51
|
Impact of anthocyanin on genetic stability in mammary adenocarcinoma-induced mice treated with methotrexate. GENES & NUTRITION 2022; 17:6. [PMID: 35513806 PMCID: PMC9074366 DOI: 10.1186/s12263-022-00709-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022]
Abstract
Background Genetic instability leads to genome mutations, changes in nucleotide sequences, rearrangements, and gains or losses of part of the chromosomes. This instability can initiate and develop cancer. This study evaluated genomic stability in methotrexate and anthocyanin-treated mammary adenocarcinoma model. Seventy albino mice were divided into seven groups: negative control, anthocyanin, methotrexate, Ehrlich’s solid tumor; Ehrlich’s solid tumor and methotrexate; Ehrlich’s solid tumor and anthocyanin; and Ehrlich’s solid tumor, methotrexate, and anthocyanin groups. Results Tumor weight and size were evaluated. Serum arylesterase activity was low in all the induced tumors and those treated with anthocyanin, methotrexate, or both. Poly[adenosine diphosphate (ADP)-ribose] polymerase activity was high, and glutathione S-transferase activity was low in the tumors treated with anthocyanin, methotrexate, or both, compared with that of the untreated tumor. There was an increase in DNA damage in the mice with solid tumors and those injected with methotrexate or methotrexate and anthocyanin, compared with that in the untreated mice. Conclusions There was a decrease in genetic instability and DNA damage in the tumor-bearing mice treated with anthocyanin, with a concomitant increase in nuclear poly[adenosine diphosphate (ADP)-ribose] polymerase activity, compared with those of the untreated group. Anthocyanin exerted positive effects in the treatment of mammary adenocarcinoma.
Collapse
|
52
|
Chen J, Guo L, Yang G, Yang A, Zheng Y, Wang L. Metabolomic profiling of developing perilla leaves reveals the best harvest time. FRONTIERS IN PLANT SCIENCE 2022; 13:989755. [PMID: 36531401 PMCID: PMC9748349 DOI: 10.3389/fpls.2022.989755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) and gas chromatography-mass spectrometry (GC-MS) were applied to analyze metabolites in perilla leaves (PLs) during its developmental process. In total, 118 metabolites were identified, including volatile and non-volatile compounds, such as terpenoids, sugars, amino acids, organic acids, fatty acids, phenolic acids, flavonoids, and others. Principal component analysis (PCA) indicated great variations of metabolites during PLs development. Clustering analysis (CA) clarified the dynamic patterns of the metabolites. The heatmap of CA showed that most of the detected metabolites were significantly accumulated at stage 4 which is the pre anthesis period, and declined afterwards. The results of the present study provide a comprehensive overview of the metabolic dynamics of developing PLs which suggested that pre anthesis period is the best harvest time for PLs.
Collapse
Affiliation(s)
- Jiabao Chen
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Long Guo
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Guiya Yang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Aitong Yang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuguang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Pharmaceutical Engineering, Hebei Chemical and Pharmaceutical College, Shijiazhuang, China
| | - Lei Wang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
53
|
Chen KM, Sun YW, Sun D, Gowda K, Amin S, El-Bayoumy K. Black Raspberry Extract Enhances Glutathione Conjugation of the Fjord-Region Diol Epoxide Derived from the Tobacco Carcinogen Dibenzo[ def, p]chrysene in Human Oral Cells. Chem Res Toxicol 2022; 35:2152-2159. [PMID: 36260657 PMCID: PMC10630969 DOI: 10.1021/acs.chemrestox.2c00246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In a series of previous studies we reported that black raspberry (BRB) powder inhibits dibenzo[a,l]pyrene (DBP)-induced DNA damage, mutagenesis, and oral squamous cell carcinoma (OSCC) development in mice. In the present study, using human oral leukoplakia (MSK-Leuk1) and squamous cell carcinoma (SCC1483) cells, we tested the hypothesis that BRB extract (BRBE) will enhance the synthesis of glutathione (GSH) and in turn increase GSH conjugation of the fjord-region DBP diol epoxide (DBPDE) derived from DBP leading to inhibition of DBP-induced DNA damage. The syntheses of DBPDE-GSH conjugate, DBPDE-dA adduct, and the corresponding isotope-labeled internal standards were performed; LC-MS/MS methods were used for their quantification. BRBE significantly (p < 0.05) increased cellular GSH by 31% and 13% at 6 and 24 h, respectively, in OSCC cells; in MSK-LeuK1 cells, the levels of GSH significantly (p < 0.05) increased by 55% and 22%, at 1 and 6 h. Since BRBE significantly enhanced the synthesis of GSH in both cell types, subsequent experiments were performed in MSK-Leuk1 cells. Western blot analysis was performed to determine the types of proteins involved in the synthesis of GSH. BRBE significantly (p < 0.05) increased the protein expression (2.5-fold) of the glutamate-cysteine ligase catalytic subunit (GCLC) but had no effect on the glutamate-cysteine ligase modifier subunit (GCLM) and glutathione synthetase (GSS). LC-MS/MS analysis showed that pretreatment of cells with BRBE followed by DBPDE significantly (p < 0.05) increased the levels of DBPDE-GSH conjugate (2.5-fold) and decreased DNA damage by 74% measured by assessing levels of DBPDE-dA adduct formation. Collectively, the results of this in vitro study clearly support our hypothesis, and the LC-MS/MS methods developed in the present study will be highly useful in testing the same hypothesis initially in our mouse model and ultimately in smokers.
Collapse
|
54
|
Li S, Zhao S, Christman LM, Washington TL, Gu L. Anti-adhesion capacities of selected cranberry polyphenols and metabolites against P-type and Type-1 fimbriated uropathogenic E. coli using a fluorometric method. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
55
|
ATAYEVA V, ASLANOV R. EPR-based study to monitor Free Radicals in Treated Silk Fibroin with Anthocyanins. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1011273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Bioactive materials of natural origin have great demand in industry and medicine due to their versatility and useful properties. The main purpose of this work is to prepare biocomposites for the dual purpose of modified silk fibroin (Bombyx mori L.), which protects against the destructive effects of bioactive, antioxidant and ultraviolet rays. For this purpose, an aqueous extract of autumn leaves of the anthocyanin-rich smoke tree plant (Cotinus coggygria L.) was applied. 2% thiourea solution was used to increase the durability of the modified SF to external influences and for use in textiles. The intensity of free radicals in silk fibroin-anthocyanin (SFA) and silk fibroin-anthocyanin-thiourea (SFAT) biocomposites modified by the Electron Paramagnetic Resonance (EPR) method was studied. Maximum adsorption time was determined 20 minutes and the intensity of free radicals in SFA bio-composite was 80-85% and in SFAT biocomposite 50-55% in relation to silk fibroin untreated. For biomedical use of SFA, the radical scavenger activity kinetics were studied on a UV-2700 spectrophotometer and radical capture activity was calculated: RSA% (bioextract) = 73.52 ± 0.5, RSA% (SF) = 6.42 ± 0.4, RSA% (SFA) = 45.23 ± 0.8
Collapse
Affiliation(s)
| | - Rasim ASLANOV
- Institute of Biophysics, Azerbaijan National Academy of Sciences
| |
Collapse
|
56
|
Sellami MH, Pulvento C, Amarowicz R, Lavini A. Field phenotyping and quality traits of grass pea genotypes in South Italy. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4988-4999. [PMID: 33301170 DOI: 10.1002/jsfa.11008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Grass pea (Laithyrus sativus L.) is a rustic plant whose seeds are rich in polyphenols and antioxidants, and it has been consumed as food by human beings since ancient times. This study was conducted in Italy between 2017and 2019 to evaluate, under field conditions, the stability of seed yield, biomass and 1000-seed weight (THS) and to assess the antioxidant composition and activity of 11 grass pea accessions. RESULTS Analysis of variance revealed significant effects of the environment, accession and accession × environment (A × E) on the yield, above-ground biomass and THS. We found that the environment (year) and A × E explained 52.61% and 23.76% of the total seed yield variation, respectively. No relationship was observed between the yield and the total protein of seeds. Most grass pea accessions showed sensitivity to frost conditions that occurred in the third growing season. The total phenolic content ranged from 50.51 to 112.78 mg 100 g-1 seeds and antioxidant activity ranged from 0.576 to 0.898 mmol Trolox equivalents 100 g-1 seeds and from 0.91 to 1.6 mmol Fe2+ 100 g-1 seeds in 2,20-azinobis-3-ethylbenzothiazoline-6-sulfonic acid and ferric-reducing antioxidant power, respectively. Among the accessions, the 'Campi Flegrei' and 'di Castelcività' showed the best performance with the highest yield and stability, phenolic content and superior antioxidant activity. CONCLUSION The results showed that the yield of grass pea was mainly influenced by different climate conditions. This variability in yield, phenolic content and antioxidant activity among different accessions could help breeders and farmers select high-performance accessions for cultivation. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mohamed Houssemeddine Sellami
- Institute for Agricultural and Forestry Systems in the Mediterranean (ISAFOM), P.le Enrico Fermi 1 -Loc. Granatello, Portici, 80055, Italy
| | - Cataldo Pulvento
- Institute for Biosciences and Bioresources (IBBR), Via Amendola, 165/A, Bari, I-70126, Italy
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, 10-748, Poland
| | - Antonella Lavini
- Institute for Agricultural and Forestry Systems in the Mediterranean (ISAFOM), P.le Enrico Fermi 1 -Loc. Granatello, Portici, 80055, Italy
| |
Collapse
|
57
|
Mounika A, Ilangovan B, Mandal S, Shraddha Yashwant W, Priya Gali S, Shanmugam A. Prospects of ultrasonically extracted food bioactives in the field of non-invasive biomedical applications - A review. ULTRASONICS SONOCHEMISTRY 2022; 89:106121. [PMID: 35987106 PMCID: PMC9403563 DOI: 10.1016/j.ultsonch.2022.106121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 05/15/2023]
Abstract
Foods incorporated with bioactive compounds, called nutraceuticals, can fight or prevent or alleviate diseases. The contribution of nutraceuticals or phytochemicals to non-invasive biomedical applications is increasing. Although there are many traditional methods for extracting bioactive compounds or secondary metabolites, these processes come with many disadvantages like lower yield, longer process time, high energy consumption, more usage of solvent, yielding low active principles with low efficacy against diseases, poor quality, poor mass transfer, higher extraction temperature, etc. However, nullifying all these disadvantages of a non-thermal technology, ultrasound has played a significant role in delivering them with higher yield and improved bio-efficacy. The physical and chemical effects of acoustic cavitation are the crux of the output. This review paper primarily discusses the ultrasound-assisted extraction (USAE) of bioactives in providing non-invasive prevention and cure to diseases and bodily dysfunctions in human and animal models. The outputs of non-invasive bioactive components in terms of yield and the clinical efficacy in either in vitro or in vitro conditions are discussed in detail. The non-invasive biomedical applications of USAE bioactives providing anticancer, antioxidant, cardiovascular health, antidiabetic, and antimicrobial benefits are analyzed in-depth and appraised. This review additionally highlights the improved performance of USAE compounds against conventionally extracted compounds. In addition, an exhaustive analysis is performed on the role and application of the food bioactives in vivo and in vitro systems, mainly for promoting these efficient USAE bioactives in non-invasive biomedical applications. Also, the review explores the recovery of bioactives from the less explored food sources like cactus pear fruit, ash gourd, sweet granadilla, basil, kokum, baobab, and the food processing industrial wastes like peel, pomace, propolis, wine residues, bran, etc., which is rare in literature.
