51
|
Qi Y, Lee J, Cheng X, Shen R, Islam SM, Roux B, Im W. CHARMM-GUI DEER facilitator for spin-pair distance distribution calculations and preparation of restrained-ensemble molecular dynamics simulations. J Comput Chem 2019; 41:415-420. [PMID: 31329318 DOI: 10.1002/jcc.26032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/11/2019] [Accepted: 06/29/2019] [Indexed: 12/21/2022]
Abstract
The double electron-electron resonance (DEER) is a powerful structural biology technique to obtain distance information in the range of 18 to 80 å by measuring the dipolar coupling between two unpaired electron spins. The distance distributions obtained from the experiment provide valuable structural information about the protein in its native environment that can be exploited using restrained ensemble molecular dynamics (reMD) simulations. We present a new tool DEER Facilitator in CHARMM-GUI that consists of two modules Spin-Pair Distributor and reMD Prepper to setup simulations that utilize information from DEER experiments. Spin-Pair Distributor provides a web-based interface to calculate the spin-pair distance distribution of labeled sites in a protein using MD simulations. The calculated distribution can be used to guide the selection of the labeling sites in experiments as well as validate different protein structure models. reMD Prepper facilities the setup of reMD simulations using different types of spin labels in four different environments including vacuum, solution, micelle, and bilayer. The applications of these two modules are demonstrated with several test cases. Spin-Pair Distributor and reMD Prepper are available at http://www.charmm-gui.org/input/deer and http://www.charmm-gui.org/input/deerre. DEER Facilitator is expected to facilitate advanced biomolecular modeling and simulation, thereby leading to an improved understanding of the structure and dynamics of complex biomolecular systems based on experimental DEER data. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yifei Qi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jumin Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania, 18015
| | - Xi Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Rong Shen
- Department of Biochemistry and Molecular Biology and Department of Chemistry, University of Chicago, Chicago, Illinois, 60637
| | - Shahidul M Islam
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, 60607
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology and Department of Chemistry, University of Chicago, Chicago, Illinois, 60637
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania, 18015
| |
Collapse
|
52
|
Waheed Q, Khan HM, He T, Roberts M, Gershenson A, Reuter N. Interfacial Aromatics Mediating Cation-π Interactions with Choline-Containing Lipids Can Contribute as Much to Peripheral Protein Affinity for Membranes as Aromatics Inserted below the Phosphates. J Phys Chem Lett 2019; 10:3972-3977. [PMID: 31246477 DOI: 10.1021/acs.jpclett.9b01639] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Membrane-binding interfaces of peripheral proteins are restricted to a small part of their exposed surface, so the ability to engage in strong selective interactions with membrane lipids at various depths in the interface, both below and above the phosphates, is an advantage. Driven by their hydrophobicity, aromatic amino acids preferentially partition into membrane interfaces, often below the phosphates, yet enthalpically favorable interactions with the lipid headgroups, above the phosphate plane, are likely to further stabilize high interfacial positions. Using free-energy perturbation, we calculate the energetic cost of alanine substitution for 11 interfacial aromatic amino acids from 3 peripheral proteins. We show that the involvement in cation-π interactions with the headgroups (i) increases the ΔΔGtransfer as compared with insertion at the same depth without cation-π stabilization and (ii) can contribute at least as much as deeper insertion below the phosphates, highlighting the multiple roles of aromatics in peripheral membrane protein affinity.
Collapse
Affiliation(s)
- Qaiser Waheed
- Department of Biological Sciences , University of Bergen , N-5020 Bergen , Norway
- Computational Biology Unit, Department of Informatics , University of Bergen , N-5020 Bergen , Norway
| | - Hanif M Khan
- Department of Biological Sciences , University of Bergen , N-5020 Bergen , Norway
- Computational Biology Unit, Department of Informatics , University of Bergen , N-5020 Bergen , Norway
| | - Tao He
- Department of Chemistry , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Mary Roberts
- Department of Chemistry , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
- Molecular and Cellular Biology Graduate Program , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Nathalie Reuter
- Computational Biology Unit, Department of Informatics , University of Bergen , N-5020 Bergen , Norway
- Department of Chemistry , University of Bergen , N-5020 Bergen , Norway
| |
Collapse
|
53
|
Park SJ, Lee J, Qi Y, Kern NR, Lee HS, Jo S, Joung I, Joo K, Lee J, Im W. CHARMM-GUI Glycan Modeler for modeling and simulation of carbohydrates and glycoconjugates. Glycobiology 2019; 29:320-331. [PMID: 30689864 DOI: 10.1093/glycob/cwz003] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
Characterizing glycans and glycoconjugates in the context of three-dimensional structures is important in understanding their biological roles and developing efficient therapeutic agents. Computational modeling and molecular simulation have become an essential tool complementary to experimental methods. Here, we present a computational tool, Glycan Modeler for in silico N-/O-glycosylation of the target protein and generation of carbohydrate-only systems. In our previous study, we developed Glycan Reader, a web-based tool for detecting carbohydrate molecules from a PDB structure and generation of simulation system and input files. As integrated into Glycan Reader in CHARMM-GUI, Glycan Modeler (Glycan Reader & Modeler) enables to generate the structures of glycans and glycoconjugates for given glycan sequences and glycosylation sites using PDB glycan template structures from Glycan Fragment Database (http://glycanstructure.org/fragment-db). Our benchmark tests demonstrate the universal applicability of Glycan Reader & Modeler to various glycan sequences and target proteins. We also investigated the structural properties of modeled glycan structures by running 2-μs molecular dynamics simulations of HIV envelope protein. The simulations show that the modeled glycan structures built by Glycan Reader & Modeler have the similar structural features compared to the ones solved by X-ray crystallography. We also describe the representative examples of glycoconjugate modeling with video demos to illustrate the practical applications of Glycan Reader & Modeler. Glycan Reader & Modeler is freely available at http://charmm-gui.org/input/glycan.
