51
|
Wissler Gerdes EO, Zhu Y, Weigand BM, Tripathi U, Burns TC, Tchkonia T, Kirkland JL. Cellular senescence in aging and age-related diseases: Implications for neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:203-234. [PMID: 32854855 PMCID: PMC7656525 DOI: 10.1016/bs.irn.2020.03.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging is the major predictor for developing multiple neurodegenerative diseases, including Alzheimer's disease (AD) other dementias, and Parkinson's disease (PD). Senescent cells, which can drive aging phenotypes, accumulate at etiological sites of many age-related chronic diseases. These cells are resistant to apoptosis and can cause local and systemic dysfunction. Decreasing senescent cell abundance using senolytic drugs, agents that selectively target these cells, alleviates neurodegenerative diseases in preclinical models. In this review, we consider roles of senescent cells in neurodegenerative diseases and potential implications of senolytic agents as an innovative treatment.
Collapse
Affiliation(s)
| | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - B Melanie Weigand
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Terence C Burns
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
52
|
Regulation of DNA Damage Response and Homologous Recombination Repair by microRNA in Human Cells Exposed to Ionizing Radiation. Cancers (Basel) 2020; 12:cancers12071838. [PMID: 32650508 PMCID: PMC7408912 DOI: 10.3390/cancers12071838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Ionizing radiation may be of both artificial and natural origin and causes cellular damage in living organisms. Radioactive isotopes have been used significantly in cancer therapy for many years. The formation of DNA double-strand breaks (DSBs) is the most dangerous effect of ionizing radiation on the cellular level. After irradiation, cells activate a DNA damage response, the molecular path that determines the fate of the cell. As an important element of this, homologous recombination repair is a crucial pathway for the error-free repair of DNA lesions. All components of DNA damage response are regulated by specific microRNAs. MicroRNAs are single-stranded short noncoding RNAs of 20–25 nt in length. They are directly involved in the regulation of gene expression by repressing translation or by cleaving target mRNA. In the present review, we analyze the biological mechanisms by which miRNAs regulate cell response to ionizing radiation-induced double-stranded breaks with an emphasis on DNA repair by homologous recombination, and its main component, the RAD51 recombinase. On the other hand, we discuss the ability of DNA damage response proteins to launch particular miRNA expression and modulate the course of this process. A full understanding of cell response processes to radiation-induced DNA damage will allow us to develop new and more effective methods of ionizing radiation therapy for cancers, and may help to develop methods for preventing the harmful effects of ionizing radiation on healthy organisms.
Collapse
|
53
|
Baek JH, Yun HS, Kim JY, Lee J, Lee YJ, Lee CW, Song JY, Ahn J, Park JK, Kim JS, Lee KH, Kim EH, Hwang SG. Kinesin light chain 4 as a new target for lung cancer chemoresistance via targeted inhibition of checkpoint kinases in the DNA repair network. Cell Death Dis 2020; 11:398. [PMID: 32457423 PMCID: PMC7250887 DOI: 10.1038/s41419-020-2592-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
The poor therapeutic efficacy of non-small cell lung cancer (NSCLC) is partly attributed to the acquisition of chemoresistance. To investigate the mechanism underlying this resistance, we examined the potential link between kinesin light chain 4 (KLC4), which we have previously reported to be associated with radioresistance in NSCLC, and sensitivity to chemotherapy in human lung cancer cell lines. KLC4 protein levels in lung cancer cells correlated with the degree of chemoresistance to cisplatin treatment. Furthermore, KLC4 silencing enhanced the cytotoxic effect of cisplatin by promoting DNA double-strand breaks and apoptosis. These effects were mediated by interaction with the checkpoint kinase CHK2, as KLC4 knockdown increased CHK2 activation, which was further enhanced in combination with cisplatin treatment. In addition, KLC4 and CHEK2 expression levels showed negative correlation in lung tumor samples from patients, and KLC4 overexpression correlated negatively with survival. Our results indicate a novel link between the KLC4 and CHK2 pathways regulating DNA damage response in chemoresistance, and highlight KLC4 as a candidate for developing lung cancer-specific drugs and customized targeted molecular therapy.
Collapse
Affiliation(s)
- Jeong-Hwa Baek
- Radiation Biology Research Team, Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 46033, Republic of Korea
| | - Hong Shik Yun
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ju-Young Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 440-746, Korea
| | - Janet Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Korea
| | - Yeon-Joo Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 440-746, Korea
| | - Jie-Young Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Korea
| | - Jiyeon Ahn
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Korea
| | - Jong Kuk Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Korea
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Korea
| | - Kee-Ho Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Korea
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic University, 33, 17-gil, Duryugongwon-ro, Nam-gu, Daegu, Korea.
| | - Sang-Gu Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Korea.
| |
Collapse
|
54
|
Gzil A, Jaworski D, Antosik P, Zarębska I, Durślewicz J, Dominiak J, Kasperska A, Neska-Długosz I, Grzanka D, Szylberg Ł. The impact of TP53BP1 and MLH1 on metastatic capability in cases of locally advanced prostate cancer and their usefulness in clinical practice. Urol Oncol 2020; 38:600.e17-600.e26. [PMID: 32280038 DOI: 10.1016/j.urolonc.2020.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Lymph node (LN) metastases increase the risk of death from prostate cancer (CaP). The dysfunction of factors responsible for DNA injury detection may promote the evolution of localized primary tumors into the metastatic form. METHODS In this study, 52 cases of CaP were analyzed. The cases were divided into groups of CaP without metastases (N0), with metastases to the LNs (N+), and metastatic LN tissue. Immunohistochemical examinations were performed with antibodies against MDC1, TP53BP1, MLH1, MSH2, MSH6, and PMS2. RESULTS Statistical analysis showed lower nuclear expression of TP53BP1 in N+ cases than in N0 cases (P = 0.026). Nuclear TP53BP1 expression was lower in LN cases than in N+ cases (P = 0.019). Statistical analysis showed lower nuclear expression of MLH1 in N+ cases than in to N0 cases (P = 0.003). CONCLUSION Decreased expression of both MLH1 and TP53B1 were demonstrated in N+ cases of CaP. This observation could help to determine the risk of nodal metastasis, and to select appropriate treatment modalities for patients with locally advanced CaP.
Collapse
Affiliation(s)
- Arkadiusz Gzil
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland.
| | - Damian Jaworski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Izabela Zarębska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Joanna Dominiak
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Anna Kasperska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Izabela Neska-Długosz
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Łukasz Szylberg
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland; Department of Pathomorphology, Military Clinical Hospital, Bydgoszcz, Poland; Department of Tumor Pathology and Pathomorphology, Oncology Center, Prof., Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| |
Collapse
|
55
|
Sousa JFD, Serafim RB, Freitas LMD, Fontana CR, Valente V. DNA repair genes in astrocytoma tumorigenesis, progression and therapy resistance. Genet Mol Biol 2019; 43:e20190066. [PMID: 31930277 PMCID: PMC7198033 DOI: 10.1590/1678-4685-gmb-2019-0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/21/2019] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma (GBM) is the most common and malignant type of primary brain tumor,
showing rapid development and resistance to therapies. On average, patients
survive 14.6 months after diagnosis and less than 5% survive five years or more.
Several pieces of evidence have suggested that the DNA damage signaling and
repair activities are directly correlated with GBM phenotype and exhibit
opposite functions in cancer establishment and progression. The functions of
these pathways appear to present a dual role in tumorigenesis and cancer
progression. Activation and/or overexpression of ATRX, ATM and RAD51 genes were
extensively characterized as barriers for GBM initiation, but paradoxically the
exacerbated activity of these genes was further associated with cancer
progression to more aggressive stages. Excessive amounts of other DNA repair
proteins, namely HJURP, EXO1, NEIL3, BRCA2, and BRIP, have also been connected
to proliferative competence, resistance and poor prognosis. This scenario
suggests that these networks help tumor cells to manage replicative stress and
treatment-induced damage, diminishing genome instability and conferring therapy
resistance. Finally, in this review we address promising new drugs and
therapeutic approaches with potential to improve patient survival. However,
despite all technological advances, the prognosis is still dismal and further
research is needed to dissect such complex mechanisms.
Collapse
Affiliation(s)
- Juliana Ferreira de Sousa
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Rodolfo Bortolozo Serafim
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Laura Marise de Freitas
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Paulo, SP, Brazil
| | - Carla Raquel Fontana
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
| | - Valeria Valente
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil.,Centro de Terapia Celular (CEPID-FAPESP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
56
|
Chen S, Zhou Q, Guo Z, Wang Y, Wang L, Liu X, Lu M, Ju L, Xiao Y, Wang X. Inhibition of MELK produces potential anti-tumour effects in bladder cancer by inducing G1/S cell cycle arrest via the ATM/CHK2/p53 pathway. J Cell Mol Med 2019; 24:1804-1821. [PMID: 31821699 PMCID: PMC6991658 DOI: 10.1111/jcmm.14878] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/30/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022] Open
Abstract
We aimed to investigate the biological function of MELK and the therapeutic potential of OTSSP167 in human bladder cancer (BCa). First, we observed overexpression of MELK in BCa cell lines and tissues and found that it was associated with higher tumour stage and tumour grade, which was consistent with transcriptome analysis. High expression of MELK was significantly correlated with poor prognosis in BCa patients, and MELK was found to have a role in the cell cycle, the G1/S transition in mitosis, and DNA repair and replication. Furthermore, BCa cells presented significantly decreased proliferation capacity following silencing of MELK or treatment with OTSSP167 in vitro and in vivo. Functionally, reduction in MELK or treatment of cells with OTSSP167 could induce cell cycle arrest and could suppress migration. In addition, these treatments could activate phosphorylation of ATM and CHK2, which would be accompanied by down‐regulated MDMX, cyclin D1, CDK2 and E2F1; however, p53 and p21 would be activated. Opposite results were observed when MELK expression was induced. Overall, MELK was found to be a novel oncogene in BCa that induces cell cycle arrest via the ATM/CHK2/p53 pathway. OTSSP167 displays potent anti‐tumour activities, which may provide a new molecule‐based strategy for BCa treatment.
Collapse
Affiliation(s)
- Song Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiang Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zicheng Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Urology, Enshi Clinical College of Wuhan University, Enshi, China
| | - Yejinpeng Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Mengxin Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
57
|
Bostan M, Petrică-Matei GG, Ion G, Radu N, Mihăilă M, Hainăroşie R, Braşoveanu LI, Roman V, Constantin C, Neagu MT. Cisplatin effect on head and neck squamous cell carcinoma cells is modulated by ERK1/2 protein kinases. Exp Ther Med 2019; 18:5041-5051. [PMID: 31798724 PMCID: PMC6880449 DOI: 10.3892/etm.2019.8139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
The extracellular signal-regulated kinases (ERKs) are key transducers of the extracellular signals into intracellular responses and represent major molecular players in tumorigenesis. The aim of this study was to determine how curcumin (CRM) used as an adjuvant supports the apoptotic process induced by a single chemical agent treatment (cisplatin-CisPT) on two head and neck squamous cell carcinoma cell lines (FaDu and PE/CA-PJ49) and the involvement of ERK1/2 and/or p53 activation in this process. Data have shown that the CisPt effect is potentiated by CRM. CRM induced an increase of p53 protein phosphorylation in both cell lines. CisPt decreased p53 protein phosphorylation in FaDu cells, but increased it in PE/CA-PJ49 cells. Data showed that the constitutive expression of activated ERK1/2 protein-kinase was different in the two analyzed tumor cell lines. ERK1/2 activation status was essential for both cell processes, proliferation and apoptosis induced by CisPt and/or CRM treatment on squamous cell carcinoma cells. Our data suggest that p53 phosphorylation in the apoptotic process induced by CRM treatment might require the involvement of ERK1/2. In this regard the CisPt treatment suggested that p53 phosphorylation is ERK1/2 independent in FaDu cells having a p53 gene deletion and ERK1/2 dependent in PE/CA-PJ49 cells having a p53 gene amplification. Moreover, in both tumor cell lines our results support the involvement of p53 phosphorylation-ERK1/2 activation-dependent in the apoptosis induced by combined treatments (CisPt and CRM). The use of CRM as adjuvant could increase the efficiency of chemotherapy by modulating cellular activation processes of ERK1/2 signaling pathways. In conclusion, the particular mode of intervention by which ERK1/2 might influence cell proliferation and/or apoptosis processes depends on the type of therapeutic agent, the cells' particularities, and the activation status of the ERK1/2.