Collapse
Affiliation(s)
- Addanki Mounika
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Bhaargavi Ilangovan
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Sushmita Mandal
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Waghaye Shraddha Yashwant
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Swetha Priya Gali
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Akalya Shanmugam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India; Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India.
| |
Collapse
|
58
|
Amani F, Rezaei A, Kharazmi MS, Jafari SM. Loading ferulic acid into β-cyclodextrin nanosponges; antibacterial activity, controlled release and application in pomegranate juice as a copigment agent. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
59
|
Wu M, Ma Y, Li A, Wang J, He J, Zhang R. Stability and Antiproliferative Activity of Malvidin-Based Non-Oxonium Derivative (Oxovitisin A) Compared with Precursor Anthocyanins and Pyranoanthocyanins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155030. [PMID: 35956980 PMCID: PMC9370602 DOI: 10.3390/molecules27155030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022]
Abstract
Oxovitisins are a unique group of anthocyanin derivatives with a non-oxonium nature and α-pyranone (lactone) D ring on the structure. In this study, oxovitisin A was synthesized through the micro-oxidative reaction of carboxypyranomalvidin-3-O-glucoside (vitisin A) with water, and its thermostability, pH, and SO2 color stability were studied compared with its two precursors, malvidin-3-O-glucoside (Mv3glc) and vitisin A, as well as methylpyrano-malvidin-3-O-glucoside (Me-py). Results showed that oxovitisin A exhibited the highest stabilities, which were inseparably related to its noncharged structure and the additional carbonyl group on the D ring. Moreover, the antiproliferative capacity of oxovitisin A was comparatively evaluated against two human gastrointestinal cancer cell lines. Interestingly, oxovitisin A presented the strongest antiproliferative ability on MKN-28 (IC50 = 538.42 ± 50.06 μM) and Caco-2 cells (IC50 = 434.85 ± 11.87 μM) compared with two other pyranoanthocyanins. Therefore, we conclude that oxovitisin A as a highly stable anthocyanin derivative still exhibits a satisfactory antiproliferative ability.
Collapse
Affiliation(s)
- Muci Wu
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430048, China
| | - Yan Ma
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430048, China
| | - Ao Li
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Jingyi Wang
- School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Jingren He
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430048, China
- Correspondence: (J.H.); (R.Z.); Tel.: +86-027-8394-7357 (J.H.)
| | - Rui Zhang
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430048, China
- Correspondence: (J.H.); (R.Z.); Tel.: +86-027-8394-7357 (J.H.)
| |
Collapse
|
60
|
Xue X, Tian S, Chen R, Han X, Wang J, Zhao X. Clarifying the mechanisms of the light-induced color formation of apple peel under dark conditions through metabolomics and transcriptomic analyses. FRONTIERS IN PLANT SCIENCE 2022; 13:946115. [PMID: 35968118 PMCID: PMC9366354 DOI: 10.3389/fpls.2022.946115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Many studies have demonstrated that anthocyanin synthesis in apple peel is induced by light, but the color of bagged apple peel continues to change under dark conditions after light induction has not been characterized. Here, transcriptional and metabolic changes associated with changes in apple peel coloration in the dark after different light induction treatments were studied. Apple pericarp can achieve a normal color under complete darkness followed by light induction. Metabolomics analysis indicated that the expression levels of cyanidin-3-O-galactoside and cyanidin-3-O-glucoside were high, which might be associated with the red color development of apple peel. Transcriptome analysis revealed high expression levels of MdUFGTs, MdMYBs, and MdNACs, which might play a key role in light-induced anthocyanin accumulation under dark conditions. 13 key genes related to dark coloring after light induction was screened. The results of this study provide new insights into the mechanism of anthocyanin synthesis under dark conditions.
Collapse
Affiliation(s)
- Xiaomin Xue
- Shandong Institute of Pomology, Tai’an, China
| | - Shoule Tian
- Shandong Institute of Pomology, Tai’an, China
| | - Ru Chen
- Shandong Institute of Pomology, Tai’an, China
| | - Xueping Han
- Shandong Institute of Pomology, Tai’an, China
| | | | - Xianyan Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, China
| |
Collapse
|
61
|
Protective Effect of Bilberry Anthocyanin Extracts on Dextran Sulfate Sodium-Induced Intestinal Damage in Drosophila melanogaster. Nutrients 2022; 14:nu14142875. [PMID: 35889832 PMCID: PMC9325026 DOI: 10.3390/nu14142875] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 02/03/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent disease that can be controlled by various natural extracts. Anthocyanins (ANCs) from bilberry have significant antioxidant capacity and are widely used as food colors and antioxidants. In this study, we investigated the protective effects of bilberry anthocyanin extracts (BANCs) against dextran sulphate sodium (DSS)-induced intestinal inflammation in a Drosophila melanogaster (D. melanogaster) model, and the effects on the lifespan, antioxidant capacity, intestinal characteristics, and microbiome and gene expression profiles were analyzed to elucidate the underlying biological mechanisms. In DSS-induced normal and axenic D. melanogaster, BANCs significantly increased the survival rate, maintained the intestinal morphology and integrity, and reduced the number of dead intestinal epithelial cells and the ROS level of these cells. BANC supplementation had no significant effect on the intestinal microflora of DSS-induced D. melanogaster, as demonstrated by a 16S rDNA analysis, but improved the antioxidant capacity by activating the relative gene expression of NRF2 signaling pathways in the intestine of D. melanogaster with DSS-induced inflammation. Therefore, the results demonstrate that BANCs effectively alleviate intestinal inflammatory injury induced by DSS and improve the antioxidant capacity of D. melanogaster by modulating NRF2 signaling pathways, and could thus promote the application of BANCs as functional foods.
Collapse
|
62
|
He J, Ye S, Correia P, Fernandes I, Zhang R, Wu M, Freitas V, Mateus N, Oliveira H. Dietary polyglycosylated anthocyanins, the smart option? A comprehensive review on their health benefits and technological applications. Compr Rev Food Sci Food Saf 2022; 21:3096-3128. [PMID: 35534086 DOI: 10.1111/1541-4337.12970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/01/2022] [Accepted: 04/07/2022] [Indexed: 01/01/2023]
Abstract
Over the years, anthocyanins have emerged as one of the most enthralling groups of natural phenolic compounds and more than 700 distinct structures have already been identified, illustrating the exceptional variety spread in nature. The interest raised around anthocyanins goes way beyond their visually appealing colors and their acknowledged structural and biological properties have fueled intensive research toward their application in different contexts. However, the high susceptibility of monoglycosylated anthocyanins to degradation under certain external conditions might compromise their application. In that regard, polyglycosylated anthocyanins (PGA) might offer an alternative to overcome this issue, owing to their peculiar structure and consequent less predisposition to degradation. The most recent scientific and technological findings concerning PGA and their food sources are thoroughly described and discussed in this comprehensive review. Different issues, including their physical-chemical characteristics, consumption, bioavailability, and biological relevance in the context of different pathologies, are covered in detail, along with the most relevant prospective technological applications. Due to their complex structure and acyl groups, most of the PGA exhibit an overall higher stability than the monoglycosylated ones. Their versatility allows them to act in a wide range of pathologies, either by acting directly in molecular pathways or by modulating the disease environment attributing an added value to their food sources. Their recent usage for technological applications has also been particularly successful in different industry fields including food and smart packaging or in solar energy production systems. Altogether, this review aims to put into perspective the current state and future research on PGA and their food sources.
Collapse
Affiliation(s)
- Jingren He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Shuxin Ye
- Yun-Hong Group Co. Ltd, Wuhan, China
| | - Patrícia Correia
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Rui Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Muci Wu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Victor Freitas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Nuno Mateus
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Hélder Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
63
|
Dong A, Pan X, Lin CW, Huang YW, Krause H, Pan P, Baim A, Thomas MJ, Chen X, Yu J, Michaelis L, Liu P, Wang LS, Atallah E. A Pilot Clinical Study to Investigate the Hypomethylating Properties of Freeze-dried Black Raspberries in Patients with Myelodysplastic Syndrome or Myeloproliferative Neoplasm. J Cancer Prev 2022; 27:129-138. [PMID: 35864858 PMCID: PMC9271408 DOI: 10.15430/jcp.2022.27.2.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
Myelodysplastic syndromes (MDS) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are bone marrow disorders characterized by cytopenias and progression to acute myeloid leukemia. Hypomethylating agents (HMAs) are Food and Drug Administration-approved therapies for MDS and MDS/MPN patients. HMAs have improved patients' survival and quality of life when compared with other therapies. Although HMAs are effective in MDS and MDS/MPN patients, they are associated with significant toxicities that place a large burden on patients. Our goal is to develop a safer and more effective HMA from natural products. We previously reported that black raspberries (BRBs) have hypomethylating effects in the colon, blood, spleen, and bone marrow of mice. In addition, BRBs exert hypomethylating effects in patients with colorectal cancer and familial adenomatous polyposis. In the current study, we conducted a pilot clinical trial to evaluate the hypomethylating effects of BRBs in patients with low-risk MDS or MDS/MPN. Peripheral blood mononuclear cells (PBMCs) were isolated before and after three months of BRB intervention. CD45+ cells were isolated from PBMCs for methylation analysis using a reduced-representation bisulfite sequencing assay. Each patient served as their own matched control, with their measurements assessed before intervention providing a baseline for post-intervention results. Clinically, our data showed that BRBs were well-tolerated with no side effects. When methylation data was combined, BRBs significantly affected methylation levels of 477 promoter regions. Pathway analysis suggests that BRB-induced intragenic hypomethylation drives leukocyte differentiation. A randomized, placebo-controlled clinical trial of BRB use in low-risk MDS or MDS/MPN patients is warranted.
Collapse
Affiliation(s)
- Athena Dong
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaoqing Pan
- Department of Mathematics, Shanghai Normal University, Shanghai, China
| | - Chien-Wei Lin
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hayden Krause
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Pan Pan
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Arielle Baim
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael J Thomas
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiao Chen
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Laura Michaelis
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ehab Atallah
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
64
|
Zhang Y, Zhu M, Wan H, Chen L, Luo F. Association between Dietary Anthocyanidins and Risk of Lung Cancer. Nutrients 2022; 14:nu14132643. [PMID: 35807824 PMCID: PMC9268346 DOI: 10.3390/nu14132643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Anthocyanidins are a kind of water-soluble flavonoids widely found in flowers and fruits of many plants. Although the beneficial effect of anthocyanidins in cancer prevention has been discussed, the value of anthocyanidins in lung cancer prevention requires further investigation. In this study, we aimed to explore the role of dietary anthocyanidins in the prevention of lung cancer in population-based prospective studies. Methods: Data of participants in this study were collected from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated in Cox proportional hazards regression for the association of dietary anthocyanidins and lung cancer risk. The dose-response relationship was explored between total anthocyanidins and the incidence of lung cancer. Results: A total of 97,993 participants were included in this study. The calculated HRs showed a trend that a higher quartile of total anthocyanidins indicated lower risk of lung cancer after adjusting for covariates (HRQ4vsQ1: 0.63; 95% CI: 0.55,0.73; p for trend < 0.001). A non-linear association between total anthocyanidins and lung cancer risk was found in the restricted cubic spline model. Conclusion: A protective association between dietary anthocyanidins and risk of lung cancer in Americans was investigated.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (M.Z.); (H.W.); (L.C.)