Collapse
Affiliation(s)
- Sang-Jun Park
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Jumin Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Yifei Qi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Nathan R Kern
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Hui Sun Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Sunhwan Jo
- Leadership Computing Facility, Argonne National Laboratory, Argonne, IL, USA
| | - InSuk Joung
- Center for Advanced Computation, Korea Institute for Advanced Study, Republic of Korea
| | - Keehyung Joo
- Center for Advanced Computation, Korea Institute for Advanced Study, Republic of Korea
| | - Jooyoung Lee
- Center for Advanced Computation, Korea Institute for Advanced Study, Republic of Korea
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
54
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
55
|
Qi Y, Lee J, Klauda JB, Im W. CHARMM-GUI Nanodisc Builder for modeling and simulation of various nanodisc systems. J Comput Chem 2019; 40:893-899. [PMID: 30677169 DOI: 10.1002/jcc.25773] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 01/13/2023]
Abstract
Nanodiscs are discoidal protein-lipid complexes that have wide applications in membrane protein studies. Modeling and simulation of nanodiscs are challenging due to the absence of structures of many membrane scaffold proteins (MSPs) that wrap around the membrane bilayer. We have developed CHARMM-GUI Nanodisc Builder (http://www.charmm-gui.org/input/nanodisc) to facilitate the setup of nanodisc simulation systems by modeling the MSPs with defined size and known structural features. A total of 11 different nanodiscs with a diameter from 80 to 180 Å are made available in both the all-atom CHARMM and two coarse-grained (PACE and Martini) force fields. The usage of the Nanodisc Builder is demonstrated with various simulation systems. The structures and dynamics of proteins and lipids in these systems were analyzed, showing similar behaviors to those from previous all-atom and coarse-grained nanodisc simulations. We expect the Nanodisc Builder to be a convenient and reliable tool for modeling and simulation of nanodisc systems. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yifei Qi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jumin Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering and the Biophysics Program, University of Maryland, College Park, Maryland
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania
| |
Collapse
|
56
|
Starr ML, Sparks RP, Arango AS, Hurst LR, Zhao Z, Lihan M, Jenkins JL, Tajkhorshid E, Fratti RA. Phosphatidic acid induces conformational changes in Sec18 protomers that prevent SNARE priming. J Biol Chem 2019; 294:3100-3116. [PMID: 30617180 PMCID: PMC6398130 DOI: 10.1074/jbc.ra118.006552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/31/2018] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic cell homeostasis requires transfer of cellular components among organelles and relies on membrane fusion catalyzed by SNARE proteins. Inactive SNARE bundles are reactivated by hexameric N-ethylmaleimide-sensitive factor, vesicle-fusing ATPase (Sec18/NSF)-driven disassembly that enables a new round of membrane fusion. We previously found that phosphatidic acid (PA) binds Sec18 and thereby sequesters it from SNAREs and that PA dephosphorylation dissociates Sec18 from the membrane, allowing it to engage SNARE complexes. We now report that PA also induces conformational changes in Sec18 protomers and that hexameric Sec18 cannot bind PA membranes. Molecular dynamics (MD) analyses revealed that the D1 and D2 domains of Sec18 contain PA-binding sites and that the residues needed for PA binding are masked in hexameric Sec18. Importantly, these simulations also disclosed that a major conformational change occurs in the linker region between the D1 and D2 domains, which is distinct from the conformational changes that occur in hexameric Sec18 during SNARE priming. Together, these findings indicate that PA regulates Sec18 function by altering its architecture and stabilizing membrane-bound Sec18 protomers.
Collapse
Affiliation(s)
- Matthew L Starr
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Robert P Sparks
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Andres S Arango
- the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Logan R Hurst
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Zhiyu Zhao
- the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Muyun Lihan
- the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Jermaine L Jenkins
- the Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York 14642
| | - Emad Tajkhorshid
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and
| | - Rutilio A Fratti
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
- the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
57
|
Leonard AN, Wang E, Monje-Galvan V, Klauda JB. Developing and Testing of Lipid Force Fields with Applications to Modeling Cellular Membranes. Chem Rev 2019; 119:6227-6269. [DOI: 10.1021/acs.chemrev.8b00384] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
58
|
Wildermuth KD, Monje-Galvan V, Warburton LM, Klauda JB. Effect of Membrane Lipid Packing on Stable Binding of the ALPS Peptide. J Chem Theory Comput 2019; 15:1418-1429. [DOI: 10.1021/acs.jctc.8b00945] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
59
|
Pokhrel R, Bhattarai N, Baral P, Gerstman BS, Park JH, Handfield M, Chapagain PP. Molecular mechanisms of pore formation and membrane disruption by the antimicrobial lantibiotic peptide Mutacin 1140. Phys Chem Chem Phys 2019; 21:12530-12539. [DOI: 10.1039/c9cp01558b] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The emergence of antibiotic-resistance is a major concern to global human health and identification of novel antibiotics is critical to mitigate the threat.
Collapse
Affiliation(s)
| | - Nisha Bhattarai
- Department of Physics
- Florida International University
- Miami
- USA
| | - Prabin Baral
- Department of Physics
- Florida International University
- Miami
- USA
| | - Bernard S. Gerstman
- Department of Physics
- Florida International University
- Miami
- USA
- Biomolecular Sciences Institute
| | | | | | - Prem P. Chapagain
- Department of Physics
- Florida International University
- Miami
- USA
- Biomolecular Sciences Institute
| |
Collapse
|
60
|
Monje-Galvan V, Warburton L, Klauda JB. Setting Up All-Atom Molecular Dynamics Simulations to Study the Interactions of Peripheral Membrane Proteins with Model Lipid Bilayers. Methods Mol Biol 2019; 1949:325-339. [PMID: 30790265 DOI: 10.1007/978-1-4939-9136-5_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
All-atom molecular dynamics (MD) simulations enable the study of biological systems at atomic detail, complement the understanding gained from experiment, and can also motivate experimental techniques to further examine a given biological process. This method is based on statistical mechanics; it predicts the trajectory of atoms over time by solving Newton's Laws of motion taking into account all forces. Here, we describe the use of this methodology to study the interaction between peripheral membrane proteins and a lipid bilayer. Specifically, we provide step-by-step instructions to set up MD simulations to study the binding and interaction of the amphipathic helix of Osh4, a lipid transport protein, and Thanatin, an antimicrobial peptide (AMP), with model lipid bilayers using both fully detailed lipid tails and the highly mobile membrane-mimetic (HMMM) method to enhance conformational sampling.
Collapse
Affiliation(s)
- Viviana Monje-Galvan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA. .,Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA.
| | - Linnea Warburton
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA.,Biophysics Program, University of Maryland, College Park, MD, USA
| |
Collapse
|
61
|
Hallock MJ, Greenwood AI, Wang Y, Morrissey JH, Tajkhorshid E, Rienstra CM, Pogorelov TV. Calcium-Induced Lipid Nanocluster Structures: Sculpturing of the Plasma Membrane. Biochemistry 2018; 57:6897-6905. [PMID: 30456950 DOI: 10.1021/acs.biochem.8b01069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The plasma membrane of the cell is a complex, tightly regulated, heterogeneous environment shaped by proteins, lipids, and small molecules. Ca2+ ions are important cellular messengers, spatially separated from anionic lipids. After cell injury, disease, or apoptotic events, anionic lipids are externalized to the outer leaflet of the plasma membrane and encounter Ca2+, resulting in dramatic changes in the plasma membrane structure and initiation of signaling cascades. Despite the high chemical and biological significance, the structures of lipid-Ca2+ nanoclusters are still not known. Previously, we demonstrated by solid-state nuclear magnetic resonance (NMR) spectroscopy that upon binding to Ca2+, individual phosphatidylserine lipids populate two distinct yet-to-be-characterized structural environments. Here, we concurrently employ extensive all-atom molecular dynamics (MD) simulations with our accelerated membrane mimetic and detailed NMR measurements to identify lipid-Ca2+ nanocluster conformations. We find that major structural characteristics of these nanoclusters, including interlipid pair distances and chemical shifts, agree with observable NMR parameters. Simulations reveal that lipid-ion nanoclusters are shaped by two characteristic, long-lived lipid structures induced by divalent Ca2+. Using ab initio quantum mechanical calculations of chemical shifts on MD-captured lipid-ion complexes, we show that computationally observed conformations are validated by experimental NMR data. Both NMR measurements of diluted specifically labeled lipids and MD simulations reveal that the basic structural unit that reshapes the membrane is a Ca2+-coordinated phosphatidylserine tetramer. Our combined computational and experimental approach presented here can be applied to other complex systems in which charged membrane-active molecular agents leave structural signatures on lipids.