Collapse
Affiliation(s)
- Marinela Bostan
- ‘Stefan S. Nicolau’ Institute of Virology, Center of Immunology, 030304 Bucharest, Romania
- Department of Immunology, ‘Victor Babeș’ National Institute of Pathology, 050096 Bucharest, Romania
| | | | - Gabriela Ion
- ‘Stefan S. Nicolau’ Institute of Virology, Center of Immunology, 030304 Bucharest, Romania
| | - Nicoleta Radu
- Department of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Βucharest, Romania
- Biotechnology Department and National Institute for Chemistry and Petrochemistry R&D of Bucharest, 060021 Bucharest, Romania
| | - Mirela Mihăilă
- ‘Stefan S. Nicolau’ Institute of Virology, Center of Immunology, 030304 Bucharest, Romania
| | - Răzvan Hainăroşie
- ‘Prof. Dr. Dorin Hociotă’ Institute of Phonoaudiology and Functional ENT Surgery, 061344 Bucharest, Romania
| | | | - Viviana Roman
- ‘Stefan S. Nicolau’ Institute of Virology, Center of Immunology, 030304 Bucharest, Romania
| | - Carolina Constantin
- Department of Immunology, ‘Victor Babeș’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Monica Teodora Neagu
- Department of Immunology, ‘Victor Babeș’ National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
58
|
Ding J, Wu S, Zhang C, Garyali A, Martinez-Ledesma E, Gao F, Pokkulandra A, Li X, Bristow C, Carugo A, Koul D, Yung WKA. BRCA1 identified as a modulator of temozolomide resistance in P53 wild-type GBM using a high-throughput shRNA-based synthetic lethality screening. Am J Cancer Res 2019; 9:2428-2441. [PMID: 31815044 PMCID: PMC6895442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023] Open
Abstract
Glioblastoma multiforme (GBM), the most common type of primary brain tumor, is universally fatal, with a median survival duration ranging from 12-15 months despite maximum treatment efforts. Temozolomide (TMZ) is the current standard of care for GBM patients; however patients usually develop resistance to TMZ and limits its benefit. The identification of novel synergistic targets in GBM will lead to the development of new targeted drugs, which could be combined with broad-spectrum cytotoxic agents. In this study, we used a high-throughput synthetic lethality screen with a pooled short hairpin DNA repair library, in combination with TMZ, to identify targets that will enhance TMZ-induced antitumor effects. Using an unbiased bioinformatical analysis, we identified BRCA1 as a potential promising candidate gene that induced synthetic lethality with TMZ in glioma sphere-forming cells (GSCs). BRCA1 knockdown resulted in antitumor activity with TMZ in P53 wild-type GSCs but not in P53 mutant GSCs. TMZ treatment induced a DNA damage repair response; the activation of BRCA1 DNA repair pathway targets and knockdown of BRCA1, together with TMZ, led to increased DNA damage and cell death in P53 wild-type GSCs. Our study identified BRCA1 as a potential target that sensitizes TMZ-induced cell death in P53 wild-type GBM, suggesting that the combined inhibition of BRCA1 and TMZ treatment will be a successful targeted therapy for GBM patients.
Collapse
Affiliation(s)
- Jie Ding
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Shaofang Wu
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Chen Zhang
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Arnav Garyali
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Emmanuel Martinez-Ledesma
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la SaludMonterrey, Nuevo Leon, Mexico
| | - Feng Gao
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Adarsha Pokkulandra
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Xiaolong Li
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Christopher Bristow
- Department of Applied Cancer Science, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Alessandro Carugo
- Department of Applied Cancer Science, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Dimpy Koul
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - WK Alfred Yung
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| |
Collapse
|
59
|
Morita A, Aoshima K, Gulay KCM, Onishi S, Shibata Y, Yasui H, Kobayashi A, Kimura T. High drug efflux pump capacity and low DNA damage response induce doxorubicin resistance in canine hemangiosarcoma cell lines. Res Vet Sci 2019; 127:1-10. [PMID: 31648115 DOI: 10.1016/j.rvsc.2019.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/17/2019] [Accepted: 09/22/2019] [Indexed: 01/19/2023]
Abstract
Canine hemangiosarcoma (HSA) is an aggressive malignant endothelial tumor in dogs and characterized by poor prognosis because of its high invasiveness, high metastatic potential, and poor responsiveness to anti-cancer drugs. Although doxorubicin-based chemotherapy is regularly conducted after surgical treatment, its effects on survival rates are limited. Acquisition of drug resistance is one of the causes of this problem, but the underlying mechanisms remain unclear. In the present study, we aimed to identify the drug-resistance mechanism in canine HSA by establishing doxorubicin-resistant (DR) HSA cell lines. HSA cell lines were exposed to doxorubicin at gradually increasing concentrations. When the cells were able to grow in the presence of a 16-fold higher doxorubicin concentration compared with the initial culture, they were designated DR-HSA cell lines. Characterization of these DR-HSA cell lines revealed higher drug efflux pump capacity compared with the parental cell lines. Furthermore, the DR-HSA cell lines did not show activation of the DNA damage response despite carrying high DNA damage burdens, meaning that apoptosis was not strongly induced. In conclusion, canine HSA cell lines acquired doxorubicin resistance by increasing their drug efflux pump capacity and decreasing the DNA damage response. This study provides useful findings to promote further research on the drug-resistance mechanisms in canine HSA.
Collapse
Affiliation(s)
- Atsuya Morita
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Keisuke Aoshima
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan.
| | - Kevin Christian Montecillo Gulay
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Shinichi Onishi
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Yuki Shibata
- Laboratory of Integrated Molecular Imaging, Department of Biomedical Imaging, Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
60
|
Genetically Engineered Mouse Models of Gliomas: Technological Developments for Translational Discoveries. Cancers (Basel) 2019; 11:cancers11091335. [PMID: 31505839 PMCID: PMC6770673 DOI: 10.3390/cancers11091335] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 01/25/2023] Open
Abstract
The most common brain tumours, gliomas, have significant morbidity. Detailed biological and genetic understanding of these tumours is needed in order to devise effective, rational therapies. In an era generating unprecedented quantities of genomic sequencing data from human cancers, complementary methods of deciphering the underlying functional cancer genes and mechanisms are becoming even more important. Genetically engineered mouse models of gliomas have provided a platform for investigating the molecular underpinning of this complex disease, and new tools for such models are emerging that are enabling us to answer the most important questions in the field. Here, I discuss improvements to genome engineering technologies that have led to more faithful mouse models resembling human gliomas, including new cre/LoxP transgenic lines that allow more accurate cell targeting of genetic recombination, Sleeping Beauty and piggyBac transposons for the integration of transgenes and genetic screens, and CRISPR-cas9 for generating genetic knockout and functional screens. Applications of these technologies are providing novel insights into the functional genetic drivers of gliomagenesis, how these genes cooperate with one another, and the potential cells-of-origin of gliomas, knowledge of which is critical to the development of targeted treatments for patients in the clinic.
Collapse
|
61
|
Transient induction of telomerase expression mediates senescence and reduces tumorigenesis in primary fibroblasts. Proc Natl Acad Sci U S A 2019; 116:18983-18993. [PMID: 31481614 PMCID: PMC6754593 DOI: 10.1073/pnas.1907199116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Telomerase is an enzymatic ribonucleoprotein complex that acts as a reverse transcriptase in the elongation of telomeres. Telomerase activity is well documented in embryonic stem cells and the vast majority of tumor cells, but its role in somatic cells remains to be understood. Here, we report an unexpected function of telomerase during cellular senescence and tumorigenesis. We crossed Tert heterozygous knockout mice (mTert +/- ) for 26 generations, during which time there was progressive shortening of telomeres, and obtained primary skin fibroblasts from mTert +/+ and mTert -/- progeny of the 26th cross. As a consequence of insufficient telomerase activities in prior generations, both mTert +/+ and mTert -/- fibroblasts showed comparable and extremely short telomere length. However, mTert -/- cells approached cellular senescence faster and exhibited a significantly higher rate of malignant transformation than mTert +/+ cells. Furthermore, an evident up-regulation of telomerase reverse-transcriptase (TERT) expression was detected in mTert +/+ cells at the presenescence stage. Moreover, removal or down-regulation of TERT expression in mTert +/+ and human primary fibroblast cells via CRISPR/Cas9 or shRNA recapitulated mTert -/- phenotypes of accelerated senescence and transformation, and overexpression of TERT in mTert -/- cells rescued these phenotypes. Taking these data together, this study suggests that TERT has a previously underappreciated, protective role in buffering senescence stresses due to short, dysfunctional telomeres, and preventing malignant transformation.
Collapse
|
62
|
Song Y, Zhang L, Jiang Y, Hu T, Zhang D, Qiao Q, Wang R, Wang M, Han S. MTBP regulates cell survival and therapeutic sensitivity in TP53 wildtype glioblastomas. Am J Cancer Res 2019; 9:6019-6030. [PMID: 31534534 PMCID: PMC6735364 DOI: 10.7150/thno.35747] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/25/2019] [Indexed: 01/21/2023] Open
Abstract
Background: Glioblastoma (GBM) is highly proliferative and resistant to radio-chemotherapy. Loss of tumor suppressor gene TP53 function frequently occurs at protein level in GBMs. This inhibition is often mediated by other components within the p53 signaling axis, including MDM2, whose binding protein (MTBP) plays an important role in the regulation of MDM2 and p53 activity. We investigated the role of MTBP in the biology of TP53-wildtype (TP53wt) GBMs. Methods: MTBP expression was examined in TCGA and REMBRANDT datasets. MTBP was silenced or overexpressed in TP53wt GBM cells and glioma stem cells (GSCs). The effects on cell viability, apoptosis, and clonogenicity were assessed. The transcriptional regulation of MTBP was investigated. Results: Upregulation of MTBP was correlated with the Classical molecular subtype, and it predicted poor survival. In TP53wt GBM cells, the protein levels of MTBP were positively associated with those of MDM2 but negatively correlated with those of p53. MTBP knockdown promoted apoptosis and inhibited clonogenicity, while overexpression of this protein enhanced tumorigenicity in vitro and in vivo. The pro-survival effect of MTBP depended on the activity of MDM2 and p53. MTBP was transcriptionally regulated by c-myc, thereby forming a positive regulatory loop. Finally, MTBP silencing increased the sensitivity of TP53wt GSCs to radiation and TMZ treatment in vitro and in vivo. Conclusion: MTBP regulates the cell survival and treatment sensitivity of TP53wt GBMs through MDM2-dependent post-translational modification of p53. MTBP-targeting treatments are potentially useful in increasing patients' survival.
