51
|
Miloudi H, Leroy K, Jardin F, Sola B. STAT6 is a cargo of exportin 1: Biological relevance in primary mediastinal B-cell lymphoma. Cell Signal 2018; 46:76-82. [PMID: 29501729 DOI: 10.1016/j.cellsig.2018.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2022]
Abstract
Primary mediastinal B-cell lymphoma (PMBL) is a distinct B-cell lymphoma subtype with unique clinicopathological and molecular features. PMBL cells are characterised by several genetic abnormalities that conduct to the constitutive activation of the Janus kinase 2/signal transducer and activator of transcription 6 (JAK2/STAT6) signalling pathway. Among recurrent genetic changes in PMBL, we previously reported that the XPO1 gene encoding exportin 1 that controls the nuclear export of cargo proteins and RNAs, is mutated (p.E571K) in about 25% of PMBL cases. We therefore hypothesized that STAT6 could be a cargo of XPO1 and that STAT6 cytoplasm/nucleus shuttle could be altered in a subset of PMBL cells. Using immunocytochemistry techniques as well as the proximity ligation assay, we showed that STAT6 bound XPO1 in PBML cell lines and in HEK-293 cells genetically engineered to produce STAT6. Moreover, XPO1-mediated export of STAT6 occurs in cells expressing either a wild-type or the E571K mutated XPO1 protein.
Collapse
Affiliation(s)
| | | | - Fabrice Jardin
- Département d'Hématologie, Centre Henri Becquerel, Rouen, France; Normandie Univ, INSERM UMR1245, UNIROUEN, Rouen, France.
| | - Brigitte Sola
- Normandie Univ, INSERM UMR1245, UNICAEN, Caen, France.
| |
Collapse
|
52
|
Phase 1 study of the PI3Kδ inhibitor INCB040093 ± JAK1 inhibitor itacitinib in relapsed/refractory B-cell lymphoma. Blood 2018; 132:293-306. [PMID: 29695516 DOI: 10.1182/blood-2017-10-812701] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Because both phosphatidylinositol 3-kinase δ (PI3Kδ) and Janus kinase (JAK)-signal transducer and activator of transcription pathways contribute to tumor cell proliferation and survival in B-cell malignancies, their simultaneous inhibition may provide synergistic treatment efficacy. This phase 1 dose-escalation/expansion study assessed the safety, efficacy, pharmacokinetics, and pharmacodynamics of INCB040093, a selective PI3Kδ inhibitor, as monotherapy or combined with itacitinib (formerly INCB039110), a selective JAK1 inhibitor, in adult patients with relapsed or refractory (R/R) B-cell lymphomas. Final results are reported. Overall, 114 patients were treated (monotherapy, n = 49; combination therapy, n = 72 [7 patients crossed over from monotherapy to combination]). INCB040093 100 mg twice daily (monotherapy) and INCB040093 100 mg twice daily + itacitinib 300 mg once daily (combination) were the recommended phase 2 doses. One dose-limiting toxicity (gastrointestinal bleed secondary to gastric diffuse large B-cell lymphoma [DLBCL] regression) occurred with monotherapy. The most common serious adverse events with monotherapy were pneumonia (n = 5) and pyrexia (n = 4), and with combination Pneumocystis jiroveci pneumonia (n = 5), pneumonia (unrelated to P jiroveci; n = 5), and pyrexia (n = 4). Grade 3 or higher transaminase elevations were less common with combination. INCB040093 was active across the B-cell lymphomas; 63% of patients (5/8) with follicular lymphoma responded to monotherapy. Adding itacitinib provided promising activity in select subtypes, with responses of 67% (14/21) in classic Hodgkin lymphoma (vs 29% [5/17] with monotherapy) and 31% (4/13) in nongerminal center B-cell-like DLBCL. INCB040093 with/without itacitinib was tolerated and active in this study, and is a promising treatment strategy for patients with select R/R B-cell lymphomas. This trial was registered at www.clinicaltrials.gov as #NCT01905813.
Collapse
|
53
|
Tight regulation of FOXO1 is essential for maintenance of B-cell precursor acute lymphoblastic leukemia. Blood 2018; 131:2929-2942. [PMID: 29622548 DOI: 10.1182/blood-2017-10-813576] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/26/2018] [Indexed: 12/30/2022] Open
Abstract
The FOXO1 transcription factor plays an essential role in the regulation of proliferation and survival programs at early stages of B-cell differentiation. Here, we show that tightly regulated FOXO1 activity is essential for maintenance of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Genetic and pharmacological inactivation of FOXO1 in BCP-ALL cell lines produced a strong antileukemic effect associated with CCND3 downregulation. Moreover, we demonstrated that CCND3 expression is critical for BCP-ALL survival and that overexpression of CCND3 protected BCP-ALL cell lines from growth arrest and apoptosis induced by FOXO1 inactivation. Most importantly, pharmacological inhibition of FOXO1 showed antileukemia activity on several primary, patient-derived, pediatric ALL xenografts with effective leukemia reduction in the hematopoietic, lymphoid, and central nervous system organ compartments, ultimately leading to prolonged survival without leukemia reoccurrence in a preclinical in vivo model of BCP-ALL. These results suggest that repression of FOXO1 might be a feasible approach for the treatment of BCP-ALL.
Collapse
|
54
|
Levin M, Stark M, Assaraf YG. The JmjN domain as a dimerization interface and a targeted inhibitor of KDM4 demethylase activity. Oncotarget 2018; 9:16861-16882. [PMID: 29682190 PMCID: PMC5908291 DOI: 10.18632/oncotarget.24717] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/25/2018] [Indexed: 12/14/2022] Open
Abstract
Histone methylation is regulated to shape the epigenome by modulating DNA compaction, thus playing central roles in fundamental chromatin-based processes including transcriptional regulation, DNA repair and cell proliferation. Histone methylation is erased by demethylases including the well-established KDM4 subfamily members, however, little is known about their dimerization capacity and its impact on their demethylase activity. Using the powerful bimolecular fluorescence complementation technique, we herein show the in situ formation of human KDM4A and KDM4C homodimers and heterodimers in nuclei of live transfectant cells and evaluate their H3K9me3 demethylation activity. Using size exclusion HPLC as well as Western blot analysis, we show that endogenous KDM4C undergoes dimerization under physiological conditions. Importantly, we identify the JmjN domain as the KDM4C dimerization interface and pin-point specific charged residues therein to be essential for this dimerization. We further demonstrate that KDM4A/C dimerization is absolutely required for their demethylase activity which was abolished by the expression of free JmjN peptides. In contrast, KDM4B does not dimerize and functions as a monomer, and hence was not affected by free JmjN expression. KDM4 proteins are overexpressed in numerous malignancies and their pharmacological inhibition or depletion in cancer cells was shown to impair tumor cell proliferation, invasion and metastasis. Thus, the KDM4 dimer-interactome emerging from the present study bears potential implications for cancer therapeutics via selective inhibition of KDM4A/C demethylase activity using JmjN-based peptidomimetics.
Collapse
Affiliation(s)
- May Levin
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Michal Stark
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
55
|
Menter T, Tzankov A. Mechanisms of Immune Evasion and Immune Modulation by Lymphoma Cells. Front Oncol 2018; 8:54. [PMID: 29564225 PMCID: PMC5845888 DOI: 10.3389/fonc.2018.00054] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/20/2018] [Indexed: 02/06/2023] Open
Abstract
Purpose Targeting cancer cells by modulating the immune system has become an important new therapeutic option in many different malignancies. Inhibition of CTLA4/B7 and PD1/PDL1 signaling is now also being investigated and already successfully applied to various hematologic malignancies. Methods A literature review of PubMed and results of our own studies were compiled in order to give a comprehensive overview on this topic. Results We elucidate the pathophysiological role of immunosuppressive networks in lymphomas, ranging from changes in the cellular microenvironment composition to distinct signaling pathways such as PD1/PDL1 or CTLA4/B7/CD28. The prototypical example of a lymphoma manipulating and thereby silencing the immune system is Hodgkin lymphoma. Also other lymphomas, e.g., primary mediastinal B-cell lymphoma and some Epstein–Barr virus (EBV)-driven malignancies, use analogous survival strategies, while diffuse large B-cell lymphoma of the activated B-cell type, follicular lymphoma and angioimmunoblastic T-cell lymphoma to name a few, exert further immune escape strategies each. These insights have already led to new treatment opportunities and results of the most important clinical trials based on this concept are briefly summarized. Immune checkpoint inhibition might also have severe side effects; the mechanisms of the rather un(der)recognized hematological side effects of this treatment approach are discussed. Conclusion Silencing the host’s immune system is an important feature of various lymphomas. Achieving a better understanding of distinct pathways of interactions between lymphomas and different immunological microenvironment compounds yields substantial potential for new treatment concepts.
Collapse
Affiliation(s)
- Thomas Menter
- Institute of Pathology and Medical Genetics, University Hospital of Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology and Medical Genetics, University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
56
|
Tanaka Y, Maeshima AM, Nomoto J, Makita S, Fukuhara S, Munakata W, Maruyama D, Tobinai K, Kobayashi Y. Expression pattern of PD-L1 and PD-L2 in classical Hodgkin lymphoma, primary mediastinal large B-cell lymphoma, and gray zone lymphoma. Eur J Haematol 2018; 100:511-517. [PMID: 29377256 DOI: 10.1111/ejh.13033] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES We aimed at investigating the relationship between classical Hodgkin lymphoma (cHL), primary mediastinal large B-cell lymphoma (PMBL), and gray zone lymphoma (GZL) with intermediate characteristics between cHL and PMBL, from the perspective of the aberration in programed cell death 1 and the programed death ligands (PDLs) network. METHODS We explored the expression levels of PDLs and chromosomal anomalies in 67 cases: 34 cases with cHL, 20 with PMBL, and 13 with GZL, using immunohistochemical analyses and Fluorescence In Situ Hybridization (FISH). RESULTS Twenty-one cHL (62%), 3 PMBL (15%), and 6 GZL (46%) cases showed staining to PD-L1 antibodies in more than 70% of tumor cells. Two cHL (6%), 10 PMBL (50%), and 3 GZL (23%) cases were not stained by PD-L1 antibodies. Patients over 40 years old manifest more frequent expression of PD-L1 in cHL. Proportion of tumors stained by PD-L2 antibody was increased in PMBL. FISH analyses with a PD-L1/PD-L2 probe detected 5 amplification, 1 gain, and 7 polysomy cases in cHL, 1 amplification and 1 polysomy case in GZL, and amplification in 1 PMBL case. CONCLUSION We identified increased staining of PD-L1 in cHL and that of PD-L2 in PMBL. GZL had a pattern similar to that of cHL.
