51
|
Troha K, Ayres JS. Cooperative defenses during enteropathogenic infection. Curr Opin Microbiol 2022; 65:123-130. [PMID: 34847524 PMCID: PMC8818259 DOI: 10.1016/j.mib.2021.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023]
Abstract
During their co-evolution with pathogens, hosts acquired defensive health strategies that allow them to maintain their health or promote recovery when challenged with infections. The cooperative defense system is a largely unexplored branch of these evolved defense strategies. Cooperative defenses limit physiological damage and promote health without having a negative impact on a pathogen's ability to survive and replicate within the host. Here, we review recent discoveries in the new field of cooperative defenses using the model pathogens Citrobacter rodentium and Salmonella enterica. We discuss not only host-encoded but also pathogen-encoded mechanisms of cooperative defenses. Cooperative defenses remain an untapped resource in clinical medicine. With a global pandemic exacerbated by a lack of vaccine access and a worldwide rise in antibiotic resistance, the study of cooperative defenses offers an opportunity to safeguard health in the face of pathogenic infection.
Collapse
Affiliation(s)
- Katia Troha
- Molecular and Systems Physiology Lab, Gene Expression Lab, Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Janelle S. Ayres
- Molecular and Systems Physiology Lab, Gene Expression Lab, Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA,Correspondence:
| |
Collapse
|
52
|
Mitra S, Anand U, Jha NK, Shekhawat MS, Saha SC, Nongdam P, Rengasamy KRR, Proćków J, Dey A. Anticancer Applications and Pharmacological Properties of Piperidine and Piperine: A Comprehensive Review on Molecular Mechanisms and Therapeutic Perspectives. Front Pharmacol 2022; 12:772418. [PMID: 35069196 PMCID: PMC8776707 DOI: 10.3389/fphar.2021.772418] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Piperine and piperidine are the two major alkaloids extracted from black pepper (Piper nigrum); piperidine is a heterocyclic moiety that has the molecular formula (CH2)5NH. Over the years, many therapeutic properties including anticancer potential of these two compounds have been observed. Piperine has therapeutic potential against cancers such as breast cancer, ovarian cancer, gastric cancer, gliomal cancer, lung cancer, oral squamous, chronic pancreatitis, prostate cancer, rectal cancer, cervical cancer, and leukemia. Whereas, piperidine acts as a potential clinical agent against cancers, such as breast cancer, prostate cancer, colon cancer, lung cancer, and ovarian cancer, when treated alone or in combination with some novel drugs. Several crucial signalling pathways essential for the establishment of cancers such as STAT-3, NF-κB, PI3k/Aκt, JNK/p38-MAPK, TGF-ß/SMAD, Smac/DIABLO, p-IκB etc., are regulated by these two phytochemicals. Both of these phytochemicals lead to inhibition of cell migration and help in cell cycle arrest to inhibit survivability of cancer cells. The current review highlights the pharmaceutical relevance of both piperine and piperidine against different types of cancers.
Collapse
Affiliation(s)
- Sicon Mitra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Mahipal S Shekhawat
- Department of Plant Biology and Biotechnology, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Lawspet, India
| | - Suchismita Chatterjee Saha
- Department of Zoology, Nabadwip Vidyasagar College (Affiliated to the University of Kalyani), Nabadwip, India
| | | | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Sovenga, South Africa
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Abhijit Dey
- Ethnopharmacology and Natural Product Research Laboratory, Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
53
|
Zhang X, Zhang H, Liao Z, Zhang J, Liang H, Wang W, Yu J, Dong K. SHC4 promotes tumor proliferation and metastasis by activating STAT3 signaling in hepatocellular carcinoma. Cancer Cell Int 2022; 22:24. [PMID: 35033067 PMCID: PMC8760801 DOI: 10.1186/s12935-022-02446-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/01/2022] [Indexed: 12/24/2022] Open
Abstract
Background The Src homology and collagen 4 (SHC4) is an important intracellular adaptor protein that has been shown to play a pro-cancer role in melanoma and glioma. However, the biological function and detailed mechanisms of SHC4 in hepatocellular carcinoma progression are unclear. This study aimed to evaluate the potential prognostic and treatment value of SHC4 in patients with HCC. Methods The expression status of SHC4 in HCC tissues were investigated by immunohistochemistry and western blotting. Clinical significance of SHC4 was evaluated in a large cohort of HCC patients. The effects of SHC4 repression or overexpression on migration, invasion, and tumor growth were detected by colony formation assay, wound healing, transwell assays, and xenograft assay. Cell cycle and EMT-related proteins were detected by western blotting and immunofluorescence. In addition, the molecular regulation between SHC4 and STAT3 signaling in HCC were discovered by western blotting, immunofluorescence and xenograft assay. Results SHC4 was overexpressed in HCC compared to adjacent normal liver tissues and increased SHC4 expression was associated with high AFP level, incomplete tumor encapsulation, poor tumor differentiation and poor prognosis. SHC4 was shown to enhance cell proliferation, colony formation, cells migration and invasion in vitro, and promotes cell cycle progression and EMT process in HCC cells. Tumor xenograft model assay confirmed the oncogenic role of SHC4 in tumorigenicity in nude mice. Moreover, activation of STAT3 signaling was found in the SHC4 overexpressed HCC cells and HCC tissues. Further intervention of STAT3 confirmed STAT3 as an important signaling pathway for the oncogenic role of SHC4 in HCC. Conclusions Together, our results reveal that SHC4 activates STAT3 signaling to promote HCC progression, which may provide new clinical ideas for the treatment of HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02446-9.
Collapse
Affiliation(s)
- Xin Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Jiacheng Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jia Yu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China. .,Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Keshuai Dong
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China. .,Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
54
|
Fathi F, Saidi RF, Banafshe HR, Arbabi M, Lotfinia M, Motedayyen H. Changes in immune profile affect disease progression in hepatocellular carcinoma. Int J Immunopathol Pharmacol 2022; 36:3946320221078476. [PMID: 35226515 PMCID: PMC8891922 DOI: 10.1177/03946320221078476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective: Hepatocellular carcinoma (HCC) as a chronic liver condition is largely associated with immune responses. Previous studies have revealed that different subsets of lymphocytes play fundamental roles in controlling or improving the development and outcome of solid tumors like HCC. Hence, this study aimed to investigate whether immune system changes were related to disease development in HCC patients. Methods: Peripheral blood mononuclear cells were isolated from 30 HCC patients and 30 healthy volunteers using Ficoll density centrifugation. The isolated cells were stained with different primary antibodies and percentages of different immune cells were determined by flow cytometry. Results: HCC patients indicated significant reductions in the numbers of CD4+ cells, Tbet+IFNγ+cells, and GATA+IL-4+cells in peripheral blood in comparison with healthy individuals (p < 0.05). There was no significant change in IL-17+RORγt+cells between patient and healthy groups. In contrast, Foxp3+CD127lowcell frequency was significantly higher in patients than healthy subjects (p < 0.0001). The numbers of Th1, Th2, and Th17 cells were significantly lower in HCC patients than healthy control (p < 0.0001), although the reduction in Th2 cell numbers was not statistically significant. On the contrary, Treg percentage showed a significant increase in patients compared to healthy subjects (p < 0.0001). Other data revealed that Th1, Th2, and Th17 cell frequencies were significantly higher in healthy individuals than patients with different TNM stages of HCC, with the exception of Th2 in patients with stage II HCC (p < 0.01-0.05). Treg percentage was significantly increased in patients with different TNM stages (p < 0.0001). Among all CD4+ T cells, the frequency of Th2 cell was significantly associated with TNM stages of HCC (p < 0.05). Conclusion: Our data provide further evidence to show that immune changes may participate in determining HCC progression and disease outcome. However, it should be mentioned that more investigations are needed to clarify our results and explain possible impacts of other immune cells on the pathogenesis of HCC.
Collapse
Affiliation(s)
- Farshid Fathi
- Department of Immunology, School of Medicine, 48455Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza F Saidi
- Division of Transplant Services, Department of Surgery, 12302SUNY Upstate Medical University Syracuse, Syracuse, NY, USA
| | - Hamid Reza Banafshe
- Physiology Research Center, 48462Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Arbabi
- Department of Medical Parasitology, 48462Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Lotfinia
- Physiology Research Center, 48462Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, 48462Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
55
|
3-Formylchromone Counteracts STAT3 Signaling Pathway by Elevating SHP-2 Expression in Hepatocellular Carcinoma. BIOLOGY 2021; 11:biology11010029. [PMID: 35053027 PMCID: PMC8773260 DOI: 10.3390/biology11010029] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary STAT3 acts as a potential tumor-promoting transcription factor that gets aberrantly activated in several types of human cancers and plays a crucial role in tumor progression and metastasis. STAT3 expression has been correlated with a dismal prognosis and poor survival. In this study, we have demonstrated that 3-formylchromone inhibits the STAT3 signaling in HCC cells by modulating SHP-2 expression. It also effectively diminished the tumor growth and subsequent reduction in metastasis in the HCC mouse model without exhibiting any major side effects. Abstract Hepatocellular carcinoma (HCC) is one of the leading cancers that contribute to a large number of deaths throughout the globe. The signal transducer and activator of transcription 3 (STAT3) is a tumorigenic protein that is overactivated in several human malignancies including HCC. In the present report, the effect of 3-formylchromone (3FC) on the STAT3 signaling pathway in the HCC model was investigated. 3FC downregulated the constitutive phosphorylation of STAT3 and non-receptor tyrosine kinases such as JAK1 and JAK2. It also suppressed the transportation of STAT3 to the nucleus and reduced its DNA-binding ability. Pervanadate treatment overrode the 3FC-triggered STAT3 inhibition, and the profiling of cellular phosphatase expression revealed an increase in SHP-2 levels upon 3FC treatment. The siRNA-driven deletion of SHP-2 led to reinstate STAT3 activation. 3FC downmodulated the levels of various oncogenic proteins and decreased CXCL12-driven cell migration and invasion. Interestingly, 3FC did not exhibit any substantial toxicity, whereas it significantly regressed tumor growth in an orthotopic HCC mouse model and abrogated lung metastasis. Overall, 3FC can function as a potent agent that can display antitumor activity by targeting STAT3 signaling in HCC models.
Collapse
|
56
|
Helmrich N, Roderfeld M, Baier A, Windhorst A, Herebian D, Mayatepek E, Dierkes C, Ocker M, Glebe D, Christ B, Churin Y, Irungbam K, Roeb E. Pharmacologic Antagonization of Cannabinoid Receptor 1 Improves Cholestasis in Abcb4 -/- Mice. Cell Mol Gastroenterol Hepatol 2021; 13:1041-1055. [PMID: 34954190 PMCID: PMC8873597 DOI: 10.1016/j.jcmgh.2021.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS The endocannabinoid system is involved in the modulation of inflammatory, fibrotic, metabolic, and carcinogenesis-associated signaling pathways via cannabinoid receptor (CB)1 and CB2. We hypothesized that the pharmacologic antagonization of CB1 receptor improves cholestasis in Abcb4-/- mice. METHODS After weaning, male Abcb4-/- mice were treated orally with rimonabant (a specific antagonist of CB1) or ACEA (an agonist of CB1) until up to 16 weeks of age. Liver tissue and serum were isolated and examined by means of serum analysis, quantitative real time polymerase chain reaction, Western blot, immunohistochemistry, and enzyme function. Untreated Abcb4-/- and Bagg Albino Mouse/c wild-type mice served as controls. RESULTS Cholestasis-induced symptoms such as liver damage, bile duct proliferation, and enhanced circulating bile acids were improved by CB1 antagonization. Rimonabant treatment also improved Phosphoenolpyruvat-Carboxykinase expression and reduced inflammation and the acute-phase response. The carcinogenesis-associated cellular-Jun N-terminal kinase/cellular-JUN and signal transducer and activator of transcription 3 signaling pathways activated in Abcb4-/- mice were reduced to wild-type level by CB1 antagonization. CONCLUSIONS We showed a protective effect of oral CB1 antagonization in chronic cholestasis using the established Abcb4-/- model. Our results suggest that pharmacologic antagonization of the CB1 receptor could have a therapeutic benefit in cholestasis-associated metabolic changes, liver damage, inflammation, and carcinogenesis.