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (M.Z.); (H.W.); (L.C.)
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huajing Wan
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (M.Z.); (H.W.); (L.C.)
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (M.Z.); (H.W.); (L.C.)
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (M.Z.); (H.W.); (L.C.)
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
65
|
de Arruda Nascimento E, de Lima Coutinho L, da Silva CJ, de Lima VLAG, Dos Santos Aguiar J. In vitro anticancer properties of anthocyanins: A systematic review. Biochim Biophys Acta Rev Cancer 2022; 1877:188748. [PMID: 35714889 DOI: 10.1016/j.bbcan.2022.188748] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023]
Abstract
Anthocyanins have been associated with beneficial effects on human health. Cancer has been one of the main public health issues due to its aggressiveness and high mortality rate. This systematic review aimed to address recent research (from January 2000 to September 2021) on the anticancer activity of anthocyanins assessed by in vitro assays. The selected studies revealed that anthocyanins have anticancer potential by inhibiting cancer cell viability and proliferation, controlling cell cycle, and promoting apoptosis.
Collapse
Affiliation(s)
| | | | - Cleber José da Silva
- Universidade Federal de Pernambuco, Department of Antibiotics, 50740-525 Recife, PE, Brazil.
| | | | | |
Collapse
|
66
|
An X, Luo X, Liu T, Li W, Zou L. Development and Application of Fruit Color-Related Expressed Sequence Tag-Simple Sequence Repeat Markers in Abelmoschus esculentus on the Basis of Transcriptome Sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:907895. [PMID: 35677229 PMCID: PMC9168766 DOI: 10.3389/fpls.2022.907895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Abelmoschus esculentus is a medicinal and edible plant that contains large amounts of active ingredients, including anthocyanins, polysaccharides, flavonoids, and terpenoids. However, because of a relative lack of molecular research, there are few molecular markers applicable for this plant species. In this study, on the basis of A. esculentus fruit color-related transcriptome sequencing data, we analyzed the patterns of simple sequence repeats (SSRs) in differentially expressed genes (DEGs) and revealed the biological processes and metabolic pathways associated with the related genes. We also designed primers for SSR loci to develop SSR molecular markers. Primers were synthesized using a DEG associated with a protein-protein interaction network. Polymorphic SSR markers were screened for the subsequent examination of A. esculentus germplasm resources and fruit color association analysis. The results indicated that 24.98% of the unigenes contained SSR motifs. Single-base (mononucleotide) repeats were the main SSRs, followed by trinucleotide and dinucleotide repeats. We selected 47 expressed sequence tag (EST)-SSR primer pairs for the genotyping of 153 A. esculentus varieties/lines. We ultimately obtained 21 EST-SSR markers suitable for genotyping. A generalized linear model-based association analysis detected two EST-SSR markers significantly associated with A. esculentus fruit color. In conclusion, several EST-SSR and SSR molecular markers in A. esculentus were developed in this study. The fruit color-associated markers may be useful for the molecular marker-assisted breeding of new A. esculentus varieties.
Collapse
|
67
|
Study of the impact of vine cultivation technology on the Feteasca Neagra wine phenolic composition and antioxidant properties. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1715-1726. [PMID: 35531391 PMCID: PMC9046523 DOI: 10.1007/s13197-021-05182-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/12/2020] [Accepted: 06/15/2021] [Indexed: 12/31/2022]
Abstract
In this work a comparative assessment was performed on individual and total polyphenols and biochemical properties of some Feteasca Neagra red wines obtained from grapes cultivated with different farming technologies (organic vs. conventional). The effect of a 30% cluster thinning treatment in both organic and conventional vineyard, compared to control plots with no thinning, was also monitored. The wines were obtained during two vintages, one with more favourable climatic conditions and one less favourable, in the period 2010-2019. Our results indicate that by applying a 30% cluster thinning treatment in the vineyard it is possible to increase the concentration of total and individual polyphenols of the resulted Feteasca Neagra wines. Furthermore, the differences observed between the phenolic profiles of wines from conventionally and organically produced grapes showed that organic Feteasca Neagra wines have higher phenolic compounds concentrations and antioxidant properties, with some important individual phenols accumulating in larger quantities than in the case of conventional wines. The beneficial effect of the organic cultivation is more evident in years characterised by less favourable climatic conditions. The statistical analysis tools applied to the analytical data allowed a good discrimination of experimental wine variants according to the vine cultivation technology (organic vs. conventional, with and without cluster thinning) and vintage. Thus, the results indicated that the applied cultivation technologies, especially when both organic cultivation and cluster thinning are combined, can greatly improve the polyphenolic content of Feteasca Neagra wines. The absolute value of the increase in polyphenol concentration was higher in favourable years, but the relative increase, in percentages, as compared to control wines, was higher in less favourable years. The combination of both viticultural practices may be thus exploited in order to obtain wines with higher polyphenolic content, which leads to better structure, better ageing potential, enhanced nutritional and antioxidant properties.
Collapse
|
68
|
Legua P, Modica G, Porras I, Conesa A, Continella A. Bioactive compounds, antioxidant activity and fruit quality evaluation of eleven blood orange cultivars. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2960-2971. [PMID: 34766350 PMCID: PMC9299091 DOI: 10.1002/jsfa.11636] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Blood oranges are grown increasingly in Europe for fresh consumption because of their special taste and excellent nutraceutical properties that confer the status of a functional food. The health benefits are associated with the range of additional bioactive compounds that they contain with respect to blonde oranges. RESULTS We analysed the physicochemical properties and the levels of organic acids, sugars and antioxidants in 11 blood orange cultivars representing the most representative cultivars of blood oranges widespread in the Mediterranean basin. In particular, we examined the levels of phenols, flavonoids and anthocyanins present in these cultivars at harvest maturity. The physicochemical, antioxidant and colour properties differ significantly among these cultivars. The deepest red peel and juice was found in Sanguinelli, followed by Tarocco Rosso and Moro. High-performance liquid chromatography with refractive index detector analysis revealed sucrose as the main sugar in all these cultivars, followed by fructose and glucose. Citric acid was the dominant organic acid, followed by malic acid and ascorbic acid. Moro showed the greatest levels of antioxidant activity. Regarding the phenolic composition, we found p-coumaric acid to be the main hydroxycinnamic acid in all cultivars, with maximum amounts in Moro and Sanguinelli. The highest amounts of cyanidin-3-O-glucoside and cyanidin-3-(6''-malonyl)-glucoside were found in Moro, for which the juice was of the deepest red colour. CONCLUSION The phenolic composition and antioxidant activity of the 11 cultivars was assessed. The results showed that Moro was the cultivar with the highest content of polyphenols and levels of antioxidant activity, followed by Sanguinelli. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Pilar Legua
- Plant Science and Microbiology DepartmentMiguel Hernández UniversityAlicanteSpain
| | - Giulia Modica
- Department of Agriculture, Food and EnvironmentUniversity of CataniaCataniaItaly
| | - Ignacio Porras
- Department of CitricultureInstituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA)MurciaSpain
| | - Agustín Conesa
- Plant Science and Microbiology DepartmentMiguel Hernández UniversityAlicanteSpain
| | - Alberto Continella
- Department of Agriculture, Food and EnvironmentUniversity of CataniaCataniaItaly
| |
Collapse
|
69
|
Mottaghipisheh J, Doustimotlagh AH, Irajie C, Tanideh N, Barzegar A, Iraji A. The Promising Therapeutic and Preventive Properties of Anthocyanidins/Anthocyanins on Prostate Cancer. Cells 2022; 11:1070. [PMID: 35406634 PMCID: PMC8997497 DOI: 10.3390/cells11071070] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 12/12/2022] Open
Abstract
As water-soluble flavonoid derivatives, anthocyanidins and anthocyanins are the plants pigments mostly rich in berries, pomegranate, grapes, and dark color fruits. Many bioactivity properties of these advantageous phytochemicals have been reported; among them, their significant abilities in the suppression of tumor cells are of the promising therapeutic features, which have recently attracted great attention. The prostate malignancy, is considered the 2nd fatal and the most distributed cancer type in men worldwide. The present study was designated to gather the preclinical and clinical studies evaluating potencies of anthocyanidins/anthocyanins for the treatment and prevention of this cancer type for the first time. In general, findings confirm that the anthocyanins (especifically cyanidin-3-O-glucoside) indicated higher activity against prostatic neoplasms compared to their correlated anthocyanidins (e.g., delphinidin); in which potent anti-inflammatory, apoptosis, and anti-proliferative activities were analyzed. Complementary anti-prostate cancer assessment of diverse naturally occurred anthocyanidins/anthocyanins and their synthetically optimized derivatives through preclinical experiments and eventually confirmed by clinical trials can promisingly lead to discover natural-based chemotherapeutic drug options.
Collapse
Affiliation(s)
- Javad Mottaghipisheh
- Center for Molecular Biosciences (CMBI), Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Amir Hossein Doustimotlagh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj 75918-67319, Iran;
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj 75918-67319, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Alireza Barzegar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
- Liosa Pharmed Parseh Company, Shiraz 71997-47118, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| |
Collapse
|
70
|
Inhibition of α-Amylase and α-Glucosidase of Anthocyanin Isolated from Berberis integerrima Bunge Fruits: A Model of Antidiabetic Compounds. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6529590. [PMID: 35295927 PMCID: PMC8920622 DOI: 10.1155/2022/6529590] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/14/2022] [Indexed: 12/28/2022]
Abstract
Anthocyanins are components of the flavonoid group with different properties, such as antidiabetic properties. This study aimed to isolate anthocyanin from Berberis integerrima Bunge fruits and evaluate α-amylase and α-glucosidase inhibition by this mentioned anthocyanin. The anthocyanin of Berberis integerrima fruit was isolated using column chromatography, and the antidiabetic properties of the anthocyanin were determined by the levels of α-amylase and α-glucosidase inhibition. Km and Vmax were also evaluated using the GraphPad Prism 7. The results of this study showed that the anthocyanin content of the fruit extract was 14.36 ± 0.33 mg/g, and following purification, this amount increased to 34.51 ± 0.42 mg/g. The highest of α-glucosidase inhibition was observed in the purified anthocyanin with IC50 = 0.71 ± 0.085 mg/ml, compared to acarbose as the baseline with IC50 = 8.8 ± 0.14 mg/ml, p < 0.0001. Purified anthocyanin of the mentioned fruit with IC50 = 1.14 ± 0.003 mg/ml had the greatest α-amylase inhibition, which was similar to acarbose as the standard with IC50 = 1 ± 0.085 mg/ml, p < 0.05. The inhibition of α-glucosidase and α-amylase by purified anthocyanin showed uncompetitive inhibition, and the enzyme inhibition by unpurified anthocyanin showed mixed inhibition. The obtained findings showed that Berberis integerrima fruit can be mentioned as a source of anthocyanin with antidiabetic properties.