Collapse
Affiliation(s)
- Yosuke Tanaka
- Department of Hematology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Akiko Miyagi Maeshima
- Department of Pathology and Clinical Laboratory, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Junko Nomoto
- Department of Hematology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Shinichi Makita
- Department of Hematology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Suguru Fukuhara
- Department of Hematology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Wataru Munakata
- Department of Hematology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Dai Maruyama
- Department of Hematology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Kensei Tobinai
- Department of Hematology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Yukio Kobayashi
- Department of Hematology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan.,Department of Hematology, International University of Health and Welfare Mita Hospital, Minato-ku, Tokyo, Japan
| |
Collapse
|
57
|
Somatic IL4R mutations in primary mediastinal large B-cell lymphoma lead to constitutive JAK-STAT signaling activation. Blood 2018; 131:2036-2046. [PMID: 29467182 DOI: 10.1182/blood-2017-09-808907] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/08/2018] [Indexed: 12/22/2022] Open
Abstract
Primary mediastinal large B-cell lymphoma (PMBCL) is a distinct subtype of diffuse large B-cell lymphoma thought to arise from thymic medullary B cells. Gene mutations underlying the molecular pathogenesis of the disease are incompletely characterized. Here, we describe novel somatic IL4R mutations in 15 of 62 primary cases of PMBCL (24.2%) and in all PMBCL-derived cell lines tested. The majority of mutations (11/21; 52%) were hotspot single nucleotide variants in exon 8, leading to an I242N amino acid change in the transmembrane domain. Functional analyses establish this mutation as gain of function leading to constitutive activation of the JAK-STAT pathway and upregulation of downstream cytokine expression profiles and B cell-specific antigens. Moreover, expression of I242N mutant IL4R in a mouse xenotransplantation model conferred growth advantage in vivo. The pattern of concurrent mutations within the JAK-STAT signaling pathway suggests additive/synergistic effects of these gene mutations contributing to lymphomagenesis. Our data establish IL4R mutations as novel driver alterations and provide a strong preclinical rationale for therapeutic targeting of JAK-STAT signaling in PMBCL.
Collapse
|
58
|
The plant-specific histone residue Phe41 is important for genome-wide H3.1 distribution. Nat Commun 2018; 9:630. [PMID: 29434220 PMCID: PMC5809374 DOI: 10.1038/s41467-018-02976-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/11/2018] [Indexed: 12/21/2022] Open
Abstract
The dynamic incorporation of histone variants influences chromatin structure and many biological processes. In Arabidopsis, the canonical variant H3.1 differs from H3.3 in four residues, one of which (H3.1Phe41) is unique and conserved in plants. However, its evolutionary significance remains unclear. Here, we show that Phe41 first appeared in H3.1 in ferns and became stable during land plant evolution. Unlike H3.1, which is specifically enriched in silent regions, H3.1F41Y variants gain ectopic accumulation at actively transcribed regions. Reciprocal tail and core domain swap experiments between H3.1 and H3.3 show that the H3.1 core, while necessary, is insufficient to restrict H3.1 to silent regions. We conclude that the vascular-plant-specific Phe41 is critical for H3.1 genomic distribution and may act collaboratively with the H3.1 core to regulate deposition patterns. This study reveals that Phe41 may have evolved to provide additional regulation of histone deposition in plants. The canonical histone variant H3.1 of vascular plants contains a conserved Phe residue at position 41 that is unique to the plant kingdom. Here, Lu et al. provide evidence that H3.1Phe41 acts collaboratively with the H3.1 core domain to restrict H3.1 deposition to silent regions of the genome.
Collapse
|
59
|
Mauz-Körholz C, Ströter N, Baumann J, Botzen A, Körholz K, Körholz D. Pharmacotherapeutic Management of Pediatric Lymphoma. Paediatr Drugs 2018; 20:43-57. [PMID: 29127674 DOI: 10.1007/s40272-017-0265-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL) comprise approximately 15% of all childhood malignancies. Cure rates for both lymphoma entities have evolved tremendously during the last couple of decades, raising the 5-year survival rates to almost 100% for HL and to 85% for NHL. The mainstay therapy for both malignancies is still chemotherapy-with different regimens recommended for different types of disease. In HL, combined modality treatment, i.e., chemotherapy followed by radiotherapy, has long been the standard regimen. In order to reduce long-term side effects, such as second malignancies, most major pediatric HL consortia have studied response-based radiotherapy reduction strategies over the last 3 decades. For recurrent disease, high-dose chemotherapy followed by an autologous or an allogeneic hematopoietic stem-cell transplant is an option. No targeted agents have yet gained regulatory approval for use in pediatric patients with lymphoma. For adult lymphoma patients, the CD20 antibody rituximab and the CD30 antibody-drug conjugate brentuximab vedotin are targeted agents used regularly in first- and second-line treatment regimens. More recently, immune checkpoint inhibitors, phosphatidyl-inositol-3-kinase inhibitors, and Bruton's tyrosine kinase inhibitors appear to be very promising new treatment options in adult lymphoma. Here, we discuss the current experience with these types of agents in pediatric lymphoma patients.
Collapse
Affiliation(s)
- Christine Mauz-Körholz
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Justus-Liebig University of Giessen, Feulgenstraße 12, 35392, Giessen, Germany. .,Medical Faculty of the Martin-Luther-University of Halle-Wittenberg, Halle, Germany.
| | - Natascha Ströter
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Justus-Liebig University of Giessen, Feulgenstraße 12, 35392, Giessen, Germany
| | - Julia Baumann
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Justus-Liebig University of Giessen, Feulgenstraße 12, 35392, Giessen, Germany
| | - Ante Botzen
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Justus-Liebig University of Giessen, Feulgenstraße 12, 35392, Giessen, Germany
| | - Katharina Körholz
- Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research center (DKFZ), Heidelberg, Germany
| | - Dieter Körholz
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Justus-Liebig University of Giessen, Feulgenstraße 12, 35392, Giessen, Germany
| |
Collapse
|
60
|
Janardhan A, Kathera C, Darsi A, Ali W, He L, Yang Y, Luo L, Guo Z. Prominent role of histone lysine demethylases in cancer epigenetics and therapy. Oncotarget 2018; 9:34429-34448. [PMID: 30344952 PMCID: PMC6188137 DOI: 10.18632/oncotarget.24319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022] Open
Abstract
Protein methylation has an important role in the regulation of chromatin, gene expression and regulation. The protein methyl transferases are genetically altered in various human cancers. The enzymes that remove histone methylation have led to increased awareness of protein interactions as potential drug targets. Specifically, Lysine Specific Demethylases (LSD) removes methylated histone H3 lysine 4 (H3K4) and H3 lysine 9 (H3K9) through formaldehyde-generating oxidation. It has been reported that LSD1 and its downstream targets are involved in tumor-cell growth and metastasis. Functional studies of LSD1 indicate that it regulates activation and inhibition of gene transcription in the nucleus. Here we made a discussion about the summary of histone lysine demethylase and their functions in various human cancers.
Collapse
Affiliation(s)
- Avilala Janardhan
- The No. 7 People's Hospital of Changzhou, Changzhou, China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chandrasekhar Kathera
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Amrutha Darsi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wajid Ali
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yanhua Yang
- The No. 7 People's Hospital of Changzhou, Changzhou, China
| | - Libo Luo
- The No. 7 People's Hospital of Changzhou, Changzhou, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
61
|
Vainchenker W, Leroy E, Gilles L, Marty C, Plo I, Constantinescu SN. JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders. F1000Res 2018; 7:82. [PMID: 29399328 PMCID: PMC5773931 DOI: 10.12688/f1000research.13167.1] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 01/04/2023] Open
Abstract
JAK inhibitors have been developed following the discovery of the
JAK2V617F in 2005 as the driver mutation of the majority of non-
BCR-ABL1 myeloproliferative neoplasms (MPNs). Subsequently, the search for JAK2 inhibitors continued with the discovery that the other driver mutations (
CALR and
MPL) also exhibited persistent JAK2 activation. Several type I ATP-competitive JAK inhibitors with different specificities were assessed in clinical trials and exhibited minimal hematologic toxicity. Interestingly, these JAK inhibitors display potent anti-inflammatory activity. Thus, JAK inhibitors targeting preferentially JAK1 and JAK3 have been developed to treat inflammation, autoimmune diseases, and graft-versus-host disease. Ten years after the beginning of clinical trials, only two drugs have been approved by the US Food and Drug Administration: one JAK2/JAK1 inhibitor (ruxolitinib) in intermediate-2 and high-risk myelofibrosis and hydroxyurea-resistant or -intolerant polycythemia vera and one JAK1/JAK3 inhibitor (tofacitinib) in methotrexate-resistant rheumatoid arthritis. The non-approved compounds exhibited many off-target effects leading to neurological and gastrointestinal toxicities, as seen in clinical trials for MPNs. Ruxolitinib is a well-tolerated drug with mostly anti-inflammatory properties. Despite a weak effect on the cause of the disease itself in MPNs, it improves the clinical state of patients and increases survival in myelofibrosis. This limited effect is related to the fact that ruxolitinib, like the other type I JAK2 inhibitors, inhibits equally mutated and wild-type JAK2 (JAK2WT) and also the JAK2 oncogenic activation. Thus, other approaches need to be developed and could be based on either (1) the development of new inhibitors specifically targeting
JAK2V617F or (2) the combination of the actual JAK2 inhibitors with other therapies, in particular with molecules targeting pathways downstream of JAK2 activation or the stability of JAK2 molecule. In contrast, the strong anti-inflammatory effects of the JAK inhibitors appear as a very promising therapeutic approach for many inflammatory and auto-immune diseases.
Collapse
Affiliation(s)
- William Vainchenker
- INSERM UMR 1170, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France.,UMR 1170, Gustave Roussy, Villejuif, France
| | - Emilie Leroy
- Signal Transduction & Molecular Hematology Unit, Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Laure Gilles
- Institut National de la Transfusion Sanguine, Paris, France
| | - Caroline Marty
- INSERM UMR 1170, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France.,UMR 1170, Gustave Roussy, Villejuif, France
| | - Isabelle Plo
- INSERM UMR 1170, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France.,UMR 1170, Gustave Roussy, Villejuif, France
| | - Stefan N Constantinescu
- Signal Transduction & Molecular Hematology Unit, Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
62
|
Guo L, Lin P, Xiong H, Tu S, Chen G. Molecular heterogeneity in diffuse large B-cell lymphoma and its implications in clinical diagnosis and treatment. Biochim Biophys Acta Rev Cancer 2018; 1869:85-96. [PMID: 29337112 DOI: 10.1016/j.bbcan.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over half of patients with diffuse large B-cell lymphoma (DLBCL) can be cured by standard R-CHOP treatment (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone). However, the remaining patients are refractory and ultimately succumb to progressive or relapsed disease. During the past decade, there has been significant progress in the understanding of molecular mechanisms in DLBCL, largely owing to collaborative efforts in large-scale gene expression profiling and deep sequencing, which have identified genetic alterations critical in lymphomagenesis through activation of key signaling transduction pathways in DLBCL. These discoveries have not only led to the development of targeted therapies, including several currently in clinical trials, but also laid a solid foundation for the future identification of more effective therapies for patients not curable by R-CHOP. This review summarizes the recent advances in our understanding of the molecular characterization and pathogenesis of DLBCL and new treatment directions.