Collapse
Affiliation(s)
| | | | - Anne Baier
- Department of Gastroenterology, Giessen, Germany
| | - Anita Windhorst
- Institute for Medical Informatics, Justus Liebig University, Giessen, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Christian Dierkes
- Medizinisches Versorgungszentrum for Pathology, Justus Liebig University Giessen, Trier, Germany
| | - Matthias Ocker
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Bruno Christ
- Applied Molecular Hepatology Laboratory, Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Yuri Churin
- Department of Gastroenterology, Giessen, Germany
| | | | - Elke Roeb
- Department of Gastroenterology, Giessen, Germany,Correspondence Address correspondence to: Elke Roeb, MD, MHAC, Department of Gastroenterology, Justus Liebig University Giessen, University Hospital Universitätsklinikum Giessen und Marburg (UKGM), Klinikstrasse 33, 35392 Giessen, Germany. fax: (49) 641-985-42339.
| |
Collapse
|
57
|
Sun H, Kim E, Ryu J, Lee H, Shin EA, Lee M, Lee H, Lee JH, Yoon JH, Song DG, Kim S, Lee JW. TM4SF5-mediated liver malignancy involves NK cell exhaustion-like phenotypes. Cell Mol Life Sci 2021; 79:49. [PMID: 34921636 PMCID: PMC8739317 DOI: 10.1007/s00018-021-04051-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Aberrant extracellular matrix and immune cell alterations within the tumor microenvironment promote the pathological progression of liver carcinogenesis. Although transmembrane 4 L six family member 5 (TM4SF5) is involved in liver fibrosis and cancer, its mechanism avoiding immune surveillance during carcinogenesis remains unknown. We investigated how TM4SF5-mediated signaling caused immune evasion using in vitro primary cells and in vivo liver tissues from genetic or chemically induced mouse models. TM4SF5-transgenic and diethylnitrosamine (DEN)-induced liver cancer mouse models exhibited fibrotic and cancerous livers, respectively, with enhanced TM4SF5, pY705STAT3, collagen I, and laminin γ2 levels. These TM4SF5-mediated effects were abolished by TM4SF5 inhibitor, 4'-(p-toluenesulfonylamido)-4-hydroxychalcone (TSAHC). TM4SF5-dependent tumorigenesis involved natural killer (NK) cell exhaustion-like phenotypes including the reduction of NK cell number or function, which were blocked with TSAHC treatment. TM4SF5 expression in cancer cells downregulated stimulatory ligands and receptors for NK cell cytotoxicity, including SLAMF6, SLAMF7, MICA/B, and others. TM4SF5 suppression or inhibition reduced STAT3 signaling activity and recovered the receptor levels and NK cell surveillance, leading to reduced fibrotic and cancerous phenotypes, and longer survival. Altogether, these findings suggest that TM4SF5-mediated STAT3 activity for extracellular matrix modulation is involved in the progression of liver disease to HCC and that TM4SF5 appears to suppress NK cells during liver carcinogenesis.
Collapse
Affiliation(s)
- Hyunseung Sun
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eunmi Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihye Ryu
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyejin Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Ae Shin
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minhyeong Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Haesong Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Dae-Geun Song
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung-si, Gangwon-do, 25451, Republic of Korea
| | - Semi Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, Republic of Korea
| | - Jung Weon Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea. .,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
58
|
Dark and bright side of targeting fibroblast growth factor receptor 4 in the liver. J Hepatol 2021; 75:1440-1451. [PMID: 34364916 DOI: 10.1016/j.jhep.2021.07.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factor (FGF) receptor 4 (FGFR4) and its cognate ligand, FGF19, are implicated in a range of cellular processes, including differentiation, metabolism and proliferation. Indeed, their aberrant activation has been associated with the development of hepatic tumours. Despite great advances in early diagnosis and the development of new therapies, liver cancer is still associated with a high mortality rate, owing primarily to high molecular heterogeneity and unclear molecular targeting. The development of FGFR4 inhibitors is a promising tool in patients with concomitant supraphysiological levels of FGF19 and several clinical trials are testing these treatments for patients with advanced hepatocellular carcinoma (HCC). Conversely, using FGF19 analogues to activate FGFR4-KLOTHO β represents a novel therapeutic strategy in patients presenting with cholestatic liver disorders and non-alcoholic steatohepatitis, which could potentially prevent the development of metabolic HCC. Herein, we provide an overview of the currently available therapeutic options for targeting FGFR4 in HCC and other liver diseases, highlighting the need to carefully stratify patients and personalise therapeutic strategies.
Collapse
|
59
|
Sun H, Li Y, Quan X, Chen N, Jin X, Jin W, Jin Y, Shen X. PIAS3/SOCS1-STAT3 axis responses to oxidative stress in hepatocellular cancer cells. Am J Transl Res 2021; 13:12395-12409. [PMID: 34956461 PMCID: PMC8661178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/23/2021] [Indexed: 06/14/2023]
Abstract
The participation of STAT3 and its upstream inhibitors, PIAS3 and SOCS1, in the oxidative response of hepatocellular carcinoma (HCC) cells was uncertain. Here, the expression of PIAS3 and SOCS1 in HCC tissues and cell lines was explored, and we sought to determine whether oxidative stress epigenetically regulated PIAS3 and SOCS1 expression and STAT3 activation in HCC cells. The expression of PIAS3 and SOCS1 was markedly decreased in HCC cell lines and tissues compared to normal hepatic cells and tissues. In HCC patients, low PIAS3 and SOCS1 expression were associated with poor survival. Oxidative stress induced by H2O2 in HepG2 cells was indicated by low antioxidant levels and high protein carbonyl content. Moreover, oxidative stress in HepG2 cells contributed to reduced proliferation but increased apoptosis, migration, and invasion capacity, which might be counteracted by antioxidants, such as tocopheryl acetate (TA). PIAS3 and SOCS1 expression was markedly decreased, while STAT3 was activated in HepG2 cells in response to H2O2 exposure. Co-treatment with antioxidant TA effectively increased the expression of PIAS3 and SOCS1, but it dephosphorylated STAT3 in H2O2-treated cells. PIAS1 or SOCS1 overexpression in HepG2 cells after H2O2 treatment restored cell viability and anti-oxidative responses and decreased apoptosis, migration, and invasion ability, and dephosphorylated STAT3 levels. Co-administration of the STAT3 activator, colivelin, partially abolished the effect of PIAS3 and SOCS1 overexpression in these processes. Therefore, oxidative stress in HCC cells may improve their migration and reduce proliferation through STAT3 activation through the repression of PIAS3 and SOCS1 expression.
Collapse
Affiliation(s)
- Honghua Sun
- Department of Oncology, Affiliated Hospital of Yanbian UniversityYanji, Jilin Province, People’s Republic of China
| | - Yanglong Li
- Department of Oncology, Affiliated Hospital of Yanbian UniversityYanji, Jilin Province, People’s Republic of China
| | - Xianglan Quan
- Department of Oncology, Affiliated Hospital of Yanbian UniversityYanji, Jilin Province, People’s Republic of China
| | - Ning Chen
- Department of Infection Disease, Affiliated Hospital of Yanbian UniversityYanji, Jilin Province, People’s Republic of China
| | - Xinglin Jin
- Department of General Surgert, Affiliated Hospital of Yanbian UniversityYanji, Jilin Province, People’s Republic of China
| | - Wenbiao Jin
- Department of Oncology, Affiliated Hospital of Yanbian UniversityYanji, Jilin Province, People’s Republic of China
| | - Yongmin Jin
- Department of Oncology, Affiliated Hospital of Yanbian UniversityYanji, Jilin Province, People’s Republic of China
| | - Xionghu Shen
- Department of Oncology, Affiliated Hospital of Yanbian UniversityYanji, Jilin Province, People’s Republic of China
| |
Collapse
|
60
|
Desert R, Ge X, Song Z, Han H, Lantvit D, Chen W, Das S, Athavale D, Abraham-Enachescu I, Blajszczak C, Chen Y, Musso O, Guzman G, Hoshida Y, Nieto N. Role of Hepatocyte-Derived Osteopontin in Liver Carcinogenesis. Hepatol Commun 2021; 6:692-709. [PMID: 34730871 PMCID: PMC8948552 DOI: 10.1002/hep4.1845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/13/2021] [Accepted: 10/02/2021] [Indexed: 12/24/2022] Open
Abstract
Osteopontin (OPN) expression correlates with tumor progression in many cancers, including hepatocellular carcinoma (HCC); however, its role in the onset of HCC remains unclear. We hypothesized that increased hepatocyte‐derived OPN is a driver of hepatocarcinogenesis. Analysis of a tissue microarray of 366 human samples revealed a continuous increase in OPN expression during hepatocarcinogenesis. In patients with cirrhosis, a transcriptome‐based OPN correlation network was associated with HCC incidence along 10 years of follow‐up, together with messenger RNA (mRNA) signatures of carcinogenesis. After diethylnitrosamine (DEN) injection, mice with conditional overexpression of Opn in hepatocytes (OpnHep transgenic [Tg]) showed increased tumor burden. Surprisingly, mice with conditional ablation of Opn in hepatocytes (OpnΔHep) expressed a similar phenotype. The acute response to DEN was reduced in OpnΔHep, which also showed more cancer stem/progenitor cells (CSCs, CD44+AFP+) at 5 months. CSCs from OpnHep Tg mice expressed several mRNA signatures known to promote carcinogenesis, and mRNA signatures from OpnHep Tg mice were associated with poor outcome in human HCC patients. Treatment with rOPN had little effect on CSCs, and their progression to HCC was similar in Opn−/− compared with wild‐type mice. Finally, ablation of Cd44, an OPN receptor, did not reduce tumor burden in Cd44−/−OpnHep Tg mice. Conclusions: Hepatocyte‐derived OPN acts as a tumor suppressor at physiological levels by controlling the acute response to DEN and the presence of CSCs, while induction of OPN is pro‐tumorigenic. This is primarily due to intracellular events rather that by the secretion of the protein and receptor activation.
Collapse
Affiliation(s)
- Romain Desert
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA.,Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Hui Han
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Daniel Lantvit
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Wei Chen
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Ioana Abraham-Enachescu
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chuck Blajszczak
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Yu Chen
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Orlando Musso
- INSERM, University of Rennes, INRA, Institut NuMeCAN (Nutrition Metabolisms and Cancer), Rennes, France
| | - Grace Guzman
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Liver Tumor Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA.,Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
61
|
Abstract
Fibrosis is not a unidirectional, linear process, but a dynamic one resulting from an interplay of fibrogenesis and fibrolysis depending on the extent and severity of a biologic insult, or lack thereof. Regression of fibrosis has been documented best in patients treated with phlebotomies for hemochromatosis, and after successful suppression and eradication of chronic hepatitis B and C infections. This evidence mandates a reconsideration of the term "cirrhosis," which implies an inevitable progression towards liver failure. Furthermore, it also necessitates a staging system that acknowledges the bidirectional nature of evolution of fibrosis, and has the ability to predict if the disease process is progressing or regressing. The Beijing classification attempts to fill this gap in contemporary practice. It is based on microscopic features termed "the hepatic repair complex," defined originally by Wanless and colleagues. The elements of the hepatic repair complex represent the 3 processes of fragmentation and regression of scar, vascular remodeling (resolution), and parenchymal regeneration. However, regression of fibrosis does not imply resolution of cirrhosis, which is more than just a stage of fibrosis. So far, there is little to no evidence to suggest that large regions of parenchymal extinction can be repopulated by regenerating hepatocytes. Similarly, the vascular lesions of cirrhosis persist, and there is no evidence of complete return to normal microcirculation in cirrhotic livers. In addition, the risk of hepatocellular carcinoma is higher compared with the general population and these patients need continued screening and surveillance.
Collapse
|
62
|
Kurhe Y, Caputo M, Cansby E, Xia Y, Kumari S, Anand SK, Howell BW, Marschall HU, Mahlapuu M. Antagonizing STK25 Signaling Suppresses the Development of Hepatocellular Carcinoma Through Targeting Metabolic, Inflammatory, and Pro-Oncogenic Pathways. Cell Mol Gastroenterol Hepatol 2021; 13:405-423. [PMID: 34624527 PMCID: PMC8688184 DOI: 10.1016/j.jcmgh.2021.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is one of the most fatal and fastest-growing cancers. Recently, nonalcoholic steatohepatitis (NASH) has been recognized as a major catalyst for HCC. Thus, additional research is critically needed to identify mechanisms involved in NASH-induced hepatocarcinogenesis, to advance the prevention and treatment of NASH-driven HCC. Because the sterile 20-type kinase serine/threonine kinase 25 (STK25) exacerbates NASH-related phenotypes, we investigated its role in HCC development and aggravation in this study. METHODS Hepatocarcinogenesis was induced in the context of NASH in Stk25 knockout and wild-type mice by combining chemical procarcinogens and a dietary challenge. In the first cohort, a single injection of diethylnitrosamine was combined with a high-fat diet-feeding. In the second cohort, chronic administration of carbon tetrachloride was combined with a choline-deficient L-amino-acid-defined diet. To study the cell-autonomous mode of action of STK25, we silenced this target in the human hepatocarcinoma cell line HepG2 by small interfering RNA. RESULTS In both mouse models of NASH-driven HCC, the livers from Stk25-/- mice showed a markedly lower tumor burden compared with wild-type controls. We also found that genetic depletion of STK25 in mice suppressed liver tumor growth through reduced hepatocellular apoptosis and decreased compensatory proliferation, by a mechanism that involves protection against hepatic lipotoxicity and inactivation of STAT3, ERK1/2, and p38 signaling. Consistently, silencing of STK25 suppressed proliferation, apoptosis, migration, and invasion in HepG2 cells, which was accompanied by lower expression of the markers of epithelial-mesenchymal transition and autophagic flux. CONCLUSIONS This study provides evidence that antagonizing STK25 signaling hinders the development of NASH-related HCC and provides an impetus for further analysis of STK25 as a therapeutic target for NASH-induced HCC treatment in human beings.