Collapse
|
63
|
Nie X, Guo E, Wu C, Liu D, Sun W, Zhang L, Long G, Mei Q, Wu K, Xiong H, Hu G. SALL4 induces radioresistance in nasopharyngeal carcinoma via the ATM/Chk2/p53 pathway. Cancer Med 2019; 8:1779-1792. [PMID: 30907073 PMCID: PMC6488116 DOI: 10.1002/cam4.2056] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/09/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy is the mainstay and primary curative treatment modality in nasopharyngeal carcinoma (NPC), whose efficacy is limited by the development of intrinsic and acquired radioresistance. Thus, deciphering new molecular targets and pathways is essential for enhancing the radiosensitivity of NPC. SALL4 is a vital factor in the development and prognosis of various cancers, but its role in radioresistance remains elusive. This study aimed to explore the association of SALL4 expression with radioresistance of NPC. It was revealed that SALL4 expression was closely correlated with advanced T classification of NPC patients. Inhibition of SALL4 reduced proliferation and sensitized cells to radiation both in vitro and in vivo. Furthermore, SALL4 silencing increased radiation-induced DNA damage, apoptosis, and G2/M arrest in CNE2 and CNE2R cells. Moreover, knockdown of SALL4 impaired the expression of p-ATM, p-Chk2, p-p53, and anti-apoptosis protein Bcl-2, while pro-apoptosis protein was upregulated. These findings indicate that SALL4 could induce radioresistance via ATM/Chk2/p53 pathway and its downstream proteins related to apoptosis. Targeting SALL4 might be a promising approach for the development of novel radiosensitizing therapeutic agents for radioresistant NPC patients.
Collapse
Affiliation(s)
- Xin Nie
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ergang Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Cheng Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dongbo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Sun
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Linli Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Guoxian Long
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Guoqing Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
64
|
Meng X, Duan C, Pang H, Chen Q, Han B, Zha C, Dinislam M, Wu P, Li Z, Zhao S, Wang R, Lin L, Jiang C, Cai J. DNA damage repair alterations modulate M2 polarization of microglia to remodel the tumor microenvironment via the p53-mediated MDK expression in glioma. EBioMedicine 2019; 41:185-199. [PMID: 30773478 PMCID: PMC6442002 DOI: 10.1016/j.ebiom.2019.01.067] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/25/2022] Open
Abstract
Background DNA damage repair (DDR) alterations are important events in cancer initiation, progression, and therapeutic resistance. However, the involvement of DDR alterations in glioma malignancy needs further investigation. This study aims to characterize the clinical and molecular features of gliomas with DDR alterations and elucidate the biological process of DDR alterations that regulate the cross talk between gliomas and the tumor microenvironment. Methods Integrated transcriptomic and genomic analyses were undertaken to conduct a comprehensive investigation of the role of DDR alterations in glioma. The prognostic DDR-related cytokines were identified from multiple datasets. In vivo and in vitro experiments validated the role of p53, the key molecule of DDR, regulating M2 polarization of microglia in glioma. Findings DDR alterations are associated with clinical and molecular characteristics of glioma. Gliomas with DDR alterations exhibit distinct immune phenotypes, and immune cell types and cytokine processes. DDR-related cytokines have an unfavorable prognostic implication for GBM patients and are synergistic with DDR alterations. Overexpression of MDK mediated by p53, the key transcriptional factor in DDR pathways, remodels the GBM immunosuppressive microenvironment by promoting M2 polarization of microglia, suggesting a potential role of DDR in regulating the glioma microenvironment. Interpretation Our work suggests that DDR alterations significantly contribute to remodeling the glioma microenvironment via regulating the immune response and cytokine pathways. Fund This study was supported by: 1. The National Key Research and Development Plan (No. 2016YFC0902500); 2. National Natural Science Foundation of China (No. 81702972, No. 81874204, No. 81572701, No. 81772666); 3. China Postdoctoral Science Foundation (2018M640305); 4. Special Fund Project of Translational Medicine in the Chinese-Russian Medical Research Center (No. CR201812); 5. The Research Project of the Chinese Society of Neuro-oncology, CACA (CSNO-2016-MSD12); 6. The Research Project of the Health and Family Planning Commission of Heilongjiang Province (2017–201); and 7. Harbin Medical University Innovation Fund (2017LCZX37, 2017RWZX03). Gliomas with DNA damage repair alterations had distinct genomic variation spectrum. DDR alterations exhibit distinct immune phenotypes, cytokine processes and immune cell types in glioma. DDR-related cytokines in GME have an unfavorable prognostic implication for GBM patients. P53-mediated midkine expression derived from glioma cells promotes M2 polarization of microglia.
Collapse
Affiliation(s)
- Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Chunbin Duan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Hengyuan Pang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qun Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Bo Han
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Caijun Zha
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Magafurov Dinislam
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neurosurgical department, Bashkir State Medical University, Ufa 450008, Russia
| | - Pengfei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Ziwei Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Shihong Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ruijia Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Lin Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China.
| |
Collapse
|
65
|
USP39 regulates DNA damage response and chemo-radiation resistance by deubiquitinating and stabilizing CHK2. Cancer Lett 2019; 449:114-124. [PMID: 30771428 DOI: 10.1016/j.canlet.2019.02.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 11/23/2022]
Abstract
The serine/threonine kinase, CHK2 (checkpoint kinase 2), is a key mediator in DNA damage response and a tumor suppressor, which is implicated in promoting cell cycle arrest, apoptosis and DNA repair. Accumulating evidence suggests that these functions are primarily exerted through phosphorylation downstream factors such as p53 and BRCA1. Recent studies have shown that ubiquitination is an important mode of regulation of CHK2. However, it remains largely unclear whether deubiquitinases participate in regulation of CHK2. Here, we report that a deubiquitinase, USP39, is a new regulator of CHK2. Mechanistically, USP39 deubiquitinates and stabilizes CHK2, which in turn enhances CHK2 stability. Short hairpin RNA (shRNA) mediated knockdown of USP39 led to deregulate CHK2, which resulted in compromising the DNA damage-induced G2/M checkpoint, decreasing apoptosis, and conferring cancer cells resistance to chemotherapy drugs and radiation treatment. Collectively, we identify USP39 as a novel regulator of CHK2 in the DNA damage response.
Collapse
|
66
|
Notch1 inhibition enhances DNA damage induced by cisplatin in cervical cancer. Exp Cell Res 2019; 376:27-38. [PMID: 30690027 DOI: 10.1016/j.yexcr.2019.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/20/2022]
Abstract
The expression of Notch1 plays an important role in the occurrence and development of various tumors. Previous studies have shown that Notch1 plays a negative regulatory role in response to radiation-induced DNA damage responses. It also has been reported that Notch1 was highly expressed in cervical cancer. It is well known that the first-line chemotherapy drug for treating cervical cancer, cisplatin, targets double-stranded DNA and induces apoptosis in the cells. However, the tolerability of cisplatin is an issue to overcome in the treatment of cervical cancer. Cisplatin has been reported to induce the up-regulation of Notch1 intracellular domain (NICD) through the γ-proteolytic enzyme complex, a complex that mediates Notch1 activation. Therefore, whether Notch1 is highly expressed in the cells or cisplatin induced high expression of NICD in cervical cancer has not been specifically discussed in these studies. More importantly, whether the inhibition of Notch1 activation would enhance DNA damage induced by cisplatin and/or cellular apoptosis mediated via ATM/CHK2/P53 pathway has not been reported in cervical cancer. In this study, we observed an enhanced DNA damage and cellular apoptosis via the ATM/CHK2/P53 pathway(s) in HeLa and SiHa cells treated with cisplatin combined with DAPT of Notch1 inhibitor. Our findings provide an alternative therapeutic strategy for the treatment of cervical cancer in the clinic.
Collapse
|
67
|
Signal transduction pathways and resistance to targeted therapies in glioma. Semin Cancer Biol 2019; 58:118-129. [PMID: 30685341 DOI: 10.1016/j.semcancer.2019.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Although surgical techniques and adjuvant therapies have undergone progressive development for decades, the therapeutic outcomes for treating glioblastoma (GBM) remain poor. The main reasons for the poor prognosis of gliomas are that limited tumor tissue that can be resected (to preserve brain functions) and that residual tumors are often resistant to irradiation and chemotherapy. Therefore, overcoming the resistance of residual tumors against adjuvant therapy is urgently needed for glioma treatment. Recent large cohort studies of genetic alterations in GBM demonstrated that both genetic information and intracellular molecular signaling are networked in gliomas and that such information may help clarify which molecules or signals serve essential roles in resistance against radiation or chemotherapy, highlighting them as potential novel therapeutic targets against refractory gliomas. In this review, we summarize the current understanding of molecular networks that govern glioma biology, mainly based on cohort studies or recent evidence, with a focus on how intracellular signaling molecules in gliomas associate with each other and regulate refractoriness against current therapy.
Collapse
|
68
|
Luo W, Wang Y. Hypoxia Mediates Tumor Malignancy and Therapy Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1136:1-18. [PMID: 31201713 DOI: 10.1007/978-3-030-12734-3_1] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia is a hallmark of the tumor microenvironment and contributes to tumor malignant phenotypes. Hypoxia-inducible factor (HIF) is a master regulator of intratumoral hypoxia and controls hypoxia-mediated pathological processes in tumors, including angiogenesis, metabolic reprogramming, epigenetic reprogramming, immune evasion, pH homeostasis, cell migration/invasion, stem cell pluripotency, and therapy resistance. In this book chapter, we reviewed the causes and types of intratumoral hypoxia, hypoxia detection methods, and the oncogenic role of HIF in tumorigenesis and chemo- and radio-therapy resistance.
Collapse
Affiliation(s)
- Weibo Luo
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA. .,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Yingfei Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA. .,Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
69
|
Li Q, Wang C, Cai L, Lu J, Zhu Z, Wang C, Su Z, Lu X. miR‑34a derived from mesenchymal stem cells stimulates senescence in glioma cells by inducing DNA damage. Mol Med Rep 2018; 19:1849-1857. [PMID: 30592284 DOI: 10.3892/mmr.2018.9800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 12/12/2018] [Indexed: 11/06/2022] Open
Abstract
Insights into the roles of microRNAs (miRNAs/miRs) in development and disease, particularly in cancer, have made miRNAs attractive tools and targets for novel therapeutic approaches in the treatment of glioma. miR‑34a, as a well‑known tumor suppressor miRNA, is closely related with cellular senescence. Mesenchymal stem cells (MSCs) are a major component of the tumor microenvironment and possess the ability to deliver exogenous miRs to glioma cells to exert anti‑tumor effects. The present study investigated whether modified MSCs with miR‑34a possess an anti‑tumor function in glioma cells. A Transwell system was used to co‑culture U87 glioma cells and MSCs overexpressing miR‑34a, and cell proliferation and senescence assessed. The expression of senescence‑related genes p53, Cdkn1a, and Cdkn2c were tested using reverse transcription‑quantitative polymerase chain reaction and protein expression levels of sirtuin 1 (SIRT1) and γ‑H2A histone family, member X were detected by western blotting. Telomerase activity of U87 cells was examined using the Telo TAGGG Telomerase PCR ELISA PLUS kit. The results demonstrated that the delivered exogenous miR‑34a from MSCs significantly decreased expression of the target gene SIRT1. In addition, the delivered miR‑34a decreased the proliferation of glioma cells and provoked the expression of senescence‑related genes p53, Cdkn1a, and Cdkn2c. In addition, upregulation of miR‑34a induced DNA damage, shortened telomere length and impaired telomerase activity. However, these pro‑senescent effects were reversed by forced SIRT1 upregulation. In conclusion, the results demonstrated a novel role for miR‑34a, inducing glioma cell senescence, whereas miR‑34a modulation of SIRT1, inducing DNA damage, is crucial for miRNA replacement therapy in glioma treatment.