Collapse
Affiliation(s)
- Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu 215000, China.
| | - Pei Lin
- Department of Hematopathology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 72, Houston, TX 77030, USA.
| | - Hui Xiong
- Shanghai Righton Biotechnology Co., Ltd, 1698 Wangyuan Road, Building 12, Fengxian District, Shanghai 201403, China.
| | - Shichun Tu
- Shanghai Righton Biotechnology Co., Ltd, 1698 Wangyuan Road, Building 12, Fengxian District, Shanghai 201403, China; Scintillon Institute for Biomedical and Bioenergy Research, 6888 Nancy Ridge Dr., San Diego, CA 92121, USA; Allele Biotechnology & Pharmaceuticals, Inc., 6404 Nancy Ridge Drive, San Diego, CA 92121, USA.
| | - Gang Chen
- Department of Pathology of Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, 420 Fuma Road, Fuzhou, Fujian 350014, China.
| |
Collapse
|
63
|
Küppers R. Origin of Hodgkin Lymphoma. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00074-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
64
|
From Drosophila Blood Cells to Human Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:195-214. [PMID: 29951821 DOI: 10.1007/978-981-13-0529-0_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The hematopoietic system plays a critical role in establishing the proper response against invading pathogens or in removing cancerous cells. Furthermore, deregulations of the hematopoietic differentiation program are at the origin of numerous diseases including leukemia. Importantly, many aspects of blood cell development have been conserved from human to Drosophila. Hence, Drosophila has emerged as a potent genetic model to study blood cell development and leukemia in vivo. In this chapter, we give a brief overview of the Drosophila hematopoietic system, and we provide a protocol for the dissection and the immunostaining of the larval lymph gland, the most studied hematopoietic organ in Drosophila. We then focus on the various paradigms that have been used in fly to investigate how conserved genes implicated in leukemogenesis control blood cell development. Specific examples of Drosophila models for leukemia are presented, with particular attention to the most translational ones. Finally, we discuss some limitations and potential improvements of Drosophila models for studying blood cell cancer.
Collapse
|
65
|
Hosseini A, Minucci S. Alterations of Histone Modifications in Cancer. EPIGENETICS IN HUMAN DISEASE 2018:141-217. [DOI: 10.1016/b978-0-12-812215-0.00006-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
66
|
Dunleavy K. Primary mediastinal B-cell lymphoma: biology and evolving therapeutic strategies. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:298-303. [PMID: 29222270 PMCID: PMC6142582 DOI: 10.1182/asheducation-2017.1.298] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Primary mediastinal B-cell lymphoma (PMBCL) is recognized as a distinct clinicopathologic entity that predominantly affects adolescents and young adults and is more common in female subjects. Although PMBCL is considered to be a subtype of diffuse large B-cell lymphoma, its clinical, morphologic, and biological characteristics overlap significantly with those of nodular sclerosing Hodgkin lymphoma (NSHL). Over the past few years, the shared biology of these 2 entities has been highlighted in several studies, and mediastinal gray zone lymphoma, with features intermediate between PMBCL and NSHL, has been recognized as a unique molecular entity. Although there is a lack of consensus about the optimal therapeutic strategy for adolescent and young adult patients newly diagnosed with PMCBL, highly curative strategies that obviate the need for mediastinal radiation are favored by most. Progress in understanding the biology of PMBCL and its close relationship to NSHL have helped pave the way for the investigation of novel approaches such as immune checkpoint inhibition. Other strategies such as adoptive T-cell therapy and targeting CD30 are also being studied.
Collapse
Affiliation(s)
- Kieron Dunleavy
- George Washington University, Washington, DC; and
- Division of Hematology and Oncology, George Washington University Cancer Center, Washington, DC
| |
Collapse
|
67
|
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is central to signaling by receptors of diverse cytokines, growth factors, and other related molecules. Many of these receptors transmit anti-apoptosis, proliferation, and differentiation signals that are critical for normal hematopoiesis and immune response. However, the JAK/STAT signaling pathway is deregulated in many hematologic malignancies, and as such is co-opted by malignant cells to promote their survival and proliferation. It has recently come to light that an alternative mechanism, wherein nuclear JAKs epigenetically modify the chromatin to increase gene expression independent of STATs, also plays an important role in the pathogenesis of many hematologic malignancies. In this review, we will focus on common genetic alterations of the JAK family members in leukemia and lymphoma, and provide examples in which JAKs regulate gene expression by targeting the cancer epigenome.
Collapse
Affiliation(s)
- Amanda C Drennan
- a Department of Medicine and Carbone Cancer Center , University of Wisconsin School of Medicine and Public Health , Madison , WI , USA
| | - Lixin Rui
- a Department of Medicine and Carbone Cancer Center , University of Wisconsin School of Medicine and Public Health , Madison , WI , USA
| |
Collapse
|
68
|
Composite Lymphomas and the Relationship of Hodgkin Lymphoma to Non-Hodgkin Lymphomas. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-68094-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
69
|
Mukherjee N, Cardenas E, Bedolla R, Ghosh R. SETD6 regulates NF-κB signaling in urothelial cell survival: Implications for bladder cancer. Oncotarget 2017; 8:15114-15125. [PMID: 28122346 PMCID: PMC5362471 DOI: 10.18632/oncotarget.14750] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/10/2017] [Indexed: 11/29/2022] Open
Abstract
Non-muscle invasive bladder cancer has a high recurrence rate of 45-70%, progressing to muscle invasive disease in about 15% of those patients over a 5-year period. Administration of the mycobacterium, Bacillus Calmette-Guerin (BCG) that induces local inflammation resulting in tumor remission in responsive patients is frequently used for treatment. BCG-treated patients with NF-κB del/del genotype have an increased risk of recurrence suggesting an important role of NF-κB in bladder cancer. Since protein methyltransferases play critical roles in modulating chromatin structure and gene expression, we screened a focused array of epigenetic modification genes to identify differential expression between normal urothelial and bladder cancer cells. We found and validated high expression of the SET-domain-containing protein methyltransferase, SETD6. SETD6 monomethylates NF-κB-p65 at lysine 310. Our results show that primary urothelial cells and normal bladder tissue have nearly undetectable message and protein level of SETD6 that increases in transformed urothelial cells and is further increased in bladder cancer cells and tissues. Overexpression of SETD6 in transformed urothelial cells increased cell survival and colony formation while knockdown in cancer cells decreased both parameters. Luciferase reporter assays showed that SETD6 induced the canonical NF-κB signaling pathway. Further, the use of catalytic SETD6 and IκBα mutant shows that SETD6 positively regulates survival by affecting p65 message, protein level and its function as determined by increased expression of NF-κB target genes. Our findings suggest that SETD6 plays an important role in NF-κB regulation and may have an important role in NF-κB-mediated local inflammatory response following BCG treatment.
Collapse
Affiliation(s)
- Neelam Mukherjee
- Department of Urology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Eduardo Cardenas
- Department of Urology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Roble Bedolla
- Department of Urology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Rita Ghosh
- Department of Urology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Molecular Medicine and School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Cancer Therapy and Research Center, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
70
|
Mandal C, Kim SH, Kang SC, Chai JC, Lee YS, Jung KH, Chai YG. GSK-J4-Mediated Transcriptomic Alterations in Differentiating Embryoid Bodies. Mol Cells 2017; 40:737-751. [PMID: 29047260 PMCID: PMC5682251 DOI: 10.14348/molcells.2017.0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/20/2017] [Accepted: 08/20/2017] [Indexed: 12/18/2022] Open
Abstract
Histone-modifying enzymes are key players in the field of cellular differentiation. Here, we used GSK-J4 to profile important target genes that are responsible for neural differentiation. Embryoid bodies were treated with retinoic acid (10 μM) to induce neural differentiation in the presence or absence of GSK-J4. To profile GSKJ4-target genes, we performed RNA sequencing for both normal and demethylase-inhibited cells. A total of 47 and 58 genes were up- and down-regulated, respectively, after GSK-J4 exposure at a log2-fold-change cut-off value of 1.2 (p-value < 0.05). Functional annotations of all of the differentially expressed genes revealed that a significant number of genes were associated with the suppression of cellular proliferation, cell cycle progression and induction of cell death. We also identified an enrichment of potent motifs in selected genes that were differentially expressed. Additionally, we listed upstream transcriptional regulators of all of the differentially expressed genes. Our data indicate that GSK-J4 affects cellular biology by inhibiting cellular proliferation through cell cycle suppression and induction of cell death. These findings will expand the current understanding of the biology of histone-modifying enzymes, thereby promoting further investigations to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Chanchal Mandal
- Department of Molecular and Life Science, Hanyang University, Ansan 15588,
Korea
| | - Sun Hwa Kim
- Department of Molecular and Life Science, Hanyang University, Ansan 15588,
Korea
| | - Sung Chul Kang
- Department of Molecular and Life Science, Hanyang University, Ansan 15588,
Korea
| | - Jin Choul Chai
- Department of Molecular and Life Science, Hanyang University, Ansan 15588,
Korea
| | - Young Seek Lee
- Department of Molecular and Life Science, Hanyang University, Ansan 15588,
Korea
| | - Kyoung Hwa Jung
- Institute of Natural Science and Technology, Hanyang University, Ansan 15588,
Korea
| | - Young Gyu Chai
- Department of Molecular and Life Science, Hanyang University, Ansan 15588,
Korea
- Department of Bionanotechnology, Hanyang University, Seoul 04763,
Korea
| |
Collapse
|
71
|
Castellini L, Moon EJ, Razorenova OV, Krieg AJ, von Eyben R, Giaccia AJ. KDM4B/JMJD2B is a p53 target gene that modulates the amplitude of p53 response after DNA damage. Nucleic Acids Res 2017; 45:3674-3692. [PMID: 28073943 PMCID: PMC5397198 DOI: 10.1093/nar/gkw1281] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022] Open
Abstract
The p53 tumor suppressor protein plays a critical role in orchestrating the genomic response to various stress signals by acting as a master transcriptional regulator. Differential gene activity is controlled by transcription factors but also dependent on the underlying chromatin structure, especially on covalent histone modifications. After screening different histone lysine methyltransferases and demethylases, we identified JMJD2B/KDM4B as a p53-inducible gene in response to DNA damage. p53 directly regulates JMJD2B gene expression by binding to a canonical p53-consensus motif in the JMJD2B promoter. JMJD2B induction attenuates the transcription of key p53 transcriptional targets including p21, PIG3 and PUMA, and this modulation is dependent on the catalytic capacity of JMJD2B. Conversely, JMJD2B silencing led to an enhancement of the DNA-damage driven induction of p21 and PIG3. These findings indicate that JMJD2B acts in an auto-regulatory loop by which p53, through JMJD2B activation, is able to influence its own transcriptional program. Functionally, exogenous expression of JMJD2B enhanced subcutaneous tumor growth of colon cancer cells in a p53-dependent manner, and genetic inhibition of JMJD2B impaired tumor growth in vivo. These studies provide new insights into the regulatory effect exerted by JMJD2B on tumor growth through the modulation of p53 target genes.