Collapse
Affiliation(s)
- Yeshwant Kurhe
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ying Xia
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sima Kumari
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sumit Kumar Anand
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Brian W Howell
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
63
|
Zheng X, Jin W, Wang S, Ding H. Progression on the Roles and Mechanisms of Tumor-Infiltrating T Lymphocytes in Patients With Hepatocellular Carcinoma. Front Immunol 2021; 12:729705. [PMID: 34566989 PMCID: PMC8462294 DOI: 10.3389/fimmu.2021.729705] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022] Open
Abstract
Primary liver cancer (PLC) is one of the most common malignancies in China, where it ranks second in mortality and fifth in morbidity. Currently, liver transplantation, hepatic tumor resection, radiofrequency ablation, and molecular-targeted agents are the major treatments for hepatocellular carcinoma (HCC). Overall, HCC has a poor survival rate and a high recurrence rate. Tumor-infiltrating lymphocytes (TILs) have been discovered to play essential roles in the development, prognosis, and immunotherapy treatment of HCC. As the major component cells of TILs, T cells are also proved to show antitumor and protumor effects in HCC. Foxp3+, CD8+, CD3+, and CD4+ T lymphocytes are the broadly studied subgroups of TILs. This article reviews the roles and mechanisms of different tumor-infiltrating T lymphocyte subtypes in HCC.
Collapse
Affiliation(s)
- Xiaoqin Zheng
- Department of Gastrointestinal and Hepatology, Beijing You’An Hospital, Capital Medical University, Beijing, China
| | - Wenjie Jin
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Shanshan Wang
- Beijing Institute of Hepatology, Beijing You’An Hospital, Capital Medical University, Beijing, China
| | - Huiguo Ding
- Department of Gastrointestinal and Hepatology, Beijing You’An Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
64
|
A Novel Regulatory Player in the Innate Immune System: Long Non-Coding RNAs. Int J Mol Sci 2021; 22:ijms22179535. [PMID: 34502451 PMCID: PMC8430513 DOI: 10.3390/ijms22179535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) represent crucial transcriptional and post-transcriptional gene regulators during antimicrobial responses in the host innate immune system. Studies have shown that lncRNAs are expressed in a highly tissue- and cell-specific- manner and are involved in the differentiation and function of innate immune cells, as well as inflammatory and antiviral processes, through versatile molecular mechanisms. These lncRNAs function via the interactions with DNA, RNA, or protein in either cis or trans pattern, relying on their specific sequences or their transcriptions and processing. The dysregulation of lncRNA function is associated with various human non-infectious diseases, such as inflammatory bowel disease, cardiovascular diseases, and diabetes mellitus. Here, we provide an overview of the regulation and mechanisms of lncRNA function in the development and differentiation of innate immune cells, and during the activation or repression of innate immune responses. These elucidations might be beneficial for the development of therapeutic strategies targeting inflammatory and innate immune-mediated diseases.
Collapse
|
65
|
circGLI3 Inhibits Oxidative Stress by Regulating the miR-339-5p/VEGFA Axis in IPEC-J2 Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1086206. [PMID: 34423029 PMCID: PMC8376464 DOI: 10.1155/2021/1086206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/10/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
As a new type of noncoding RNA, circular RNA (circRNA) is stable in cells and not easily degraded. This type of RNA can also competitively bind miRNAs to regulate the expression of their target genes. The role of circRNA in the mechanism of intestinal oxidative stress (OS) in weaned piglets is still unclear. In our research, diquat (DQ) was used to induce OS in small intestinal epithelial cells (IPEC-J2) to construct an OS cell model. Mechanistically, dual luciferase reporter assays, fluorescence in situ hybridization (FISH), and western blotting were performed to confirm that circGLI3 directly sponged miR-339-5p and regulated the expression of VEGFA. Overexpression of circGLI3 promoted IPEC-J2 cell proliferation, increased the proportion of S-phase cells (P < 0.01), and reduced reactive oxygen species (ROS) generation when IPEC-J2 cells were subjected to OS. circGLI3 can increase the activity of glutathione peroxidase (GSH-Px) and the total antioxidant capacity (T-AOC) in IPEC-J2 cells and reduce the malondialdehyde (MDA) content and levels of inflammatory factors. Therefore, overexpression of circGLI3 reduced oxidative damage, whereas miR-339-5p mimic counteracted these effects. We identified a regulatory network composed of circGLI3, miR-339-5p, and VEGFA and verified that circGLI3 regulates VEGFA by directly binding miR-339-5p. The expression of VEGFA affects IPEC-J2 cell proliferation, cell cycle progression, and ROS content and changes the levels of antioxidant enzymes and inflammatory factors. This study reveals the molecular mechanism by which circGLI3 inhibits OS in the intestine of piglets and provides a theoretical basis for further research on the effect of OS on intestinal function.
Collapse
|
66
|
von Bülow V, Lichtenberger J, Grevelding CG, Falcone FH, Roeb E, Roderfeld M. Does Schistosoma Mansoni Facilitate Carcinogenesis? Cells 2021; 10:1982. [PMID: 34440754 PMCID: PMC8393187 DOI: 10.3390/cells10081982] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 08/01/2021] [Indexed: 12/24/2022] Open
Abstract
Schistosomiasis is one of the most prominent parasite-induced infectious diseases, causing tremendous medical and socioeconomic problems. Current studies have reported on the spread of endemic regions and the fear of development of resistance against praziquantel, the only effective drug available. Among the Schistosoma species, only S. haematobium is classified as a Group 1 carcinogen (definitely cancerogenic to humans), causing squamous cell carcinoma of the bladder, whereas infection with S. mansoni is included in Group 3 of carcinogenic hazards to humans by the International Agency for Research on Cancer (IARC), indicating insufficient evidence to determine its carcinogenicity. Nevertheless, although S. mansoni has not been discussed as an organic carcinogen, the multiplicity of case reports, together with recent data from animal models and cell culture experiments, suggests that this parasite can predispose patients to or promote hepatic and colorectal cancer. In this review, we discuss the current data, with a focus on new developments regarding the association of S. mansoni infection with human cancer and the recently discovered biomolecular mechanisms by which S. mansoni may predispose patients to cancer development and carcinogenesis.
Collapse
Affiliation(s)
- Verena von Bülow
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (V.v.B.); (J.L.); (E.R.)
| | - Jakob Lichtenberger
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (V.v.B.); (J.L.); (E.R.)
| | - Christoph G. Grevelding
- Institute of Parasitology, BFS, Justus Liebig University, 35392 Giessen, Germany; (C.G.G.); (F.H.F.)
| | - Franco H. Falcone
- Institute of Parasitology, BFS, Justus Liebig University, 35392 Giessen, Germany; (C.G.G.); (F.H.F.)
| | - Elke Roeb
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (V.v.B.); (J.L.); (E.R.)
| | - Martin Roderfeld
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (V.v.B.); (J.L.); (E.R.)
| |
Collapse
|
67
|
Niu M, Yi M, Li N, Wu K, Wu K. Advances of Targeted Therapy for Hepatocellular Carcinoma. Front Oncol 2021; 11:719896. [PMID: 34381735 PMCID: PMC8350567 DOI: 10.3389/fonc.2021.719896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the common and fatal malignancies, which is a significant global health problem. The clinical applicability of traditional surgery and other locoregional therapies is limited, and these therapeutic strategies are far from satisfactory in improving the outcomes of advanced HCC. In the past decade, targeted therapy had made a ground-breaking progress in advanced HCC. Those targeted therapies exert antitumor effects through specific signals, including anti-angiogenesis or cell cycle progression. As a standard systemic therapy option, it tremendously improves the survival of this devastating disease. Moreover, the combination of targeted therapy with immune checkpoint inhibitor (ICI) has demonstrated more potent anticancer effects and becomes the hot topic in clinical studies. The combining medications bring about a paradigm shift in the treatment of advanced HCC. In this review, we presented all approved targeted agents for advanced HCC with an emphasis on their clinical efficacy, summarized the advances of multi-target drugs in research for HCC and potential therapeutic targets for drug development. We also discussed the exciting results of the combination between targeted therapy and ICI.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Kongju Wu
- Department of Nursing, Medical School of Pingdingshan University, Pingdingshan, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
68
|
Zhang W, Zhangyuan G, Wang F, Jin K, Shen H, Zhang L, Yuan X, Wang J, Zhang H, Yu W, Huang R, Xu X, Yin Y, Zhong G, Lin A, Sun B. The zinc finger protein Miz1 suppresses liver tumorigenesis by restricting hepatocyte-driven macrophage activation and inflammation. Immunity 2021; 54:1168-1185.e8. [PMID: 34038747 DOI: 10.1016/j.immuni.2021.04.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 01/20/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Chronic inflammation plays a central role in hepatocellular carcinoma (HCC), but the contribution of hepatocytes to tumor-associated inflammation is not clear. Here, we report that the zinc finger transcription factor Miz1 restricted hepatocyte-driven inflammation to suppress HCC, independently of its transcriptional activity. Miz1 was downregulated in HCC mouse models and a substantial fraction of HCC patients. Hepatocyte-specific Miz1 deletion in mice generated a distinct sub-group of hepatocytes that produced pro-inflammatory cytokines and chemokines, which skewed the polarization of the tumor-infiltrating macrophages toward pro-inflammatory phenotypes to promote HCC. Mechanistically, Miz1 sequestrated the oncoprotein metadherin (MTDH), preventing MTDH from promoting transcription factor nuclear factor κB (NF-κB) activation. A distinct sub-group of pro-inflammatory cytokine-producing hepatocytes was also seen in a subset of HCC patients. In addition, Miz1 expression inversely correated with disease recurrence and poor prognosis in HCC patients. Our findings identify Miz1 as a tumor suppressor that prevents hepatocytes from driving inflammation in HCC.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guangyan Zhangyuan
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fei Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kangpeng Jin
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Haiyuan Shen
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Liansheng Zhang
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xiang Yuan
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Jincheng Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Haitian Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Weiwei Yu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ruyi Huang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaoliang Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yin Yin
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guisheng Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Anning Lin
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; Institute of Modern Biology, Nanjing University, Nanjing 20018, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
69
|
Hemistepsin a Induces Apoptosis of Hepatocellular Carcinoma Cells by Downregulating STAT3. Int J Mol Sci 2021; 22:ijms22094743. [PMID: 33947048 PMCID: PMC8125382 DOI: 10.3390/ijms22094743] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Hemistepta lyrata (Bunge) Bunge is a biennial medicinal plant possessing beneficial effects including anti-inflammation, and hemistepsin A (HsA) isolated from H. lyrata has been known as a hepatoprotective sesquiterpene lactone. In this report, we explored the cytotoxic effects of H. lyrata on hepatocellular carcinoma (HCC) cells and investigated the associated bioactive compounds and their relevant mechanisms. From the viability results of HCC cells treated with various H. lyrata extracts, HsA was identified as the major compound contributing to the H. lyrata-mediated cytotoxicity. HsA increased expression of cleaved PARP and cells with Sub-G1 phase, Annexin V binding, and TUNEL staining, which imply HsA induces apoptosis. In addition, HsA provoked oxidative stress by decreasing the reduced glutathione/oxidized glutathione ratio and accumulating reactive oxygen species and glutathione-protein adducts. Moreover, HsA inhibited the transactivation of signal transducer and activator of transcription 3 (STAT3) by its dephosphorylation at Y705 and glutathione conjugation. Stable expression of a constitutive active mutant of STAT3 prevented the reduction of cell viability by HsA. Finally, HsA enhanced the sensitivity of sorafenib-mediated cytotoxicity by exaggerating oxidative stress and Y705 dephosphorylation of STAT3. Therefore, HsA will be a promising candidate to induce apoptosis of HCC cells via downregulating STAT3 and sensitizing conventional chemotherapeutic agents.
