039/c6fo01825d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The crystal structure of quercerin:uPA reveals that catechol serves as the functional group in inhibiting serine proteases.
Collapse
Affiliation(s)
- Guangpu Xue
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| | - Lihu Gong
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| | - Cai Yuan
- College of Biological Science and Engineering
- Fuzhou University
- Fuzhou 350116
- China
| | - Mingming Xu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| | - Xu Wang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| | | | - Mingdong Huang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| |
Collapse
|
96
|
The calmodulin antagonist W-7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride) inhibits DENV infection in Huh-7 cells. Virology 2016; 501:188-198. [PMID: 27940224 DOI: 10.1016/j.virol.2016.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 12/15/2022]
Abstract
Dengue virus (DENV) replicative cycle occurs in the endoplasmic reticulum where calcium ions play an important role in cell signaling. Calmodulin (CaM) is the primary sensor of intracellular Ca2+ levels in eukaryotic cells. In this paper, the effect of the calmodulin antagonist W-7 in DENV infection in Huh-7 cells was evaluated. W7 inhibited viral yield, NS1 secretion and viral RNA and protein synthesis. Moreover, luciferase activity, encoded by a DENV replicon, was also reduced. A decrease in the replicative complexes formation was clearly observed in W7 treated cells. Docking simulations suggest 2 possible mechanisms of action for W7: the direct inhibition of NS2B-NS3 activity and/or inhibition of the interaction between NS2A with Ca2+-CaM complex. This last possibility was supported by the in vitro interaction observed between recombinant NS2A and CaM. These results indicate that Ca2+-CaM plays an important role in DENV replication.
Collapse
|
97
|
Identification of fused bicyclic derivatives of pyrrolidine and imidazolidinone as dengue virus-2 NS2B-NS3 protease inhibitors. Eur J Med Chem 2016; 125:751-759. [PMID: 27721158 DOI: 10.1016/j.ejmech.2016.09.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 11/23/2022]
Abstract
A series of fused ring derivatives of pyrrolidine and imidazolidinone were designed, synthesized, characterized and assayed against the DENV-2 NS2B-NS3 protease and wild-type DENV-2 virus. The linear dipeptide compound 1 and the non-peptidic fused ring compound 2 show comparable activities against DENV-2 NS2B-NS3 protease and wild-type DENV-2 virus in a viral replication assay. The preliminary SAR reveals that a substituent and its stereochemistry at C-3 position, substitution (X) at N-2 arene and a linker (Y) between C-3 position and its attached arene are important for the fused-ring scaffold of pyrrolidino [1,2-c]imidazolidinone to block the active site of NS2B-NS3 protease. This promising structural core will facilitate the discovery of non-peptidic, potent NS2B-NS3 protease inhibitors to stop dengue virus infections.
Collapse
|
98
|
Timiri AK, Sinha BN, Jayaprakash V. Progress and prospects on DENV protease inhibitors. Eur J Med Chem 2016; 117:125-43. [DOI: 10.1016/j.ejmech.2016.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/28/2016] [Accepted: 04/04/2016] [Indexed: 12/17/2022]
|
99
|
Chiow KH, Phoon MC, Putti T, Tan BKH, Chow VT. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. ASIAN PAC J TROP MED 2015; 9:1-7. [PMID: 26851778 PMCID: PMC7104935 DOI: 10.1016/j.apjtm.2015.12.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/20/2015] [Accepted: 12/03/2015] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE To evaluate the in vitro activities of the ethyl acetate (EA) fraction of Houttuynia cordata (H. cordata) Thunb. (Saururaceae) and three of its constituent flavonoids (quercetin, quercitrin and rutin) against murine coronavirus and dengue virus (DENV). METHODS The antiviral activities of various concentrations of the EA fraction of H. cordata and flavonoids were assessed using virus neutralization tests against mouse hepatitis virus (MHV) and DENV type 2 (DENV-2). Cinanserin hydrochloride was also tested against MHV. The EA fraction of H. cordata was tested for acute oral toxicity in C57BL/6 mice. RESULTS The EA fraction of H. cordata inhibited viral infectivity up to 6 d. Cinanserin hydrochloride was able to inhibit MHV for only 2 d. The 50% inhibitory concentrations (IC50) of the EA fraction of H. cordata added before the viral adsorption stage were 0.98 μg/mL for MHV and 7.50 μg/mL for DENV-2 with absence of cytotoxicity. The mice fed with the EA fraction up to 2000 mg/kg did not induce any signs of acute toxicity, with normal histological features of major organs. Certain flavonoids exhibited comparatively weaker antiviral activity, notably quercetin which could inhibit both MHV and DENV-2. This was followed by quercitrin which could inhibit DENV-2 but not MHV, whereas rutin did not exert any inhibitory effect on either virus. When quercetin was combined with quercitrin, enhancement of anti-DENV-2 activity and reduced cytotoxicity were observed. However, the synergistic efficacy of the flavonoid combination was still less than that of the EA fraction. CONCLUSIONS The compounds in H. cordata contribute to the superior antiviral efficacy of the EA fraction which lacked cytotoxicity in vitro and acute toxicity in vivo. H. cordata has much potential for the development of antiviral agents against coronavirus and dengue infections.
Collapse
Affiliation(s)
- K H Chiow
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore
| | - M C Phoon
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore
| | - Thomas Putti
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore
| | - Benny K H Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore
| | - Vincent T Chow
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore.
| |
Collapse
|
100
|
Studies of binding interactions between Dufulin and southern rice black-streaked dwarf virus P9-1. Bioorg Med Chem 2015; 23:3629-37. [DOI: 10.1016/j.bmc.2015.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/03/2015] [Accepted: 04/04/2015] [Indexed: 01/08/2023]
|