Collapse
|
71
|
Bioactive components in Bambara groundnut ( Vigna subterraenea (L.) Verdc) as a potential source of nutraceutical ingredients. Heliyon 2022; 8:e09024. [PMID: 35284682 PMCID: PMC8913303 DOI: 10.1016/j.heliyon.2022.e09024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/09/2020] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
The utilization of nutraceuticals on a global scale has significantly increased over the past few years due to their reported health benefits and consumer's reluctance to consume synthetic drugs. This paper provides information regarding new and potential value added uses of biologically active compounds in Bambara groundnut (BGN) as ingredients that could be further researched and exploited for various applications. Nutraceutical is a food or part of food that apart from providing basic nutrients, offers medicinal benefits either by prevention and or treatment of an illness. BGN is a legume with rich nutrient profile that is under exploited industrially. It is widely used in African traditional medicine for its various health outcome, but has not been explored scientifically for its numerous nutraceutical potentials. Compared to beans BGN has greater quantity of soluble fiber and also have high dietary fiber. It is rich in polyphenolic compound which include flavonoids subgroups like flavonols, flavanols, anthocyanindins, isoflavones and phenolic acids: both benzoic acid and cinnamic acid derivatives, biologically active polyunsaturated fatty acids, proteins and peptides, antioxidant vitamins and minerals. The rising interest and emphasis in plant-based biologically active components (nutraceuticals) for various health promotion, has positioned this African legume as a potential source of nutraceutical ingredients (bioactive components) that could be exploited for improved nutrition and health.
Collapse
|
72
|
Baba Shekh AO, Abdul Wahab R, Yahya NA. Formulation of roselle extract water-in-oil nanoemulsion for controlled pulmonary delivery. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2046044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Adil Omer Baba Shekh
- Faculty of Science, Department of Chemistry, Universiti Teknologi Malaysia, Baharu, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Roswanira Abdul Wahab
- Faculty of Science, Department of Chemistry, Universiti Teknologi Malaysia, Baharu, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Nur Azzanizawaty Yahya
- Faculty of Science, Department of Chemistry, Universiti Teknologi Malaysia, Baharu, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
73
|
The Anti-Cancer Effects of Red-Pigmented Foods: Biomarker Modulation and Mechanisms Underlying Cancer Progression. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is one the most malignant diseases that is a leading cause of death worldwide. Vegetables and fruits contain beneficial nutrients such as vitamins, minerals, folates, dietary fibers, and various natural bioactive compounds. These can prevent the pathological processes of many cancers and reduce cancer related mortality. Specifically, the anti-cancer effect of vegetables and fruits is largely attributable to the natural bioactive compounds present within them. A lot of bioactive compounds have very specific colors with pigments and the action of them in the human body varies by their color. Red-pigmented foods, such as apples, oranges, tomatoes, cherries, grapes, berries, and red wine, have been widely reported to elicit beneficial effects and have been investigated for their anti-tumor, anti-inflammatory, and antioxidative properties, as well as anti-cancer effect. Most of the anti-cancer effects of bioactive compounds in red-pigmented foods arise from the suppression of cancer cell invasion and metastasis, as well as the induction of apoptosis and cell cycle arrest. In this review, we assessed publications from the last 10 years and identified 10 bioactive compounds commonly studied in red-pigmented foods: lycopene, anthocyanin, β-carotene, pectin, betaine, rutin, ursolic acid, kaempferol, quercetin, and myricetin. We focused on the mechanisms and targets underlying the anti-cancer effect of the compounds and provided rationale for further investigation of the compounds to develop more potent anti-cancer treatment methods.
Collapse
|
74
|
Oxidative Transformation of Dihydroflavonols and Flavan-3-ols by Anthocyanidin Synthase from Vitis vinifera. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031047. [PMID: 35164310 PMCID: PMC8839691 DOI: 10.3390/molecules27031047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022]
Abstract
Twelve polyphenols from three distinct families (dihydroflavonols, flavan-3-ols, and flavanones) were studied as potential substrates of anthocyanidin synthase from Vitis vinifera (VvANS). Only flavan-3-ols of (2R,3S) configuration having either a catechol or gallol group on ring B are accepted as substrates. Only dihydroflavonols of (2R,3R) configuration are accepted as substrates, but a catechol or gallol group is not mandatory. Flavanones are not substrates of VvANS. HPLC and MS/MS analyses of the enzymatic products showed that the VvANS-catalyzed oxidative transformation of (+)-dihydroflavonols, such as dihydroquercetin, dihydrokaempferol and dihydromyricetin, leads only to the corresponding flavonols. Among the flavan-3-ols recognized as substrates, (+)-gallocatechin was only transformed into delphinidin by VvANS, whereas (+)-catechin was transformed into three products, including two major products that were an ascorbate-cyanidin adduct and a dimer of oxidized catechin, and a minor product that was cyanidin. Data from real-time MS monitoring of the enzymatic transformation of (+)-catechin suggest that its products are all derived from the initial C3-hydroxylation intermediate, i.e., a 3,3-gem-diol, and their most likely formation mechanism is discussed.
Collapse
|
75
|
Yang Y, Xu C, Shen Z, Yan C. Crop Quality Improvement Through Genome Editing Strategy. Front Genome Ed 2022; 3:819687. [PMID: 35174353 PMCID: PMC8841430 DOI: 10.3389/fgeed.2021.819687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Good quality of crops has always been the most concerning aspect for breeders and consumers. However, crop quality is a complex trait affected by both the genetic systems and environmental factors, thus, it is difficult to improve through traditional breeding strategies. Recently, the CRISPR/Cas9 genome editing system, enabling efficiently targeted modification, has revolutionized the field of quality improvement in most crops. In this review, we briefly review the various genome editing ability of the CRISPR/Cas9 system, such as gene knockout, knock-in or replacement, base editing, prime editing, and gene expression regulation. In addition, we highlight the advances in crop quality improvement applying the CRISPR/Cas9 system in four main aspects: macronutrients, micronutrients, anti-nutritional factors and others. Finally, the potential challenges and future perspectives of genome editing in crop quality improvement is also discussed.
Collapse
Affiliation(s)
- Yihao Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
- Department of Crop Genetics and Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Chenda Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| | - Ziyan Shen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| | - Changjie Yan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
- Department of Crop Genetics and Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| |
Collapse
|
76
|
Hughes S, Kolsters N, van de Klashorst D, Kreuter E, Berger Büter K. An extract of Rosaceae, Solanaceae and Zingiberaceae increases health span and mobility in Caenorhabditis elegans. BMC Nutr 2022; 8:5. [PMID: 35027085 PMCID: PMC8756710 DOI: 10.1186/s40795-022-00498-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Background Members of the Rosaceae, Solanaceae and Zingiberaceae families which include fruits such as cherries, tomatoes and ginger are known to have health promoting effects. There is growing interest in consuming these “functional foods” as a means to increase health and healthy ageing. However, many studies explore the effect of these foods in isolation, not as a blend of multiple functional foods. Methods In this study, an extract containing the dried berries, fruits, and roots of members of these families was prepared, which we called Bioact®180. The nematode Caenorhabditis elegans was used to evaluate the effects of Bioact®180 on lifespan and health endpoints, including muscle and mitochondria structure and locomotion. Results Exposure to the 1000 µg/mL of Bioact®180 extract, containing 4% total phenols, were healthier, as observed by an increase in mean lifespan with and small but significant increase in maximal lifespan. Nematodes exposed to Bioact®180 displayed better mobility in mid-life stages as well as enhanced mitochondrial morphology, which was more comparable to younger animals, suggesting that these worms are protected to some degree from sarcopenia. Conclusions Together, our findings reveal that Bioact®180, a blend of fruits and roots from Rosaceae, Solanaceae and Zingiberaceae family members has anti-aging effects. Bioact®180 promotes health and lifespan extension in C. elegans, corresponding to functional improvements in mobility.
Collapse
Affiliation(s)
- Samantha Hughes
- BioCentre, HAN University of Applied Sciences, 6525EM, Nijmegen, Netherlands.,Department of Environment and Health, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, Netherlands
| | - Nikki Kolsters
- BioCentre, HAN University of Applied Sciences, 6525EM, Nijmegen, Netherlands
| | | | - Emanuel Kreuter
- Bioactive Botanicals Swiss AG, Emeligarten 6, 8592, Uttwil, Switzerland
| | - Karin Berger Büter
- Bioactive Botanicals Swiss AG, Emeligarten 6, 8592, Uttwil, Switzerland.
| |
Collapse
|
77
|
Rungruang R, Peasura N, Kaisangsri N. Phytochemical screening, quantitative analysis of cyanidin-3-O-glucoside content, and anticancer activity of novel rice bran (Tubtim Chumphae rice). J Adv Pharm Technol Res 2022; 13:312-316. [PMID: 36568058 PMCID: PMC9784041 DOI: 10.4103/japtr.japtr_458_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 12/27/2022] Open
Abstract
The objective of this research was to explore the phytochemicals in Tubtim Chumphae rice bran and determine their potential antioxidant and anticancer activities. The rice bran extract contained total phenolics, flavonoids, and anthocyanins as the major compounds. In addition, it exhibited the highest DPPH•, followed by ABTS•+, and FRAP radical scavenging activity. Moreover, the cytotoxic effect of the extract on Hep G2, SW620, KATO-III, BT474, and ChaGo-K-1 cancer cell lines was investigated; the obtained IC50 values were 144.6 ± 0.39, 116.9 ± 0.68, 99.6 ± 0.10, 94.4 ± 0.33, and 25.6 ± 0.45 μg/mL, respectively. Overall, the abovementioned results suggest that rice bran extract has potent anticancer activity owing to the induction of cell death in cancer cell lines.
Collapse
Affiliation(s)
- Rittipun Rungruang
- Department of Cosmetic Science, Faculty of Science and Technology, Suan Dusit University, Nakhon Pathom, Thailand,Address for correspondence: Asst. Prof. Rittipun Rungruang, Department of Cosmetic Science, Faculty of Science and Technology, Suan Dusit University, 295 Nakhon Ratchasima Road, Dusit District, Bangkok, 10300, Thailand. E-mail:
| | - Napassorn Peasura
- Agricultural and Functional Food Processing (AFP), Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | | |
Collapse
|
78
|
HARDINASINTA G, MURSALIM M, MUHIDONG J, SALENGKE S. Degradation kinetics of anthocyanin, flavonoid, and total phenol in bignay (Antidesma bunius) fruit juice during ohmic heating. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.64020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
79
|
Mudd AM, Gu T, Munagala R, Jeyabalan J, Fraig M, Egilmez NK, Gupta RC. Berry anthocyanidins inhibit intestinal polyps and colon tumors by modulation of Src, EGFR and the colon inflammatory environment. Oncoscience 2021; 8:120-133. [PMID: 34926717 PMCID: PMC8664094 DOI: 10.18632/oncoscience.548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022] Open
Abstract
Colorectal cancer is the third most common form of cancer diagnosed and the third leading class for cancer-related deaths. Given the prevalence of colon cancer worldwide, further insight into developing novel and effective prevention and treatment strategies are warranted. The family of plant pigments known as the anthocyanins has been identified with a variety of health benefits including chemopreventive and therapeutic effects. A limitation to current clinical applications of anthocyanins is the high doses that are required. In order to overcome this limitation, we tested the active moiety, anthocyanidins for chemopreventive and therapeutic effects against colorectal cancer in vivo and in vitro. Treatment with native anthocyanidin mixture (Anthos) from bilberry yielded significant antiproliferative activity against colon cancer cells. Anthos treatment led to significant reductions in polyp and tumor counts in vivo. Reduced Src and EGFR phosphorylation was observed with Anthos treatment, which correlated with downstream targets such as PD-L1 and modulation of the colon inflammatory environment. These results provide a promising outlook on the impact of berry Anthos for the treatment and prevention of familial adenomatous polyposis and colorectal cancer. Results from this study also provide novel mechanistic insight into the chemopreventive and therapeutic activities of Anthos.