Collapse
Affiliation(s)
- Qun Li
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chengde Wang
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lin Cai
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jianglong Lu
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhangzhang Zhu
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chunyong Wang
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhipeng Su
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xianghe Lu
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
70
|
Clinical characteristics and preliminary morphological observation of 47 cases of primary anorectal malignant melanomas. Melanoma Res 2018; 28:592-599. [DOI: 10.1097/cmr.0000000000000491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
71
|
Fan Y, Mao Y, Cao S, Xia G, Zhang Q, Zhang H, Qiu F, Kang N. S5, a Withanolide Isolated from Physalis Pubescens L., Induces G2/M Cell Cycle Arrest via the EGFR/P38 Pathway in Human Melanoma A375 Cells. Molecules 2018; 23:E3175. [PMID: 30513793 PMCID: PMC6321527 DOI: 10.3390/molecules23123175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 11/16/2022] Open
Abstract
S5 is a withanolide natural product isolated from Physalis pubescens L. Our previous experimental studies found that it has significant antitumor activity on renal cell carcinoma. In the present study, the anti-melanoma effect of S5 and the related molecular mechanism was first investigated. It was found that S5 induced an obvious growth inhibitory effect on human melanoma A375 cells with low toxicity to human peripheral blood cells. Furthermore, the results demonstrated that the cell death mode of S5 on A375 cells is not due to inducing apoptosis and autophagy. However, there was a significant time-dependent increase in G2/M phase after treatment of A375 with S5. Meanwhile, S5 could also decrease the protein expression of Cdc25c, Cdc2, and CyclinB1, and increased the expression of p-P53 and P21, suggesting that S5 inhibited A375 cell death through G2/M phase arrest. Moreover, the signal pathway factors P38, extracellular regulated protein kinases (ERK), and epidermal growth factor receptor (EGFR) were observed taking part in the S5-induced A375 cells growth inhibitory effect. In addition, suppressing P38 and EGFR reversed the cell proliferation inhibitory effect and G2/M cell cycle arrest induced by S5 and inhibition of EGFR enhanced the downregulation of the expression of P38 and p-P38, indicating that S5 induced A375 G2/M arrest through the EGFR/P38 pathway. Briefly, this study explained for the first time the mechanism of S5-induced A375 cell growth inhibition in order to provide the basis for its clinical application in melanoma.
Collapse
Affiliation(s)
- Yuqi Fan
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Yiwei Mao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Shijie Cao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Guiyang Xia
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- Department of Pharmaceutical Chemistry, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Qiang Zhang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Hongyang Zhang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Feng Qiu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- Department of Pharmaceutical Chemistry, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Ning Kang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
72
|
Mazzio EA, Soliman KFA. Whole-transcriptomic Profile of SK-MEL-3 Melanoma Cells Treated with the Histone Deacetylase Inhibitor: Trichostatin A. Cancer Genomics Proteomics 2018; 15:349-364. [PMID: 30194076 DOI: 10.21873/cgp.20094] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Malignant melanoma cells can rapidly acquire phenotypic properties making them resistant to radiation and mainline chemotherapies such as decarbonize or kinase inhibitors that target RAS-proto-oncogene independent auto-activated mitogen-activated protein kinases (MAPK)/through dual specificity mitogen-activated protein kinase (MEK). Both drug resistance and inherent transition from melanocytic nevi to malignant melanoma involve the overexpression of histone deacetylases (HDACs) and a B-Raf proto-oncogene (BRAF) mutation. MATERIALS AND METHODS In this work, the effects of an HDAC class I and II inhibitor trichostatin A (TSA) on the whole transcriptome of SK-MEL-3 cells carrying a BRAF mutation was examined. RESULTS The data obtained show that TSA was an extremely potent HDAC inhibitor within SK-MEL-3 nuclear lysates, where TSA was then optimized for appropriate sub-lethal concentrations for in vitro testing. The whole-transcriptome profile shows a basic phenotype dominance in the SK-MEL-3 cell line for i) synthesis of melanin, ii) phagosome acidification, iii) ATP hydrolysis-coupled proton pumps and iv) iron transport systems. While TSA did not affect the aforementioned major systems, it evoked a dramatic change to the transcriptome: reflected by a down-regulation of 810 transcripts and up-regulation of 833, with fold-change from -15.27 to +31.1 FC (p<0.00001). Largest differentials were found for the following transcripts: Up-regulated: Tetraspanin 13 (TSPAN13), serpin family i member 1 (SERPINI1), ATPase Na+/K+ transporting subunit beta 2 (ATP1B2), nicotinamide nucleotide adenylyl transferase 2 (NMNAT2), platelet-derived growth factor receptor-like (PDGFRL), cytochrome P450 family 1 subfamily A member 1 (CYP1A1), prostate androgen-regulated mucin-like protein 1 (PARM1), secretogranin II (SCG2), SYT11 (synaptotagmin 11), rhophilin associated tail protein 1 like (ROPN1L); down-regulated: polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3), carbonic anhydrase 14 (CAXIV), BCL2-related protein A1 (BCL2A1), protein kinase C delta (PRKCD), transient receptor potential cation channel subfamily M member 1 (TRPM1), ubiquitin associated protein 1 like (UBAP1L), glutathione peroxidase 8 (GPX8), interleukin 16 (IL16), tumor protein p53 (TP53), and serpin family H member 1 (SERPINH1). There was no change to any of the HDAC transcripts (class I, II and IV), the sirtuin HDAC family (1-6) or the BRAF proto-oncogene v 599 transcripts. However, the data showed that TSA down-regulated influential transcripts that drive the BRAF-extracellular signal-regulated kinase (ERK)1/2 oncogenic pathway (namely PRKCD and MYC proto-oncogene which negatively affected the cell-cycle distribution. Mitotic inhibition was corroborated by functional pathway analysis and flow cytometry confirming halt at the G2 phase, occurring in the absence of toxicity. CONCLUSION TSA does not alter HDAC transcripts nor BRAF itself, but down-regulates critical components of the MAPK/MEK/BRAF oncogenic pathway, initiating a mitotic arrest.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A and M University, Tallahassee, FL, U.S.A
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A and M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
73
|
Molecular features unique to glioblastoma radiation resistant residual cells may affect patient outcome - a short report. Cell Oncol (Dordr) 2018; 42:107-116. [PMID: 30361826 DOI: 10.1007/s13402-018-0411-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2018] [Indexed: 02/07/2023] Open
|
74
|
Teng YD, Abd-El-Barr M, Wang L, Hajiali H, Wu L, Zafonte RD. Spinal cord astrocytomas: progresses in experimental and clinical investigations for developing recovery neurobiology-based novel therapies. Exp Neurol 2018; 311:135-147. [PMID: 30243796 DOI: 10.1016/j.expneurol.2018.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/07/2018] [Accepted: 09/16/2018] [Indexed: 12/25/2022]
Abstract
Spinal cord astrocytomas (SCAs) have discernibly unique signatures in regards to epidemiology, clinical oncological features, genetic markers, pathophysiology, and research and therapeutic challenges. Overall, there are presently very limited clinical management options for high grade SCAs despite progresses made in validating key molecular markers and standardizing tumor classification. The endeavors were aimed to improve diagnosis, therapy design and prognosis assessment, as well as to define more effective oncolytic targets. Efficacious treatment for high grade SCAs still remains an unmet medical demand. This review is therefore focused on research state updates that have been made upon analyzing clinical characteristics, diagnostic classification, genetic and molecular features, tumor initiation cell biology, and current management options for SCAs. Particular emphasis was given to basic and translational research endeavors targeting SCAs, including establishment of experimental models, exploration of unique profiles of SCA stem cell-like tumor survival cells, characterization of special requirements for effective therapeutic delivery into the spinal cord, and development of donor stem cell-based gene-directed enzyme prodrug therapy. We concluded that precise understanding of molecular oncology, tumor survival mechanisms (e.g., drug resistance, metastasis, and cancer stem cells/tumor survival cells), and principles of Recovery Neurobiology can help to create clinically meaningful experimental models of SCAs. Establishment of such systems will expedite the discovery of efficacious therapies that not only kill tumor cells but simultaneously preserve and improve residual neural function.
Collapse
Affiliation(s)
- Yang D Teng
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA.
| | - Muhammad Abd-El-Barr
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA; Current affiliation: Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Lei Wang
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA
| | - Hadi Hajiali
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA
| | - Liqun Wu
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA
| | - Ross D Zafonte
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
75
|
Daskalaki I, Gkikas I, Tavernarakis N. Hypoxia and Selective Autophagy in Cancer Development and Therapy. Front Cell Dev Biol 2018; 6:104. [PMID: 30250843 PMCID: PMC6139351 DOI: 10.3389/fcell.2018.00104] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/13/2018] [Indexed: 01/07/2023] Open
Abstract
Low oxygen availability, a condition known as hypoxia, is a common feature of various pathologies including stroke, ischemic heart disease, and cancer. Hypoxia adaptation requires coordination of intricate pathways and mechanisms such as hypoxia-inducible factors (HIFs), the unfolded protein response (UPR), mTOR, and autophagy. Recently, great effort has been invested toward elucidating the interplay between hypoxia-induced autophagy and cancer cell metabolism. Although novel types of selective autophagy have been identified, including mitophagy, pexophagy, lipophagy, ERphagy and nucleophagy among others, their potential interface with hypoxia response mechanisms remains poorly understood. Autophagy activation facilitates the removal of damaged cellular compartments and recycles components, thus promoting cell survival. Importantly, tumor cells rely on autophagy to support self-proliferation and metastasis; characteristics related to poor disease prognosis. Therefore, a deeper understanding of the molecular crosstalk between hypoxia response mechanisms and autophagy could provide important insights with relevance to cancer and hypoxia-related pathologies. Here, we survey recent findings implicating selective autophagy in hypoxic responses, and discuss emerging links between these pathways and cancer pathophysiology.
Collapse
Affiliation(s)
- Ioanna Daskalaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
76
|
Ke K, Sun Z, Wang Z. Downregulation of long non-coding RNA GAS5 promotes cell proliferation, migration and invasion in esophageal squamous cell carcinoma. Oncol Lett 2018; 16:1801-1808. [PMID: 30008868 PMCID: PMC6036321 DOI: 10.3892/ol.2018.8797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/12/2018] [Indexed: 01/10/2023] Open
Abstract
The present study aimed to investigate the potential role of long non-coding RNA growth arrest-specific transcript 5 (lncRNA GAS5) in the progression of esophageal squamous cell carcinoma (ESCC) and to reveal its possible regulatory mechanism. The expression of lncRNA GAS5 in ESCC tissues and cell lines was analyzed using reverse transcription-quantitative polymerase chain reaction and western blot analysis. The overexpression vector pc-GAS5 and control vector pc-negative control (NC), containing no GAS5 sequence, were transfected into ESCC cells. The effects of lncRNA GAS5 overexpression on cell proliferation, cell cycle distribution, cell migration and invasion were then analyzed. Besides, the expression levels of ATM-CHK2 pathway-associated proteins and epithelial-mesenchymal transition (EMT)-associated proteins were measured. Expression of lncRNA GAS5 was downregulated in the ESCC tissues compared with adjacent normal tissues, and was also downregulated in ESCC Kyse450 cells compared with the human esophageal epithelial HET-1A cell line. Additionally, lncRNA GAS5 was successfully overexpressed in ESCC cells following transfection with pc-GAS5. Overexpression of lncRNA GAS5 significantly inhibited cell proliferation, induced cell cycle arrest at G2/M phase and suppressed cellular migration and invasion. When cells were transfected with pc-GAS5, the levels of phosphorylated (p)-ATM serine/threonine protein kinase, p-checkpoint kinase 2 (CHK2), p-cell division cycle 25C, p-cyclin-dependent kinase 1, N-cadherin, vimentin and Snail were significantly increased, whereas that of E-cadherin were markedly decreased. The results of the present study indicate that overexpression of lncRNA GAS5 may inhibit cell proliferation, migration and invasion in ESCC. lncRNA GAS5 overexpression may induce cell cycle arrest at G2/M stage by activating the ATM-CHK2 pathway. The results of the current study further indicate that lncRNA GAS5 overexpression may suppress cell migration and invasion via EMT-associated proteins. lncRNA GAS5 could therefore serve as a potential target for ESCC therapy.