Collapse
Affiliation(s)
- Laura Castellini
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eui Jung Moon
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olga V Razorenova
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Adam J Krieg
- Department of Obstetrics and Gynecology, Oregon Health and Sciences University, Portland, OR 97239, USA
| | - Rie von Eyben
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
72
|
Histone demethylase JMJD2C: epigenetic regulators in tumors. Oncotarget 2017; 8:91723-91733. [PMID: 29207681 PMCID: PMC5710961 DOI: 10.18632/oncotarget.19176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/28/2017] [Indexed: 11/25/2022] Open
Abstract
Histone methylation is one of the major epigenetic modifications, and various histone methylases and demethylases participate in the epigenetic regulating. JMJD2C has been recently identified as one of the histone lysine demethylases. As one member of the Jumonji-C histone demethylase family, JMJD2C has the ability to demethylate tri- or di-methylated histone 3 and 2 in either K9 (lysine residue 9) or K36 (lysine residue 36) sites by an oxidative reaction, thereby affecting heterochromatin formation, genomic imprinting, X-chromosome inactivation, and transcriptional regulation of genes. JMJD2C was firstly found to involve in embryonic development and stem cell regulation. Afterwards, aberrant status of JMJD2C histone methylation was observed during the formation and development of various tumors, and it has been reported to play crucial roles in the progression of breast cancer, prostate carcinomas, osteosarcoma, blood neoplasms and so on, indicating that JMJD2C represents a promising anti-cancer target. In this review, we will focus on the research progress and prospect of JMJD2C in tumors, and provide abundant evidence for the functional application and therapeutic potential of targeting JMJD2C in tumors.
Collapse
|
73
|
Yang J, Milasta S, Hu D, AlTahan AM, Interiano RB, Zhou J, Davidson J, Low J, Lin W, Bao J, Goh P, Nathwani AC, Wang R, Wang Y, Ong SS, Boyd VA, Young B, Das S, Shelat A, Wu Y, Li Z, Zheng JJ, Mishra A, Cheng Y, Qu C, Peng J, Green DR, White S, Guy RK, Chen T, Davidoff AM. Targeting Histone Demethylases in MYC-Driven Neuroblastomas with Ciclopirox. Cancer Res 2017; 77:4626-4638. [PMID: 28684529 DOI: 10.1158/0008-5472.can-16-0826] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 11/28/2016] [Accepted: 06/29/2017] [Indexed: 12/21/2022]
Abstract
Histone lysine demethylases facilitate the activity of oncogenic transcription factors, including possibly MYC. Here we show that multiple histone demethylases influence the viability and poor prognosis of neuroblastoma cells, where MYC is often overexpressed. We also identified the approved small-molecule antifungal agent ciclopirox as a novel pan-histone demethylase inhibitor. Ciclopirox targeted several histone demethylases, including KDM4B implicated in MYC function. Accordingly, ciclopirox inhibited Myc signaling in parallel with mitochondrial oxidative phosphorylation, resulting in suppression of neuroblastoma cell viability and inhibition of tumor growth associated with an induction of differentiation. Our findings provide new insights into epigenetic regulation of MYC function and suggest a novel pharmacologic basis to target histone demethylases as an indirect MYC-targeting approach for cancer therapy. Cancer Res; 77(17); 4626-38. ©2017 AACR.
Collapse
Affiliation(s)
- Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Sandra Milasta
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Dongli Hu
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alaa M AlTahan
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Rodrigo B Interiano
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Junfang Zhou
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jesse Davidson
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jonathan Low
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ju Bao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Pollyanna Goh
- Department of Oncology, University College London Cancer Institute, London, United Kingdom
| | - Amit C Nathwani
- Department of Oncology, University College London Cancer Institute, London, United Kingdom
| | - Ruoning Wang
- Department of Pediatrics, The Ohio State University School of Medicine, The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Disease, Columbus, Ohio
| | - Yingdi Wang
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut
| | - Su Sien Ong
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Vincent A Boyd
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Brandon Young
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sourav Das
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Anang Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yinan Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zhenmei Li
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jie J Zheng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ashutosh Mishra
- Department of Structural Biology, Department of Developmental Neurobiology and St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yong Cheng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Chunxu Qu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Junmin Peng
- Department of Structural Biology, Department of Developmental Neurobiology and St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephen White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - R Kiplin Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
74
|
Lollies A, Hartmann S, Schneider M, Bracht T, Weiß AL, Arnolds J, Klein-Hitpass L, Sitek B, Hansmann ML, Küppers R, Weniger MA. An oncogenic axis of STAT-mediated BATF3 upregulation causing MYC activity in classical Hodgkin lymphoma and anaplastic large cell lymphoma. Leukemia 2017; 32:92-101. [PMID: 28659618 DOI: 10.1038/leu.2017.203] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/13/2017] [Accepted: 06/16/2017] [Indexed: 02/07/2023]
Abstract
Classical Hodgkin lymphoma (cHL) and anaplastic large cell lymphoma (ALCL) feature high expression of activator protein-1 (AP-1) transcription factors, which regulate various physiological processes but also promote lymphomagenesis. The AP-1 factor basic leucine zipper transcription factor, ATF-like 3 (BATF3), is highly transcribed in cHL and ALCL; however, its functional importance in lymphomagenesis is unknown. Here we show that proto-typical CD30+ lymphomas, namely cHL (21/30) and primary mediastinal B-cell lymphoma (8/9), but also CD30+ diffuse large B-cell lymphoma (15/20) frequently express BATF3 protein. Mass spectrometry and co-immunoprecipitation established interactions of BATF3 with JUN and JUNB in cHL and ALCL lines. BATF3 knockdown using short hairpin RNAs was toxic for cHL and ALCL lines, reducing their proliferation and survival. We identified MYC as a critical BATF3 target and confirmed binding of BATF3 to the MYC promoter. JAK/STAT signaling regulated BATF3 expression, as chemical JAK2 inhibition reduced and interleukin 13 stimulation induced BATF3 expression in cHL lines. Chromatin immunoprecipitation substantiated a direct regulation of BATF3 by STAT proteins in cHL and ALCL lines. In conclusion, we identified STAT-mediated BATF3 expression that is essential for lymphoma cell survival and promoted MYC activity in cHL and ALCL, hence we recognized a new oncogenic axis in these lymphomas.
Collapse
Affiliation(s)
- A Lollies
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - S Hartmann
- Dr Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt, Germany
| | - M Schneider
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, Essen, Germany.,Dr Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt, Germany
| | - T Bracht
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - A L Weiß
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - J Arnolds
- Department of Otorhinolaryngology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - L Klein-Hitpass
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - B Sitek
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - M-L Hansmann
- Dr Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt, Germany
| | - R Küppers
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - M A Weniger
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
75
|
Yuan Y, Kluiver J, Koerts J, de Jong D, Rutgers B, Abdul Razak FR, Terpstra M, Plaat BE, Nolte IM, Diepstra A, Visser L, Kok K, van den Berg A. miR-24-3p Is Overexpressed in Hodgkin Lymphoma and Protects Hodgkin and Reed-Sternberg Cells from Apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1343-1355. [PMID: 28432871 DOI: 10.1016/j.ajpath.2017.02.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
miRNAs play important roles in biological processes, such as proliferation, metabolism, differentiation, and apoptosis, whereas altered expression levels contribute to diseases, such as cancers. We identified miRNAs with aberrant expression in Hodgkin lymphoma (HL) and investigated their role in pathogenesis. Small RNA sequencing revealed 84 significantly differentially expressed miRNAs in HL cell lines as compared to germinal center B cells. Three up-regulated miRNAs-miR-23a-3p, miR-24-3p, and miR-27a-3p-were derived from one primary miRNA transcript. Loss-of-function analyses for these miRNAs and their seed family members resulted in decreased growth on miR-24-3p inhibition in three HL cell lines and of miR-27a/b-3p inhibition in one HL cell line. Apoptosis analysis indicated that the effect of miR-24-3p on cell growth is at least in part caused by an increase of apoptotic cells. Argonaute 2 immunoprecipitation revealed 1142 genes consistently targeted by miRNAs in at least three of four HL cell lines. Furthermore, 52 of the 1142 genes were predicted targets of miR-24-3p. Functional annotation analysis revealed a function related to cell growth, cell death, and/or apoptosis for 15 of the 52 genes. Western blotting of the top five genes showed increased protein levels on miR-24-3p inhibition for CDKN1B/P27kip1 and MYC. In summary, we showed that miR-24-3p is up-regulated in HL and its inhibition impairs cell growth possibly via targeting CDKN1B/P27kip1 and MYC.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Institute of Clinical Pharmacology of the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jasper Koerts
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Debora de Jong
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bea Rutgers
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - F Reeny Abdul Razak
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martijn Terpstra
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Boudewijn E Plaat
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Klaas Kok
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
76
|
Abstract
![]()
Post-translational
modifications of histones by protein methyltransferases
(PMTs) and histone demethylases (KDMs) play an important role in the
regulation of gene expression and transcription and are implicated
in cancer and many other diseases. Many of these enzymes also target
various nonhistone proteins impacting numerous crucial biological
pathways. Given their key biological functions and implications in
human diseases, there has been a growing interest in assessing these
enzymes as potential therapeutic targets. Consequently, discovering
and developing inhibitors of these enzymes has become a very active
and fast-growing research area over the past decade. In this review,
we cover the discovery, characterization, and biological application
of inhibitors of PMTs and KDMs with emphasis on key advancements in
the field. We also discuss challenges, opportunities, and future directions
in this emerging, exciting research field.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Michael L Martini
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| |
Collapse
|
77
|
Zhu F, Hwang B, Miyamoto S, Rui L. Nuclear Import of JAK1 Is Mediated by a Classical NLS and Is Required for Survival of Diffuse Large B-cell Lymphoma. Mol Cancer Res 2017; 15:348-357. [PMID: 28031410 PMCID: PMC5473959 DOI: 10.1158/1541-7786.mcr-16-0344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
Abstract
JAKs are non-receptor tyrosine kinases that are generally found in association with cytokine receptors. In the canonical pathway, roles of JAKs have well been established in activating STATs in response to cytokine stimulation to modulate gene transcription. In contrast, a noncanonical role of JAK2 has recently been discovered, in which JAK2 in the nucleus imparts the epigenetic regulation of gene transcription through phosphorylation of tyrosine 41 on the histone protein H3. Recent work further demonstrated that this noncanonical mechanism is conserved with JAK1, which is activated by the autocrine cytokines IL6 and IL10 in activated B-cell-like diffuse large B-cell lymphoma (ABC DLBCL), a cancer type that is particularly difficult to treat and has poor prognosis. However, how JAK1 gains access to the nucleus to enable epigenetic regulation remains undefined. Here, we investigated this question and revealed that JAK1 has a classical nuclear localization signal toward the N-terminal region, which can be recognized by multiple importin α isoforms. Moreover, the nuclear import of JAK1 is independent of its kinase activity but is required for the optimal expansion of ABC DLBCL cells in vitroImplications: This study demonstrates that the nuclear import of JAK1 is essential for the optimal fitness of ABC DLBCL cells, and targeting JAK1 nuclear localization is a potential therapeutic strategy for ABC DLBCL. Mol Cancer Res; 15(3); 348-57. ©2016 AACR.