Collapse
|
70
|
Geh D, Anstee QM, Reeves HL. NAFLD-Associated HCC: Progress and Opportunities. J Hepatocell Carcinoma 2021; 8:223-239. [PMID: 33854987 PMCID: PMC8041650 DOI: 10.2147/jhc.s272213] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Due to an increase in the obesity-associated metabolic syndrome of epidemic proportions, nonalcoholic fatty liver disease (NAFLD) is becoming a leading cause of hepatocellular carcinoma (HCC) in western countries. This presents added challenges, as NAFLD-associated HCC tends to present at an advanced stage in older patients with co-morbidities. Their prognosis is generally poor with the benefits of standard therapies less certain. The pathogenesis of NAFLD-associated HCC is multifactorial and not well understood, although the risk of HCC developing undoubtedly increases as NAFLD progresses to steatohepatitis and cirrhosis. Recent advances in our understanding of the drivers of NAFLD and HCC will hopefully lead to the development of clinically relevant biomarkers, tools and strategies to aid the identification of high-risk patients, inform preventive measures, and introduction of better tolerated targeted therapies. Lifestyle modification and chemoprevention with drugs such as anti-platelets, statins and anti-diabetics are being evaluated for HCC prevention. The landmark IMBrave150 study introducing the combination of atezolizumab and bevacizumab has recently transformed the landscape of systemic therapies in HCC, with follow-up analyses and real-world data for patients with NAFLD-associated HCC eagerly anticipated. While responses may vary in ways not yet appreciated, the rate of discovery and progress suggests imminent change and opportunities.
Collapse
Affiliation(s)
- Daniel Geh
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,The Liver Unit, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - Helen L Reeves
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,The Liver Unit, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK.,Hepatopancreatobiliary Multidisciplinary Team, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
71
|
Wu MS, Kuo YP, Lo YC, Tsai DJ, Lai CY, Chuang TH, Lin SY, Tsai WT, Chung PJ, Yu GY. Type I Interferon Signaling Accelerates Liver Regeneration by Metabolic Modulation in Noninfectious Conditions. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1036-1048. [PMID: 33753025 DOI: 10.1016/j.ajpath.2021.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 01/02/2023]
Abstract
Type I interferon (IFN-I) has a well-known function in controlling viral infections, but its contribution in hepatocyte proliferation and hepatocellular carcinoma (HCC) formation remains unclear. Mice deficient in IFN-α receptor expression in whole mice or only in hepatocytes (Ifnar-/- and IfnarΔliver) were used to investigate the role of IFN-I signaling in cell proliferation and cancer formation in the liver. Ifnar-/- mice were resistant to chemical-induced HCC formation in the absence of infection. The results show that low grade of IFN-I and interferon-stimulated gene were expressed substantially in naïve mouse liver. The low level of IFN-I activation is constantly present in mouse liver after weaning and negatively modulates forkhead box O hepatic expression. The IFN-I signaling can be partially blocked by the clearance of lipopolysaccharide. Mice lacking IFN-I signaling have lower basal proliferation activity and delayed liver regeneration processes after two-thirds partial hepatectomy. The activation of IFN-I signaling on hepatocyte controls glucose homeostasis and lipid metabolism to support proliferation potency and long-term tumorigenesis. Our results reveal a positive role of low-grade IFN-I singling to hepatocyte proliferation and HCC formation by modulating glucose homeostasis and lipid metabolism.
Collapse
Affiliation(s)
- Ming-Sian Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yi-Ping Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yin-Chiu Lo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - De-Jiun Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chao-Yang Lai
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Shu-Yi Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Wan-Ting Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Pei-Jung Chung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
72
|
Petrenko O, Li J, Cimica V, Mena-Taboada P, Shin HY, D’Amico S, Reich NC. IL-6 promotes MYC-induced B cell lymphomagenesis independent of STAT3. PLoS One 2021; 16:e0247394. [PMID: 33651821 PMCID: PMC7924759 DOI: 10.1371/journal.pone.0247394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/08/2021] [Indexed: 11/18/2022] Open
Abstract
The inflammatory cytokine IL-6 is known to play a causal role in the promotion of cancer, although the underlying mechanisms remain to be completely understood. Interplay between endogenous and environmental cues determines the fate of cancer development. The Eμ-myc transgenic mouse expresses elevated levels of c-Myc in the B cell lineage and develops B cell lymphomas with associated mutations in p53 or other genes linked to apoptosis. We generated Eμ-myc mice that either lacked the IL-6 gene, or lacked the STAT3 gene specifically in B cells to determine the role of the IL-6/JAK/STAT3 pathway in tumor development. Using the Eμ-myc lymphoma mouse model, we demonstrate that IL-6 is a critical tumor promoter during early stages of B cell lymphomagenesis. IL-6 is shown to inhibit the expression of tumor suppressors, notably BIM and PTEN, and this may contribute to advancing MYC-driven B cell tumorigenesis. Several miRNAs known to target BIM and PTEN are upregulated by IL-6 and likely lead to the stable suppression of pro-apoptotic pathways early during the tumorigenic process. STAT3, a classical downstream effector of IL-6, appears dispensable for Eμ-myc driven lymphomagenesis. We conclude that the growth-promoting and anti-apoptotic mechanisms activated by IL-6 are critically involved in Eμ-myc driven tumor initiation and progression, but the B cell intrinsic expression of STAT3 is not required.
Collapse
Affiliation(s)
- Oleksi Petrenko
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States of America
| | - Jinyu Li
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States of America
| | - Velasco Cimica
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States of America
- American Type Culture Collection, City of Manassas, Virginia, United States of America
| | - Patricio Mena-Taboada
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States of America
- University Frontera, Temuco, Chile
| | - Ha Youn Shin
- Department of Biomedical Science & Engineering, Konkuk University, Seoul, Korea
| | - Stephen D’Amico
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States of America
| | - Nancy C. Reich
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States of America
- * E-mail:
| |
Collapse
|
73
|
Zhou Q, Tian W, Jiang Z, Huang T, Ge C, Liu T, Zhao F, Chen T, Cui Y, Li H, Yao M, Li J, Tian H. A Positive Feedback Loop of AKR1C3-Mediated Activation of NF-κB and STAT3 Facilitates Proliferation and Metastasis in Hepatocellular Carcinoma. Cancer Res 2021; 81:1361-1374. [PMID: 33361392 DOI: 10.1158/0008-5472.can-20-2480] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/18/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022]
Abstract
AKR1C3 is an enzyme belonging to the aldo-ketoreductase family, the members of which catalyze redox transformations involved in biosynthesis, intermediary metabolism, and detoxification. AKR1C3 plays an important role in tumor progression and metastasis, however, little is known about the function and the molecular mechanism underlying the role of AKR1C3 in hepatocellular carcinoma (HCC). In this study, we report that AKR1C3 is significantly upregulated in HCC and that increased AKR1C3 is associated with poor survival. AKR1C3 positively regulated HCC cell proliferation and metastasis in vitro and in vivo. AKR1C3 promoted tumor proliferation and metastasis by activating NF-κB signaling. Furthermore, AKR1C3 regulated NF-κB activity by modulating TRAF6 and inducing its autoubiquitination in HCC cells. Activation of NF-κB released proinflammatory factors that facilitated the phosphorylation of STAT3 and increased tumor cell proliferation and invasion. Gain- and loss-of-function experiments showed that AKR1C3 promoted tumor proliferation and invasion via the IL6/STAT3 pathway. STAT3 also directly bound the AKR1C3 promoter and increased transcription of AKR1C3, thereby establishing a positive regulatory feedback loop. Treatment with the AKR1C3 inhibitors indocin and medroxyprogesterone acetate inhibited tumor growth and invasion and promoted apoptosis in HCC cells. Collectively, these results indicate that a AKR1C3/NF-κB/STAT3 signaling loop results in HCC cell proliferation and metastasis and could be a promising therapeutic target in HCC. SIGNIFICANCE: These findings elucidate a novel AKR1C3-driven signaling loop that regulates proliferation and metastasis in HCC, providing potential prognostic and therapeutic targets in this disease.
Collapse
Affiliation(s)
- Qingqing Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiyuan Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tingting Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tengfei Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Taoyang Chen
- Qi Dong Liver Cancer Institute, Qi Dong, Jiangsu Province, China
| | - Ying Cui
- Cancer Institute of Guangxi, Nanning, China
| | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
74
|
Malik A, Thanekar U, Amarachintha S, Mourya R, Nalluri S, Bondoc A, Shivakumar P. "Complimenting the Complement": Mechanistic Insights and Opportunities for Therapeutics in Hepatocellular Carcinoma. Front Oncol 2021; 10:627701. [PMID: 33718121 PMCID: PMC7943925 DOI: 10.3389/fonc.2020.627701] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and a leading cause of death in the US and worldwide. HCC remains a global health problem and is highly aggressive with unfavorable prognosis. Even with surgical interventions and newer medical treatment regimens, patients with HCC have poor survival rates. These limited therapeutic strategies and mechanistic understandings of HCC immunopathogenesis urgently warrant non-palliative treatment measures. Irrespective of the multitude etiologies, the liver microenvironment in HCC is intricately associated with chronic necroinflammation, progressive fibrosis, and cirrhosis as precedent events along with dysregulated innate and adaptive immune responses. Central to these immunological networks is the complement cascade (CC), a fundamental defense system inherent to the liver which tightly regulates humoral and cellular responses to noxious stimuli. Importantly, the liver is the primary source for biosynthesis of >80% of complement components and expresses a variety of complement receptors. Recent studies implicate the complement system in liver inflammation, abnormal regenerative responses, fibrosis, carcinogenesis, and development of HCC. Although complement activation differentially promotes immunosuppressive, stimulant, and angiogenic microenvironments conducive to HCC development, it remains under-investigated. Here, we review derangement of specific complement proteins in HCC in the context of altered complement regulatory factors, immune-activating components, and their implications in disease pathogenesis. We also summarize how complement molecules regulate cancer stem cells (CSCs), interact with complement-coagulation cascades, and provide therapeutic opportunities for targeted intervention in HCC.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Unmesha Thanekar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Surya Amarachintha
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Shreya Nalluri
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Alexander Bondoc
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
75
|
Wang H, Hou W, Perera A, Bettler C, Beach JR, Ding X, Li J, Denning MF, Dhanarajan A, Cotler SJ, Joyce C, Yin J, Ahmed F, Roberts LR, Qiu W. Targeting EphA2 suppresses hepatocellular carcinoma initiation and progression by dual inhibition of JAK1/STAT3 and AKT signaling. Cell Rep 2021; 34:108765. [PMID: 33626345 PMCID: PMC7954228 DOI: 10.1016/j.celrep.2021.108765] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 12/07/2020] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the deadliest malignancies worldwide. One major obstacle to treatment is a lack of effective molecular-targeted therapies. In this study, we find that EphA2 expression and signaling are enriched in human HCC and associated with poor prognosis. Loss of EphA2 suppresses the initiation and growth of HCC both in vitro and in vivo. Furthermore, CRISPR/CAS9-mediated EphA2 inhibition significantly delays tumor development in a genetically engineered murine model of HCC. Mechanistically, we discover that targeting EphA2 suppresses both AKT and JAK1/STAT3 signaling, two separate oncogenic pathways in HCC. We also identify a small molecule kinase inhibitor of EphA2 that suppresses tumor progression in a murine HCC model. Together, our results suggest EphA2 as a promising therapeutic target for HCC.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Benzamides/pharmacology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Databases, Genetic
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Janus Kinase 1/genetics
- Janus Kinase 1/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Mice, Inbred C57BL
- Molecular Targeted Therapy
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, EphA2/antagonists & inhibitors
- Receptor, EphA2/genetics
- Receptor, EphA2/metabolism
- Retrospective Studies
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Hao Wang
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Wei Hou
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Aldeb Perera
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Carlee Bettler
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Jordan R Beach
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Mitchell F Denning
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Asha Dhanarajan
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Scott J Cotler
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Cara Joyce
- Department of Public Health Sciences, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Jun Yin
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Fowsiyo Ahmed
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Wei Qiu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA.