Collapse
Affiliation(s)
- Ashley M Mudd
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.,These authors contributed equally to this work
| | - Tao Gu
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA.,These authors contributed equally to this work
| | - Radha Munagala
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.,Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jeyaprakash Jeyabalan
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Mostafa Fraig
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Nejat K Egilmez
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
| | - Ramesh C Gupta
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
80
|
Lyu W, Rodriguez D, Ferruzzi MG, Pasinetti GM, Murrough JW, Simon JE, Wu Q. Chemical, Manufacturing, and Standardization Controls of Grape Polyphenol Dietary Supplements in Support of a Clinical Study: Mass Uniformity, Polyphenol Dosage, and Profiles. Front Nutr 2021; 8:780226. [PMID: 34977124 PMCID: PMC8716858 DOI: 10.3389/fnut.2021.780226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022] Open
Abstract
Bioactive dietary polyphenols in grape (Vitis vinifera) have been used in Dietary Supplements (DSs) with the aim to prevent numerous diseases, including cardiovascular and neurodegenerative diseases, and to reduce depression and anxiety. Given prior recognition that DSs can be quality challenged from the purity, authentication, adulteration, and actual concentration of targeted bioactives, to ensure consumer health protection as well as the quality and safety of grape polyphenol-based DSs, the present investigation was aimed at establishing a comprehensive quality control (QC) approach for grape polyphenol-based DSs in support of a human clinical study. In this study, the manufactured grape seed polyphenol extract (GSPE) and trans-resveratrol (RSV) capsules and Concord Grape Juice (CGJ) along with the corresponding original drug materials were analyzed using the developed different liquid chromatography/UV-visible spectroscopy/mass spectrometry (LC/UV-Vis/MS) methods. The weight variation of GSPE and RSV capsules was also evaluated according to the US Pharmacopeia (USP) tests. The results indicate that the total identified polyphenol content in each grape seed extract (GSE) capsule/CGJ is very similar and all GSE/RSV capsules pass the content/weight uniformity test. Given the complexity of these and many botanical products from the issues of purity, quality, adulteration, consistency, and their coupling to the complex chemistry in each grape-derived botanical, quality assurance and the steps needed to ensure grape-derived DSs being well homogeneous and stable and containing the known and expected bioactives at specific concentration ranges are fundamental to any research study and in particular to a clinical trial. Each of these issues is essential to provide a solid foundation upon which clinical trials with botanicals can be conducted with the goal of realizing measurable mental health outcomes such as reducing depression and anxiety as well as understanding of their underlying biological mechanisms.
Collapse
Affiliation(s)
- Weiting Lyu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology and Center for Agricultural Food Ecosystems, Institute of Food, Nutrition & Health, Rutgers University, New Brunswick, NJ, United States
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | | | - Mario G. Ferruzzi
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Giulio M. Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
| | - James W. Murrough
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - James E. Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology and Center for Agricultural Food Ecosystems, Institute of Food, Nutrition & Health, Rutgers University, New Brunswick, NJ, United States
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology and Center for Agricultural Food Ecosystems, Institute of Food, Nutrition & Health, Rutgers University, New Brunswick, NJ, United States
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
81
|
Anthocyanidins Inhibit Growth and Chemosensitize Triple-Negative Breast Cancer via the NF-κB Signaling Pathway. Cancers (Basel) 2021; 13:cancers13246248. [PMID: 34944868 PMCID: PMC8699375 DOI: 10.3390/cancers13246248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Breast cancer is the most common female cancer diagnosed in the U.S. and the second most common cause of cancer death in women. Chemotherapeutics used to treat breast cancer often have side effects, which are sometimes life-threatening. Moreover, the tumors can develop resistance over time, making breast cancer treatment challenging. In this paper, we show that the oral administration of colored pigments isolated from bilberry/blueberry, called anthocyanidins (Anthos), significantly decrease MDA-MB-231 orthoxenograft tumor volume, inhibit the growth and metastasis of breast cancer, sensitize drug-resistant tumor cells, and exhibit a lower rate of lymph node and lung metastasis, compared to control. Our results also suggest regulation of cell-cycle progression and inhibition of NF-κB activation as mechanisms underpinning the anti-proliferative activity of Anthos in breast cancer. These mechanistic insights are expected to be valuable for clinical translation of berry Anthos, either alone or as adjuvant to chemotherapy, for the treatment of breast cancer patients. Abstract Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Due to the lack of drug-targetable receptors, chemotherapy is the only systemic treatment option. Although chemotherapeutic drugs respond initially in TNBC, many patients relapse and have a poor prognosis. Poor survival after metastatic relapse is largely attributed to the development of resistance to chemotherapeutic drugs. In this study, we show that bilberry-derived anthocyanidins (Anthos) can inhibit the growth and metastasis of TNBC and chemosensitize paclitaxel (PAC)-resistant TNBC cells by modulating the NF-κB signaling pathway, as well as metastatic and angiogenic mediators. Anthos administered orally significantly decreased MDA-MB-231 orthoxenograft tumor volume and led to lower rates of lymph node and lung metastasis, compared to control. Treatment of PAC-resistant MDA-MB-231Tx cells with Anthos and PAC in combination lowered the IC50 of PAC by nearly 20-fold. The combination treatment also significantly (p < 0.01) decreased the tumor volume in MDA-MB-231Tx orthoxenografts, compared to control. In contrast, Anthos and PAC alone were ineffective against MDA-MB-231Tx tumors. Our approach of using Anthos to inhibit the growth and metastasis of breast cancers, as well as to chemosensitize PAC-resistant TNBC, provides a highly promising and effective strategy for the management of TNBC.
Collapse
|
82
|
González-Villagra J, Pino R, Inostroza-Blancheteau C, Cartes P, Ribera-Fonseca A, Reyes-Díaz M. Pre-Harvest MeJA Application Counteracts the Deleterious Impact of Al and Mn Toxicity in Highbush Blueberry Grown in Acid Soils. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122730. [PMID: 34961201 PMCID: PMC8709121 DOI: 10.3390/plants10122730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Volcanic ash-derived soils are characterized by low pH (pH ≤ 5.5) with increased concentrations of aluminum (Al3+) and manganese (Mn2+), which decreases plant growth, fruit quality, and yield. Methyl jasmonate (MeJA) improves abiotic stress tolerance. Our work aimed to evaluate the application of MeJA's impact on the growth, antioxidant defense, and fruit quality of highbush blueberry grown under Al and Mn toxicity. A field assay was conducted with four-year-old bushes of highbush blueberry cultivar Legacy under eight treatments (Control, Al (87% of Al saturation), Mn (240 mg kg-1), and Al-Mn with and without MeJA application). Physiological, biochemical, and fruit quality parameters were measured. Growth rate significantly decreased with Al (20%), Mn (45%), and Al-Mn (40%). MeJA application recovered the growth rate. Photosynthetic parameters were not affected. Antioxidant activity increased under all treatments compared with controls, being higher with MeJA application. Total phenols (TP) were decreased in plants under Al (43%) and Mn (20%) compared with controls. MeJA application increased TP in all treatments. Fruits of bushes under Al and Mn toxicity with MeJA applications exhibited an increase in fruit firmness and weight, maintaining suitable contents of soluble solids. Our results provide insights about the beneficial effect of MeJA application on growth, antioxidant properties, and fruit quality of highbush blueberry plants grown in acid soils under Al and Mn toxicity.
Collapse
Affiliation(s)
- Jorge González-Villagra
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco P.O. Box 15-D, Chile; (J.G.-V.); (C.I.-B.)
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco P.O. Box 15-D, Chile
| | - Rocio Pino
- Carrera de Agronomía, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco P.O. Box 54-D, Chile;
| | - Claudio Inostroza-Blancheteau
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco P.O. Box 15-D, Chile; (J.G.-V.); (C.I.-B.)
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco P.O. Box 15-D, Chile
| | - Paula Cartes
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile;
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile
| | - Alejandra Ribera-Fonseca
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile;
- Centro de Fruticultura, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco P.O. Box 54-D, Chile
| | - Marjorie Reyes-Díaz
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile;
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile
| |
Collapse
|
83
|
de Aguiar Cipriano P, Kim H, Fang C, Paula Venancio V, Mertens-Talcott SU, Talcott ST. In vitro digestion, absorption and biological activities of acylated anthocyanins from purple sweet potatoes (Ipomoea batatas). Food Chem 2021; 374:131076. [PMID: 34915366 DOI: 10.1016/j.foodchem.2021.131076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/28/2022]
Abstract
Purple sweet potatoes (PSP) are widely used as color enhancers in food formulations. Investigations on the stability of PSP polyphenolics during simulated digestion and subsequent absorption in a Caco-2 cell monolayer model were accomplished. Measures of bioactive activities were also assessed in vitro. PSP whole polyphenolic extracts as a control (WC) were compared to isolates enriched in anthocyanins (AC) or non-anthocyanin phenolics (NAP). Anthocyanins were also alkali-hydrolyzed to remove acylated moieties. Compounds were subjected to simulated gastro-intestinal digestions where non-hydrolyzed anthocyanins showed higher stability compared to alkali-hydrolyzed. For many alkali-hydrolyzed anthocyanins, the transport through a Caco-2 cell monolayer was reduced. PSP fractions significantly increased the generation of reactive oxygen species in HT-29 cells and was suppressive in the CCD-18Co cells while down-regulated mRNA expression of inflammatory markers. Results indicate the importance of PSP composition and the effects of acyl moieties on anthocyanin stability and functional properties for food colors.