Collapse
Affiliation(s)
- Fen Zhu
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Byounghoon Hwang
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Shigeki Miyamoto
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Lixin Rui
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
78
|
Waldmann TA, Chen J. Disorders of the JAK/STAT Pathway in T Cell Lymphoma Pathogenesis: Implications for Immunotherapy. Annu Rev Immunol 2017; 35:533-550. [PMID: 28182501 DOI: 10.1146/annurev-immunol-110416-120628] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Common gamma receptor-dependent cytokines and their JAK/STAT pathways play pivotal roles in T cell immunity. Abnormal activation of this system was pervasive in diverse T cell malignancies assessed by pSTAT3/pSTAT5 phosphorylation. Activating mutations were described in some but not all cases. JAK1 and STAT3 were required for proliferation and survival of these T cell lines whether or not JAKs or STATs were mutated. Activating JAK and STAT mutations were not sufficient to initiate leukemic cell proliferation but rather only augmented signals from upstream in the cytokine pathway. Activation required the full pathway, including cytokine receptors acting as scaffolds and docking sites for required downstream JAK/STAT proteins. JAK kinase inhibitors have depressed leukemic T cell line proliferation. The insight that JAK/STAT system activation is pervasive in T cell malignancies suggests novel therapeutic approaches that include antibodies to common gamma cytokines, inhibitors of cytokine-receptor interactions, and JAK kinase inhibitors that may revolutionize therapy for T cell malignancies.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892;
| | - Jing Chen
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
79
|
Sun R, Wang J, Young KH. Oncogenic Signaling Pathways and Pathway-Based Therapeutic Biomarkers in Lymphoid Malignancies. Crit Rev Oncog 2017; 22:527-557. [PMID: 29604930 PMCID: PMC5961736 DOI: 10.1615/critrevoncog.2017020816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lymphoma is characterized by heterogeneous biology, pathologic features, and clinical outcome. This has been proven by accumulating pathologic and molecular evidence attributed to underlying aberrant alterations at genetic, epigenetic, transcriptional, protein, microenvironmental levels, and dysregulated oncogenic signaling pathways. In the era of precision medicine, targeting oncogenic pathways to design drugs and to optimize treatment regimens for the lymphoma patients is feasible and clinically significant. As such, further understanding of the biology and the mechanisms behind lymphoma development and identification of oncogenic pathway activation and pathway-based biomarkers to better design precise therapies are challenging but hopeful. Furthermore, pathway-based targeted therapies in combination with traditional chemotherapy, single specific targeted antibody therapy, and immunotherapy might raise the hope for the patients with lymphoma, especially for relapsed and refractory lymphoma patients.
Collapse
Affiliation(s)
- Ruifang Sun
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
- Tumor Biobank, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Jinfen Wang
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Ken H. Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
80
|
Balko JM, Schwarz LJ, Luo N, Estrada MV, Giltnane JM, Dávila-González D, Wang K, Sánchez V, Dean PT, Combs SE, Hicks D, Pinto JA, Landis MD, Doimi FD, Yelensky R, Miller VA, Stephens PJ, Rimm DL, Gómez H, Chang JC, Sanders ME, Cook RS, Arteaga CL. Triple-negative breast cancers with amplification of JAK2 at the 9p24 locus demonstrate JAK2-specific dependence. Sci Transl Med 2016; 8:334ra53. [PMID: 27075627 DOI: 10.1126/scitranslmed.aad3001] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 03/16/2016] [Indexed: 12/27/2022]
Abstract
Amplifications at 9p24 have been identified in breast cancer and other malignancies, but the genes within this locus causally associated with oncogenicity or tumor progression remain unclear. Targeted next-generation sequencing of postchemotherapy triple-negative breast cancers (TNBCs) identified a group of 9p24-amplified tumors, which contained focal amplification of the Janus kinase 2 (JAK2) gene. These patients had markedly inferior recurrence-free and overall survival compared to patients with TNBC without JAK2 amplification. Detection of JAK2/9p24 amplifications was more common in chemotherapy-treated TNBCs than in untreated TNBCs or basal-like cancers, or in other breast cancer subtypes. Similar rates of JAK2 amplification were confirmed in patient-derived TNBC xenografts. In patients for whom longitudinal specimens were available, JAK2 amplification was selected for during neoadjuvant chemotherapy and eventual metastatic spread, suggesting a role in tumorigenicity and chemoresistance, phenotypes often attributed to a cancer stem cell-like cell population. In TNBC cell lines with JAK2 copy gains or amplification, specific inhibition of JAK2 signaling reduced mammosphere formation and cooperated with chemotherapy in reducing tumor growth in vivo. In these cells, inhibition of JAK1-signal transducer and activator of transcription 3 (STAT3) signaling had little effect or, in some cases, counteracted JAK2-specific inhibition. Collectively, these results suggest that JAK2-specific inhibitors are more efficacious than dual JAK1/2 inhibitors against JAK2-amplified TNBCs. Furthermore, JAK2 amplification is a potential biomarker for JAK2 dependence, which, in turn, can be used to select patients for clinical trials with JAK2 inhibitors.
Collapse
Affiliation(s)
- Justin M Balko
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA. Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA. Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA.
| | - Luis J Schwarz
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Na Luo
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Mónica V Estrada
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA. Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jennifer M Giltnane
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA. Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Kai Wang
- Foundation Medicine, Cambridge, MA 02142, USA
| | - Violeta Sánchez
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Phillip T Dean
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Susan E Combs
- Departments of Pathology and Medicine, Yale University, New Haven, CT 06520, USA
| | - Donna Hicks
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | - Franco D Doimi
- Instituto Nacional de Enfermedades Neoplásicas (INEN), Lima 34, Perú
| | | | | | | | - David L Rimm
- Departments of Pathology and Medicine, Yale University, New Haven, CT 06520, USA
| | - Henry Gómez
- Instituto Nacional de Enfermedades Neoplásicas (INEN), Lima 34, Perú
| | - Jenny C Chang
- Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Melinda E Sanders
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA. Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | - Rebecca S Cook
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA. Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Carlos L Arteaga
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA. Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA. Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
81
|
Garcia J, Lizcano F. KDM4C Activity Modulates Cell Proliferation and Chromosome Segregation in Triple-Negative Breast Cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2016; 10:169-175. [PMID: 27840577 PMCID: PMC5094578 DOI: 10.4137/bcbcr.s40182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/14/2016] [Accepted: 08/20/2016] [Indexed: 12/23/2022]
Abstract
The Jumonji-containing domain protein, KDM4C, is a histone demethylase associated with the development of several forms of human cancer. However, its specific function in the viability of tumoral lineages is yet to be determined. This work investigates the importance of KDM4C activity in cell proliferation and chromosome segregation of three triple-negative breast cancer cell lines using a specific demethylase inhibitor. Immunofluorescence assays show that KDM4C is recruited to mitotic chromosomes and that the modulation of its activity increases the number of mitotic segregation errors. However, 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) cell proliferation assays demonstrate that the demethylase activity is required for cell viability. These results suggest that the histone demethylase activity of KDM4C is essential for breast cancer progression given its role in the maintenance of chromosomal stability and cell growth, thus highlighting it as a potential therapeutic target.
Collapse
Affiliation(s)
- Jeison Garcia
- Doctorate in Biosciences, Center of Biomedical Research Universidad de La Sabana-CIBUS, School of Medicine, Universidad de La Sabana, Chía, Colombia
| | - Fernando Lizcano
- Doctorate in Biosciences, Center of Biomedical Research Universidad de La Sabana-CIBUS, School of Medicine, Universidad de La Sabana, Chía, Colombia
| |
Collapse
|
82
|
Epigenetic gene regulation by Janus kinase 1 in diffuse large B-cell lymphoma. Proc Natl Acad Sci U S A 2016; 113:E7260-E7267. [PMID: 27799566 DOI: 10.1073/pnas.1610970113] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Janus kinases (JAKs) classically signal by activating STAT transcription factors but can also regulate gene expression by epigenetically phosphorylating histone H3 on tyrosine 41 (H3Y41-P). In diffuse large B-cell lymphomas (DLBCLs), JAK signaling is a feature of the activated B-cell (ABC) subtype and is triggered by autocrine production of IL-6 and IL-10. Whether this signaling involves STAT activation, epigenetic modification of chromatin, or both mechanisms is unknown. Here we use genetic and pharmacological inhibition to show that JAK1 signaling sustains the survival of ABC DLBCL cells. Whereas STAT3 contributed to the survival of ABC DLBCL cell lines, forced STAT3 activity could not protect these cells from death following JAK1 inhibition, suggesting epigenetic JAK1 action. JAK1 regulated the expression of nearly 3,000 genes in ABC DLBCL cells, and the chromatin surrounding many of these genes was modified by H3Y41-P marks that were diminished by JAK1 inhibition. These JAK1 epigenetic target genes encode important regulators of ABC DLBCL proliferation and survival, including IRF4, MYD88, and MYC. A small molecule JAK1 inhibitor cooperated with the BTK inhibitor ibrutinib in reducing IRF4 levels and acted synergistically to kill ABC DLBCL cells, suggesting that this combination should be evaluated in clinical trials.
Collapse
|
83
|
Schwarz LJ, Balko JM. Maybe we don't know JAK? Mol Cell Oncol 2016; 3:e1192713. [PMID: 27652332 DOI: 10.1080/23723556.2016.1192713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
The cornerstone for precision medicine is the development of robust biomarkers that reflect molecular phenotypes and therapeutic vulnerabilities in disease. We recently described Janus kinase-2 (JAK2)-specific inhibition as a therapeutic opportunity in triple negative breast cancers with 9p24 amplification. Here, we comment on this work and discuss the challenges of targeting this amplicon.
Collapse
Affiliation(s)
- Luis J Schwarz
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University , Nashville, TN, USA
| | - Justin M Balko
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA; Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA; Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
84
|
Yuan X, Kong J, Ma Z, Li N, Jia R, Liu Y, Zhou F, Zhan Q, Liu G, Gao S. KDM4C, a H3K9me3 Histone Demethylase, is Involved in the Maintenance of Human ESCC-Initiating Cells by Epigenetically Enhancing SOX2 Expression. Neoplasia 2016; 18:594-609. [PMID: 27742014 PMCID: PMC5035342 DOI: 10.1016/j.neo.2016.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/16/2016] [Accepted: 08/24/2016] [Indexed: 01/16/2023] Open
Abstract
Our studies investigating the existence of tumor-initiating cell (TIC) populations in human esophageal squamous cell carcinoma (ESCC) had identified a subpopulation of cells isolated from ESCC patient-derived tumor specimens marked by an ALDHbri+ phenotype bear stem cell-like features. Importantly, KDM4C, a histone demethylase was enhanced in ALDHbri+ subpopulation, suggesting that strategies interfering with KDM4C may be able to target these putative TICs. In the present study, by genetic and chemical means, we demonstrated that, KDM4C blockade selectively decreased the ESCC ALDHbri+ TICs population in vitro and specifically targeted the TICs in ALDHbri+-derived xenograft, retarding engraftment. Subsequent studies of the KDM4C functional network identified a subset of pluripotency-associated genes (PAGs) and aldehyde dehydrogenase family members to be preferentially down-regulated in KDM4C inhibited ALDHbri+ TICs. We further supported a model in which KDM4C maintains permissive histone modifications with a low level of H3K9 methylation at the promoters of several PAGs. Moreover, ectopic expression of SOX2 restored KDM4C inhibition-dependent ALDHbri+ TIC properties. We further confirmed these findings by showing that the cytoplasmic and nuclear KDM4C staining increased with adverse pathologic phenotypes and poor patient survival. Such staining pattern of intracellular KDM4C appeared to overlap with the expression of SOX2 and ALDH1. Collectively, our findings provided the insights into the development of novel therapeutic strategies based on the inhibition of KDM4C pathway for the eliminating of ESCC TIC compartment.