Collapse
Affiliation(s)
- Michael J Hallock
- School of Chemical Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Alexander I Greenwood
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Yan Wang
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - James H Morrissey
- Department of Biological Chemistry , University of Michigan Medical School , Ann Arbor , Michigan 48103 , United States
| | - Emad Tajkhorshid
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Chad M Rienstra
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Taras V Pogorelov
- School of Chemical Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,National Center for Supercomputing Applications , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
62
|
Aguayo-Ortiz R, Straub JE, Dominguez L. Influence of membrane lipid composition on the structure and activity of γ-secretase. Phys Chem Chem Phys 2018; 20:27294-27304. [PMID: 30357233 PMCID: PMC11260083 DOI: 10.1039/c8cp04138e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
γ-Secretase (GS) is a multi-subunit membrane-embedded aspartyl protease that cleaves more than 80 integral membrane proteins, including the amyloid precursor protein (APP) to produce the amyloid-β (Aβ) peptide. Oligomerization and aggregation of the 42-amino acid length Aβ isoform in the brain has been associated with the development and progression of Alzheimer's disease (AD). Based on recent experimental structural studies and using multiscale computational modeling approaches, the conformational states and protein-membrane interactions of the GS complex embedded in six homogeneous and six heterogeneous lipid bilayers were characterized. In order to identify potential lipid and cholesterol binding sites, GS regions with high lipid/cholesterol occupancy values were analyzed using atomistic and coarse-grained simulations. Long lipid residence times were observed to be correlated with a large number of hydrogen bonds between the charged headgroups and key GS amino acids. This observation provides a plausible explanation for the inhibition of GS by charged lipids observed in previous experimental studies. Computed lateral pressure profiles suggest that higher transmembrane pressures favor active state conformations of the catalytic subunit. A probable mechanism for the regulation of the local stress response in cholesterol-rich multicomponent lipid bilayers is identified. Finally, it is demonstrated that interactions between the nicastrin extracellular domain and lipid headgroups leads to a compact structural conformation of the GS complex. Overall, this study provides valuable insight into the effect of bilayer lipid composition on the GS structural ensemble and its function.
Collapse
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | | | | |
Collapse
|
63
|
Kerr D, Tietjen GT, Gong Z, Tajkhorshid E, Adams EJ, Lee KYC. Sensitivity of peripheral membrane proteins to the membrane context: A case study of phosphatidylserine and the TIM proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2126-2133. [PMID: 29920237 DOI: 10.1016/j.bbamem.2018.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/17/2022]
Abstract
There is a diverse class of peripheral membrane-binding proteins that specifically bind phosphatidylserine (PS), a lipid that signals apoptosis or cell fusion depending on the membrane context of its presentation. PS-receptors are specialized for particular PS-presenting pathways, indicating that they might be sensitive to the membrane context. In this review, we describe a combination of thermodynamic, structural, and computational techniques that can be used to investigate the mechanisms underlying this sensitivity. As an example, we focus on three PS-receptors of the T-cell Immunoglobulin and Mucin containing (TIM) protein family, which we have previously shown to differ in their sensitivity to PS surface density.
Collapse
Affiliation(s)
- Daniel Kerr
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, United States of America
| | - Gregory T Tietjen
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, United States of America
| | - Zhiliang Gong
- Department of Chemistry, The University of Chicago, Chicago, IL, United States of America
| | - Emad Tajkhorshid
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology and Committee on Immunology, The University of Chicago, Chicago, IL, United States of America
| | - Ka Yee C Lee
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, United States of America; Department of Chemistry, The University of Chicago, Chicago, IL, United States of America; James Franck Institute, The University of Chicago, Chicago, IL, United States of America.
| |
Collapse
|
64
|
Hung HM, Hang TD, Nguyen MT. Molecular details of spontaneous insertion and interaction of HCV non-structure 3 protease protein domain with PIP2-containing membrane. Proteins 2018; 86:423-433. [PMID: 29341226 DOI: 10.1002/prot.25458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/02/2018] [Accepted: 01/11/2018] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV), known as the leading cause of liver cirrhosis, viral hepatitis, and hepatocellular carcinoma, has been affecting more than 150 million people globally. The HCV non-structure 3 (NS3) protease protein domain plays a key role in HCV replication and pathogenesis; and is currently a primary target for HCV antiviral therapy. Through unbiased molecular dynamics simulations which take advantage of the novel highly mobile membrane mimetic model, we constructed the membrane-bound state of the protein domain at the atomic level. Our results indicated that protease domain of HCV NS3 protein can spontaneously bind and penetrate to an endoplasmic reticulum complex membrane containing phosphatidylinositol 4,5-bisphosphate (PIP2). An amphipathic helix α0 and loop S1 show their anchoring role to keep the protein on the membrane surface. Proper orientation of the protein domain at membrane surface was identified through measuring tilt angles of two specific vectors, wherein residue R161 plays a crucial role in its final orientation. Remarkably, PIP2 molecules were observed to bind to three main sites of the protease domain via specific electrostatic contacts and hydrogen bonds. PIP2-interaction determines the protein orientation at the membrane while both hydrophobic interplay and PIP2-interaction can stabilize the NS3 - membrane complex. Simulated results provide us with a detailed characterization of insertion, orientation and PIP2-interaction of NS3 protease domain at membrane environment, thus enhancing our understanding of structural functions and mechanism for the association of HCV non-structure 3 protein with respect to ER membranes.