Collapse
Affiliation(s)
- Paula de Aguiar Cipriano
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843-2256, United States
| | - Hyemee Kim
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843-2256, United States
| | - Chuo Fang
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843-2256, United States
| | - Vinicius Paula Venancio
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843-2256, United States
| | - Susanne U Mertens-Talcott
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843-2256, United States
| | - Stephen T Talcott
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843-2256, United States.
| |
Collapse
|
84
|
Al Mamun A, Mimi AA, Aziz MA, Zaeem M, Ahmed T, Munir F, Xiao J. Role of pyroptosis in cancer and its therapeutic regulation. Eur J Pharmacol 2021; 910:174444. [PMID: 34453928 DOI: 10.1016/j.ejphar.2021.174444] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Pyroptosis is mainly considered a gasdermin-regulated cell death mechanism characterized by cellular lysis and the release of several pro-inflammatory factors. Nowadays, pyroptosis has notably been gained extensive attention from clinicians and researchers. However, current studies report that downregulation of pyroptosis-mediated cell death plays a significant role in developing multiple cancers. Increasing studies also suggest that pyroptosis can impact all stages of carcinogenesis. Inducing pyroptotic cellular death could be a promising therapeutic option for managing and regulating multiple cancers in the near future. Our current review highlights the molecular and morphological features of pyroptosis and its potential roles in various cancers. In addition, we have also highlighted the biological characteristics and significances of GSDMD and GSDME and their critical functions in cancer progression, management and regulation.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| | - Anjuman Ara Mimi
- Department of Pharmacy, Daffodil International University, Dhanmondi-27, Dhaka, 1209, Bangladesh
| | - Md Abdul Aziz
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Muhammad Zaeem
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Tanvir Ahmed
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China; Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| |
Collapse
|
85
|
Assefa AD, Hur OS, Hahn BS, Kim B, Ro NY, Rhee JH. Nutritional Metabolites of Red Pigmented Lettuce ( Lactuca sativa) Germplasm and Correlations with Selected Phenotypic Characters. Foods 2021; 10:foods10102504. [PMID: 34681553 PMCID: PMC8535348 DOI: 10.3390/foods10102504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
Lettuce is an important dietary source of bioactive phytochemicals. Screening and identification of the health beneficial metabolites and evaluating the relationships with phenotypic characters can help consumers adjust their preferences for lettuce plant types. Thus, we explored the major health-beneficial individual metabolites and antioxidant potential of 113 red pigmented lettuce leaf samples. A UV–Vis spectrophotometer and UPLC-DAD-QTOF/MS (TQ/MS) instruments were used for the identification and quantification of metabolites and antioxidant activity accordingly. The metabolites were quantified against their corresponding external standards. The contents of metabolites varied significantly among lettuce samples. Cyanidin 3-O-(6″-O-malonyl)glucoside (4.7~5013.6 μg/g DW), 2,3-di-O-caffeoyltartaric acid (337.1~19,957.2 μg/g DW), and quercetin 3-O-(6″-O-malonyl)glucoside (45.4~31,121.0 μg/g DW) were the most dominant in red pigmented lettuce samples among anthocyanins, hydroxycinnamoyl derivatives, and flavonols, respectively. Lettuces with dark and very dark red pigmented leaves, circular leaf shape, a strong degree of leaf undulation, and highly dense leaf incisions were found to have high levels of flavonoids and hydroxycinnamoyl derivatives. Principal component analysis was used to investigate similarities and/or differences between samples, and the partial least square discriminant analysis classified them into known groups. The key variables that contributed highly were determined. Our report provides critical data on the bioactive constituents of red pigmented lettuce to breeders developing varieties with enhanced bioactive compounds and to nutraceutical companies developing nutrient dense foods and pharmaceutical formulations.
Collapse
|
86
|
Briata IM, Paleari L, Rutigliani M, Petrera M, Caviglia S, Romagnoli P, Libera MD, Oppezzi M, Puntoni M, Siri G, Lazzeroni M, Howells L, Singh R, Brown K, DeCensi A. A Presurgical Study of Curcumin Combined with Anthocyanin Supplements in Patients with Colorectal Adenomatous Polyps. Int J Mol Sci 2021; 22:11024. [PMID: 34681684 PMCID: PMC8539981 DOI: 10.3390/ijms222011024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
Adenomatous polyps are precancerous lesions associated with a higher risk of colorectal cancer (CRC). Curcumin and anthocyanins have shown promising CRC-preventive activity in preclinical and epidemiological studies. The objective of this window-of-opportunity, proof-of principle trial was to evaluate the effect of curcumin combined with anthocyanin supplements on tissue biomarkers of colorectal adenomatous polyps. Eligible patients received either anthocyanin and curcumin supplementation or related matching placebo for 4-6 weeks before polyp removal. Adenomatous polyps and adjacent tissue biopsies were collected at baseline and after supplementation for immunohistochemical assessment of β-catenin, NF-kappa B (NF-κB), Ki-67, P53, and dysplasia. No differences were observed in baseline biomarker expression between normal and dysplastic tissues. The combination of anthocyanins and curcumin resulted in a significant borderline reduction of NF-κB immunohistochemistry (IHC) expression in adenoma tissue (geometric mean ratio (GMR): 0.72; 95% confidence interval (CI): 0.51-1.00; p-value: 0.05) and a trend to a reduction of Ki-67 (GMR: 0.73; 95% CI: 0.50-1.08; p-value: 0.11). No significant modulation of biomarkers in normal adjacent mucosa was observed. We concluded that the combined supplementation of anthocyanins and curcumin seems to lead to a potentially favorable modulation of tissue biomarkers of inflammation and proliferation in colon adenomas.
Collapse
Affiliation(s)
- Irene Maria Briata
- Division of Medical Oncology, E.O. Galliera Hospital, 16128 Genoa, Italy; (I.M.B.); (M.P.)
| | - Laura Paleari
- Research, Innovation and HTA, A.Li.Sa. Liguria Health Authority, 16121 Genoa, Italy
| | | | - Marilena Petrera
- Division of Medical Oncology, E.O. Galliera Hospital, 16128 Genoa, Italy; (I.M.B.); (M.P.)
| | - Silvia Caviglia
- Clinical Trial Unit, Office of the Scientific Director, E.O. Galliera Hospital, 16128 Genoa, Italy;
| | - Paola Romagnoli
- Division of Gastroenterology, E.O. Galliera Hospital, 16128 Genoa, Italy; (P.R.); (M.D.L.); (M.O.)
| | - Mauro Dalla Libera
- Division of Gastroenterology, E.O. Galliera Hospital, 16128 Genoa, Italy; (P.R.); (M.D.L.); (M.O.)
| | - Massimo Oppezzi
- Division of Gastroenterology, E.O. Galliera Hospital, 16128 Genoa, Italy; (P.R.); (M.D.L.); (M.O.)
| | - Matteo Puntoni
- Clinical & Epidemiological Research Unit, University Hospital of Parma, 43126 Parma, Italy;
| | - Giacomo Siri
- Division of Pathology, E.O. Galliera Hospital, 16128 Genoa, Italy; (M.R.); (G.S.)
| | - Matteo Lazzeroni
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Lynne Howells
- Leicester Cancer Research Centre, University of Leicester, Leicester LE1 7RH, UK; (L.H.); (R.S.); (K.B.)
| | - Raj Singh
- Leicester Cancer Research Centre, University of Leicester, Leicester LE1 7RH, UK; (L.H.); (R.S.); (K.B.)
| | - Karen Brown
- Leicester Cancer Research Centre, University of Leicester, Leicester LE1 7RH, UK; (L.H.); (R.S.); (K.B.)
| | - Andrea DeCensi
- Division of Medical Oncology, E.O. Galliera Hospital, 16128 Genoa, Italy; (I.M.B.); (M.P.)
- Wolfson Institute of Preventive Medicine, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
87
|
Shi N, Chen X, Chen T. Anthocyanins in Colorectal Cancer Prevention Review. Antioxidants (Basel) 2021; 10:1600. [PMID: 34679735 PMCID: PMC8533526 DOI: 10.3390/antiox10101600] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is still a big health burden worldwide. Nutrition and dietary factors are known to affect colorectal cancer development and prognosis. The protective roles of diets rich in fruits and vegetables have been previously reported to contain high levels of cancer-fighting phytochemicals. Anthocyanins are the most abundant flavonoid compounds that are responsible for the bright colors of most blue, purple, and red fruits and vegetables, and have been shown to contribute to the protective effects of fruits and vegetables against cancer and other chronic diseases. Berries and grapes are the most common anthocyanin-rich fruits with antitumor effects. The antitumor effects of anthocyanins are determined by their structures and bioavailability as well as how they are metabolized. In this review, we aimed to discuss the preventive as well as therapeutic potentials of anthocyanins in CRC. We summarized the antitumor effects of anthocyanins and the mechanisms of action. We also discussed the potential pharmaceutical application of anthocyanins in practice.
Collapse
Affiliation(s)
- Ni Shi
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, 1800 Cannon Drive, 13th Floor, Columbus, OH 43210, USA;
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George St., Durham, NC 27707, USA;
| | - Tong Chen
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, 1800 Cannon Drive, 13th Floor, Columbus, OH 43210, USA;
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
88
|
Li D, He Y, Li S, Shi S, Li L, Liu Y, Chen H. Genome-wide characterization and expression analysis of AP2/ERF genes in eggplant (Solanum melongena L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:492-503. [PMID: 34425394 DOI: 10.1016/j.plaphy.2021.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 05/20/2023]
Abstract
The AP2/ERF (APETALA2/Ethylene Response Factor) transcription factor superfamily plays crucial roles in a slew of physiological processes, such as plant growth and development, stress response, and secondary metabolites biosynthesis. Eggplant, especially the one rich with anthocyanins, is an economically important horticultural vegetable cultivated worldwide. In this study, we comprehensively analyzed the putative AP2/ERF gene family members and their response to abiotic stress in eggplant. As per the phylogenetic, conserved domains, and motif analysis, 178 AP2/ERF genes in this study belonged to five subfamilies. Chromosomal distributions analysis elucidated stochastic distribution of 178 putative SmAP2/ERF genes across the twelve chromosomes of eggplant. Expression profiles of sixteen selected AP2/ERF genes response to low temperature, drought, salt, abscisic acid, and ethylene treatments were analyzed, which revealed the involvement of SmAP2/ERF genes in diverse signaling pathways. In addition, we integrated RNA-Seq data on anthocyanin biosynthesis in eggplant with yeast one-hybrid and dual-luciferase assays and identified involvement of the SmAP2/ERF genes (Smechr0902114.1 and Smechr1102075.1) in the regulation of anthocyanin biosynthesis. This study will enable further functional characterization of AP2/ERF genes in eggplant and extend the current understanding of the role played by AP2/ERF genes in anthocyanin biosynthesis regulation.
Collapse
Affiliation(s)
- Dalu Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - YongJun He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shaohang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Suli Shi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Linzhi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
89
|
Zhao L, Zhou N, Zhang H, Pan F, Ai X, Wang Y, Hao S, Wang C. Cyanidin-3-O-glucoside and its metabolite protocatechuic acid ameliorate 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induced cytotoxicity in HepG2 cells by regulating apoptotic and Nrf2/p62 pathways. Food Chem Toxicol 2021; 157:112582. [PMID: 34582963 DOI: 10.1016/j.fct.2021.112582] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 08/27/2021] [Accepted: 09/22/2021] [Indexed: 01/03/2023]
Abstract
The present study investigated the protective effects and mechanism of action of cyanidin-3-O-glucoside (C3G) and its major metabolite protocatechuic acid (PCA) against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induced cytotoxicity in HepG2 cells. The results demonstrated that C3G and PCA dose-dependently suppressed PhIP-induced mutation in Salmonella typhimurium TA98, and inhibited PhIP-induced cytotoxicity and apoptosis in HepG2 cells. Western blot analysis indicated that C3G and PCA minimized PhIP-induced cell damage by reversing the abnormal expression of Bax/Bcl-2, Cytochrome c, cleaved Caspase-3, XIAP, Nrf2, HO-1, LC3 and p62 involved in intrinsic apoptotic and Nrf2/p62 pathways. Molecular docking results revealed that C3G and PCA were able to interfere with Nrf2 signaling and apoptotic cascade through binding to Keap1 and Bcl-2. Moreover, the protective effect of C3G was stronger than that of PCA. These findings suggested that dietary consumption of food sources rich in C3G can fight against the health risks of heterocyclic aromatic amines.