Collapse
Affiliation(s)
- Xiang Yuan
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China.
| | - Jinyu Kong
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China.
| | - Zhikun Ma
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China.
| | - Na Li
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China.
| | - Ruinuo Jia
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China.
| | - Yiwen Liu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China.
| | - Fuyou Zhou
- Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang, Henan, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking, China.
| | - Gang Liu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China; Barbara Ann Karmanos Cancer Institute and Department of Oncology, Wayne State University, 4100 John R, Detroit, MI 48201.
| | - Shegan Gao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
85
|
Yan H, Tian S, Slager SL, Sun Z. ChIP-seq in studying epigenetic mechanisms of disease and promoting precision medicine: progresses and future directions. Epigenomics 2016; 8:1239-58. [PMID: 27319740 DOI: 10.2217/epi-2016-0053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is widely used for mapping histone modifications, histone proteins, chromatin regulators, transcription factors and other DNA-binding proteins. It has played a significant role in our understanding of disease mechanisms and in exploring epigenetic changes for potential clinical applications. However, the conventional protocol requires large amounts of starting material and does not quantify the actual occupancy, limiting its applications in clinical settings. Herein we summarize the latest progresses in utilizing ChIP-seq to link epigenetic alterations to disease initiation and progression, and the implications in precision medicine. We provide an update on the newly developed ChIP-seq protocols, especially those suitable for scare clinical samples. Technical and analytical challenges are outlined together with recommendations for improvement. Finally, future directions in expediting ChIP-seq use in clinic are discussed.
Collapse
Affiliation(s)
- Huihuang Yan
- Division of Biomedical Statistics & Informatics, Department of Health Sciences Research, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Shulan Tian
- Division of Biomedical Statistics & Informatics, Department of Health Sciences Research, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Susan L Slager
- Division of Biomedical Statistics & Informatics, Department of Health Sciences Research, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Zhifu Sun
- Division of Biomedical Statistics & Informatics, Department of Health Sciences Research, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| |
Collapse
|
86
|
Bergkvist KS, Nørgaard MA, Bøgsted M, Schmitz A, Nyegaard M, Gaihede M, Bæch J, Grønholdt ML, Jensen FS, Johansen P, Urup T, El-Galaly TC, Madsen J, Bødker JS, Dybkær K, Johnsen HE. Characterization of memory B cells from thymus and its impact for DLBCL classification. Exp Hematol 2016; 44:982-990.e11. [PMID: 27297329 DOI: 10.1016/j.exphem.2016.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 05/09/2016] [Accepted: 06/02/2016] [Indexed: 10/21/2022]
Abstract
The rare memory B cells in thymus (Thy) are considered the cells of origin for primary mediastinal large B-cell lymphoma. The objectives of the present study were to characterize the normal memory B-cell compartment in Thy and to support its association with primary mediastinal B-cell lymphoma. Seven paired human tissue samples from Thy and sternum bone marrow (BM) were harvested during cardiac surgery. B-cell subsets were phenotyped by Euroflow standard and fluorescence-activated cell sorting for microarray analysis on the Human Exon 1.0 ST Arrays platform. Differentially expressed genes between Thy and BM memory B cells were identified and correlated with the molecular subclasses of diffuse large B-cell lymphoma. Within Thy, 4% (median; range 2%-14%) of the CD45(+) hematopoietic cells were CD19(+) B cells, with a major fraction being CD27(+)/CD38(-) memory B cells (median 80%, range 76%-93%). The BM contained 14% (median; range 3%-27%), of which only a minor fraction (median 5%, range 2%-10%) were memory B cells. Global gene expression analysis of the memory B-cell subsets from the two compartments identified 133 genes upregulated in Thy, including AICDA, REL, STAT1, TNF family, SLAMF1, CD80, and CD86. In addition, exons 4 and 5 in the 3' end of AICDA were more highly expressed in Thy than in BM. The Thy memory B-cell gene profile was overexpressed in primary mediastinal B-cell lymphoma compared with other diffuse large B-cell lymphoma subclasses. The present study describes a Thy memory B-cell subset and its gene profile correlated with primary mediastinal B-cell lymphomas, suggesting origin from Thy memory B cells.
Collapse
Affiliation(s)
| | - Martin Agge Nørgaard
- Department of Cardiothoracic Surgery, Aalborg University Hospital, Aalborg, Denmark
| | - Martin Bøgsted
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Alexander Schmitz
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Mette Nyegaard
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Michael Gaihede
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Otolaryngology, Head and Neck Surgery, Aalborg University Hospital, Aalborg, Denmark
| | - John Bæch
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | | | | | - Preben Johansen
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - Thomas Urup
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Tarec C El-Galaly
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Jakob Madsen
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Julie Støve Bødker
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Karen Dybkær
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Hans Erik Johnsen
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
87
|
Abstract
The Hodgkin and Reed-Sternberg (HRS) tumor cells of classical Hodgkin lymphoma (HL), as well as the lymphocyte predominant (LP) cells of nodular lymphocyte predominant HL (NLPHL), are derived from mature B cells. However, HRS cells have largely lost their B-cell phenotype and show a very unusual expression of many markers of other hematopoietic cell lineages, which aids in the differential diagnosis between classical HL (cHL) and NLPHL and distinguishes cHL from all other hematopoietic malignancies. The bi- or multinucleated Reed-Sternberg cells most likely derive from the mononuclear Hodgkin cells through a process of incomplete cytokinesis. HRS cells show a deregulated activation of numerous signaling pathways, which is partly mediated by cellular interactions in the lymphoma microenvironment and partly by genetic lesions. In a fraction of cases, Epstein-Barr virus contributes to the pathogenesis of cHL. Recurrent genetic lesions in HRS cells identified so far often involve members of the nuclear factor-κB (NF-κB) and JAK/STAT pathways and genes involved in major histocompatibility complex expression. However, further lead transforming events likely remain to be identified. We here discuss the current knowledge on HL pathology and biology.
Collapse
Affiliation(s)
- Stephan Mathas
- Max-Delbrück-Center for Molecular Medicine, and Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, University of Frankfurt, Medical School, Frankfurt/Main, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
88
|
The spectrum of MALT lymphoma at different sites: biological and therapeutic relevance. Blood 2016; 127:2082-92. [DOI: 10.1182/blood-2015-12-624304] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/01/2016] [Indexed: 12/14/2022] Open
Abstract
Abstract
Extranodal marginal zone (MZ) B-cell lymphomas of the mucosa-associated lymphoid tissue (MALT) arise from lymphoid populations that are induced by chronic inflammation in extranodal sites. The best evidence of an etiopathogenetic link is provided by the association between Helicobacter pylori–positive gastritis and gastric MALT lymphoma. Indeed, successful eradication of this microorganism with antibiotics can be followed by gastric MALT lymphoma regression in most cases. Other microbial agents have been implicated in the pathogenesis of MZ lymphoma arising at different sites. Apart from gastric MALT lymphoma, antibiotic therapies have been adequately tested only in ocular adnexal MALT lymphomas where upfront doxycycline may be a reasonable and effective initial treatment of patients with Chlamydophila psittaci–positive lymphoma before considering more aggressive strategies. In all other instances, antibiotic treatment of nongastric lymphomas remains investigational. Indeed, there is no clear consensus for the treatment of patients with gastric MALT lymphoma requiring further treatment beyond H pylori eradication or with extensive disease. Both radiotherapy and systemic treatments with chemotherapy and anti-CD20 antibodies are efficacious and thus the experience of individual centers and each patient’s preferences in terms of adverse effects are important parameters in the decision process.
Collapse
|
89
|
Hudnall SD, Meng H, Lozovatsky L, Li P, Strout M, Kleinstein SH. Recurrent genetic defects in classical Hodgkin lymphoma cell lines. Leuk Lymphoma 2016; 57:2890-2900. [PMID: 27121023 DOI: 10.1080/10428194.2016.1177179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Genetic analysis of classical Hodgkin lymphoma (cHL) has been hampered by the paucity of Hodgkin cells in biopsies and their poor growth in vitro. However, a wealth of information has been obtained from cHL cell lines. Here we report results of whole-exome sequencing and karyotypic analysis of five cHL cell lines. Four genes with potentially pathogenic single nucleotide variants (SNV) were detected in three cell lines. SNV were also detected in seventeen HL-related genes and three mitosis-related genes. Copy number variants were detected in four HL-related genes in all five cell lines. Given the high degree of aneuploidy in HL, mitosis-related genes were screened for defects. One mitotic gene (NCAPD2) was amplified in all five HL cell lines, and two genes (FAM190A, PLK4) were amplified in four cell lines. These results suggest that genomic instability of HL may be due to defects in genes involved in chromosome duplication and segregation.
Collapse
Affiliation(s)
- S David Hudnall
- a Department of Pathology, Yale School of Medicine , New Haven , CT , USA
| | - Hailong Meng
- a Department of Pathology, Yale School of Medicine , New Haven , CT , USA
| | - Larissa Lozovatsky
- a Department of Pathology, Yale School of Medicine , New Haven , CT , USA
| | - Peining Li
- b Department of Genetics, Yale School of Medicine , New Haven , CT , USA
| | - Matthew Strout
- c Yale Cancer Center, Yale School of Medicine , New Haven , CT , USA.,d Department of Medicine (Hematology), Yale School of Medicine , New Haven , CT , USA
| | - Steven H Kleinstein
- a Department of Pathology, Yale School of Medicine , New Haven , CT , USA.,e Interdepartmental Program in Computational Biology and Bioinformatics , Yale University , New Haven , CT , USA.,f Department of Immunobiology, Yale School of Medicine , New Haven , CT , USA
| |
Collapse
|
90
|
Bhattacharjee D, Shenoy S, Bairy KL. DNA Methylation and Chromatin Remodeling: The Blueprint of Cancer Epigenetics. SCIENTIFICA 2016; 2016:6072357. [PMID: 27119045 PMCID: PMC4826949 DOI: 10.1155/2016/6072357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
Epigenetics deals with the interactions between genes and the immediate cellular environment. These interactions go a long way in shaping up each and every person's individuality. Further, reversibility of epigenetic interactions may offer a dynamic control over the expression of various critical genes. Thus, tweaking the epigenetic machinery may help cause or cure diseases, especially cancer. Therefore, cancer epigenetics, especially at a molecular level, needs to be scrutinised closely, as it could potentially serve as the future pharmaceutical goldmine against neoplastic diseases. However, in view of its rapidly enlarging scope of application, it has become difficult to keep abreast of scientific information coming out of various epigenetic studies directed against cancer. Using this review, we have attempted to shed light on two of the most important mechanisms implicated in cancer, that is, DNA (deoxyribonucleic acid) methylation and histone modifications, and their place in cancer pathogenesis. Further, we have attempted to take stock of the new epigenetic drugs that have emerged onto the market as well as those in the pipeline that offer hope in mankind's fight against cancer.