Collapse
Affiliation(s)
- Huynh Minh Hung
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium.,Department of Chemistry, Quy Nhon University, Quy Nhon, Vietnam
| | - Tran Dieu Hang
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium.,Department of Chemistry, Quy Nhon University, Quy Nhon, Vietnam
| | - Minh Tho Nguyen
- Computational Chemistry Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| |
Collapse
|
65
|
Tietjen GT, Baylon JL, Kerr D, Gong Z, Henderson JM, Heffern CTR, Meron M, Lin B, Schlossman ML, Adams EJ, Tajkhorshid E, Lee KYC. Coupling X-Ray Reflectivity and In Silico Binding to Yield Dynamics of Membrane Recognition by Tim1. Biophys J 2017; 113:1505-1519. [PMID: 28978444 DOI: 10.1016/j.bpj.2017.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022] Open
Abstract
The dynamic nature of lipid membranes presents significant challenges with respect to understanding the molecular basis of protein/membrane interactions. Consequently, there is relatively little known about the structural mechanisms by which membrane-binding proteins might distinguish subtle variations in lipid membrane composition and/or structure. We have previously developed a multidisciplinary approach that combines molecular dynamics simulation with interfacial x-ray scattering experiments to produce an atomistic model for phosphatidylserine recognition by the immune receptor Tim4. However, this approach requires a previously determined protein crystal structure in a membrane-bound conformation. Tim1, a Tim4 homolog with distinct differences in both immunological function and sensitivity to membrane composition, was crystalized in a closed-loop conformation that is unlikely to support membrane binding. Here we have used a previously described highly mobile membrane mimetic membrane in combination with a conventional lipid bilayer model to generate a membrane-bound configuration of Tim1 in silico. This refined structure provided a significantly improved fit of experimental x-ray reflectivity data. Moreover, the coupling of the x-ray reflectivity analysis with both highly mobile membrane mimetic membranes and conventional lipid bilayer molecular dynamics simulations yielded a dynamic model of phosphatidylserine membrane recognition by Tim1 with atomic-level detail. In addition to providing, to our knowledge, new insights into the molecular mechanisms that distinguish the various Tim receptors, these results demonstrate that in silico membrane-binding simulations can remove the requirement that the existing crystal structure be in the membrane-bound conformation for effective x-ray reflectivity analysis. Consequently, this refined methodology has the potential for much broader applicability with respect to defining the atomistic details of membrane-binding proteins.
Collapse
Affiliation(s)
- Gregory T Tietjen
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Javier L Baylon
- Center for Biophysics and Quantitative Biology and Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Daniel Kerr
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Zhiliang Gong
- Department of Chemistry, The University of Chicago, Chicago, Illinois
| | | | | | - Mati Meron
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois
| | - Binhua Lin
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois; James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Mark L Schlossman
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois
| | - Erin J Adams
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois; Department of Biochemistry and Molecular Biology and Committee on Immunology, The University of Chicago, Chicago, Illinois
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology and Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois; College of Medicine and Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois.
| | - Ka Yee C Lee
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois; Department of Chemistry, The University of Chicago, Chicago, Illinois; James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
66
|
Muller MP, Wang Y, Morrissey JH, Tajkhorshid E. Lipid specificity of the membrane binding domain of coagulation factor X. J Thromb Haemost 2017; 15:2005-2016. [PMID: 28782177 PMCID: PMC5630516 DOI: 10.1111/jth.13788] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Indexed: 01/19/2023]
Abstract
Essentials Membrane-binding GLA domains of coagulation factors are essential for proper clot formation. Factor X (FX) is specific to phosphatidylserine (PS) lipids through unknown atomic-level interactions. Molecular dynamics simulations were used to develop the first membrane-bound model of FX-GLA. PS binding modes of FX-GLA were described, and potential PS-specific binding sites identified. SUMMARY Background Factor X (FX) binds to cell membranes in a highly phospholipid-dependent manner and, in complex with tissue factor and factor VIIa (FVIIa), initiates the clotting cascade. Experimental information concerning the membrane-bound structure of FX with atomic resolution has remained elusive because of the fluid nature of cellular membranes. FX is known to bind preferentially to phosphatidylserine (PS). Objectives To develop the first membrane-bound model of the FX-GLA domain to PS at atomic level, and to identify PS-specific binding sites of the FX-GLA domain. Methods Molecular dynamics (MD) simulations were performed to develop an atomic-level model for the FX-GLA domain bound to PS bilayers. We utilized a membrane representation with enhanced lipid mobility, termed the highly mobile membrane mimetic (HMMM), permitting spontaneous membrane binding and insertion by FX-GLA in multiple 100-ns simulations. In 14 independent simulations, FX-GLA bound spontaneously to the membrane. The resulting membrane-bound models were converted from HMMM to conventional membrane and simulated for an additional 100 ns. Results The final membrane-bound FX-GLA model allowed for detailed characterization of the orientation, insertion depth and lipid interactions of the domain, providing insight into the molecular basis of its PS specificity. All binding simulations converged to the same configuration despite differing initial orientations. Conclusions Analysis of interactions between residues in FX-GLA and lipid-charged groups allowed for potential PS-specific binding sites to be identified. This new structural and dynamic information provides an additional step towards a full understanding of the role of atomic-level lipid-protein interactions in regulating the critical and complex clotting cascade.
Collapse
Affiliation(s)
- Melanie P. Muller
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Yan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - James H. Morrissey
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Emad Tajkhorshid
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| |
Collapse
|
67
|
Spontaneous membrane insertion of a dengue virus NS2A peptide. Arch Biochem Biophys 2017; 627:56-66. [PMID: 28666739 DOI: 10.1016/j.abb.2017.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/16/2017] [Accepted: 06/25/2017] [Indexed: 12/27/2022]
Abstract
Non-structural NS2A protein of Dengue virus is essential for viral replication but poorly characterized because of its high hydrophobicity. We have previously shown experimentally that NS2A possess a segment, peptide dens25, known to insert into membranes and interact specifically with negatively-charged phospholipids. To characterize its membrane interaction we have used two types of molecular dynamics membrane model systems, a highly mobile membrane mimetic (HMMM) and an endoplasmic reticulum (ER) membrane-like model. Using the HMMM system, we have been able of demonstrating the spontaneous binding of dens25 to the negatively-charged phospholipid 1,2-divaleryl-sn-glycero-3-phosphate containing membrane whereas no binding was observed for the membrane containing the zwitterionic one 1,2-divaleryl-sn-glycero-3-phosphocholine. Using the ER-like membrane model system, we demonstrate the spontaneous insertion of dens25 into the middle of the membrane, it maintained its three-dimensional structure and presented a nearly parallel orientation with respect to the membrane surface. Both charged and hydrophobic amino acids, presenting an interfacial/hydrophobic pattern characteristic of a membrane-proximal segment, are responsible for membrane binding and insertion. Dens25 might control protein/membrane interaction and be involved in membrane rearrangements critical for the viral cycle. These data should help us in the development of inhibitor molecules that target NS2A segments involved in membrane reorganisation.