| |
Collapse
|
76
|
Mohammed S, Nicklas EH, Thadathil N, Selvarani R, Royce GH, Kinter M, Richardson A, Deepa SS. Role of necroptosis in chronic hepatic inflammation and fibrosis in a mouse model of increased oxidative stress. Free Radic Biol Med 2021; 164:315-328. [PMID: 33429022 PMCID: PMC8845573 DOI: 10.1016/j.freeradbiomed.2020.12.449] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
Mice deficient in the antioxidant enzyme Cu/Zn-superoxide dismutase (Sod1-/- or Sod1KO mice) have increased oxidative stress, show accelerated aging and develop spontaneous hepatocellular carcinoma (HCC) with age. Similar to humans, HCC development in Sod1KO mice progresses from non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH) with fibrosis, which eventually progresses to HCC. Oxidative stress plays a role in NAFLD to NASH progression, and liver inflammation is the main mechanism that drives the disease progression from NASH to fibrosis. Because necroptosis is a major source of inflammation, we tested the hypothesis that increased necroptosis in the liver plays a role in increased inflammation and fibrosis in Sod1KO mice. Phosphorylation of MLKL (P-MLKL), a well-accepted marker of necroptosis, and expression of MLKL protein were significantly increased in the livers of Sod1KO mice compared to wild type (WT) mice indicating increased necroptosis. Similarly, phosphorylation of RIPK3 and RIPK3 protein levels were also significantly increased. Markers of pro-inflammatory M1 macrophages, NLRP3 inflammasome, and transcript levels of pro-inflammatory cytokines and chemokines, e.g., TNFα, IL-6, IL-1β, and Ccl2 that are associated with human NASH, were significantly increased. Expression of antioxidant enzymes and heat shock proteins, and markers of fibrosis and oncogenic transcription factor STAT3 were also upregulated and autophagy was downregulated in the livers of Sod1KO mice. Short term treatment of Sod1KO mice with necrostatin-1s (Nec-1s), a necroptosis inhibitor, reversed these conditions. Our data show for the first time that necroptosis-mediated inflammation contributes to fibrosis in a mouse model of increased oxidative stress and accelerated aging, that also exhibits progressive HCC development.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, USA
| | - Arlan Richardson
- Stephenson Cancer Center, USA; Department of Biochemistry and Molecular Biology, USA; Oklahoma Center for Geroscience & Brain Aging, University of Oklahoma Health Sciences Center, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Sathyaseelan S Deepa
- Stephenson Cancer Center, USA; Department of Biochemistry and Molecular Biology, USA; Oklahoma Center for Geroscience & Brain Aging, University of Oklahoma Health Sciences Center, USA.
| |
Collapse
|
77
|
Wei J, Fang D. Endoplasmic Reticulum Stress Signaling and the Pathogenesis of Hepatocarcinoma. Int J Mol Sci 2021; 22:ijms22041799. [PMID: 33670323 PMCID: PMC7918477 DOI: 10.3390/ijms22041799] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC), also known as hepatoma, is a primary malignancy of the liver and the third leading cause of cancer mortality globally. Although much attention has focused on HCC, its pathogenesis remains largely obscure. The endoplasmic reticulum (ER) is a cellular organelle important for regulating protein synthesis, folding, modification and trafficking, and lipid metabolism. ER stress occurs when ER homeostasis is disturbed by numerous environmental, physiological, and pathological challenges. In response to ER stress due to misfolded/unfolded protein accumulation, unfolded protein response (UPR) is activated to maintain ER function for cell survival or, in cases of excessively severe ER stress, initiation of apoptosis. The liver is especially susceptible to ER stress given its protein synthesis and detoxification functions. Experimental data suggest that ER stress and unfolded protein response are involved in HCC development, aggressiveness and response to treatment. Herein, we highlight recent findings and provide an overview of the evidence linking ER stress to the pathogenesis of HCC.
Collapse
|
78
|
Lalle G, Twardowski J, Grinberg-Bleyer Y. NF-κB in Cancer Immunity: Friend or Foe? Cells 2021; 10:355. [PMID: 33572260 PMCID: PMC7914614 DOI: 10.3390/cells10020355] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of immunotherapies has definitely proven the tight relationship between malignant and immune cells, its impact on cancer outcome and its therapeutic potential. In this context, it is undoubtedly critical to decipher the transcriptional regulation of these complex interactions. Following early observations demonstrating the roles of NF-κB in cancer initiation and progression, a series of studies converge to establish NF-κB as a master regulator of immune responses to cancer. Importantly, NF-κB is a family of transcriptional activators and repressors that can act at different stages of cancer immunity. In this review, we provide an overview of the selective cell-intrinsic contributions of NF-κB to the distinct cell types that compose the tumor immune environment. We also propose a new view of NF-κB targeting drugs as a new class of immunotherapies for cancer.
Collapse
Affiliation(s)
| | | | - Yenkel Grinberg-Bleyer
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008 Lyon, France; (G.L.); (J.T.)
| |
Collapse
|
79
|
Yao X, Zhao CR, Yin H, Wang K, Gao JJ. Synergistic antitumor activity of sorafenib and artesunate in hepatocellular carcinoma cells. Acta Pharmacol Sin 2020; 41:1609-1620. [PMID: 32300243 PMCID: PMC7921114 DOI: 10.1038/s41401-020-0395-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/15/2020] [Indexed: 02/06/2023] Open
Abstract
Sorafenib is currently the standard chemotherapy drug for treatment of advanced hepatocellular carcinoma (HCC). But its efficacy requires improvement, it is imperative to seek therapeutic strategies that combine sorafenib with other anticancer agents. In this study we investigated the synergistic anticancer effect of combining sorafenib and artesunate, an anti-malaria drug derivative, against HCC in vitro and in vivo. We first showed that artesunate (1-100 μM) alone dose-dependently inhibited the proliferation of five HCC cell lines tested with IC50 values of around 100 μM. Artesunate treatment dose-dependently increased the ROS level in both HuH7 and Hep3B cells; addition of NAC significantly ameliorated the antiproliferation effect of artesunate against HuH7 and Hep3B cells. Then we demonstrated that combination of sorafenib and artesunate exerted synergistic antiproliferation effect and induced synergistic apoptosis in HCC cell lines. In nude mice bearing Hep3B xenografts, combined administration of sorafenib and artesunate significantly enhanced the suppression on tumor growth. We further revealed that sorafenib dose-dependently decreased the levels of p-ERK and p-STAT3, whereas artesunate markedly increased the levels of p-ERK and p-STAT3 in HuH7 and Hep3B cells. When used in combination, sorafenib abolished artesunate-elevated levels of p-STAT3 and p-ERK. Moreover, pharmacological inhibition of ERK by inhibitor PD0325901 or STAT3 by inhibitor Stattic markedly enhanced the anticancer activity of artesunate, suggesting that suppression of ERK and STAT3 signaling by sorafenib contributes to the synergistic anticancer activity against HCC caused by combination of sorafenib and artesunate. Taken together, our results provide an evidence for possible use of sorafenib plus artesunate or artemisinin analogs for treatment of HCC in the future.
Collapse
Affiliation(s)
- Xu Yao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Chen-Ru Zhao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Hao Yin
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Jian-Jun Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
80
|
Li S, Saviano A, Erstad DJ, Hoshida Y, Fuchs BC, Baumert T, Tanabe KK. Risk Factors, Pathogenesis, and Strategies for Hepatocellular Carcinoma Prevention: Emphasis on Secondary Prevention and Its Translational Challenges. J Clin Med 2020; 9:E3817. [PMID: 33255794 PMCID: PMC7760293 DOI: 10.3390/jcm9123817] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated mortality globally. Given the limited therapeutic efficacy in advanced HCC, prevention of HCC carcinogenesis could serve as an effective strategy. Patients with chronic fibrosis due to viral or metabolic etiologies are at a high risk of developing HCC. Primary prevention seeks to eliminate cancer predisposing risk factors while tertiary prevention aims to prevent HCC recurrence. Secondary prevention targets patients with baseline chronic liver disease. Various epidemiological and experimental studies have identified candidates for secondary prevention-both etiology-specific and generic prevention strategies-including statins, aspirin, and anti-diabetic drugs. The introduction of multi-cell based omics analysis along with better characterization of the hepatic microenvironment will further facilitate the identification of targets for prevention. In this review, we will summarize HCC risk factors, pathogenesis, and discuss strategies of HCC prevention. We will focus on secondary prevention and also discuss current challenges in translating experimental work into clinical practice.
Collapse
Affiliation(s)
- Shen Li
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA; (S.L.); (D.J.E.); (B.C.F.)
| | - Antonio Saviano
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France;
| | - Derek J. Erstad
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA; (S.L.); (D.J.E.); (B.C.F.)
| | - Yujin Hoshida
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Department of Internal Medicine, Dallas, TX 75390, USA;
| | - Bryan C. Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA; (S.L.); (D.J.E.); (B.C.F.)
| | - Thomas Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France;
| | - Kenneth K. Tanabe
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA; (S.L.); (D.J.E.); (B.C.F.)
| |
Collapse
|
81
|
Wahwah N, Dhar D, Chen H, Zhuang S, Chan A, Casteel DE, Kalyanaraman H, Pilz RB, Boss GR. Metabolic interaction between amino acid deprivation and cisplatin synergistically reduces phosphoribosyl-pyrophosphate and augments cisplatin cytotoxicity. Sci Rep 2020; 10:19907. [PMID: 33199755 PMCID: PMC7670436 DOI: 10.1038/s41598-020-76958-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/04/2020] [Indexed: 11/09/2022] Open
Abstract
Cisplatin is a mainstay of cancer chemotherapy. It forms DNA adducts, thereby activating poly(ADP-ribose) polymerases (PARPs) to initiate DNA repair. The PARP substrate NAD+ is synthesized from 5-phosphoribose-1-pyrophosphate (PRPP), and we found that treating cells for 6 h with cisplatin reduced intracellular PRPP availability. The decrease in PRPP was likely from (1) increased PRPP consumption, because cisplatin increased protein PARylation and PARP1 shRNA knock-down returned PRPP towards normal, and (2) decreased intracellular phosphate, which down-regulated PRPP synthetase activity. Depriving cells of a single essential amino acid decreased PRPP synthetase activity with a half-life of ~ 8 h, and combining cisplatin and amino acid deprivation synergistically reduced intracellular PRPP. PRPP is a rate-limiting substrate for purine nucleotide synthesis, and cisplatin inhibited de novo purine synthesis and DNA synthesis, with amino acid deprivation augmenting cisplatin’s effects. Amino acid deprivation enhanced cisplatin’s cytotoxicity, increasing cellular apoptosis and DNA strand breaks in vitro, and intermittent deprivation of lysine combined with a sub-therapeutic dose of cisplatin inhibited growth of ectopic hepatomas in mice. Augmentation of cisplatin’s biochemical and cytotoxic effects by amino acid deprivation suggest that intermittent deprivation of an essential amino acid could allow dose reduction of cisplatin; this could reduce the drug’s side effects, and allow its use in cisplatin-resistant tumors.
Collapse
Affiliation(s)
- Nisreen Wahwah
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093-0652, USA
| | - Debanjan Dhar
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093-0652, USA
| | - Hui Chen
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093-0652, USA
| | - Shunhui Zhuang
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093-0652, USA
| | - Adriano Chan
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093-0652, USA
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093-0652, USA
| | - Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093-0652, USA
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093-0652, USA
| | - Gerry R Boss
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093-0652, USA.
| |
Collapse
|
82
|
Zhu LQ, Zhang L, Zhang J, Chang GL, Liu G, Yu DD, Yu XM, Zhao MS, Ye B. Evodiamine inhibits high-fat diet-induced colitis-associated cancer in mice through regulating the gut microbiota. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 19:56-65. [PMID: 33277208 DOI: 10.1016/j.joim.2020.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE High-fat diet is one of the main risk factors that disrupt the balance of gut microbiota, which eventually will induce colorectal cancer (CRC). Evodiamine (EVO) is a wildly used multifunctional traditional Chinese medicine extract. In this study, we investigated the role of gut microbiota in high-fat diet-propelled CRC and the potential of EVO for CRC chemoprevention. METHODS Gut microbiota, serum d-lactic acid and endotoxin from 38 patients with colon cancer and 18 healthy subjects were detected by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA). In addition, body mass index, phospho-signal transducer and activator of transcription 3 (p-STAT3) expression in cancer tissues and paracancerous tissues were detected by immunohistochemistry. A mouse intestinal inflammatory tumor model was established by azomethane/sodium dextran sulfate, followed by treatment with EVO and 5-aminosalicylic acid (ASA). Gut microbiota and inflammatory factors were detected by quantitative polymerase chain reaction, while serum d-lactic acid and endotoxin were detected by ELISA. Furthermore, cell proliferation, cell apoptosis, and interleukin (IL)-6/STAT3/P65 pathway were evaluated by 5-ethynyl-2'-deoxyuridine, terminal-deoxynucleotidyl transferase-mediated nick-end labeling, and Western blot assays. RESULTS In patients with colon cancer, the numbers of Enterococcus faecalis and Escherichia coli were increased, while those of Bifidobacterium, Campylobacter and Lactobacillus were decreased. Serum endotoxin and d-lactic acid levels and p-STAT3 levels were significantly increased. In the mouse model, both EVO and ASA inhibited tumor formation, decreased the proliferation of tumor cells, and induced apoptosis of tumor cells. Compared with the control group, the numbers of E. faecalis and E. coli were decreased, while Bifidobacterium, Campylobacter and Lactobacillus numbers were increased. In the EVO group, serum endotoxin and d-lactic acid levels and inflammatory factors were significantly decreased. Further, the IL6/STAT3/P65 signaling pathway was inhibited in the EVO group. CONCLUSION EVO may inhibit the occurrence of colon cancer by regulating gut microbiota and inhibiting intestinal inflammation. The potential mechanism involves inhibition of the IL6/STAT3/P65 signaling pathway, revealing its potential therapeutic significance in clinical applications.