Collapse
Affiliation(s)
- Dipanjan Bhattacharjee
- Department of Pharmacology, Kasturba Medical College, Manipal University, Manipal, Karnataka 576104, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal University, Manipal, Karnataka 576104, India
| | - Kurady Laxminarayana Bairy
- Department of Pharmacology, Kasturba Medical College, Manipal University, Manipal, Karnataka 576104, India
| |
Collapse
|
91
|
Van Roosbroeck K, Ferreiro JF, Tousseyn T, van der Krogt JA, Michaux L, Pienkowska-Grela B, Theate I, De Paepe P, Dierickx D, Doyen C, Put N, Cools J, Vandenberghe P, Wlodarska I. Genomic alterations of the JAK2 and PDL loci occur in a broad spectrum of lymphoid malignancies. Genes Chromosomes Cancer 2016; 55:428-41. [PMID: 26850007 DOI: 10.1002/gcc.22345] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 12/18/2022] Open
Abstract
The recurrent 9p24.1 aberrations in lymphoid malignancies potentially involving four cancer-related and druggable genes (JAK2, CD274/PDL1, PDCD1LG2/PDL2, and KDM4C/JMJD2Cl) are incompletely characterized. To gain more insight into the anatomy of these abnormalities, at first we studied 9p24.1 alterations in 18 leukemia/lymphoma cases using cytogenetic and molecular techniques. The aberrations comprised structural (nine cases) and numerical (nine cases) alterations. The former lesions were heterogeneous but shared a common breakpoint region of 200 kb downstream of JAK2. The rearrangements predominantly targeted the PDL locus. We have identified five potential partner genes of PDL1/2: PHACTR4 (1p34), N4BP2 (4p14), EEF1A1 (6q13), JAK2 (9p24.1), and IGL (22q11). Interestingly, the cryptic JAK2-PDL1 rearrangement was generated by a microdeletion spanning the 3'JAK2-5'PDL1 region. JAK2 was additionally involved in a cytogenetically cryptic IGH-mediated t(9;14)(p24.1;q32) found in two patients. This rare but likely underestimated rearrangement highlights the essential role of JAK2 in B-cell neoplasms. Cases with amplification of 9p24.1 were diagnosed as primary mediastinal B-cell lymphoma (five cases) and T-cell lymphoma (four cases). The smallest amplified 9p24.1 region was restricted to the JAK2-PDL1/2-RANBP6 interval. In the next step, we screened 200 cases of classical Hodgkin lymphoma by interphase FISH and identified PDL1/2 rearrangement (CIITA- and IGH-negative) in four cases (2%), what is a novel finding. Forty (25%) cases revealed high level amplification of 9p24.1, including four cases with a selective amplification of PDL1/2. Altogether, the majority of 9p24.1 rearrangements occurring in lymphoid malignancies seem to target the programmed death-1 ligands, what potentiates the therapeutic activity of PD-1 blockade in these tumors. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katrien Van Roosbroeck
- Center for Human Genetics, KU Leuven, Leuven, Belgium.,Center for the Biology of Disease, VIB, Leuven, Belgium
| | | | - Thomas Tousseyn
- Department of Pathology UZ Leuven, Translational Cell and Tissue Research, K.U. Leuven, Leuven, Belgium
| | | | | | - Barbara Pienkowska-Grela
- Department of Pathology and Laboratory Diagnostic, Maria Sklodowska-Curie Memorial Cancer Centre and Institute, Warsaw, Poland
| | - Ivan Theate
- Department of Pathology, Cliniques Universitaires Saint-Luc, Université Catholique De Louvain, Brussels, Belgium
| | | | - Daan Dierickx
- Department of Hematology, UZ Leuven, Leuven, Belgium
| | - Chantal Doyen
- Department of Hematology, Mont-Godinne University Hospital, Yvoir, Belgium
| | - Natalie Put
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Jan Cools
- Center for Human Genetics, KU Leuven, Leuven, Belgium.,Center for the Biology of Disease, VIB, Leuven, Belgium
| | | | | |
Collapse
|
92
|
Sudo G, Kagawa T, Kokubu Y, Inazawa J, Taga T. Increase in GFAP-positive astrocytes in histone demethylase GASC1/KDM4C/JMJD2C hypomorphic mutant mice. Genes Cells 2016; 21:218-25. [PMID: 26805559 DOI: 10.1111/gtc.12331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/27/2015] [Indexed: 01/06/2023]
Abstract
GASC1, also known as KDM4C/JMJD2C, is a histone demethylase for histone H3 lysine 9 (H3K9) and H3K36. In this study, we observed an increase of GFAP-positive astrocytes in the brain of Gasc1 hypomorphic mutant mice at 2-3 months of age, but not at postnatal day 14 and day 30 by immunohistochemistry. Increases of GFAP-positive astrocytes were widely observed in the forebrain and prominent in such regions as cerebral cortex, caudate putamen, amygdala and diencephalon, but not obvious in hippocampus. Taken together with our observations to be published elsewhere that Gasc1 hypomorphic mutant mice exhibit abnormal behaviors including hyperactivity, persistence and many types of learning and memory deficits and abnormal synaptic functions such as prolonged long-term potentiation, the increase in GFAP-positive astrocytes may help understand their phenotypes, because astrocytes are known to affect synaptic plasticity.
Collapse
Affiliation(s)
- Genki Sudo
- Department of Stem Cell regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tetsushi Kagawa
- Department of Stem Cell regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yasuhiro Kokubu
- Department of Stem Cell regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tetsuya Taga
- Department of Stem Cell regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
93
|
Augmented efficacy of brentuximab vedotin combined with ruxolitinib and/or Navitoclax in a murine model of human Hodgkin's lymphoma. Proc Natl Acad Sci U S A 2016; 113:1624-9. [PMID: 26811457 DOI: 10.1073/pnas.1524668113] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite relative success of therapy for Hodgkin's lymphoma (HL), novel therapeutic agents are needed for patients with refractory or relapsed disease. Recently, anti-PD1 immunotherapy or treatment with the anti-CD30 toxin conjugate brentuximab vedotin (BV) have been associated with remissions; however, the median responses of complete responses (CRs) with the latter were only 6.7 mo. To obtain curative therapy, other effective agents, based on HL biology, would have to be given in combination with BV. Hodgkin's Reed-Sternberg (HRS) cells secrete cytokines including IL-6 and -13, leading to constitutive activation of JAK/STAT signaling. In the present study the JAK1/2 inhibitor ruxolitinib reduced phosphorylation of STAT3 and STAT6 and expression of c-Myc in the HL cell line HDLM-2. These changes were enhanced when, on the basis of a matrix screen of drug combinations, ruxolitinib was combined with the Bcl-2/Bcl-xL inhibitor Navitoclax. The combination augmented expression of Bik, Puma, and Bax, and attenuated Bcl-xL expression and the phosphorylation of Bad. The use of the two-agent combination of either ruxolitinib or Navitoclax with BV or the three-agent combination strongly activated Bax and increased activities of cytochrome c and caspase-9 and -3 that, in turn, led to cleavage of poly(ADP ribose) polymerase and Mcl-1. Either ruxolitinib combined with Navitoclax or BV alone prolonged survival but did not cure HDLM-2 tumor-bearing mice, whereas BV combined with ruxolitinib and/or with Navitoclax resulted in a sustained, complete elimination of the HDLM-2 HL. These studies provide scientific support for a clinical trial to evaluate BV combined with ruxolitinib in select patients with HL.
Collapse
|
94
|
Cheung N, Fung TK, Zeisig BB, Holmes K, Rane JK, Mowen KA, Finn MG, Lenhard B, Chan LC, So CWE. Targeting Aberrant Epigenetic Networks Mediated by PRMT1 and KDM4C in Acute Myeloid Leukemia. Cancer Cell 2016; 29:32-48. [PMID: 26766589 PMCID: PMC4712026 DOI: 10.1016/j.ccell.2015.12.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/31/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023]
Abstract
Transcriptional deregulation plays a major role in acute myeloid leukemia, and therefore identification of epigenetic modifying enzymes essential for the maintenance of oncogenic transcription programs holds the key to better understanding of the biology and designing effective therapeutic strategies for the disease. Here we provide experimental evidence for the functional involvement and therapeutic potential of targeting PRMT1, an H4R3 methyltransferase, in various MLL and non-MLL leukemias. PRMT1 is necessary but not sufficient for leukemic transformation, which requires co-recruitment of KDM4C, an H3K9 demethylase, by chimeric transcription factors to mediate epigenetic reprogramming. Pharmacological inhibition of KDM4C/PRMT1 suppresses transcription and transformation ability of MLL fusions and MOZ-TIF2, revealing a tractable aberrant epigenetic circuitry mediated by KDM4C and PRMT1 in acute leukemia.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Epigenesis, Genetic/genetics
- Gene Expression Regulation, Leukemic/genetics
- Humans
- Jumonji Domain-Containing Histone Demethylases/genetics
- Jumonji Domain-Containing Histone Demethylases/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Oxidoreductases, N-Demethylating/genetics
- Oxidoreductases, N-Demethylating/metabolism
- Protein-Arginine N-Methyltransferases/genetics
- Protein-Arginine N-Methyltransferases/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Ngai Cheung
- Leukemia and Stem Cell Biology Group, Division of Cancer Studies, Department of Haematological Medicine, King's College London, Denmark Hill Campus, London SE5 9NU, UK
| | - Tsz Kan Fung
- Leukemia and Stem Cell Biology Group, Division of Cancer Studies, Department of Haematological Medicine, King's College London, Denmark Hill Campus, London SE5 9NU, UK
| | - Bernd B Zeisig
- Leukemia and Stem Cell Biology Group, Division of Cancer Studies, Department of Haematological Medicine, King's College London, Denmark Hill Campus, London SE5 9NU, UK
| | - Katie Holmes
- Leukemia and Stem Cell Biology Group, Division of Cancer Studies, Department of Haematological Medicine, King's College London, Denmark Hill Campus, London SE5 9NU, UK
| | - Jayant K Rane
- Leukemia and Stem Cell Biology Group, Division of Cancer Studies, Department of Haematological Medicine, King's College London, Denmark Hill Campus, London SE5 9NU, UK
| | - Kerri A Mowen
- Department of Chemical Physiology and Immunology & Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Boris Lenhard
- Department of Molecular Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London and MRC Clinical Sciences Centre, Du Cane Road, London W12 0NN, UK
| | - Li Chong Chan
- Department of Pathology, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Chi Wai Eric So
- Leukemia and Stem Cell Biology Group, Division of Cancer Studies, Department of Haematological Medicine, King's College London, Denmark Hill Campus, London SE5 9NU, UK.
| |
Collapse
|
95
|
Zhao E, Ding J, Xia Y, Liu M, Ye B, Choi JH, Yan C, Dong Z, Huang S, Zha Y, Yang L, Cui H, Ding HF. KDM4C and ATF4 Cooperate in Transcriptional Control of Amino Acid Metabolism. Cell Rep 2016; 14:506-519. [PMID: 26774480 DOI: 10.1016/j.celrep.2015.12.053] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 11/10/2015] [Accepted: 12/10/2015] [Indexed: 12/31/2022] Open
Abstract
The histone lysine demethylase KDM4C is often overexpressed in cancers primarily through gene amplification. The molecular mechanisms of KDM4C action in tumorigenesis are not well defined. Here, we report that KDM4C transcriptionally activates amino acid biosynthesis and transport, leading to a significant increase in intracellular amino acid levels. Examination of the serine-glycine synthesis pathway reveals that KDM4C epigenetically activates the pathway genes under steady-state and serine deprivation conditions by removing the repressive histone modification H3 lysine 9 (H3K9) trimethylation. This action of KDM4C requires ATF4, a transcriptional master regulator of amino acid metabolism and stress responses. KDM4C activates ATF4 transcription and interacts with ATF4 to target serine pathway genes for transcriptional activation. We further present evidence for KDM4C in transcriptional coordination of amino acid metabolism and cell proliferation. These findings suggest a molecular mechanism linking KDM4C-mediated H3K9 demethylation and ATF4-mediated transactivation in reprogramming amino acid metabolism for cancer cell proliferation.