Collapse
|
68
|
Jo S, Cheng X, Lee J, Kim S, Park SJ, Patel DS, Beaven AH, Lee KI, Rui H, Park S, Lee HS, Roux B, MacKerell AD, Klauda JB, Qi Y, Im W. CHARMM-GUI 10 years for biomolecular modeling and simulation. J Comput Chem 2017; 38:1114-1124. [PMID: 27862047 PMCID: PMC5403596 DOI: 10.1002/jcc.24660] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/04/2016] [Accepted: 10/18/2016] [Indexed: 12/16/2022]
Abstract
CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface that prepares complex biomolecular systems for molecular simulations. CHARMM-GUI creates input files for a number of programs including CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Since its original development in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to set up a broad range of simulations: (1) PDB Reader & Manipulator, Glycan Reader, and Ligand Reader & Modeler for reading and modifying molecules; (2) Quick MD Simulator, Membrane Builder, Nanodisc Builder, HMMM Builder, Monolayer Builder, Micelle Builder, and Hex Phase Builder for building all-atom simulation systems in various environments; (3) PACE CG Builder and Martini Maker for building coarse-grained simulation systems; (4) DEER Facilitator and MDFF/xMDFF Utilizer for experimentally guided simulations; (5) Implicit Solvent Modeler, PBEQ-Solver, and GCMC/BD Ion Simulator for implicit solvent related calculations; (6) Ligand Binder for ligand solvation and binding free energy simulations; and (7) Drude Prepper for preparation of simulations with the CHARMM Drude polarizable force field. Recently, new modules have been integrated into CHARMM-GUI, such as Glycolipid Modeler for generation of various glycolipid structures, and LPS Modeler for generation of lipopolysaccharide structures from various Gram-negative bacteria. These new features together with existing modules are expected to facilitate advanced molecular modeling and simulation thereby leading to an improved understanding of the structure and dynamics of complex biomolecular systems. Here, we briefly review these capabilities and discuss potential future directions in the CHARMM-GUI development project. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sunhwan Jo
- Leadership Computing Facility, Argonne National Laboratory, 9700 Cass Ave, Argonne, Illinois
| | - Xi Cheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, China
| | - Jumin Lee
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Pennsylvania
| | - Seonghoon Kim
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Pennsylvania
| | - Sang-Jun Park
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Pennsylvania
| | - Dhilon S Patel
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Pennsylvania
| | - Andrew H Beaven
- Department of Chemistry, The University of Kansas, Lawrence, Kansas
| | - Kyu Il Lee
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Pennsylvania
| | - Huan Rui
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Soohyung Park
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Pennsylvania
| | - Hui Sun Lee
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Pennsylvania
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Jeffrey B Klauda
- Department of Chemical and Biomolecular Engineering and the Biophysics Program, University of Maryland College Park, Maryland
| | - Yifei Qi
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Pennsylvania
| | - Wonpil Im
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Pennsylvania
| |
Collapse
|
69
|
Kim S, Lee J, Jo S, Brooks CL, Lee HS, Im W. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. J Comput Chem 2017; 38:1879-1886. [PMID: 28497616 DOI: 10.1002/jcc.24829] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 12/22/2022]
Abstract
Reading ligand structures into any simulation program is often nontrivial and time consuming, especially when the force field parameters and/or structure files of the corresponding molecules are not available. To address this problem, we have developed Ligand Reader & Modeler in CHARMM-GUI. Users can upload ligand structure information in various forms (using PDB ID, ligand ID, SMILES, MOL/MOL2/SDF file, or PDB/mmCIF file), and the uploaded structure is displayed on a sketchpad for verification and further modification. Based on the displayed structure, Ligand Reader & Modeler generates the ligand force field parameters and necessary structure files by searching for the ligand in the CHARMM force field library or using the CHARMM general force field (CGenFF). In addition, users can define chemical substitution sites and draw substituents in each site on the sketchpad to generate a set of combinatorial structure files and corresponding force field parameters for throughput or alchemical free energy simulations. Finally, the output from Ligand Reader & Modeler can be used in other CHARMM-GUI modules to build a protein-ligand simulation system for all supported simulation programs, such as CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Ligand Reader & Modeler is available as a functional module of CHARMM-GUI at http://www.charmm-gui.org/input/ligandrm. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Seonghoon Kim
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania
| | - Jumin Lee
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania
| | - Sunhwan Jo
- Leadership Computing Facility, Argonne National Laboratory, 9700 Cass Ave, Argonne, Illinois
| | - Charles L Brooks
- Department of Chemistry and the Biophysics Program, University of Michigan, Ann Arbor, Michigan
| | - Hui Sun Lee
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania
| | - Wonpil Im
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania
| |
Collapse
|
70
|
Vermaas JV, Pogorelov TV, Tajkhorshid E. Extension of the Highly Mobile Membrane Mimetic to Transmembrane Systems through Customized in Silico Solvents. J Phys Chem B 2017; 121:3764-3776. [PMID: 28241729 PMCID: PMC5558153 DOI: 10.1021/acs.jpcb.6b11378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanics of the protein-lipid interactions of transmembrane proteins are difficult to capture with conventional atomic molecular dynamics, due to the slow lateral diffusion of lipids restricting sampling to states near the initial membrane configuration. The highly mobile membrane mimetic (HMMM) model accelerates lipid dynamics by modeling the acyl tails nearest to the membrane center as a fluid organic solvent while maintaining an atomic description of the lipid headgroups and short acyl tails. The HMMM has been applied to many peripheral protein systems; however, the organic solvent used to date caused deformations in transmembrane proteins by intercalating into the protein and disrupting interactions between individual side chains. We ameliorate the effect of the solvent on transmembrane protein structure through the development of two new in silico Lennard-Jones solvents. The parameters for the new solvents were determined through an extensive parameter search in order to match the bulk properties of alkanes in a highly simplified model. Using these new solvents, we substantially improve the insertion free energy profiles of 10 protein side chain analogues across the entire bilayer. In addition, we reduce the intercalation of solvent into transmembrane systems, resulting in native-like transmembrane protein structures from five different topological classes within a HMMM bilayer. The parametrization of the solvents, in addition to their computed physical properties, is discussed. By combining high lipid lateral diffusion with intact transmembrane proteins, we foresee the developed solvents being useful to efficiently identify membrane composition inhomogeneities and lipid binding caused by the presence of membrane proteins.