Collapse
Affiliation(s)
- Lei Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Na Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Huimin Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Fei Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Xin Ai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Yong Wang
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, China
| | - Shuai Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
90
|
Kamali-Gharamaleki M, Sadeghi B, Rouhani M, Mirjafary Z. Preparation and Characterization of Novel Nano-cellulose-OSO 3H Prepared from the Almond Shell as a Catalyst and Its Application in Synthesis of 2-Amino-3-Phenylsulfonyl-4-Aryl-4 H-Benzo[ h]Chromen Derivatives. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1984261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Bahareh Sadeghi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Morteza Rouhani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zohreh Mirjafary
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
91
|
Malvidin Protects against and Repairs Peptic Ulcers in Mice by Alleviating Oxidative Stress and Inflammation. Nutrients 2021; 13:nu13103312. [PMID: 34684313 PMCID: PMC8537945 DOI: 10.3390/nu13103312] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
Peptic ulcer episodes cause damage to the stomach and intestine, with inflammatory cell infiltration and oxidative stress as the main players. In this study, we investigated the potential of anthocyanidin malvidin for preventive and curative peptic ulcer treatment. The anthocyanidin effects were examined in gastric ulcer mouse models induced by ethanol, non-steroidal anti-inflammatory drugs (NSAIDs), ischemia-reperfusion (IR), acetic acid and duodenal ulcer induced by polypharmacy. Expression levels of oxidative and inflammatory genes were measured to investigate the mechanism of anthocyanin activity. At a dose of 5 mg·kg−1, Malvidin prevented gastric ulcer induction by ethanol, NSAID and repaired the tissue after 6 days of IR. Moreover, the anthocyanidin accelerated the healing of acetic acid-induced ulcer, increased the gene expression of EGF and COX-1, and downregulated MMP-9. Anthocyanin treatment mitigated the effect of polypharmacy on inflammation and oxidative stress observed in the intestine. Additionally, the compound downregulated cytokine expression and TLR4 and upregulated HMOX-1 and IL-10, exhibiting protective activity in the mouse gut. Malvidin thus prevented gastric and duodenal ulcers due to prominent anti-inflammatory and antioxidative effects on the gastrointestinal tract that were related to gene expression modulation and an increase in endogenous defense mechanisms.
Collapse
|
92
|
Dung CD, Wallace HM, Bai SH, Ogbourne SM, Trueman SJ. Cross-pollination affects fruit colour, acidity, firmness and shelf life of self-compatible strawberry. PLoS One 2021; 16:e0256964. [PMID: 34492053 PMCID: PMC8423264 DOI: 10.1371/journal.pone.0256964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/20/2021] [Indexed: 12/03/2022] Open
Abstract
Cross-pollination affects the fruit characteristics of many crops but the effects of cross-pollination on fruit quality of strawberry (Fragaria × ananassa Duch.) are poorly known. This study determined how cross-pollination affects fruit quality of the strawberry cultivar, Redlands Joy, under controlled environment conditions. Plants were allocated to one of four treatments, with all flowers on each plant receiving either: (1) unassisted self-pollination (Autogamy); (2) hand-pollination with Redlands Joy pollen (Self); (3) hand-pollination with cross-pollen from a small-fruited cultivar (Sugarbaby); or (4) hand-pollination with cross-pollen from a large-fruited cultivar (Rubygem). Cross-pollination did not significantly affect plant yield or fruit mass, size, shape, firmness or shelf life. However, cross-pollination affected fruit colour and taste attributes. Cross-pollinated fruit were 3%–5% darker than self-pollinated fruit. They also had 26%–34% lower acidity and 43%–58% higher Brix:acid ratio. Cross-pollination by Sugarbaby increased fruit P, K, Ca, Fe and Mn, but decreased B, Cu and Zn, concentrations. Cross-pollination by Rubygem increased fruit Mn, but decreased K and Na, concentrations and reduced shelf life. Fruit mass, length, diameter and firmness within all treatments increased with increasing numbers of fertilized seeds per fruit. Hand self-pollinated fruit had a higher percentage of fertilized seeds than fruit arising from autogamy and they were also darker, redder, firmer, and had a longer shelf life, higher protein concentration, and lower Al and Na concentrations. The results indicate that strawberry fruit quality can be affected by both the source of pollen and the number of stigmas pollinated.
Collapse
Affiliation(s)
- Cao Dinh Dung
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Potato, Vegetable and Flower Research Center – Institute of Agricultural Science for Southern Viet Nam, Thai Phien Village, Da Lat, Lam Dong, Viet Nam
| | - Helen M. Wallace
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Food Futures Platform, Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - Shahla Hosseini Bai
- Food Futures Platform, Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - Steven M. Ogbourne
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Stephen J. Trueman
- Food Futures Platform, Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
93
|
Chavda VP, Ertas YN, Walhekar V, Modh D, Doshi A, Shah N, Anand K, Chhabria M. Advanced Computational Methodologies Used in the Discovery of New Natural Anticancer Compounds. Front Pharmacol 2021; 12:702611. [PMID: 34483905 PMCID: PMC8416109 DOI: 10.3389/fphar.2021.702611] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Natural chemical compounds have been widely investigated for their programmed necrosis causing characteristics. One of the conventional methods for screening such compounds is the use of concentrated plant extracts without isolation of active moieties for understanding pharmacological activity. For the last two decades, modern medicine has relied mainly on the isolation and purification of one or two complicated active and isomeric compounds. The idea of multi-target drugs has advanced rapidly and impressively from an innovative model when first proposed in the early 2000s to one of the popular trends for drug development in 2021. Alternatively, fragment-based drug discovery is also explored in identifying target-based drug discovery for potent natural anticancer agents which is based on well-defined fragments opposite to use of naturally occurring mixtures. This review summarizes the current key advancements in natural anticancer compounds; computer-assisted/fragment-based structural elucidation and a multi-target approach for the exploration of natural compounds.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.,ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Vinayak Walhekar
- Department of Medicinal Chemistry, Bharati Vidyapeeth's Poona College of Pharmacy, Pune, India
| | - Dharti Modh
- Department of Medicinal Chemistry, Bharati Vidyapeeth's Poona College of Pharmacy, Pune, India
| | - Avani Doshi
- Department of Chemistry, SAL Institute of Pharmacy, Ahmedabad, India
| | - Nirav Shah
- Department of Pharmaceutics, SAL Institute of Pharmacy, Ahmedabad, India
| | - Krishna Anand
- Faculty of Health Sciences and National Health Laboratory Service, Department of Chemical Pathology, School of Pathology, University of the Free State, Bloemfontein, South Africa
| | - Mahesh Chhabria
- Department of Pharmaceutical Chemistry, L.M. College of Pharmacy, Ahmedabad, India
| |
Collapse
|
94
|
Evaluation of the Anti-cancer Effect of Syzygium cumini Ethanolic Extract on HT-29 Colorectal Cell Line. J Gastrointest Cancer 2021; 52:575-581. [PMID: 32506290 DOI: 10.1007/s12029-020-00439-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION GLOBOCAN 2018 data indicates the incidence and mortality of colorectal cancer that is the third lethal and fourth most diagnosed cancer in the world. There has been significant progress in cancer therapy while the ability of cancerous cells to survive is one of the main challenges in cancer research. Still, conventional therapies like surgery, chemo, and radiotherapy are widely used options. Therefore, efforts put in action by researchers in the field of drug design, molecular genetics, and biomedicine to come across safer substances with the minimum unwanted side effects to be utilized in cancer treatment. Plant-derived compounds are ideal options as they might have a better outcome with minimal side effects. METHODS In the current research, the anti-cancer effect of Syzygium cumini ethanolic extract (SCE) was evaluated on the HT-29 colorectal cancer cell line. To this end, the apoptosis rate and proliferation of HT-29 cell lines after exposure to SCE were investigated through MTT, and other methods including DNA damage assessment and scratch test also employed to evaluate the metastasis and cell migration capacity of HT-29 after treatment with SCE. Behind that, expression ration of genes involved in the process of apoptosis has been studied, including Bax and Bcl-2 that were measured by qRT-PCR. RESULTS Based on the MTT test, SCE suppresses the growth of HT-29 cell lines drastically. Expression analysis of the ratio of desired genes (Bax: Bcl-2) also changed significantly after treatment by SCE. DNA damage test confirmed DNA lost its integrity and gone through apoptosis, and wound healing suggests the lower change of metastasis after treatment by SCE. CONCLUSION The outcome of this study suggests that Syzygium cumini might be contemplating as a future chemotherapeutic agent and suitable candidate for in vivo trial.
Collapse
|
95
|
Genetic Diversity of Phenotypic and Biochemical Traits in VIR Radish ( Raphanus sativus L.) Germplasm Collection. PLANTS 2021; 10:plants10091799. [PMID: 34579332 PMCID: PMC8468841 DOI: 10.3390/plants10091799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 02/05/2023]
Abstract
Small radish and radish are economically important root crops that represent an integral part of a healthy human diet. The world collection of Raphanus L. root crops, maintained in the VIR genebank, includes 2810 accessions from 75 countries around the world, of which 2800 (1600 small radish, 1200 radish) belong to R. sativus species, three to R. raphanistrum, three to R. landra, and four to R. caudatus. It is necessary to systematically investigate the historical and modern gene pool of root-bearing plants of R. sativus and provide new material for breeding. The material for our research was a set of small radish and radish accessions of various ecological groups and different geographical origin, fully covering the diversity of the species. The small radish subset included 149 accessions from 37 countries, belonging to 13 types of seven varieties of European and Chinese subspecies. The radish subset included 129 accessions from 21 countries, belonging to 18 types of 11 varieties of European, Chinese, and Japanese subspecies. As a result of the evaluation of R. sativus accessions according to phenological, morphological, and biochemical analyses, a wide variation of these characteristics was revealed, which is due to the large genetic diversity of small radish and radish of various ecological and geographical origins. The investigation of the degree of variation regarding phenotypic and biochemical traits revealed adaptive stable and highly variable characteristics of R. sativus accessions. Such insights are crucial for the establishment and further use of trait collections. Trait collections facilitate germplasm use and contribute significantly to the preservation of genetic diversity of the gene pool.