Collapse
Affiliation(s)
- Ke Ke
- Department of Head and Neck (Esophagus) Medical Oncology, Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei 435000, P.R. China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei 435000, P.R. China
| | - Zhanwen Sun
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei 435000, P.R. China
- Department of Cardiothoracic Surgery, Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei 435000, P.R. China
| | - Zhengjun Wang
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei 435000, P.R. China
- Department of Cardiothoracic Surgery, Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei 435000, P.R. China
| |
Collapse
|
77
|
Oldrini B, Curiel-García Á, Marques C, Matia V, Uluçkan Ö, Graña-Castro O, Torres-Ruiz R, Rodriguez-Perales S, Huse JT, Squatrito M. Somatic genome editing with the RCAS-TVA-CRISPR-Cas9 system for precision tumor modeling. Nat Commun 2018; 9:1466. [PMID: 29654229 PMCID: PMC5899147 DOI: 10.1038/s41467-018-03731-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 03/08/2018] [Indexed: 12/21/2022] Open
Abstract
To accurately recapitulate the heterogeneity of human diseases, animal models require to recreate multiple complex genetic alterations. Here, we combine the RCAS-TVA system with the CRISPR-Cas9 genome editing tools for precise modeling of human tumors. We show that somatic deletion in neural stem cells of a variety of known tumor suppressor genes (Trp53, Cdkn2a, and Pten) leads to high-grade glioma formation. Moreover, by simultaneous delivery of pairs of guide RNAs we generate different gene fusions with oncogenic potential, either by chromosomal deletion (Bcan-Ntrk1) or by chromosomal translocation (Myb-Qk). Lastly, using homology-directed-repair, we also produce tumors carrying the homologous mutation to human BRAF V600E, frequently identified in a variety of tumors, including different types of gliomas. In summary, we have developed an extremely versatile mouse model for in vivo somatic genome editing, that will elicit the generation of more accurate cancer models particularly appropriate for pre-clinical testing.
Collapse
Affiliation(s)
- Barbara Oldrini
- Seve Ballesteros Foundation Brain Tumor Group, Cancer Cell Biology Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Álvaro Curiel-García
- Seve Ballesteros Foundation Brain Tumor Group, Cancer Cell Biology Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Carolina Marques
- Seve Ballesteros Foundation Brain Tumor Group, Cancer Cell Biology Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Veronica Matia
- Seve Ballesteros Foundation Brain Tumor Group, Cancer Cell Biology Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Özge Uluçkan
- Genes, Development, and Disease Group, Cancer Cell Biology Program, Spanish National Cancer Research Centre, CNIO, 28029, Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, CNIO, 28029, Madrid, Spain
| | - Raul Torres-Ruiz
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Massimo Squatrito
- Seve Ballesteros Foundation Brain Tumor Group, Cancer Cell Biology Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain.
| |
Collapse
|
78
|
Nasser MM, Mehdipour P. Exploration of Involved Key Genes and Signaling Diversity in Brain Tumors. Cell Mol Neurobiol 2018; 38:393-419. [PMID: 28493234 DOI: 10.1007/s10571-017-0498-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/02/2017] [Indexed: 02/05/2023]
Abstract
Brain tumors are becoming a major cause of death. The classification of brain tumors has gone through restructuring with regard to some criteria such as the presence or absence of a specific genetic alteration in the 2016 central nervous system World Health Organization update. Two categories of genes with a leading role in tumorigenesis and cancer induction include tumor suppressor genes and oncogenes; tumor suppressor genes are inactivated through a variety of mechanisms that result in their loss of function. As for the oncogenes, overexpression and amplification are the most common mechanisms of alteration. Important cell cycle genes such as p53, ATM, cyclin D2, and Rb have shown altered expression patterns in different brain tumors such as meningioma and astrocytoma. Some genes in signaling pathways have a role in brain tumorigenesis. These pathways include hedgehog, EGFR, Notch, hippo, MAPK, PI3K/Akt, and WNT signaling. It has been shown that telomere length in some brain tumor samples is shortened compared to that in normal cells. As the shortening of telomere length triggers chromosome instability early in brain tumors, it could lead to initiation of cancer. On the other hand, telomerase activity was positive in some brain tumors. It is suggestive that telomere length and telomerase activity are important diagnostic markers in brain tumors. This review focuses on brain tumors with regard to the status of oncogenes, tumor suppressors, cell cycle genes, and genes in signaling pathways as well as the role of telomere length and telomerase in brain tumors.
Collapse
Affiliation(s)
- Mojdeh Mahdian Nasser
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvin Mehdipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
79
|
De S, Lindner DJ, Coleman CJ, Wildey G, Dowlati A, Stark GR. The FACT inhibitor CBL0137 Synergizes with Cisplatin in Small-Cell Lung Cancer by Increasing NOTCH1 Expression and Targeting Tumor-Initiating Cells. Cancer Res 2018; 78:2396-2406. [PMID: 29440145 DOI: 10.1158/0008-5472.can-17-1920] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/05/2017] [Accepted: 02/09/2018] [Indexed: 11/16/2022]
Abstract
Traditional treatments of small-cell lung cancer (SCLC) with cisplatin, a standard-of-care therapy, spare the tumor-initiating cells (TIC) that mediate drug resistance. Here we report a novel therapeutic strategy that preferentially targets TICs in SCLC, in which cisplatin is combined with CBL0137, an inhibitor of the histone chaperone facilitates chromatin transcription (FACT), which is highly expressed in TICs. Combination of cisplatin and CBL0137 killed patient-derived and murine SCLC cell lines synergistically. In response to CBL0137 alone, TICs were more sensitive than non-TICs, in part, because CBL0137 increased expression of the tumor suppressor NOTCH1 by abrogating the binding of negative regulator SP3 to the NOTCH1 promoter, and in part because treatment decreased the high expression of stem cell transcription factors. The combination of cisplatin and CBL0137 greatly reduced the growth of a patient-derived xenograft in mice and also the growth of a syngeneic mouse SCLC tumor. Thus, CBL0137 can be a highly effective drug against SCLC, especially in combination with cisplatin.Significance: These findings reveal a novel therapeutic regimen for SCLC, combining cisplatin with an inhibitor that preferentially targets tumor-initiating cells. Cancer Res; 78(9); 2396-406. ©2018 AACR.
Collapse
Affiliation(s)
- Sarmishtha De
- Department of Cancer Biology. Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.
| | - Daniel J Lindner
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, Ohio
| | - Claire J Coleman
- Department of Cancer Biology. Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Gary Wildey
- University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Afshin Dowlati
- University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - George R Stark
- Department of Cancer Biology. Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.
| |
Collapse
|
80
|
Qiu B, Jiang W, Qiu W, Mu W, Qin Y, Zhu Y, Zhang J, Wang Q, Liu D, Qu Z. Pine needle oil induces G2/M arrest of HepG2 cells by activating the ATM pathway. Exp Ther Med 2018; 15:1975-1981. [PMID: 29434792 PMCID: PMC5776635 DOI: 10.3892/etm.2017.5648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 08/23/2017] [Indexed: 11/06/2022] Open
Abstract
Over the last two decades, inducing DNA damage of cancer cells by natural medicines has become a research hotspot in the field of cancer treatment. Although various natural medicines have anticancer effects, very few studies have been conducted to explore the anti-cancer effect of pine needle oil. In the present study, the role of pine needle oil in inducing G2/M arrest in HepG2 cells was investigated. The data revealed that pine needle oil could induce DNA damage in a dose-dependent manner. In the pine needle oil-treated HepG2 cells, the protein levels of phosphorylated (p)-ataxia-telangiectasia mutated (ATM), γ-H2A histone family, member X, p-p53, p-checkpoint kinase 2 and p-cell division cycle 25C were evidently increased, indicating that pine needle oil facilitated G2/M arrest in HepG2 cells through the ATM pathway. In response to the treatment with pine needle oil, ATM was activated in HepG2 cells, which subsequently phosphorylated downstream targets and induced G2/M arrest. In summary, the data of the present study indicated that pine needle oil induces G2/M arrest in HepG2 cells by facilitating ATM activation.
Collapse
Affiliation(s)
- Bing Qiu
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Wei Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Wenliang Qiu
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Wenling Mu
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Yujing Qin
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Yongcui Zhu
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Jianying Zhang
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Qingyi Wang
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dongjie Liu
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Zhangyi Qu
- Department of Hygienic Microbiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
81
|
Yang Z, Yao H, Fei F, Li Y, Qu J, Li C, Zhang S. Generation of erythroid cells from polyploid giant cancer cells: re-thinking about tumor blood supply. J Cancer Res Clin Oncol 2018; 144:617-627. [PMID: 29417259 DOI: 10.1007/s00432-018-2598-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION During development and tumor progression, cells need a sufficient blood supply to maintain development and rapid growth. It is reported that there are three patterns of blood supply for tumor growth: endothelium-dependent vessels, mosaic vessels, and vasculogenic mimicry (VM). VM was first reported in highly aggressive uveal melanomas, with tumor cells mimicking the presence and function of endothelial cells forming the walls of VM vessels. The walls of mosaic vessels are randomly lined with both endothelial cells and tumor cells. We previously proposed a three-stage process, beginning with VM, progressing to mosaic vessels, and eventually leading to endothelium-dependent vessels. However, many phenomena unique to VM channel formation remain to be elucidated, such as the origin of erythrocytes before VM vessels connect with endothelium-dependent vessels. RESULTS In adults, erythroid cells are generally believed to be generated from hematopoietic stem cells in the bone marrow. In contrast, embryonic tissue obtains oxygen through formation of blood islands, which are largely composed of embryonic hemoglobin with a higher affinity with oxygen, in the absence of mature erythrocytes. Recent data from our laboratory suggest that embryonic blood-forming mechanisms also exist in cancer tissue, particularly when these tissues are under environmental stress such as hypoxia. We review the evidence from induced pluripotent stem cells in vitro and in vivo to support this previously underappreciated cell functionality in normal and cancer cells, including the ability to generate erythroid cells. We will also summarize the current understanding of tumor angiogenesis, VM, and our recent work on polyploid giant cancer cells, with emphasis on their ability to generate erythroid cells and their association with tumor growth under hypoxia. CONCLUSION An alternative embryonic pathway to obtain oxygen in cancer cells exists, particularly when they are under hypoxic conditions.