Collapse
Affiliation(s)
- Li-Qing Zhu
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China; Research Center for Molecular Medicine and Tumor, Chongqing Medical University, Chongqing 400016, China; Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325023, Zhejiang Province, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China
| | - Jia Zhang
- Department of Clinical Laboratory, Wenzhou People's Hospital, Wenzhou 325023, Zhejiang Province, China
| | - Guo-Lin Chang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325023, Zhejiang Province, China
| | - Gang Liu
- Department of Emergency, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Dan-Dan Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325023, Zhejiang Province, China
| | - Xiao-Min Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325023, Zhejiang Province, China
| | - Mi-Sheng Zhao
- Department of Clinical Laboratory, Wenzhou People's Hospital, Wenzhou 325023, Zhejiang Province, China.
| | - Bin Ye
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China; Research Center for Molecular Medicine and Tumor, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
83
|
Zhao YZ, You J, Liu HE. Suppressor of cytokine signaling proteins 1 and 3 and hepatitis B virus infection. Shijie Huaren Xiaohua Zazhi 2020; 28:1076-1083. [DOI: 10.11569/wcjd.v28.i21.1076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Suppressor of cytokine signaling proteins (SOCS) are cytokine pathway inhibitors that play an important role in regulating the antiviral effect of interferon (IFN). Current studies have shown that SOCS1 and SOCS3 are closely related to hepatitis B virus (HBV) infection. Inhibition or stimulation of SOCS1 and SOCS3 expression may affect the antiviral effect by regulating the production of IFN, and may also affect the pathogenicity of HBV together with other cytokines or transcription regulators. This paper mainly discusses the possible mechanisms of SOCS1 and SOCS3 in HBV infection.
Collapse
Affiliation(s)
- Yin-Zhou Zhao
- The NHC Key Laboratory of Drug Addiction Medicine, Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Jing You
- The NHC Key Laboratory of Drug Addiction Medicine, Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Huai-E Liu
- The NHC Key Laboratory of Drug Addiction Medicine, Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| |
Collapse
|
84
|
Ma M, Zhou Y, Sun R, Shi J, Tan Y, Yang H, Zhang M, Shen R, Xu L, Wang Z, Fei J. STAT3 and AKT signaling pathways mediate oncogenic role of NRSF in hepatocellular carcinoma. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1063-1070. [PMID: 32556117 DOI: 10.1093/abbs/gmaa069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Neuron-restrictive silencer factor (NRSF) is a zinc finger protein that acts as a negative transcriptional regulator by recruiting histone deacetylases and other co-factors. It plays a crucial role in nervous system development and is recently reported to be involved in tumorigenesis in a tumor type-dependent manner; however, the role of NRSF in hepatocellular carcinoma (HCC) tumorigenesis remains unclear. Here, we found that NRSF expression was up-regulated in 27 of 49 human HCC tissue samples examined. Additionally, mice with conditional NRSF-knockout in the liver exhibited a higher tolerance against diethylnitrosamine (DEN)-induced acute liver injury and were less sensitive to DEN-induced HCC initiation. Our results showed that silencing NRSF in HepG2 cells using RNAi technology significantly inhibited HepG2 cell proliferation and severely hindered their migration and invasion potentials. Our results demonstrated that NRSF plays a pivotal role in promoting DEN-induced HCC initiation via a mechanism related to the STAT3 and AKT signaling pathways. Thus, NRSF could be a potential therapeutic target for treating human HCC.
Collapse
Affiliation(s)
- Ming Ma
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yunhe Zhou
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
- Sports and Health Research Center, Tongji University, Shanghai 200092, China
| | - Ruilin Sun
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai 201318, China
| | - Jiahao Shi
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yutong Tan
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Hua Yang
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Mengjie Zhang
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Ruling Shen
- Joint Laboratory for Model Organism, Shanghai Laboratory Animal Research Center, Shanghai 201203, China
| | - Leon Xu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Zhugang Wang
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai 201318, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai 201318, China
- Joint Laboratory for Model Organism, Shanghai Laboratory Animal Research Center, Shanghai 201203, China
| |
Collapse
|
85
|
Liu Y, Wang X, Yang Y. Hepatic Hippo signaling inhibits development of hepatocellular carcinoma. Clin Mol Hepatol 2020; 26:742-750. [PMID: 32981290 PMCID: PMC7641559 DOI: 10.3350/cmh.2020.0178] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Primary liver cancer is one of the most common cancer worldwide. Hepatocellular carcinoma (HCC) in particular, is the second leading cause of cancer deaths in the world. The Hippo signaling pathway has emerged as a major oncosuppressive pathway that plays critical roles inhibiting hepatocyte proliferation, survival, and HCC formation. A key component of the Hippo pathway is the inhibition of yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) transcription factors by the Hippo kinase cascade. Aberrant activation of YAP or TAZ has been found in several human cancers including HCC. It is also well established that YAP/TAZ activation in hepatocytes causes HCC in mouse models, indicating that YAP/TAZ are potential therapeutic targets for human liver cancer. In this review, we summarize the recent findings regarding the multifarious roles of Hippo/YAP/TAZ in HCC development, and focus on their cell autonomous roles in controlling hepatocyte proliferation, differentiation, survival and metabolism as well as their non-cell autonomous in shaping the tumor microenvironment.
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Xiaohui Wang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA.,Harvard Stem Cell Institute, Boston, MA, USA.,Program in Gastrointestinal Malignancies, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| |
Collapse
|
86
|
Jia F, Diao P, Wang X, Hu X, Kimura T, Nakamuta M, Nakamura I, Shirotori S, Sato Y, Moriya K, Koike K, Gonzalez FJ, Nakayama J, Aoyama T, Tanaka N. Dietary Restriction Suppresses Steatosis-Associated Hepatic Tumorigenesis in Hepatitis C Virus Core Gene Transgenic Mice. Liver Cancer 2020; 9:529-548. [PMID: 33083279 PMCID: PMC7548900 DOI: 10.1159/000508308] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/24/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND AIMS Dietary restriction (DR) is a preventive strategy for obesity, metabolic syndrome, cardiovascular disease, and diabetes. Although an interconnection between obesity, metabolic syndrome, fatty liver, and hepatocellular carcinoma has been documented, the mechanism and impact of DR on steatosis-derived hepatocarcinogenesis are not fully understood. This study aimed to evaluate whether DR can prevent hepatic tumorigenesis. METHODS Male hepatitis C virus core gene transgenic (HCVcpTg) mice that develop spontaneous age-dependent insulin resistance, hepatic steatosis, and ensuing liver tumor development without apparent hepatic fibrosis, were fed with either a control diet ad libitum (control group) or 70% of the same control diet (DR group) for 15 months, and liver phenotypes were investigated. RESULTS DR significantly reduced the number and volume of liver tumors. DR attenuated hepatic oxidative and endoplasmic reticulum stress and markedly suppressed nuclear factor-κB, signal transducer and activator of transcription 3 (STAT3) and STAT5, and phosphorylation of extracellular signal-regulated kinase, leading to downregulation of several pro-oncogenic mediators, such as cyclin D1. Serum insulin and insulin-like growth factor 1 levels, as well as hepatic expression of insulin receptor substrate 1/2, phosphatidylinositol-3 kinase, and serine/threonine-protein kinase AKT, were downregulated by DR. A transcriptome analysis revealed that STAT3 signaling and lipogenesis were the most suppressed hepatocarcinogenic pathways affected by DR. Additionally, DR stimulated autophagy and p62/sequestosome 1 degradation, enhanced phosphorylation of AMP-activated protein kinase α, increased fibroblast growth factor 21 expression, and attenuated expression of senescence-associated secretory phenotypes. CONCLUSION DR suppressed steatosis-associated hepatic tumorigenesis in HCVcpTg mice, mainly due to attenuation of pathways involved in inflammation, cellular stress, cell proliferation, insulin signaling, and senescence. These findings support the notion that persistent 30% reduction of daily food intake is beneficial for preventing steatosis-associated hepatocarcinogenesis caused by HCV core protein.
Collapse
Affiliation(s)
- Fangping Jia
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Pan Diao
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Xiaojing Wang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan,Department of Gastroenterology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, China
| | - Xiao Hu
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan,Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Takefumi Kimura
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Makoto Nakamuta
- Department of Gastroenterology, Kyushu Medical Center, Fukuoka, Japan
| | - Ibuki Nakamura
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Saki Shirotori
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshiko Sato
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kyoji Moriya
- Department of Infection Control and Prevention, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Toshifumi Aoyama
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan,Research Center for Social Systems, Shinshu University, Matsumoto, Japan,*Naoki Tanaka, Department of Metabolic Regulation, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto 390-8621 (Japan),
| |
Collapse
|
87
|
Laskowski J, Renner B, Pickering MC, Serkova NJ, Smith-Jones PM, Clambey ET, Nemenoff RA, Thurman JM. Complement factor H-deficient mice develop spontaneous hepatic tumors. J Clin Invest 2020; 130:4039-4054. [PMID: 32369457 PMCID: PMC7410061 DOI: 10.1172/jci135105] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is difficult to detect, carries a poor prognosis, and is one of few cancers with an increasing yearly incidence. Molecular defects in complement factor H (CFH), a critical regulatory protein of the complement alternative pathway (AP), are typically associated with inflammatory diseases of the eye and kidney. Little is known regarding the role of CFH in controlling complement activation within the liver. While studying aging CFH-deficient (fH-/-) mice, we observed spontaneous hepatic tumor formation in more than 50% of aged fH-/- males. Examination of fH-/- livers (3-24 months) for evidence of complement-mediated inflammation revealed widespread deposition of complement-activation fragments throughout the sinusoids, elevated transaminase levels, increased hepatic CD8+ and F4/80+ cells, overexpression of hepatic mRNA associated with inflammatory signaling pathways, steatosis, and increased collagen deposition. Immunostaining of human HCC biopsies revealed extensive deposition of complement fragments within the tumors. Investigating the Cancer Genome Atlas also revealed that increased CFH mRNA expression is associated with improved survival in patients with HCC, whereas mutations are associated with worse survival. These results indicate that CFH is critical for controlling complement activation in the liver, and in its absence, AP activation leads to chronic inflammation and promotes hepatic carcinogenesis.