Collapse
|
96
|
Sindhu RK, Verma R, Salgotra T, Rahman MH, Shah M, Akter R, Murad W, Mubin S, Bibi P, Qusti S, Alshammari EM, Batiha GES, Tomczyk M, Al-kuraishy HM. Impacting the Remedial Potential of Nano Delivery-Based Flavonoids for Breast Cancer Treatment. Molecules 2021; 26:5163. [PMID: 34500597 PMCID: PMC8434139 DOI: 10.3390/molecules26175163] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/06/2021] [Accepted: 08/21/2021] [Indexed: 11/23/2022] Open
Abstract
Breast cancer persists as a diffuse source of cancer despite persistent detection and treatment. Flavonoids, a type of polyphenol, appear to be a productive option in the treatment of breast cancer, because of their capacity to regulate the tumor related functions of class of compounds. Plant polyphenols are flavonoids that appear to exhibit properties which are beneficial for breast cancer therapy. Numerous epidemiologic studies have been performed on the dynamic effect of plant polyphenols in the prevention of breast cancer. There are also subclasses of flavonoids that have antioxidant and anticarcinogenic activity. These can regulate the scavenging activity of reactive oxygen species (ROS) which help in cell cycle arrest and suppress the uncontrolled division of cancer cells. Numerous studies have also been performed at the population level, one of which reported a connection between cancer risk and intake of dietary flavonoids. Breast cancer appears to show intertumoral heterogeneity with estrogen receptor positive and negative cells. This review describes breast cancer, its various factors, and the function of flavonoids in the prevention and treatment of breast cancer, namely, how flavonoids and their subtypes are used in treatment. This review proposes that cancer risk can be reduced, and that cancer can be even cured by improving dietary intake. A large number of studies also suggested that the intake of fruit and vegetables is associated with reduced breast cancer and paper also includes the role and the use of nanodelivery of flavonoids in the healing of breast cancer. In addition, the therapeutic potential of orally administered phyto-bioactive compounds (PBCs) is narrowed because of poor stability and oral bioavailability of compounds in the gastrointestinal tract (GIT), and solubility also affects bioavailability. In recent years, creative nanotechnology-based approaches have been advised to enhance the activity of PBCs. Nanotechnology also offers the potential to become aware of disease at earlier stages, such as the detection of hidden or unconcealed metastasis colonies in patients diagnosed with lung, colon, prostate, ovarian, and breast cancer. However, nanoformulation-related effects and safety must not be overlooked. This review gives a brief discussion of nanoformulations and the effect of nanotechnology on herbal drugs.
Collapse
Affiliation(s)
- Rakesh K. Sindhu
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.V.); (T.S.)
| | - Rishu Verma
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.V.); (T.S.)
| | - Twinkle Salgotra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.V.); (T.S.)
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon, Wonju 26426, Korea;
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (W.M.); (P.B.)
| | - Rokeya Akter
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon, Wonju 26426, Korea;
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (W.M.); (P.B.)
| | - Sidra Mubin
- Department of Botany, Hazara University Mansehra, Mansehra 21310, Pakistan;
| | - Parveen Bibi
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (W.M.); (P.B.)
| | - Safaa Qusti
- Biochemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah 22230, Saudi Arabia;
| | - Eida M. Alshammari
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il 55211, Saudi Arabia;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Al Beheira, Egypt;
| | - Michał Tomczyk
- Department of Pharmacognosy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland;
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al Mustanysiriyia University, Baghdad 10011, Iraq;
| |
Collapse
|
97
|
Zhao X, Yuan Z. Anthocyanins from Pomegranate (Punica granatum L. ) and Their Role in Antioxidant Capacities in Vitro. Chem Biodivers 2021; 18:e2100399. [PMID: 34388293 DOI: 10.1002/cbdv.202100399] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/12/2021] [Indexed: 11/07/2022]
Abstract
As phytochemicals, anthocyanins are not only responsible for the diverse colors in nature, but are associated with broad-spectrum health-promoting effects for human beings. Pomegranate is abundant in anthocyanins which possess high antioxidant capacities. However, the pomegranate anthocyanins profile and their contributions to antioxidant capacities are not fully depicted. The purpose of this paper is to review anthocyanins from pomegranate as important antioxidants. Total anthocyanin content (TAC) and six major components vary greatly with intrinsic and extrinsic factors. In pomegranate, anthocyanins mainly acted as primary antioxidants, while their action as secondary antioxidants were not conclusive. The antioxidant potentials of anthocyanins were significantly affected by factors especially chemical structure and detection assays in vitro. The current knowledge may provide insights into potential applications for pomegranate anthocyanins based on their antioxidant activities.
Collapse
Affiliation(s)
- Xueqing Zhao
- Nanjing Forestry University, College of Forestry, 159 Longpan Rd., 210037, Nanjing, CHINA
| | - Zhaohe Yuan
- Nanjing Forestry University, College of Forestry, 159 Longpan Rd., 210037, Nanjing, CHINA
| |
Collapse
|
98
|
Xiang M, Ding W, Wu C, Wang W, Ye S, Cai C, Hu X, Wang N, Bai W, Tang X, Zhu C, Yu X, Xu Q, Zheng Y, Ding Z, Lin C, Zhu Q. Production of purple Ma bamboo (Dendrocalamus latiflorus Munro) with enhanced drought and cold stress tolerance by engineering anthocyanin biosynthesis. PLANTA 2021; 254:50. [PMID: 34386845 DOI: 10.1007/s00425-021-03696-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Overexpression of the leaf color (Lc) gene in Ma bamboo substantially increased the accumulation level of anthocyanin, and improved plant tolerance to cold and drought stresses, probably due to the increased antioxidant capacity. Most bamboos, including Ma bamboo (Dendrocalamus latiflorus Munro), are naturally evergreen and sensitive to cold and drought stresses, while it's nearly impossible to make improvements through conventual breeding due to their long and irregular flowering habit. Moreover, few studies have reported bamboo germplasm innovation through genetic engineering as bamboo genetic transformation remains difficult. In this study, we have upregulated anthocyanin biosynthesis in Ma bamboo, to generate non-green Ma bamboo with increased abiotic stress tolerance. By overexpressing the maize Lc gene, a bHLH transcription activator involved in the anthocyanin biosynthesis in Ma bamboo, we generated purple bamboos with increased anthocyanin levels including cyanidin-3-O-rutinoside, peonidin 3-O-rutinoside, and an unknown cyanidin pentaglycoside derivative. The expression levels of 9 anthocyanin biosynthesis genes were up-regulated. Overexpression of the Lc gene improved the plant tolerance to cold and drought stress, probably due to increased antioxidant capacity. The levels of the cold- and drought-related phytohormone jasmonic acid in the transgenic plants were also enhanced, which may also contribute to the plant stress-tolerant phenotypes. High anthocyanin accumulation level did not affect plant growth. Transcriptomic analysis showed higher expressions of genes involved in the flavonoid pathway in Lc transgenic bamboos compared with those in wild-type ones. The anthocyanin-rich bamboos generated here provide an example of ornamental and multiple agronomic trait improvements by genetic engineering in this important grass species.
Collapse
Affiliation(s)
- Mengqi Xiang
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - WenSha Ding
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chu Wu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjia Wang
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shanwen Ye
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Changyang Cai
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Hu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Nannan Wang
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiyuan Bai
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoshan Tang
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Caiping Zhu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomin Yu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yushan Zheng
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Chentao Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Qiang Zhu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
99
|
Goodman C, Lyon KN, Scotto A, Smith C, Sebrell TA, Gentry AB, Bala G, Stoner GD, Bimczok D. A High-Throughput Metabolic Microarray Assay Reveals Antibacterial Effects of Black and Red Raspberries and Blackberries against Helicobacter pylori Infection. Antibiotics (Basel) 2021; 10:845. [PMID: 34356766 PMCID: PMC8300682 DOI: 10.3390/antibiotics10070845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori infection is commonly treated with a combination of antibiotics and proton pump inhibitors. However, since H. pylori is becoming increasingly resistant to standard antibiotic regimens, novel treatment strategies are needed. Previous studies have demonstrated that black and red berries may have antibacterial properties. Therefore, we analyzed the antibacterial effects of black and red raspberries and blackberries on H. pylori. Freeze-dried powders and organic extracts from black and red raspberries and blackberries were prepared, and high-performance liquid chromatography was used to measure the concentrations of anthocyanins, which are considered the major active ingredients. To monitor antibiotic effects of the berry preparations on H. pylori, a high-throughput metabolic growth assay based on the Biolog system was developed and validated with the antibiotic metronidazole. Biocompatibility was analyzed using human gastric organoids. All berry preparations tested had significant bactericidal effects in vitro, with MIC90 values ranging from 0.49 to 4.17%. Antimicrobial activity was higher for extracts than powders and appeared to be independent of the anthocyanin concentration. Importantly, human gastric epithelial cell viability was not negatively impacted by black raspberry extract applied at the concentration required for complete bacterial growth inhibition. Our data suggest that black and red raspberry and blackberry extracts may have potential applications in the treatment and prevention of H. pylori infection but differ widely in their MICs. Moreover, we demonstrate that the Biolog metabolic assay is suitable for high-throughput antimicrobial susceptibility screening of H. pylori.
Collapse
Affiliation(s)
- Candace Goodman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (C.G.); (G.B.)
| | - Katrina N. Lyon
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| | - Aitana Scotto
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| | - Cyra Smith
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| | - Thomas A. Sebrell
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| | - Andrew B. Gentry
- Bozeman Health GI Clinic, Bozeman Health Deaconess Hospital, Bozeman, MT 59715, USA;
| | - Ganesh Bala
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (C.G.); (G.B.)
| | - Gary D. Stoner
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| |
Collapse
|
100
|
Yang X, Wang J, Xia X, Zhang Z, He J, Nong B, Luo T, Feng R, Wu Y, Pan Y, Xiong F, Zeng Y, Chen C, Guo H, Xu Z, Li D, Deng G. OsTTG1, a WD40 repeat gene, regulates anthocyanin biosynthesis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:198-214. [PMID: 33884679 DOI: 10.1111/tpj.15285] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Anthocyanins play an important role in the growth of plants, and are beneficial to human health. In plants, the MYB-bHLH-WD40 (MBW) complex activates the genes for anthocyanin biosynthesis. However, in rice, the WD40 regulators remain to be conclusively identified. Here, a crucial anthocyanin biosynthesis gene was fine mapped to a 43.4-kb genomic region on chromosome 2, and a WD40 gene OsTTG1 (Oryza sativa TRANSPARENT TESTA GLABRA1) was identified as ideal candidate gene. Subsequently, a homozygous mutant (osttg1) generated by CRISPR/Cas9 showed significantly decreased anthocyanin accumulation in various rice organs. OsTTG1 was highly expressed in various rice tissues after germination, and it was affected by light and temperature. OsTTG1 protein was localized to the nucleus, and can physically interact with Kala4, OsC1, OsDFR and Rc. Furthermore, a total of 59 hub transcription factor genes might affect rice anthocyanin biosynthesis, and LOC_Os01g28680 and LOC_Os02g32430 could have functional redundancy with OsTTG1. Phylogenetic analysis indicated that directional selection has driven the evolutionary divergence of the indica and japonica OsTTG1 alleles. Our results suggest that OsTTG1 is a vital regulator of anthocyanin biosynthesis, and an important gene resource for the genetic engineering of anthocyanin biosynthesis in rice and other plants.
Collapse
Affiliation(s)
- Xinghai Yang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Junrui Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, 530007, China
| | - Xiuzhong Xia
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zongqiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jie He
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Baoxuan Nong
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Tongping Luo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Rui Feng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yanyan Wu
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Faqian Xiong
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yu Zeng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Can Chen
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Hui Guo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhijian Xu
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Guofu Deng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| |
Collapse
|