Collapse
Affiliation(s)
- Zhigang Yang
- Departments of Pathology, Baodi Traditional Chinese Medicine Hospital, Baodi District, Tianjin, 300121, People's Republic of China
| | - Hong Yao
- Department of thoracic Surgery, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Fei Fei
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
- Department of Pathology, Tianjin Union Medical Center, Jieyuan Road, Hongqiao District, Tianjin, 300121, People's Republic of China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Jie Qu
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
- Department of Pathology, Tianjin Union Medical Center, Jieyuan Road, Hongqiao District, Tianjin, 300121, People's Republic of China
| | - Chunyuan Li
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
- Department of Pathology, Tianjin Union Medical Center, Jieyuan Road, Hongqiao District, Tianjin, 300121, People's Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Jieyuan Road, Hongqiao District, Tianjin, 300121, People's Republic of China.
| |
Collapse
|
82
|
Zhao X, Guo X, Xing L, Yue W, Yin H, He M, Wang J, Yang J, Chen J. HBV infection potentiates resistance to S-phase arrest-inducing chemotherapeutics by inhibiting CHK2 pathway in diffuse large B-cell lymphoma. Cell Death Dis 2018; 9:61. [PMID: 29352124 PMCID: PMC5833392 DOI: 10.1038/s41419-017-0097-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022]
Abstract
A considerable number of diffuse large B-cell lymphoma (DLBCL) patients are infected with hepatitis B virus (HBV), which is correlated with their poor outcomes. However, the role of HBV infection in DLBCL treatment failure remains poorly understood. Here, our data demonstrated that HBV infection was closely associated with poorer clinical prognosis independent of its hepatic dysfunction in germinal center B-cell type (GCB type) DLBCL patients. Interestingly, we found that DLBCL cells expressing hepatitis B virus X protein (HBX) did not exhibit enhanced cell growth but did show reduced sensitivity to methotrexate (MTX) and cytarabine (Ara-C), which induced S-phase arrest. Mechanism studies showed that HBX specifically inhibited the phosphorylation of checkpoint kinase 2 (CHK2, a key DNA damage response protein). CHK2 depletion similarly conferred resistance to the S-phase arrest-inducing chemotherapeutics, consistent with HBX overexpression in DLBCL cells. Moreover, overexpression of wild-type CHK2 rather than its unphosphorylated mutant (T68A) significantly restored the reduced chemosensitivity in HBX-expressing cells, suggesting that HBV infection conferred resistance to chemotherapeutics that induced S-phase arrest by specifically inhibiting the activation of CHK2 response signaling in DLBCL.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Department of Hematology, Jingzhou Central Hospital, Jingzhou Clinical Medical College, Yangtze University, Jingzhou, China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, China.,Institute of Regenerative Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Libo Xing
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Wenqin Yue
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Haisen Yin
- Department of Hematology, Jingzhou Central Hospital, Jingzhou Clinical Medical College, Yangtze University, Jingzhou, China
| | - Miaoxia He
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianmin Wang
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianmin Yang
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jie Chen
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
83
|
Giladi M, Munster M, Schneiderman RS, Voloshin T, Porat Y, Blat R, Zielinska-Chomej K, Hååg P, Bomzon Z, Kirson ED, Weinberg U, Viktorsson K, Lewensohn R, Palti Y. Tumor treating fields (TTFields) delay DNA damage repair following radiation treatment of glioma cells. Radiat Oncol 2017; 12:206. [PMID: 29284495 PMCID: PMC5747183 DOI: 10.1186/s13014-017-0941-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 12/12/2017] [Indexed: 11/30/2022] Open
Abstract
Background Tumor Treating Fields (TTFields) are an anti-neoplastic treatment modality delivered via application of alternating electric fields using insulated transducer arrays placed directly on the skin in the region surrounding the tumor. A Phase 3 clinical trial has demonstrated the effectiveness of continuous TTFields application in patients with glioblastoma during maintenance treatment with Temozolomide. The goal of this study was to evaluate the efficacy of combining TTFields with radiation treatment (RT) in glioma cells. We also examined the effect of TTFields transducer arrays on RT distribution in a phantom model and the impact on rat skin toxicity. Methods The efficacy of TTFields application after induction of DNA damage by RT or bleomycin was tested in U-118 MG and LN-18 glioma cells. The alkaline comet assay was used to measure repair of DNA lesions. Repair of DNA double strand breaks (DSBs) were assessed by analyzing γH2AX or Rad51 foci. DNA damage and repair signaled by the activation pattern of phospho-ATM (pS1981) and phospho-DNA-PKcs (pS2056) was evaluated by immunoblotting. The absorption of the RT energy by transducer arrays was measured by applying RT through arrays placed on a solid-state phantom. Skin toxicities were tested in rats irradiated daily through the arrays with 2Gy (total dose of 20Gy). Results TTFields synergistically enhanced the efficacy of RT in glioma cells. Application of TTFields to irradiated cells impaired repair of irradiation- or chemically-induced DNA damage, possibly by blocking homologous recombination repair. Transducer arrays presence caused a minor reduction in RT intensity at 20 mm and 60 mm below the arrays, but led to a significant increase in RT dosage at the phantom surface jeopardizing the “skin sparing effect”. Nevertheless, transducer arrays placed on the rat skin during RT did not lead to additional skin reactions. Conclusions Administration of TTFields after RT increases glioma cells treatment efficacy possibly by inhibition of DNA damage repair. These preclinical results support the application of TTFields therapy immediately after RT as a viable regimen to enhance RT outcome. Phantom measurements and animal models imply that it may be possible to leave the transducer arrays in place during RT without increasing skin toxicities. Electronic supplementary material The online version of this article (10.1186/s13014-017-0941-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Petra Hååg
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | | | | | | | - Kristina Viktorsson
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | | |
Collapse
|
84
|
EGFR feedback-inhibition by Ran-binding protein 6 is disrupted in cancer. Nat Commun 2017; 8:2035. [PMID: 29229958 PMCID: PMC5725448 DOI: 10.1038/s41467-017-02185-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022] Open
Abstract
Transport of macromolecules through the nuclear pore by importins and exportins plays a critical role in the spatial regulation of protein activity. How cancer cells co-opt this process to promote tumorigenesis remains unclear. The epidermal growth factor receptor (EGFR) plays a critical role in normal development and in human cancer. Here we describe a mechanism of EGFR regulation through the importin β family member RAN-binding protein 6 (RanBP6), a protein of hitherto unknown functions. We show that RanBP6 silencing impairs nuclear translocation of signal transducer and activator of transcription 3 (STAT3), reduces STAT3 binding to the EGFR promoter, results in transcriptional derepression of EGFR, and increased EGFR pathway output. Focal deletions of the RanBP6 locus on chromosome 9p were found in a subset of glioblastoma (GBM) and silencing of RanBP6 promoted glioma growth in vivo. Our results provide an example of EGFR deregulation in cancer through silencing of components of the nuclear import pathway.
Collapse
|
85
|
Yang CH, Wang Y, Sims M, Cai C, He P, Häcker H, Yue J, Cheng J, Boop FA, Pfeffer LM. MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway. Oncotarget 2017; 8:112980-112991. [PMID: 29348882 PMCID: PMC5762567 DOI: 10.18632/oncotarget.22945] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/26/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is a deadly and incurable brain tumor. Although microRNAs (miRNAs) play critical roles in regulating the cancer cell phenotype, the underlying mechanisms of how they regulate tumorigenesis are incompletely understood. We previously showed that miR-203a is expressed at relatively low levels in GBM patients, and ectopic miR-203a expression in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by interferon (IFN) or temozolomide in vitro, and inhibited GBM tumorigenesis in vivo. Here we show that ectopic expression of miR-203a in GBM cell lines promotes the IFN response pathway as evidenced by increased IFN production and IFN-stimulated gene (ISG) expression, and high basal tyrosine phosphorylation of multiple STAT proteins. Importantly, we identified that miR-203a directly suppressed the protein levels of ataxia-telangiectasia mutated (ATM) kinase that negatively regulates IFN production. We found that high ATM expression in GBM correlates with poor patient survival and that ATM expression is inversely correlated with miR-203a expression. Knockout of ATM expression and inhibition of ATM function in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by therapeutic agents in vitro, and markedly suppressed GBM tumor growth and promoted animal survival. In contrast, restoring ATM levels in GBM cells ectopically expressing miR-203a increased tumorigenicity and decreased animal survival. Our study suggests that low miR-203a expression in GBM suppresses the interferon response through an ATM-dependent pathway.
Collapse
Affiliation(s)
- Chuan He Yang
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Yinan Wang
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Michelle Sims
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Chun Cai
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ping He
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hans Häcker
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jinjun Cheng
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Frederick A Boop
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
86
|
Han X, Xue X, Zhou H, Zhang G. A molecular view of the radioresistance of gliomas. Oncotarget 2017; 8:100931-100941. [PMID: 29246031 PMCID: PMC5725073 DOI: 10.18632/oncotarget.21753] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Gliomas originate from glial cells and are the most frequent primary brain tumors. High-grade gliomas occur ∼4 times more frequently than low-grade gliomas, are highly malignant, and have extremely poor prognosis. Radiotherapy, sometimes combined with chemotherapy, is considered the treatment of choice for gliomas and is used after resective surgery. Despite great technological improvements, the radiotherapeutic effect is generally limited, due to the marked radioresistance exhibited by gliomas cells, especially glioma stem cells (GSCs). The mechanisms underlying this phenomenon are multiple and remain to be fully elucidated. This review attempts to summarize current knowledge on the molecular basis of glioma radioresistance by focusing on signaling pathways, microRNAs, hypoxia, the brain microenvironment, and GSCs. A thorough understanding of the complex interactions between molecular, cellular, and environmental factors should provide new insight into the intrinsic radioresistance of gliomas, potentially enabling improvement, through novel concurrent therapies, of the clinical efficacy of radiotherapy.
Collapse
Affiliation(s)
- Xuetao Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ge Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
87
|
Abstract
Glioblastoma multiforme (GBM) is the most lethal primary brain tumor in adults despite contemporary gold-standard first-line treatment strategies. This type of tumor recurs in virtually all patients and no commonly accepted standard treatment exists for the recurrent disease. Therefore, advances in all scientific and clinical aspects of GBM are urgently needed. Epigenetic mechanisms are one of the major factors contributing to the pathogenesis of cancers, including glioblastoma. Epigenetic modulators that regulate gene expression by altering the epigenome and non-histone proteins are being exploited as therapeutic drug targets. Over the last decade, numerous preclinical and clinical studies on histone deacetylase (HDAC) inhibitors have shown promising results in various cancers. This article provides an overview of the anticancer mechanisms of HDAC inhibitors and the role of HDAC isoforms in GBM. We also summarize current knowledge on HDAC inhibitors on the basis of preclinical studies and emerging clinical data.
Collapse
|
88
|
Drosos Y, Escobar D, Chiang MY, Roys K, Valentine V, Valentine MB, Rehg JE, Sahai V, Begley LA, Ye J, Paul L, McKinnon PJ, Sosa-Pineda B. ATM-deficiency increases genomic instability and metastatic potential in a mouse model of pancreatic cancer. Sci Rep 2017; 7:11144. [PMID: 28894253 PMCID: PMC5593966 DOI: 10.1038/s41598-017-11661-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 08/29/2017] [Indexed: 12/11/2022] Open
Abstract
Germline mutations in ATM (encoding the DNA-damage signaling kinase, ataxia-telangiectasia-mutated) increase Familial Pancreatic Cancer (FPC) susceptibility, and ATM somatic mutations have been identified in resected human pancreatic tumors. Here we investigated how Atm contributes to pancreatic cancer by deleting this gene in a murine model of the disease expressing oncogenic Kras (KrasG12D). We show that partial or total ATM deficiency cooperates with KrasG12D to promote highly metastatic pancreatic cancer. We also reveal that ATM is activated in pancreatic precancerous lesions in the context of DNA damage and cell proliferation, and demonstrate that ATM deficiency leads to persistent DNA damage in both precancerous lesions and primary tumors. Using low passage cultures from primary tumors and liver metastases we show that ATM loss accelerates Kras-induced carcinogenesis without conferring a specific phenotype to pancreatic tumors or changing the status of the tumor suppressors p53, p16Ink4a and p19Arf. However, ATM deficiency markedly increases the proportion of chromosomal alterations in pancreatic primary tumors and liver metastases. More importantly, ATM deficiency also renders murine pancreatic tumors highly sensitive to radiation. These and other findings in our study conclusively establish that ATM activity poses a major barrier to oncogenic transformation in the pancreas via maintaining genomic stability.