Collapse
Affiliation(s)
- Jennifer Laskowski
- Department of Medicine, Nephrology and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Brandon Renner
- Department of Medicine, Nephrology and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Matthew C. Pickering
- Centre for Inflammatory Disease, Division of Immunology and Inflammation, Department of Medicine, Imperial College of London, London, United Kingdom
| | - Natalie J. Serkova
- Department of Medicine, Radiology
- Department of Medicine, Radiation Oncology, and
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Peter M. Smith-Jones
- Department of Medicine, Radiology
- Department of Medicine, Radiation Oncology, and
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Eric T. Clambey
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Raphael A. Nemenoff
- Department of Medicine, Nephrology and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Joshua M. Thurman
- Department of Medicine, Nephrology and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
88
|
Roderfeld M, Padem S, Lichtenberger J, Quack T, Weiskirchen R, Longerich T, Schramm G, Churin Y, Irungbam K, Tschuschner A, Windhorst A, Grevelding CG, Roeb E. Schistosoma mansoni Egg-Secreted Antigens Activate Hepatocellular Carcinoma-Associated Transcription Factors c-Jun and STAT3 in Hamster and Human Hepatocytes. Hepatology 2020; 72:626-641. [PMID: 30053321 PMCID: PMC7496692 DOI: 10.1002/hep.30192] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/23/2018] [Indexed: 12/16/2022]
Abstract
Clinical data have provided evidence that schistosomiasis can promote hepatocellular carcinogenesis. c-Jun and STAT3 are critical regulators of liver cancer development and progression. The aim of the present study was to investigate the hepatocellular activation of c-Jun and STAT3 by Schistosoma mansoni infection. Expression and function of c-Jun and STAT3 as well as proliferation and DNA repair were analyzed by western blotting, electrophoretic mobility-shift assay, and immunohistochemistry in liver of S. mansoni-infected hamsters, Huh7 cells, primary hepatocytes, and human liver biopsies. Hepatocellular activation of c-Jun was demonstrated by nuclear translocation of c-Jun, enhanced phosphorylation (Ser73), and AP-1/DNA-binding in response to S. mansoni infection. Nuclear c-Jun staining pattern around lodged eggs without ambient immune reaction, and directionally from granuloma to the central veins, suggested that substances released from schistosome eggs were responsible for the observed effects. In addition, hepatocytes with c-Jun activation show cell activation and DNA double-strand breaks. These findings from the hamster model were confirmed by analyses of human biopsies from patients with schistosomiasis. Cell culture experiments finally demonstrated that activation of c-Jun and STAT3 as well as DNA repair were induced by an extract from schistosome eggs (soluble egg antigens) and culture supernatants of live schistosome egg (egg-conditioned medium), and in particular by IPSE/alpha-1, the major component secreted by live schistosome eggs. The permanent activation of hepatocellular carcinoma-associated proto-oncogenes such as c-Jun and associated transcription factors including STAT3 by substances released from tissue-trapped schistosome eggs may be important factors contributing to the development of liver cancer in S. mansoni-infected patients. Therefore, identification and therapeutic targeting of the underlying pathways is a useful strategy to prevent schistosomiasis-associated carcinogenesis.
Collapse
Affiliation(s)
- Martin Roderfeld
- Department of GastroenterologyJustus‐Liebig‐UniversityGiessenGermany
| | - Sevinc Padem
- Department of GastroenterologyJustus‐Liebig‐UniversityGiessenGermany
| | | | - Thomas Quack
- Institute of ParasitologyBFS, Justus‐Liebig‐UniversityGiessenGermany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical ChemistryRWTH University Hospital AachenAachenGermany
| | - Thomas Longerich
- Translational Gastrointestinal Pathology, Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
| | - Gabriele Schramm
- Experimental Pneumology, Priority Research Area Asthma & AllergyResearch Center BorstelParkallee, BorstelGermany
| | - Yuri Churin
- Department of GastroenterologyJustus‐Liebig‐UniversityGiessenGermany
| | - Karuna Irungbam
- Department of GastroenterologyJustus‐Liebig‐UniversityGiessenGermany
| | | | - Anita Windhorst
- Institute for Medical InformaticsJustus‐Liebig‐UniversityGiessenGermany
| | | | - Elke Roeb
- Department of GastroenterologyJustus‐Liebig‐UniversityGiessenGermany
| |
Collapse
|
89
|
Benhammou JN, Lin J, Hussain SK, El-Kabany M. Emerging risk factors for nonalcoholic fatty liver disease associated hepatocellular carcinoma. HEPATOMA RESEARCH 2020; 6:35. [PMID: 32685690 PMCID: PMC7367098 DOI: 10.20517/2394-5079.2020.16] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Worldwide, nonalcoholic fatty liver disease (NAFLD) has reached epidemic proportions and in parallel, hepatocellular carcinoma (HCC) has become one of the fastest growing cancers. Epidemiological studies have not only shed light on the prevalence and incidence of the disease but have also unmasked important environmental risk factors, including the role of diabetes and dyslipidemia in disease pathogenesis. Genetic association studies have identified single nucleotide polymorphisms implicated in NAFLD-HCC, many of which are part of lipid metabolism pathways. Through these clinical studies and subsequently, translational and basic research, the role of statins as a chemoprotective agent has also emerged with ongoing clinical trials assessing their utility in HCC prevention and treatment. In this review, we summarize the recent epidemiological studies describing the burden of NAFLD-HCC in different patient populations and countries. We discuss the genetic and environmental risk factors for NAFLD-HCC and highlight the chemoprotective role of statins and aspirin. We also summarize what is known about NAFLD-HCC in the cirrhosis and non-cirrhosis populations and briefly address the role of surveillance in NAFLD-HCC patients.
Collapse
Affiliation(s)
- Jihane N. Benhammou
- Pfleger Liver Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jonathan Lin
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Shehnaz K. Hussain
- Department of Epidemiology, Fielding School of Public Health, University of California, CA 90095, USA
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mohamed El-Kabany
- Pfleger Liver Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
90
|
Niu W, Bo QY, Niu J, Niu ZC, Peng C, Zou XQ, Zhang ZY. Identification of integrin β6 gene promoter and analysis of its transcription regulation in colon cancer cells. World J Gastrointest Oncol 2020; 12:526-534. [PMID: 32461784 PMCID: PMC7235184 DOI: 10.4251/wjgo.v12.i5.526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/29/2020] [Accepted: 04/18/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The integrin β6 gene, which is expressed in epithelial cancer, plays a pivotal role in various aspects of cancer progression. The present research for integrin β6 regulation mainly focuses on the post-transcription and translation related regulation mechanism and its role in tumorigenesis. The mechanisms of how the integrin β6 gene is regulated transcriptionally, and the promoter and transcription factors responsible for basic transcription of integrin β6 gene remain unknown.
AIM To clone and characterize the integrin β6 promoter.
METHODS Software analysis was used to predict the region of integrin β6 promoter. Luciferase reporter plasmids, which contained the integrin β6 promoter, were constructed. Element deletion analysis was performed to identify the location of core promoter and binding sites for transcription factors.
RESULTS The regulatory elements for the transcription of the integrin β6 gene were located between -286 and -85 and contained binding sites for transcription factors such as STAT3 and Ets-1.
CONCLUSION For the first time, we found the region of β6 core promoter and demonstrated the binding sites for transcription factors such as Ets-1 and STAT3, which are important for integrin β6 promoter transcription activity. These findings are important for investigating the mechanism of integrin β6 activation in cancer progression.
Collapse
Affiliation(s)
- Wei Niu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Qi-Yu Bo
- Department of Nursing, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Jun Niu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Zheng-Chuan Niu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Cheng Peng
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Xue-Qing Zou
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Zhao-Yang Zhang
- Department of Emergency Surgery, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
91
|
Tavanez JP, Caetano R, Branco C, Brito IM, Miragaia-Pereira A, Vassilevskaia T, Quina AS, Cunha C. Hepatitis delta virus interacts with splicing factor SF3B155 and alters pre-mRNA splicing of cell cycle control genes. FEBS J 2020; 287:3719-3732. [PMID: 32352217 DOI: 10.1111/febs.15352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/14/2019] [Accepted: 04/28/2020] [Indexed: 11/28/2022]
Abstract
Hepatitis delta virus (HDV) is the agent responsible for the most severe form of human viral hepatitis. The HDV genome consists of a single-stranded circular RNA molecule that encodes for one single protein, the delta antigen. Given its simplicity, HDV must make use of several host cellular proteins to accomplish its life cycle processes, including transcription, replication, post-transcriptional, and post-translational modifications. Consequently, identification of the interactions established between HDV components and host proteins assumes a pivotal interest in the search of novel therapeutic targets. Here, we used the yeast three-hybrid system to screen a human liver cDNA library to identify host proteins that interact with the HDV genomic RNA. One of the identified proteins corresponded to the splicing factor SF3B155, a component of the U2snRNP complex that is essential for the early recognition of 3' splice sites in the pre-mRNAs of human genes. We show that the interaction between the HDV genomic RNA and SF3B155 occurs in vivo and that the expression of HDV promotes changes in splicing of human genes whose alternative splicing is SF3B155-dependent. We further show that expression of HDV triggers alterations in several constitutive and alternative splicing events in the tumor suppressor RBM5 transcript, with consequent reduction of its protein levels. This is the first description that HDV expression promotes changes in the splicing of human genes, and we suggest that the HDV-induced alternative splicing changes, through SF3B155 sequester, may contribute for the early progression to hepatocellular carcinoma characteristic of HDV-infected patients.
Collapse
Affiliation(s)
- João Paulo Tavanez
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Rafael Caetano
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Cristina Branco
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Inês Margarida Brito
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Ana Miragaia-Pereira
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Tatiana Vassilevskaia
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Ana Sofia Quina
- CESAM - Centre for Environmental and Marine Studies, Universidade de Aveiro, Portugal.,Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - Celso Cunha
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| |
Collapse
|
92
|
Goto K, Roca Suarez AA, Wrensch F, Baumert TF, Lupberger J. Hepatitis C Virus and Hepatocellular Carcinoma: When the Host Loses Its Grip. Int J Mol Sci 2020; 21:ijms21093057. [PMID: 32357520 PMCID: PMC7246584 DOI: 10.3390/ijms21093057] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with hepatitis C virus (HCV) is a major cause of hepatocellular carcinoma (HCC). Novel treatments with direct-acting antivirals achieve high rates of sustained virologic response; however, the HCC risk remains elevated in cured patients, especially those with advanced liver disease. Long-term HCV infection causes a persistent and accumulating damage of the liver due to a combination of direct and indirect pro-oncogenic mechanisms. This review describes the processes involved in virus-induced disease progression by viral proteins, derailed signaling, immunity, and persistent epigenetic deregulation, which may be instrumental to develop urgently needed prognostic biomarkers and as targets for novel chemopreventive therapies.
Collapse
Affiliation(s)
- Kaku Goto
- Université de Strasbourg, F-67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), F-67000 Strasbourg, France
| | - Armando Andres Roca Suarez
- Université de Strasbourg, F-67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), F-67000 Strasbourg, France
| | - Florian Wrensch
- Université de Strasbourg, F-67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), F-67000 Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, F-67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), F-67000 Strasbourg, France
- Pôle Hépato-digestif, Institut Hopitalo-Universitaire, F-67000 Strasbourg, France
- Institut Universitaire de France, F-75231 Paris, France
- Correspondence: (T.F.B.); (J.L.); Tel.: +33-3-68-85-37-03 (T.F.B. & J.L.); Fax: +33-3-68-85-37-24 (T.F.B. & J.L.)
| | - Joachim Lupberger
- Université de Strasbourg, F-67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), F-67000 Strasbourg, France
- Correspondence: (T.F.B.); (J.L.); Tel.: +33-3-68-85-37-03 (T.F.B. & J.L.); Fax: +33-3-68-85-37-24 (T.F.B. & J.L.)