Collapse
Affiliation(s)
- Josh V Vermaas
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Taras V Pogorelov
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Department of Chemistry, School of Chemical Sciences, National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
71
|
Gregory MC, McLean MA, Sligar SG. Interaction of KRas4b with anionic membranes: A special role for PIP 2. Biochem Biophys Res Commun 2017; 487:351-355. [PMID: 28412347 DOI: 10.1016/j.bbrc.2017.04.063] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/03/2017] [Indexed: 01/15/2023]
Abstract
KRas4b is a small G-protein whose constitutively active oncogenic mutants are present in 90% of pancreatic cancers. Using fully post-translationally modified KRAS4b, we investigated the role of lipid identity in the recruitment of KRas4b to a membrane surface of defined composition. Application of a newly developed single frequency fluorescence anisotropy decay experiment to this system revealed that KRas4b has a significant binding preference for Nanodisc bilayers containing PIP2. We conducted molecular dynamics simulations to look for an origin of this specificity. In the case of membranes containing PIP2 the protein formed long-lived salt bridges with PIP2 head groups but not the monovalent DMPS, explaining the experimentally observed lipid specificity. Additionally, we report that PIP2 forms key contacts with Helix-4 on the catalytic domain of KRas4b that orient the protein in a manner expected to facilitate association with upstream and downstream signaling partners.
Collapse
Affiliation(s)
- Michael C Gregory
- Department of Biochemistry, University of Illinois, 505 S. Goodwin Avenue, Urbana, IL 61801, United States
| | - Mark A McLean
- Department of Biochemistry, University of Illinois, 505 S. Goodwin Avenue, Urbana, IL 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois, 505 S. Goodwin Avenue, Urbana, IL 61801, United States.
| |
Collapse
|
72
|
Devnarain N, Ramharack P, Soliman ME. Brain grants permission of access to Zika virus but denies entry to drugs: a molecular modeling perspective to infiltrate the boundary. RSC Adv 2017. [DOI: 10.1039/c7ra05918c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thein silicodesign of targeted Zika virus inhibitors.
Collapse
Affiliation(s)
- Nikita Devnarain
- Molecular Bio-computation and Drug Design Laboratory
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Pritika Ramharack
- Molecular Bio-computation and Drug Design Laboratory
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Mahmoud E. Soliman
- Molecular Bio-computation and Drug Design Laboratory
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| |
Collapse
|
73
|
Qi Y, Klauda JB, Im W. Effects of Spin-Labels on Membrane Burial Depth of MARCKS-ED Residues. Biophys J 2016; 111:1600-1603. [PMID: 27692366 DOI: 10.1016/j.bpj.2016.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 11/19/2022] Open
Abstract
Site-directed spin-labeling electron paramagnetic resonance spectroscopy is a useful tool to obtain information about the environment of specific residues. One of its applications is to investigate membrane protein topology based on the accessibility of the spin label, with the assumption that the position of the spin label in the membrane is close to that of the native residue. This assumption is valid in proteins with well-ordered structures, but could be problematic in small peptides because the labeling may cause a perturbation that is large enough to change local interactions between the peptide and the membrane. To quantitatively characterize such effects, we have simulated the association of a 25-amino-acid peptide, MARCKS-ED, to membranes with and without spin labels. Our simulations show that the depths of spin labels are ∼6-17 Å deeper than the unlabeled charged and polar residues in the wild-type. When the hydrophobic residue Phe is labeled, however, the spin-label depth is close to that of the native residue as well as the experimental value. Our study suggests that one should be cautious in interpretation of spin label data when charged and polar residues in small peptides are labeled.
Collapse
Affiliation(s)
- Yifei Qi
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering and the Biophysics Program, University of Maryland, College Park, Maryland
| | - Wonpil Im
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania.
| |
Collapse
|
74
|
Im W, Liang J, Olson A, Zhou HX, Vajda S, Vakser IA. Challenges in structural approaches to cell modeling. J Mol Biol 2016; 428:2943-64. [PMID: 27255863 PMCID: PMC4976022 DOI: 10.1016/j.jmb.2016.05.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 11/17/2022]
Abstract
Computational modeling is essential for structural characterization of biomolecular mechanisms across the broad spectrum of scales. Adequate understanding of biomolecular mechanisms inherently involves our ability to model them. Structural modeling of individual biomolecules and their interactions has been rapidly progressing. However, in terms of the broader picture, the focus is shifting toward larger systems, up to the level of a cell. Such modeling involves a more dynamic and realistic representation of the interactomes in vivo, in a crowded cellular environment, as well as membranes and membrane proteins, and other cellular components. Structural modeling of a cell complements computational approaches to cellular mechanisms based on differential equations, graph models, and other techniques to model biological networks, imaging data, etc. Structural modeling along with other computational and experimental approaches will provide a fundamental understanding of life at the molecular level and lead to important applications to biology and medicine. A cross section of diverse approaches presented in this review illustrates the developing shift from the structural modeling of individual molecules to that of cell biology. Studies in several related areas are covered: biological networks; automated construction of three-dimensional cell models using experimental data; modeling of protein complexes; prediction of non-specific and transient protein interactions; thermodynamic and kinetic effects of crowding; cellular membrane modeling; and modeling of chromosomes. The review presents an expert opinion on the current state-of-the-art in these various aspects of structural modeling in cellular biology, and the prospects of future developments in this emerging field.
Collapse
Affiliation(s)
- Wonpil Im
- Center for Computational Biology and Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66047, United States.
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, United States.
| | - Arthur Olson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States.
| | - Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, United States.
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States.
| | - Ilya A Vakser
- Center for Computational Biology and Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66047, United States.
| |
Collapse
|
75
|
Vermaas JV, Trebesch N, Mayne CG, Thangapandian S, Shekhar M, Mahinthichaichan P, Baylon JL, Jiang T, Wang Y, Muller MP, Shinn E, Zhao Z, Wen PC, Tajkhorshid E. Microscopic Characterization of Membrane Transporter Function by In Silico Modeling and Simulation. Methods Enzymol 2016; 578:373-428. [PMID: 27497175 PMCID: PMC6404235 DOI: 10.1016/bs.mie.2016.05.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Membrane transporters mediate one of the most fundamental processes in biology. They are the main gatekeepers controlling active traffic of materials in a highly selective and regulated manner between different cellular compartments demarcated by biological membranes. At the heart of the mechanism of membrane transporters lie protein conformational changes of diverse forms and magnitudes, which closely mediate critical aspects of the transport process, most importantly the coordinated motions of remotely located gating elements and their tight coupling to chemical processes such as binding, unbinding and translocation of transported substrate and cotransported ions, ATP binding and hydrolysis, and other molecular events fueling uphill transport of the cargo. An increasing number of functional studies have established the active participation of lipids and other components of biological membranes in the function of transporters and other membrane proteins, often acting as major signaling and regulating elements. Understanding the mechanistic details of these molecular processes require methods that offer high spatial and temporal resolutions. Computational modeling and simulations technologies empowered by advanced sampling and free energy calculations have reached a sufficiently mature state to become an indispensable component of mechanistic studies of membrane transporters in their natural environment of the membrane. In this article, we provide an overview of a number of major computational protocols and techniques commonly used in membrane transporter modeling and simulation studies. The article also includes practical hints on effective use of these methods, critical perspectives on their strengths and weak points, and examples of their successful applications to membrane transporters, selected from the research performed in our own laboratory.