Collapse
Affiliation(s)
- Yiannis Drosos
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - David Escobar
- Department of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ming-Yi Chiang
- Department of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Kathryn Roys
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Virginia Valentine
- Department of Cytogenetics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Marc B Valentine
- Department of Cytogenetics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Jerold E Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Vaibhav Sahai
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Lesa A Begley
- Department of General Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Jianming Ye
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Leena Paul
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Peter J McKinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Beatriz Sosa-Pineda
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, United States.
- Department of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
89
|
Park M, Yoon HJ, Kang MC, Kwon J, Lee HW. MiR-338-5p enhances the radiosensitivity of esophageal squamous cell carcinoma by inducing apoptosis through targeting survivin. Sci Rep 2017; 7:10932. [PMID: 28883406 PMCID: PMC5589838 DOI: 10.1038/s41598-017-10977-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
Radioresistance is a challenge in the treatment of esophageal squamous cell carcinoma (ESCC). MicroRNAs (miRNAs) are known to play an important role in the functional modification of cancer cells and recent studies have reported miRNA-mediated radiotherapy resistance. However, further research is necessary to reveal the regulation mechanisms, and treatment strategies using miRNA are yet to be established for ESCC. We compared the miRNA expression profiles of ESCC parental (TE-4) and acquired radioresistance (TE-4R) cell lines using a miRNA microarray and qRT-PCR. Our data showed that miR-338-5p, one of the target miRNA biomarkers, was significantly downregulated in TE-4R. Ectopic overexpression of miR-338-5p induced apoptosis and sensitivity to radiation treatment by interfering with survivin, which is a known inhibitor of apoptosis. Overexpression of survivin reversed miR-338-5p-induced apoptosis. Tumor xenograft experiments indicated that therapeutic delivery of the miR-338-5p mimics via direct injection into tumor mass increased sensitivity to radiation therapy. In conclusion, our findings suggest that miR-338-5p is a potential radiosensitizer and may be a therapeutic biomarker for radioresistant in ESCC.
Collapse
Affiliation(s)
- Misun Park
- Department of Translational Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Radiological & Medico-Oncological Sciences, Korea University of Science and Technology, Daejeon, Korea
| | - Hyeon-Joon Yoon
- Department of Translational Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Moon Chul Kang
- Department of Thoracic Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Junhye Kwon
- Department of Translational Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.
| | - Hae Won Lee
- Department of Thoracic Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.
| |
Collapse
|
90
|
Wang M, Liu G, Shan GP, Wang BB. In Vivo and In Vitro Effects of ATM/ATR Signaling Pathway on Proliferation, Apoptosis, and Radiosensitivity of Nasopharyngeal Carcinoma Cells. Cancer Biother Radiopharm 2017; 32:193-203. [PMID: 28820634 DOI: 10.1089/cbr.2017.2212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ming Wang
- Department of Otolaryngology Head and Neck Surgery, Tianjin Huanhu Hospital, Tianjin, People's Republic of China
| | - Gang Liu
- Department of Otolaryngology Head and Neck Surgery, Tianjin Huanhu Hospital, Tianjin, People's Republic of China
| | - Guo-Ping Shan
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, People's Republic of China
| | - Bing-Bing Wang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, People's Republic of China
| |
Collapse
|
91
|
Nakajima H, Furukawa C, Chang YC, Ogata H, Magae J. Delayed Growth Suppression and Radioresistance Induced by Long-Term Continuous Gamma Irradiation. Radiat Res 2017; 188:181-190. [DOI: 10.1667/rr14666.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hiroo Nakajima
- Department of Breast Surgery, Misugi-kai Sato Hospital, 65-1 Yabuhigashi-machi, Hirakata-shi, Osaka 573-1124, Japan
| | - Chiharu Furukawa
- Department of Biotechnology, Institute of Research and Innovation, 1201 Takada, Kashiwa 277-0861, Japan
| | - Young-Chae Chang
- Department of Cell Biology, Catholic University of Daegu, School of Medicine, 3056-6 Daemyung-4-Dong, Nam-gu, Daegu 705-718, Republic of Korea
| | - Hiromitsu Ogata
- Center for Public Health Informatics, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan
| | - Junji Magae
- Department of Biotechnology, Institute of Research and Innovation, 1201 Takada, Kashiwa 277-0861, Japan
- Center for Public Health Informatics, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan
- Magae Bioscience Institute, 49-4 Fujimidai, Tsukuba 300-1263, Japan
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado Kita, Komae, Tokyo 201-8511, Japan
| |
Collapse
|
92
|
Castle KD, Chen M, Wisdom AJ, Kirsch DG. Genetically engineered mouse models for studying radiation biology. Transl Cancer Res 2017; 6:S900-S913. [PMID: 30733931 PMCID: PMC6363345 DOI: 10.21037/tcr.2017.06.19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetically engineered mouse models (GEMMs) are valuable research tools that have transformed our understanding of cancer. The first GEMMs generated in the 1980s and 1990s were knock-in and knock-out models of single oncogenes or tumor suppressors. The advances that made these models possible catalyzed both technological and conceptual shifts in the way cancer research was conducted. As a result, dozens of mouse models of cancer exist today, covering nearly every tissue type. The advantages inherent to GEMMs compared to in vitro and in vivo transplant models are compounded in preclinical radiobiology research for several reasons. First, they accurately and robustly recapitulate primary cancers anatomically, histopathologically, and genetically. Reliable models are a prerequisite for predictive preclinical studies. Second, they preserve the tumor microenvironment, including the immune, vascular, and stromal compartments, which enables the study of radiobiology at a systems biology level. Third, they provide exquisite control over the genetics and kinetics of tumor initiation, which enables the study of specific gene mutations on radiation response and functional genomics in vivo. Taken together, these facets allow researchers to utilize GEMMs for rigorous and reproducible preclinical research. In the three decades since the generation of the first GEMMs of cancer, advancements in modeling approaches have rapidly progressed and expanded the mouse modeling toolbox with techniques such as in vivo short hairpin RNA (shRNA) knockdown, inducible gene expression, site-specific recombinases, and dual recombinase systems. Our lab and many others have utilized these tools to study cancer and radiobiology. Recent advances in genome engineering with CRISPR/Cas9 technology have made GEMMs even more accessible to researchers. Here, we review current and future approaches to mouse modeling with a focus on applications in preclinical radiobiology research.
Collapse
Affiliation(s)
- Katherine D. Castle
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Mark Chen
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
- Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA
| | - Amy J. Wisdom
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
- Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA
| | - David G. Kirsch
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
93
|
李 磊, 周 云. 食管鳞癌干细胞及其耐药机制的研究进展. Shijie Huaren Xiaohua Zazhi 2017; 25:1461-1468. [DOI: 10.11569/wcjd.v25.i16.1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
食管癌(esophageal carcinoma, EC)的全球发病率在恶性肿瘤中位居第8位, 死亡率居第6位, 化疗是EC主要的治疗方法之一, 但化疗药物耐药严重影响了化疗效果, 甚至引起化疗失败, 导致肿瘤复发或远处转移. 肿瘤干细胞(cancer stem cells, CSCs)学说提出CSCs是引起肿瘤对化疗药物耐药的重要原因之一. 本文就食管鳞癌干细胞的生物学特性、分选及化疗耐药的相关机制作一综述.
Collapse
|
94
|
Li Y, Li L, Wu Z, Wang L, Wu Y, Li D, Ma U, Shao J, Yu H, Wang D. Silencing of ATM expression by siRNA technique contributes to glioma stem cell radiosensitivity in vitro and in vivo. Oncol Rep 2017; 38:325-335. [PMID: 28560406 DOI: 10.3892/or.2017.5665] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
Evidence has shown that both high expression of the ataxia-telangiectasia mutated (ATM) gene and glioma stem cells (GSCs) are responsible for radioresistance in glioma. Thus, we hypothesized that brain tumor radiosensitivity may be enhanced via silencing of the ATM gene in GSCs. In the present study we successfully induced GSCs from two cell lines and used CD133 and nestin to identify GSCs. A lentivirus was used to deliver siRNA-ATMPuro (A group) to GSCs prior to radiation, while siRNA-HKPuro (N group) and GSCs (C group) were used as negative and blank controls, respectively. RT-qPCR and western blotting were performed to verify the efficiency of the siRNA-ATM technique. The expression of the ATM gene and ATM protein were significantly downregulated post-transfection. Cell Counting Kit-8 (CCK-8) and colony formation assays revealed that the A group demonstrated weak cell proliferation and lower survival fractions post-irradiation compared to the C/N groups. Flow cytometry was used to examine the percentage of cell apoptosis and G2 phase arrest, which were both higher in the A group than in the C/N groups. We found that the comet tail percentage evaluated by comet assay was higher in the A group than in the C/N groups. After radiation treatment, three radiosensitive genes [p53, proliferating cell nuclear antigen (PCNA), survivin] exhibited a decreasing tendency as determined by RT-qPCR. Mice underwent subcutaneous implantation, followed by radiation, and the resulting necrosis and hemorrhage were more obvious in the A group than in the N groups. In conclusion, silencing of ATM via the siRNA technique improved radiosensitivity of GSCs both in vitro and in vivo.
Collapse
Affiliation(s)
- Yan Li
- Department of Oncology, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Luchun Li
- Department of Oncology, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Zhijuan Wu
- Department of Oncology, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Lulu Wang
- Department of Oncology, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Yongzhong Wu
- Department of Radiotherapy, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Dairong Li
- Department of Oncology, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Uiwen Ma
- Department of Oncology, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Jianghe Shao
- Department of Oncology, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Huiqing Yu
- Department of Oncology, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Donglin Wang
- Department of Oncology, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| |
Collapse
|
95
|
Hu A, Huang JJ, Zhang JF, Dai WJ, Li RL, Lu ZY, Duan JL, Li JP, Chen XP, Fan JP, Xu WH, Zheng HL. Curcumin induces G2/M cell cycle arrest and apoptosis of head and neck squamous cell carcinoma in vitro and in vivo through ATM/Chk2/p53-dependent pathway. Oncotarget 2017; 8:50747-50760. [PMID: 28881600 PMCID: PMC5584201 DOI: 10.18632/oncotarget.17096] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 03/31/2017] [Indexed: 12/22/2022] Open
Abstract
Studies have demonstrated that curcumin (CUR) exerts its tumor suppressor function in a variety of human cancers including head and neck squamous cell carcinoma (HNSCC). However, the exact underlying molecular mechanisms remain obscure. Here, we aim to test whether CUR affects ATM/Chk2/p53 signaling pathway, leading to the induction of cell cycle arrest, inhibition of angiogenesis of HNSCC in vitro and in vivo. To this end, we conducted multiple methods such as MTT assay, Invasion assay, Flow cytometry, Western blotting, RT-PCR, and transfection to explore the functions and molecular insights of CUR in HNSCC. We observed that CUR significantly induced apoptosis and cell cycle arrest, inhibited angiogenesis in HNSCC. Mechanistically, we demonstrated that CUR markedly up-regulated ATM expression and subsequently down-regulated HIF-1α expression. Blockage of ATM production totally reversed CUR induced cell cycle arrest as well as anti-angiogenesis in HNSCC. Moreover, our results demonstrated that CUR exerts its antitumor activity through targeting ATM/Chk2/p53 signal pathway. In addition, the results of xenograft experiments in mice were highly consistent with in vitro studies. Collectively, our findings suggest that targeting ATM/Chk2/p53 signal pathway by CUR could be a promising therapeutic approach for HNSCC prevention and therapy.