| |
Collapse
|
93
|
Wang Y, Yao R, Zhang D, Chen R, Ren Z, Zhang L. Circulating Neutrophils Predict Poor Survival for HCC and Promote HCC Progression Through p53 and STAT3 Signaling Pathway. J Cancer 2020; 11:3736-3744. [PMID: 32328178 PMCID: PMC7171508 DOI: 10.7150/jca.42953] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Tumor-associated neutrophils (TANs) contribute to tumor progression, invasion, and angiogenesis. However, most studies focus on tumor infiltration neutrophils while the roles of circulating neutrophils in tumor progression remain unclear. This study was aimed to verify the pro-tumor effects of circulating neutrophils and its' mechanism in HCC. Methods: We collected clinical data of 127 HCC patients underwent TACE. The prognostic factors for overall survival (OS) were analyzed by Kaplan-Meier curve and Cox models. Circulating neutrophils of HCC patients were sorted and co-cultured with human HCC cell lines MHCC-97H and SMMC-7721. Then we detected tumor cells' proliferation, migration, and invasion. Phosphokinase array was used to determine the kinase profile on MHCC-97H and SMMC-7721 cultured with or without circulating neutrophils. Results: The result of multivariate analyses of 127 patients showed that increased circulating neutrophils was an independent poor prognostic factor for OS of HCC patients underwent TACE. Circulating neutrophils promoted migration and invasion of HCC cell lines but had no impact on proliferation. The kinase profile on HCC cell lines showed that p-p53S46 and p-STAT3Y705 were up-regulated after co-cultured with circulating neutrophils. Repeated scratch tests and transwell tests showed a reversed impact on migration and invasion of circulating neutrophils after we treated HCC cell lines with inhibitors of p53 or STAT3. Conclusion: Circulating neutrophils was an independent poor prognostic factor for OS of HCC patients underwent TACE. It had pro-tumor effect on HCC through p53 and STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yan Wang
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Rongrong Yao
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai 201907, P.R.China
| | - Danying Zhang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Rongxin Chen
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Zhenggang Ren
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Lan Zhang
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
94
|
Zhou B, Chen TW, Jiang YB, Wei XB, Lu CD, Li JJ, Xie D, Cheng SQ. Scinderin suppresses cell proliferation and predicts the poor prognosis of hepatocellular carcinoma. Oncol Lett 2020; 19:2011-2020. [PMID: 32194697 DOI: 10.3892/ol.2020.11262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains an intractable disease despite numerous advancements made in the available treatments over recent decades. Therefore, investigation of the underlying pathogenesis of HCC is urgently required. Our previous microarray result showed that SCIN was generally downregulated in 23 paired tumor/normal tissues. Reverse transcription-quantitative PCR, western blotting and immunohistochemistry were performed in the present study in order to detect the expression of scinderin (SCIN). Lentivirus-mediated gene delivery was used in order to produce SCIN-manipulated cell lines. MTT and crystal violet assays were performed in order to investigate cell growth, and fluorescence-activated cell sorting analysis was used in order to determine cell cycle distribution. SCIN was downregulated in HCC samples, and low SCIN expression predicted the poor prognosis of patients with HCC. Notably, SCIN may have the potential to serve as an independent risk factor for overall survival (3-year overall survival rate of 28.6 and 10.3% in high SCIN expression and low SCIN expression groups, respectively) and disease-free survival (3-year recurrence rate of 71.4 and 84.6% in high SCIN expression and low SCIN expression groups, respectively) in HCC. SCIN inhibited HCC cell proliferation both in vitro and in subcutaneous tumor formation assay. Furthermore, SCIN decreased the levels of phosphorylated STAT3, thereby downregulating cyclin A1 levels in HCC cells. The results of the present study demonstrate the tumor suppressive role of SCIN in HCC, providing a candidate strategy to treat this disease.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Tian-Wei Chen
- Laboratory of Molecular Oncology, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Ya-Bo Jiang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Xu-Biao Wei
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Chong-De Lu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Jing-Jing Li
- Laboratory of Molecular Oncology, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Dong Xie
- Laboratory of Molecular Oncology, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Shu-Qun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| |
Collapse
|
95
|
Hin Tang JJ, Hao Thng DK, Lim JJ, Toh TB. JAK/STAT signaling in hepatocellular carcinoma. Hepat Oncol 2020; 7:HEP18. [PMID: 32273976 PMCID: PMC7137178 DOI: 10.2217/hep-2020-0001] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the second most lethal cancer in the world with limited treatment options. Hepatocellular carcinoma (HCC), which accounts for more than 80% of all liver cancers, has had increasing global incidence over the past few years. There is an urgent need for novel and better therapeutic intervention for HCC patients. The JAK/STAT signaling pathway plays a multitude of important biological functions in both normal and malignant cells. In a subset of HCC, JAK/STAT signaling is aberrantly activated, leading to dysregulation of downstream target genes that controls survival, angiogenesis, stemness, immune surveillance, invasion and metastasis. In this review, we will focus on the role of JAK/STAT signaling in HCC and discuss the current clinical status of several JAK/STAT inhibitors.
Collapse
Affiliation(s)
- Justin Jit Hin Tang
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
| | - Dexter Kai Hao Thng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jhin Jieh Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
| |
Collapse
|
96
|
Jiang F, Liu M, Wang H, Shi G, Chen B, Chen T, Yuan X, Zhu P, Zhou J, Wang Q, Chen Y. Wu Mei Wan attenuates CAC by regulating gut microbiota and the NF-kB/IL6-STAT3 signaling pathway. Biomed Pharmacother 2020; 125:109982. [PMID: 32119646 DOI: 10.1016/j.biopha.2020.109982] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) has a high incidence and mortality rate worldwide. Colitis-associated CRC (CAC) is used for describing the relationship between inflammation and CRC. No chemopreventive agents have been found to be both effective and safe in CRC. Therefore, the prevention and treatment of CAC are extremely urgent. Wu Mei Wan (WMW) has been used for the clinical treatment of enteritis with a remarkable efficacy. Here, we aim to investigate the underlying mechanism of WMW in the prevention of CAC. METHODS The AOM/DSS-induced CAC mouse model was used, and the mice were divided into normal control (NC), AOM/DSS model control (MC), and AOM/DSS plus WMW (WMW). The weight of mice, the score of DAI, survival rate, number of tumors and sample collection were performed at the end of the 14th week. Histopathological examination was performed using Hematoxylin-Eosin (HE) staining. Tumor cell proliferation was indicated by the expression of PCNA, and p65 and p-STAT3 were detected by immunohistochemistry. Serum IL-6 levels were detected by enzyme-linked immunosorbent assay (ELISA). The expression of p65, IL-6 and p-STAT3 in the colon was detected by Western Blot. Intestinal flora was analyzed by 16S rDNA sequencing. RESULTS WMW improved the survival rate of mice in the MC group and also attenuated CAC symptoms such as abnormal clinical colitis and pathological changes to intestinal tissue by reducing DAI score, tumor formation, tumor volume, and grade of tumorigenesis. WMW also reduced the proliferation of tumor cells in colon tissues. WMW decreased the expression of p65, IL-6, and p-STAT3 in colon tumors of CAC mice. WMW decreased Bacteroidetes and increased Firmicutes at the phylum level, while decreasing bacteroidales_s24-7_group and increasing the number of Lachnospiraceae at the family level. CONCLUSION WMW attenuates CAC by regulating the balance between "tumor-promoting bacteria" and "tumor-suppressing bacteria" and the NF-kB/IL-6/STAT3 pathway. WMW has the potential to be a safe and effective chemopreventive drug but further clinical evidence is necessary.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Minghao Liu
- Department of Colorectal Surgery, Siyang Hospital of Tradition Chinese Medicine, Suqian 223700, China
| | - Haidan Wang
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Guoping Shi
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Biqing Chen
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Tuo Chen
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaomin Yuan
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Zhu
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Jinyong Zhou
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Qiong Wang
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China.
| | - Yugen Chen
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
97
|
Bnip3 in mitophagy: Novel insights and potential therapeutic target for diseases of secondary mitochondrial dysfunction. Clin Chim Acta 2020; 506:72-83. [PMID: 32092316 DOI: 10.1016/j.cca.2020.02.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/29/2022]
Abstract
The present review is a summary of the recent literature concerning Bnip3 expression, function, and regulation, along with its implications in mitochondrial dysfunction, disorders of mitophagy homeostasis, and development of diseases of secondary mitochondrial dysfunction. As a member of the Bcl-2 family of cell death-regulating factors, Bnip3 mediates mPTP opening, mitochondrial potential, oxidative stress, calcium overload, mitochondrial respiratory collapse, and ATP shortage of mitochondria from multiple cells. Recent studies have discovered that Bnip3 regulates mitochondrial dysfunction, mitochondrial fragmentation, mitophagy, cell apoptosis, and the development of lipid disorder diseases via numerous cellular signaling pathways. In addition, Bnip3 promotes the development of cardiac hypertrophy by mediating inflammatory response or the related signaling pathways of cardiomyocytes and is also responsible for raising abnormal mitophagy and apoptosis progression through multiple molecular signaling pathways, inducing the pathogenesis and progress of hepatocellular carcinoma (HCC). Different molecules regulate Bnip3 expression at both the transcriptional and post-transcriptional level, leading to mitochondrial dysfunction and unbalance of mitophagy in hepatocytes, which promotes the development of non-alcoholic fatty liver disease (NAFLD). Thus, Bnip3 plays an important role in mitochondrial dysfunction and mitophagy homeostasis and has emerged as a promising therapeutic target for diseases of secondary mitochondrial dysfunction.
Collapse
|
98
|
Huang R, Jing X, Huang X, Pan Y, Fang Y, Liang G, Liao Z, Wang H, Chen Z, Zhang Y. Bifunctional Naphthoquinone Aromatic Amide-Oxime Derivatives Exert Combined Immunotherapeutic and Antitumor Effects through Simultaneous Targeting of Indoleamine-2,3-dioxygenase and Signal Transducer and Activator of Transcription 3. J Med Chem 2020; 63:1544-1563. [PMID: 31999451 DOI: 10.1021/acs.jmedchem.9b01386] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) and signal transducer and activator of transcription 3 (STAT3) are important targets in the tumor microenvironment for cancer therapy. In the present study, a set of naphthoquinone aromatic amide-oxime derivatives were designed, which stimulated the immune response via IDO1 inhibition and simultaneously displayed powerful antitumor activity against three selected cancer cell lines through suppressing STAT3 signaling. The representative compound 8u bound effectively to IDO1, with greater inhibitory activity relative to the commercial IDO1 inhibitor 4-amino-N-(3-chloro-4-fluorophenyl)-N'-hydroxy-1,2,5-oxadiazole-3-carboximidamide (IDO5L) in addition to the efficient suppression of nuclear translocation of STAT3. Consistently, in vivo assays demonstrated a higher antiproliferative activity of compound 8u in both wild-type B16-F10 isograft tumors and an athymic HepG2 xenograft model relative to 1-methyl-l-tryptophan (1-MT) and doxorubicin (DOX). This bifunctional compound with dual immunotherapeutic and anticancer efficacy may represent a new generation of highly efficacious drug candidates for cancer therapy.
Collapse
Affiliation(s)
- Rizhen Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China.,School of Pharmacy , Guilin Medical University , Guilin 541004 , China.,Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Xiaoteng Jing
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China
| | - Xiaochao Huang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Yingming Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China
| | - Yilin Fang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China
| | - Guibin Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China
| | - Zhixin Liao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China
| | - Zhenfeng Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China
| | - Ye Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China.,School of Pharmacy , Guilin Medical University , Guilin 541004 , China
| |
Collapse
|
99
|
Upregulated Seizure-Related 6 Homolog-Like 2 Is a Prognostic Predictor of Hepatocellular Carcinoma. DISEASE MARKERS 2020; 2020:7318703. [PMID: 32148567 PMCID: PMC7042535 DOI: 10.1155/2020/7318703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 01/10/2020] [Indexed: 12/21/2022]
Abstract
Seizure-related 6 homolog-like 2 (SEZ6L2), which is localized on the cell surface, has been found to be associated with tumor angiogenesis and lung cancer progression. However, the role of SEZ6L2 in hepatocellular carcinoma (HCC) is still unclear. We obtained data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) to investigate SEZ6L2 expression and regulation in HCC. Then, HCC tissue samples were collected to verify SEZ6L2 by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical staining (IHC). Patient information was collected for survival and prognosis analysis. qRT-PCR, IHC, and bioinformatics analysis showed that the SEZ6L2 protein was highly expressed in HCC samples. Clinical data showed that high SEZ6L2 protein expression was correlated with tumor-node-metastasis (TNM) stages (P = 0.046), tumor number (P = 0.016), and tumor size (P = 0.029). Meanwhile, SEZ6L2 overexpression was closely associated with poor overall survival and disease-free survival in HCC patients. Moreover, SEZ6L2 is an independent prognostic predictor for the survival of HCC patients. This study suggests a significant correlation between SEZ6L2 and HCC, which means that SEZ6L2 may potentially serve as a useful prognostic biomarker for HCC patients.
Collapse
|
100
|
Shalapour S, Karin M. Cruel to Be Kind: Epithelial, Microbial, and Immune Cell Interactions in Gastrointestinal Cancers. Annu Rev Immunol 2020; 38:649-671. [PMID: 32040356 DOI: 10.1146/annurev-immunol-082019-081656] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A plethora of experimental and epidemiological evidence supports a critical role for inflammation and adaptive immunity in the onset of cancer and in shaping its response to therapy. These data are particularly robust for gastrointestinal (GI) cancers, such as those affecting the GI tract, liver, and pancreas, on which this review is focused. We propose a unifying hypothesis according to which intestinal barrier disruption is the origin of tumor-promoting inflammation that acts in conjunction with tissue-specific cancer-initiating mutations. The gut microbiota and its products impact tissue-resident and recruited myeloid cells that promote tumorigenesis through secretion of growth- and survival-promoting cytokines that act on epithelial cells, as well as fibrogenic and immunosuppressive cytokines that interfere with the proper function of adaptive antitumor immunity. Understanding these relationships should improve our ability to prevent cancer development and stimulate the immune system to eliminate existing malignancies.
Collapse
Affiliation(s)
- Shabnam Shalapour
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA; , .,Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA; , .,Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|