Collapse
Affiliation(s)
- J V Vermaas
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - N Trebesch
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - C G Mayne
- University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - S Thangapandian
- University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - M Shekhar
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - P Mahinthichaichan
- University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - J L Baylon
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - T Jiang
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Y Wang
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - M P Muller
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - E Shinn
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Z Zhao
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - P-C Wen
- University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - E Tajkhorshid
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
76
|
Kim S, Chang R. Structure, Dynamics, and Phase Behavior of DOPC/DSPC Mixture Membrane Systems: Molecular Dynamics Simulation Studies. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Seonghan Kim
- Department of Chemistry; Kwangwoon University; Seoul 01897 Republic of Korea
| | - Rakwoo Chang
- Department of Chemistry; Kwangwoon University; Seoul 01897 Republic of Korea
| |
Collapse
|
77
|
Baylon JL, Vermaas JV, Muller MP, Arcario MJ, Pogorelov TV, Tajkhorshid E. Atomic-level description of protein-lipid interactions using an accelerated membrane model. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:1573-83. [PMID: 26940626 PMCID: PMC4877275 DOI: 10.1016/j.bbamem.2016.02.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 01/03/2023]
Abstract
Peripheral membrane proteins are structurally diverse proteins that are involved in fundamental cellular processes. Their activity of these proteins is frequently modulated through their interaction with cellular membranes, and as a result techniques to study the interfacial interaction between peripheral proteins and the membrane are in high demand. Due to the fluid nature of the membrane and the reversibility of protein-membrane interactions, the experimental study of these systems remains a challenging task. Molecular dynamics simulations offer a suitable approach to study protein-lipid interactions; however, the slow dynamics of the lipids often prevents sufficient sampling of specific membrane-protein interactions in atomistic simulations. To increase lipid dynamics while preserving the atomistic detail of protein-lipid interactions, in the highly mobile membrane-mimetic (HMMM) model the membrane core is replaced by an organic solvent, while short-tailed lipids provide a nearly complete representation of natural lipids at the organic solvent/water interface. Here, we present a brief introduction and a summary of recent applications of the HMMM to study different membrane proteins, complementing the experimental characterization of the presented systems, and we offer a perspective of future applications of the HMMM to study other classes of membrane proteins. This article is part of a Special Issue entitled: Membrane proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Javier L Baylon
- Center for Biophysics and Quantitative Biology; Beckman Institute for Advanced Science and Technology.
| | - Josh V Vermaas
- Center for Biophysics and Quantitative Biology; Beckman Institute for Advanced Science and Technology.
| | - Melanie P Muller
- Center for Biophysics and Quantitative Biology; Beckman Institute for Advanced Science and Technology; College of Medicine.
| | - Mark J Arcario
- Center for Biophysics and Quantitative Biology; Beckman Institute for Advanced Science and Technology; College of Medicine.
| | - Taras V Pogorelov
- Beckman Institute for Advanced Science and Technology; School of Chemical Sciences; Department of Chemistry; National Center for Supercomputing Applications.
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology; Beckman Institute for Advanced Science and Technology; College of Medicine; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
| |
Collapse
|
78
|
Fajardo-Sánchez E, Galiano V, Villalaín J. Molecular dynamics study of the membrane interaction of a membranotropic dengue virus C protein-derived peptide. J Biomol Struct Dyn 2016; 35:1283-1294. [DOI: 10.1080/07391102.2016.1179595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Emmanuel Fajardo-Sánchez
- Physics and Computer Architecture Department Universitas “Miguel Hernández”, E-03202 Elche-Alicante, Spain
| | - Vicente Galiano
- Physics and Computer Architecture Department Universitas “Miguel Hernández”, E-03202 Elche-Alicante, Spain
| | - José Villalaín
- Molecular and Cellular Biology Institute, Universitas “Miguel Hernández”, E-03202 Elche-Alicante, Spain
| |
Collapse
|
79
|
Zhang L, Rajendram M, Weibel DB, Yethiraj A, Cui Q. Ionic Hydrogen Bonds and Lipid Packing Defects Determine the Binding Orientation and Insertion Depth of RecA on Multicomponent Lipid Bilayers. J Phys Chem B 2016; 120:8424-37. [PMID: 27095675 DOI: 10.1021/acs.jpcb.6b02164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We describe a computational and experimental approach for probing the binding properties of the RecA protein at the surface of anionic membranes. Fluorescence measurements indicate that RecA behaves differently when bound to phosphatidylglycerol (PG)- and cardiolipin (CL)-containing liposomes. We use a multistage computational protocol that integrates an implicit membrane/solvent model, the highly mobile mimetic membrane model, and the full atomistic membrane model to study how different anionic lipids perturb RecA binding to the membrane. With anionic lipids studied here, the binding interface involves three key regions: the N-terminal helix, the DNA binding loop L2, and the M-M7 region. The nature of binding involves both electrostatic interactions between cationic protein residues and lipid polar/charged groups and insertion of hydrophobic residues. The L2 loop contributes more to membrane insertion than the N-terminal helix. More subtle aspects of RecA-membrane interaction are influenced by specific properties of anionic lipids. Ionic hydrogen bonds between the carboxylate group in phosphatidylserine and several lysine residues in the C-terminal region of RecA stabilize the parallel (∥) binding orientation, which is not locally stable on PG- and CL-containing membranes despite similarity in the overall charge density. Lipid packing defects, which are more prevalent in the presence of conical lipids, are observed to enhance the insertion depth of hydrophobic motifs. The computational finding that RecA binds in a similar orientation to PG- and CL-containing membranes is consistent with the fact that PG alone is sufficient to induce RecA polar localization, although CL might be more effective because of its tighter binding to RecA. The different fluorescence behaviors of RecA upon binding to PG- and CL-containing liposomes is likely due to the different structures and flexibility of the C-terminal region of RecA when it binds to different anionic phospholipids.