Collapse
Affiliation(s)
- An Hu
- Department of Otolaryngology, Gongli Hospital, Second Military Medical University, Pudong New Area, Shanghai, 200135, China
| | - Jing-Juan Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Jing-Fei Zhang
- Department of Otolaryngology, Gongli Hospital, Second Military Medical University, Pudong New Area, Shanghai, 200135, China
| | - Wei-Jun Dai
- Department of Otolaryngology, Gongli Hospital, Second Military Medical University, Pudong New Area, Shanghai, 200135, China
| | - Rui-Lin Li
- Department of Gerontology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Zhao-Yang Lu
- Department of Gerontology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Jun-Li Duan
- Department of Gerontology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Ji-Ping Li
- Department of Otolaryngology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Pudong New Area, Shanghai, 200127, China
| | - Xiao-Ping Chen
- Department of Otolaryngology, Gongli Hospital, Second Military Medical University, Pudong New Area, Shanghai, 200135, China
| | - Jing-Ping Fan
- Department of Otolaryngology, Gongli Hospital, Second Military Medical University, Pudong New Area, Shanghai, 200135, China.,Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Wei-Hua Xu
- Department of Otolaryngology, Gongli Hospital, Second Military Medical University, Pudong New Area, Shanghai, 200135, China
| | - Hong-Liang Zheng
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
96
|
Animal Models in Glioblastoma: Use in Biology and Developing Therapeutic Strategies. ADVANCES IN BIOLOGY AND TREATMENT OF GLIOBLASTOMA 2017. [DOI: 10.1007/978-3-319-56820-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
97
|
Reifenberger G, Wirsching HG, Knobbe-Thomsen CB, Weller M. Advances in the molecular genetics of gliomas - implications for classification and therapy. Nat Rev Clin Oncol 2016; 14:434-452. [PMID: 28031556 DOI: 10.1038/nrclinonc.2016.204] [Citation(s) in RCA: 422] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genome-wide molecular-profiling studies have revealed the characteristic genetic alterations and epigenetic profiles associated with different types of gliomas. These molecular characteristics can be used to refine glioma classification, to improve prediction of patient outcomes, and to guide individualized treatment. Thus, the WHO Classification of Tumours of the Central Nervous System was revised in 2016 to incorporate molecular biomarkers - together with classic histological features - in an integrated diagnosis, in order to define distinct glioma entities as precisely as possible. This paradigm shift is markedly changing how glioma is diagnosed, and has important implications for future clinical trials and patient management in daily practice. Herein, we highlight the developments in our understanding of the molecular genetics of gliomas, and review the current landscape of clinically relevant molecular biomarkers for use in classification of the disease subtypes. Novel approaches to the genetic characterization of gliomas based on large-scale DNA-methylation profiling and next-generation sequencing are also discussed. In addition, we illustrate how advances in the molecular genetics of gliomas can promote the development and clinical translation of novel pathogenesis-based therapeutic approaches, thereby paving the way towards precision medicine in neuro-oncology.
Collapse
Affiliation(s)
- Guido Reifenberger
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Moorenstrasse. 5, D-40225 Düsseldorf, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg, partner site Essen/Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Hans-Georg Wirsching
- Department of Neurology and Brain Tumour Centre, Cancer Centre Zürich, University Hospital and University of Zürich, Frauenklinikstrasse 26, CH-8091 Zürich, Switzerland.,Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, C3-111, PO Box 19024, Seattle, Washington 98109-1024, USA
| | - Christiane B Knobbe-Thomsen
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Moorenstrasse. 5, D-40225 Düsseldorf, Germany
| | - Michael Weller
- Department of Neurology and Brain Tumour Centre, Cancer Centre Zürich, University Hospital and University of Zürich, Frauenklinikstrasse 26, CH-8091 Zürich, Switzerland
| |
Collapse
|
98
|
BRCA1-regulated RRM2 expression protects glioblastoma cells from endogenous replication stress and promotes tumorigenicity. Nat Commun 2016; 7:13398. [PMID: 27845331 PMCID: PMC5116074 DOI: 10.1038/ncomms13398] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/28/2016] [Indexed: 12/23/2022] Open
Abstract
Oncogene-evoked replication stress (RS) fuels genomic instability in diverse cancer types. Here we report that BRCA1, traditionally regarded a tumour suppressor, plays an unexpected tumour-promoting role in glioblastoma (GBM), safeguarding a protective response to supraphysiological RS levels. Higher BRCA1 positivity is associated with shorter survival of glioma patients and the abrogation of BRCA1 function in GBM enhances RS, DNA damage (DD) accumulation and impairs tumour growth. Mechanistically, we identify a novel role of BRCA1 as a transcriptional co-activator of RRM2 (catalytic subunit of ribonucleotide reductase), whereby BRCA1-mediated RRM2 expression protects GBM cells from endogenous RS, DD and apoptosis. Notably, we show that treatment with a RRM2 inhibitor triapine reproduces the BRCA1-depletion GBM-repressive phenotypes and sensitizes GBM cells to PARP inhibition. We propose that GBM cells are addicted to the RS-protective role of the BRCA1-RRM2 axis, targeting of which may represent a novel paradigm for therapeutic intervention in GBM. BRCA1 loss can result in collapse of replication forks into DNA double strand breaks that can contribute to malignant transformation. Here, the authors find that BRCA1 promotes the expression of RRM2 protecting glioblastoma cells from replication stress, DNA damage and apoptosis.
Collapse
|
99
|
Yao J, Huang A, Zheng X, Liu T, Lin Z, Zhang S, Yang Q, Zhang T, Ma H. 53BP1 loss induces chemoresistance of colorectal cancer cells to 5-fluorouracil by inhibiting the ATM-CHK2-P53 pathway. J Cancer Res Clin Oncol 2016; 143:419-431. [PMID: 27838786 DOI: 10.1007/s00432-016-2302-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/05/2016] [Indexed: 01/23/2023]
Abstract
PURPOSE Loss of P53 binding protein 1 (53BP1) is considered a poor prognostic factor for colorectal cancer. However, its effect on chemosensitivity of colorectal cancer to 5-fluorouracil (5-FU) remains elusive. This study aimed to examine the association of 53BP1 expression with chemosensitivity of colorectal cancer cells to 5-FU. METHODS Immunohistochemistry was performed on 30 metastatic colorectal cancer samples to assess the associations of 53BP1 levels with clinical therapeutic effects. In vitro, IC50 values for 5-FU and 53BP1 levels were determined by MTT assay and Western blot in 5 colorectal cancer cell lines. Then, 53BP1 was silenced in HCT116 and HT29 cells, and cell proliferation, apoptosis and cell cycle distribution were evaluated. Relative protein levels of ATM-CHK2-P53 pathway effectors and Bcl-2 family members were measured by Western blot. Finally, the effects of 53BP1 knockdown on tumor growth and 5-FU chemoresistance were investigated in vivo. RESULTS 53BP1 expression was closely related to time to progression (TTP) after first-line chemotherapy. Namely, 53BP1 downregulation resulted in reduced TTP. In addition, 53BP1 silencing increased proliferation, inhibited apoptosis and induced S phase arrest in HCT116 and HT29 cells after 5-FU treatment. Moreover, 53BP1 knockdown also reduced the protein levels of ATM-CHK2-P53 apoptotic pathway effectors, caspase9 and caspase3, while increasing Bcl-2 expression. In vivo, 53BP1 silencing accelerated tumor proliferation in nude mice and enhanced resistance to 5-FU. CONCLUSIONS These findings confirmed that 53BP1 loss might be a negative factor for chemotherapy efficacy, promoting cell proliferation and inhibiting apoptosis by suppressing ATM-CHK2-P53 signaling, and finally inducing 5-FU resistance.
Collapse
Affiliation(s)
- Jing Yao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China
| | - Ai Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China
| | - Xiumei Zheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China
| | - Tao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China
| | - Zhenyu Lin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China
| | - Qin Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
100
|
Meng WJ, Pathak S, Ding ZY, Zhang H, Adell G, Holmlund B, Li Y, Zhou ZG, Sun XF. Special AT-rich sequence binding protein 1 expression correlates with response to preoperative radiotherapy and clinical outcome in rectal cancer. Cancer Biol Ther 2016; 16:1738-45. [PMID: 26528635 DOI: 10.1080/15384047.2015.1095408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Our recent study showed the important role of special AT-rich sequence binding protein 1 (SATB1) in the progression of human rectal cancer. However, the value of SATB1 in response to radiotherapy (RT) for rectal cancer hasn't been reported so far. Here, SATB1 was determined using immunohistochemistry in normal mucosa, biopsy, primary cancer, and lymph node metastasis from 132 rectal cancer patients: 66 with and 66 without preoperative RT before surgery. The effect of SATB1 knockdown on radiosensitivity was assessed by proliferation-based assay and clonogenic assay. The results showed that SATB1 increased from normal mucosa to primary cancer, whereas it decreased from primary cancer to metastasis in non-RT patients. SATB1 decreased in primary cancers after RT. In RT patients, positive SATB1 was independently associated with decreased response to preoperative RT, early time to metastasis, and worse survival. SATB1 negatively correlated with ataxia telangiectasia mutated (ATM) and pRb2/p130, and positively with Ki-67 and Survivin in RT patients, and their potential interaction through different canonical pathways was identified in network ideogram. Taken together, our findings disclose for the first time that radiation decreases SATB1 expression and sensitizes cancer cells to confer clinical benefit of patients, suggesting that SATB1 is predictive of response to preoperative RT and clinical outcome in rectal cancer.
Collapse
Affiliation(s)
- Wen-Jian Meng
- a Department of Gastrointestinal Surgery ; West China Hospital; Sichuan University ; Chengdu , China.,b Department of Oncology and Department of Clinical and Experimental Medicine ; Linköping University ; Linköping , Sweden
| | - Surajit Pathak
- b Department of Oncology and Department of Clinical and Experimental Medicine ; Linköping University ; Linköping , Sweden
| | - Zhen-Yu Ding
- c Cancer Center and State Key Laboratory of Biotherapy; West China Hospital; Sichuan University ; Chengdu , China
| | - Hong Zhang
- d School of Medicine; Örebro University ; Örebro , Sweden
| | - Gunnar Adell
- e Department of Oncology ; County Council of Östergötland ; Linköping , Sweden
| | - Birgitta Holmlund
- e Department of Oncology ; County Council of Östergötland ; Linköping , Sweden
| | - Yuan Li
- f Institute of Digestive Surgery; State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University ; Chengdu , China
| | - Zong-Guang Zhou
- a Department of Gastrointestinal Surgery ; West China Hospital; Sichuan University ; Chengdu , China.,f Institute of Digestive Surgery; State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University ; Chengdu , China
| | - Xiao-Feng Sun
- b Department of Oncology and Department of Clinical and Experimental Medicine ; Linköping University ; Linköping , Sweden.,f Institute of Digestive Surgery; State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University ; Chengdu , China
| |
Collapse
|