Collapse
Affiliation(s)
- Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and System Biology, Southwest University, Chongqing 400715, China; Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Jane Ding
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Yingfeng Xia
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Insititute of Translational Neuroscience and Department of Neurology, The First Hospital of Yichang, Three Gorges University College of Medicine, Yichang 443000, China
| | - Mengling Liu
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Insititute of Translational Neuroscience and Department of Neurology, The First Hospital of Yichang, Three Gorges University College of Medicine, Yichang 443000, China
| | - Bingwei Ye
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Jeong-Hyeon Choi
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Department of Biostatistics and Epidemiology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Chunhong Yan
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Zheng Dong
- Department of Cell Biology and Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Shuang Huang
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Yunhong Zha
- Insititute of Translational Neuroscience and Department of Neurology, The First Hospital of Yichang, Three Gorges University College of Medicine, Yichang 443000, China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and System Biology, Southwest University, Chongqing 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and System Biology, Southwest University, Chongqing 400715, China.
| | - Han-Fei Ding
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
96
|
D'Oto A, Tian QW, Davidoff AM, Yang J. Histone demethylases and their roles in cancer epigenetics. JOURNAL OF MEDICAL ONCOLOGY AND THERAPEUTICS 2016; 1:34-40. [PMID: 28149961 PMCID: PMC5279889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The genetic abnormalities that drive tumorigenesis are usually coupled with epigenetic alterations, such as DNA methylation and aberrant histone modifications, which may help oncogenic drivers accelerate cancer progression, metastasis, and therapy resistance. The discovery of histone demethylases has provided us new insight for understanding the epigenetic landscape of the chromatin environment of cancer cells. This review aims to summarize the current knowledge on the human histone lysine demethylases and their functions in cancers, and recent advances in development of small molecule inhibitors to target histone demethylases in cancer treatment.
Collapse
Affiliation(s)
- Alexandra D'Oto
- Department of Surgery, St Jude Children's Research Hospital, Memphis, USA
| | - Qing-wu Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, China
| | - Andrew M Davidoff
- Department of Surgery, St Jude Children's Research Hospital, Memphis, USA
| | - Jun Yang
- Department of Surgery, St Jude Children's Research Hospital, Memphis, USA
| |
Collapse
|
97
|
Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood 2015; 127:869-81. [PMID: 26702065 DOI: 10.1182/blood-2015-10-673236] [Citation(s) in RCA: 413] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 12/16/2015] [Indexed: 12/13/2022] Open
Abstract
Primary central nervous system lymphomas (PCNSLs) and primary testicular lymphomas (PTLs) are extranodal large B-cell lymphomas (LBCLs) with inferior responses to current empiric treatment regimens. To identify targetable genetic features of PCNSL and PTL, we characterized their recurrent somatic mutations, chromosomal rearrangements, copy number alterations (CNAs), and associated driver genes, and compared these comprehensive genetic signatures to those of diffuse LBCL and primary mediastinal large B-cell lymphoma (PMBL). These studies identify unique combinations of genetic alterations in discrete LBCL subtypes and subtype-selective bases for targeted therapy. PCNSLs and PTLs frequently exhibit genomic instability, and near-uniform, often biallelic, CDKN2A loss with rare TP53 mutations. PCNSLs and PTLs also use multiple genetic mechanisms to target key genes and pathways and exhibit near-uniform oncogenic Toll-like receptor signaling as a result of MYD88 mutation and/or NFKBIZ amplification, frequent concurrent B-cell receptor pathway activation, and deregulation of BCL6. Of great interest, PCNSLs and PTLs also have frequent 9p24.1/PD-L1/PD-L2 CNAs and additional translocations of these loci, structural bases of immune evasion that are shared with PMBL.
Collapse
|
98
|
Integration of Signaling Pathways with the Epigenetic Machinery in the Maintenance of Stem Cells. Stem Cells Int 2015; 2016:8652748. [PMID: 26798364 PMCID: PMC4699037 DOI: 10.1155/2016/8652748] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/18/2015] [Accepted: 08/26/2015] [Indexed: 11/20/2022] Open
Abstract
Stem cells balance their self-renewal and differentiation potential by integrating environmental signals with the transcriptional regulatory network. The maintenance of cell identity and/or cell lineage commitment relies on the interplay of multiple factors including signaling pathways, transcription factors, and the epigenetic machinery. These regulatory modules are strongly interconnected and they influence the pattern of gene expression of stem cells, thus guiding their cellular fate. Embryonic stem cells (ESCs) represent an invaluable tool to study this interplay, being able to indefinitely self-renew and to differentiate towards all three embryonic germ layers in response to developmental cues. In this review, we highlight those mechanisms of signaling to chromatin, which regulate chromatin modifying enzymes, histone modifications, and nucleosome occupancy. In addition, we report the molecular mechanisms through which signaling pathways affect both the epigenetic and the transcriptional state of ESCs, thereby influencing their cell identity. We propose that the dynamic nature of oscillating signaling and the different regulatory network topologies through which those signals are encoded determine specific gene expression programs, leading to the fluctuation of ESCs among multiple pluripotent states or to the establishment of the necessary conditions to exit pluripotency.
Collapse
|
99
|
Identification of Primary Mediastinal Large B-cell Lymphoma at Nonmediastinal Sites by Gene Expression Profiling. Am J Surg Pathol 2015; 39:1322-30. [PMID: 26135560 DOI: 10.1097/pas.0000000000000473] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mediastinal involvement is considered essential for the diagnosis of primary mediastinal large B-cell lymphoma (PMBL). However, we have observed cases of diffuse large B-cell lymphoma (DLBCL) with features of PMBL but without detectable mediastinal involvement. The goal was to assess our previously established gene expression profiling (GEP) signature for PMBL in classifying these cases. In a large series of DLBCL cases, we identified 24 cases with a GEP signature of PMBL, including 9 cases with a submission diagnosis of DLBCL consistent with PMBL (G-PMBL-P) and 15 cases with a submission diagnosis of DLBCL. The pathology reviewers agreed with the diagnosis in the 9 G-PMBL-P cases. Among the other 15 DLBCL cases, 11 were considered to be PMBL or DLBCL consistent with PMBL, 3 were considered to be DLBCL, and 1 case was a gray-zone lymphoma with features intermediate between DLBCL and classical Hodgkin lymphoma. All 9 G-PMBL-P and 9 of the 15 DLBCL cases (G-PMBL-M) had demonstrated mediastinal involvement at presentation. Interestingly, 6 of the 15 DLBCL cases (G-PMBL-NM) had no clinical or radiologic evidence of mediastinal involvement. The 3 subgroups of PMBL had otherwise similar clinical characteristics, and there were no significant differences in overall survival. Genetic alterations of CIITA and PDL1/2 were detected in 26% and 40% of cases, respectively, including 1 G-PMBL-NM case with gain of PDL1/2. In conclusion, PMBL can present as a nonmediastinal tumor without evidence of mediastinal involvement, and GEP offers a more precise diagnosis of PMBL.
Collapse
|
100
|
Camicia R, Winkler HC, Hassa PO. Novel drug targets for personalized precision medicine in relapsed/refractory diffuse large B-cell lymphoma: a comprehensive review. Mol Cancer 2015; 14:207. [PMID: 26654227 PMCID: PMC4676894 DOI: 10.1186/s12943-015-0474-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a clinically heterogeneous lymphoid malignancy and the most common subtype of non-Hodgkin's lymphoma in adults, with one of the highest mortality rates in most developed areas of the world. More than half of DLBLC patients can be cured with standard R-CHOP regimens, however approximately 30 to 40 % of patients will develop relapsed/refractory disease that remains a major cause of morbidity and mortality due to the limited therapeutic options.Recent advances in gene expression profiling have led to the identification of at least three distinct molecular subtypes of DLBCL: a germinal center B cell-like subtype, an activated B cell-like subtype, and a primary mediastinal B-cell lymphoma subtype. Moreover, recent findings have not only increased our understanding of the molecular basis of chemotherapy resistance but have also helped identify molecular subsets of DLBCL and rational targets for drug interventions that may allow for subtype/subset-specific molecularly targeted precision medicine and personalized combinations to both prevent and treat relapsed/refractory DLBCL. Novel agents such as lenalidomide, ibrutinib, bortezomib, CC-122, epratuzumab or pidilizumab used as single-agent or in combination with (rituximab-based) chemotherapy have already demonstrated promising activity in patients with relapsed/refractory DLBCL. Several novel potential drug targets have been recently identified such as the BET bromodomain protein (BRD)-4, phosphoribosyl-pyrophosphate synthetase (PRPS)-2, macrodomain-containing mono-ADP-ribosyltransferase (ARTD)-9 (also known as PARP9), deltex-3-like E3 ubiquitin ligase (DTX3L) (also known as BBAP), NF-kappaB inducing kinase (NIK) and transforming growth factor beta receptor (TGFβR).This review highlights the new insights into the molecular basis of relapsed/refractory DLBCL and summarizes the most promising drug targets and experimental treatments for relapsed/refractory DLBCL, including the use of novel agents such as lenalidomide, ibrutinib, bortezomib, pidilizumab, epratuzumab, brentuximab-vedotin or CAR T cells, dual inhibitors, as well as mechanism-based combinatorial experimental therapies. We also provide a comprehensive and updated list of current drugs, drug targets and preclinical and clinical experimental studies in DLBCL. A special focus is given on STAT1, ARTD9, DTX3L and ARTD8 (also known as PARP14) as novel potential drug targets in distinct molecular subsets of DLBCL.
Collapse
Affiliation(s)
- Rosalba Camicia
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Stem Cell Research Laboratory, NHS Blood and Transplant, Nuffield Division of Clinical, Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.,MRC-UCL Laboratory for Molecular Cell Biology Unit, University College London, Gower Street, London, WC1E6BT, UK
| | - Hans C Winkler
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Paul O Hassa
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|