Collapse
Affiliation(s)
- Leili Zhang
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Manohary Rajendram
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Douglas B Weibel
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.,Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States.,Department of Biomedical Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Arun Yethiraj
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
80
|
Javanainen M, Martinez-Seara H. Efficient preparation and analysis of membrane and membrane protein systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2468-2482. [PMID: 26947184 DOI: 10.1016/j.bbamem.2016.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 11/25/2022]
Abstract
Molecular dynamics (MD) simulations have become a highly important technique to consider lipid membrane systems, and quite often they provide considerable added value to laboratory experiments. Rapid development of both software and hardware has enabled the increase of time and size scales reachable by MD simulations to match those attainable by several accurate experimental techniques. However, until recently, the quality and maturity of software tools available for building membrane models for simulations as well as analyzing the results of these simulations have seriously lagged behind. Here, we discuss the recent developments of such tools from the end-users' point of view. In particular, we review the software that can be employed to build lipid bilayers and other related structures with or without embedded membrane proteins to be employed in MD simulations. Additionally, we provide a brief critical insight into force fields and MD packages commonly used for membrane and membrane protein simulations. Finally, we list analysis tools that can be used to study the properties of membrane and membrane protein systems. In all these points we comment on the respective compatibility of the covered tools. We also share our opinion on the current state of the available software. We briefly discuss the most commonly employed tools and platforms on which new software can be built. We conclude the review by providing a few ideas and guidelines on how the development of tools can be further boosted to catch up with the rapid pace at which the field of membrane simulation progresses. This includes improving the compatibility between software tools and promoting the openness of the codes on which these applications rely. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Matti Javanainen
- Department of Physics, Tampere University of Technology, Tampere, Finland.
| | - Hector Martinez-Seara
- Department of Physics, Tampere University of Technology, Tampere, Finland; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
81
|
Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, Wei S, Buckner J, Jeong JC, Qi Y, Jo S, Pande VS, Case DA, Brooks CL, MacKerell AD, Klauda JB, Im W. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J Chem Theory Comput 2016. [PMID: 26631602 DOI: 10.1021/acs.jctc.5b00935/asset/images/large/ct-2015-00935e0005.jpeg] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Proper treatment of nonbonded interactions is essential for the accuracy of molecular dynamics (MD) simulations, especially in studies of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in different MD simulation programs can result in disagreements with published simulations performed with CHARMM due to differences in the protocols used to treat the long-range and 1-4 nonbonded interactions. In this study, we systematically test the use of the C36 lipid FF in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested to find the optimal simulation protocol to best match bilayer properties of six lipids with varying acyl chain saturation and head groups. MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer were used to obtain the optimal protocol for each program. MD simulations with all programs were found to reasonably match the DPPC bilayer properties (surface area per lipid, chain order parameters, and area compressibility modulus) obtained using the standard protocol used in CHARMM as well as from experiments. The optimal simulation protocol was then applied to the other five lipid simulations and resulted in excellent agreement between results from most simulation programs as well as with experimental data. AMBER compared least favorably with the expected membrane properties, which appears to be due to its use of the hard-truncation in the LJ potential versus a force-based switching function used to smooth the LJ potential as it approaches the cutoff distance. The optimal simulation protocol for each program has been implemented in CHARMM-GUI. This protocol is expected to be applicable to the remainder of the additive C36 FF including the proteins, nucleic acids, carbohydrates, and small molecules.
Collapse
Affiliation(s)
- Jumin Lee
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas , Lawrence, Kansas 66047, United States
| | - Xi Cheng
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas , Lawrence, Kansas 66047, United States
| | - Jason M Swails
- Department of Chemistry and Chemical Biology, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Min Sun Yeom
- Korean Institute of Science and Technology Information , Yuseong-gu, Daejeon 305-806, Korea
| | - Peter K Eastman
- Department of Bioengineering, Stanford University , Stanford, California 94035, United States
| | - Justin A Lemkul
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Shuai Wei
- Department of Chemistry and the Biophysics Program, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Joshua Buckner
- Department of Chemistry and the Biophysics Program, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jong Cheol Jeong
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School , Boston, Massachusetts 02215, United States
| | - Yifei Qi
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas , Lawrence, Kansas 66047, United States
| | - Sunhwan Jo
- Leadership Computing Facility, Argonne National Laboratory , 9700 Cass Avenue, Building 240, Argonne, Illinois 60439, United States
| | - Vijay S Pande
- Department of Bioengineering, Stanford University , Stanford, California 94035, United States
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Charles L Brooks
- Department of Chemistry and the Biophysics Program, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering and the Biophysics Program, University of Maryland , College Park, Maryland 20742, United States
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas , Lawrence, Kansas 66047, United States
| |
Collapse
|
82
|
Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, Wei S, Buckner J, Jeong JC, Qi Y, Jo S, Pande VS, Case DA, Brooks CL, MacKerell AD, Klauda JB, Im W. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J Chem Theory Comput 2015; 12:405-13. [PMID: 26631602 PMCID: PMC4712441 DOI: 10.1021/acs.jctc.5b00935] [Citation(s) in RCA: 2294] [Impact Index Per Article: 254.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Proper treatment of nonbonded interactions
is essential for the
accuracy of molecular dynamics (MD) simulations, especially in studies
of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in
different MD simulation programs can result in disagreements with
published simulations performed with CHARMM due to differences in
the protocols used to treat the long-range and 1-4 nonbonded interactions.
In this study, we systematically test the use of the C36 lipid FF
in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of
Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested
to find the optimal simulation protocol to best match bilayer properties
of six lipids with varying acyl chain saturation and head groups.
MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine
(DPPC) bilayer were used to obtain the optimal protocol for each program.
MD simulations with all programs were found to reasonably match the
DPPC bilayer properties (surface area per lipid, chain order parameters,
and area compressibility modulus) obtained using the standard protocol
used in CHARMM as well as from experiments. The optimal simulation
protocol was then applied to the other five lipid simulations and
resulted in excellent agreement between results from most simulation
programs as well as with experimental data. AMBER compared least favorably
with the expected membrane properties, which appears to be due to
its use of the hard-truncation in the LJ potential versus a force-based
switching function used to smooth the LJ potential as it approaches
the cutoff distance. The optimal simulation protocol for each program
has been implemented in CHARMM-GUI. This protocol is expected to be
applicable to the remainder of the additive C36 FF including the proteins,
nucleic acids, carbohydrates, and small molecules.
Collapse
Affiliation(s)
- Jumin Lee
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas , Lawrence, Kansas 66047, United States
| | - Xi Cheng
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas , Lawrence, Kansas 66047, United States
| | - Jason M Swails
- Department of Chemistry and Chemical Biology, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Min Sun Yeom
- Korean Institute of Science and Technology Information , Yuseong-gu, Daejeon 305-806, Korea
| | - Peter K Eastman
- Department of Bioengineering, Stanford University , Stanford, California 94035, United States
| | - Justin A Lemkul
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Shuai Wei
- Department of Chemistry and the Biophysics Program, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Joshua Buckner
- Department of Chemistry and the Biophysics Program, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jong Cheol Jeong
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School , Boston, Massachusetts 02215, United States
| | - Yifei Qi
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas , Lawrence, Kansas 66047, United States
| | - Sunhwan Jo
- Leadership Computing Facility, Argonne National Laboratory , 9700 Cass Avenue, Building 240, Argonne, Illinois 60439, United States
| | - Vijay S Pande
- Department of Bioengineering, Stanford University , Stanford, California 94035, United States
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Charles L Brooks
- Department of Chemistry and the Biophysics Program, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering and the Biophysics Program, University of Maryland , College Park, Maryland 20742, United States
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas , Lawrence, Kansas 66047, United States
| |
Collapse
|