51
|
Inositol pyrophosphates regulate RNA polymerase I-mediated rRNA transcription in Saccharomyces cerevisiae. Biochem J 2015; 466:105-14. [PMID: 25423617 PMCID: PMC4325516 DOI: 10.1042/bj20140798] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosome biogenesis is an essential cellular process regulated by the metabolic state of a cell. We examined whether inositol pyrophosphates, energy-rich derivatives of inositol that act as metabolic messengers, play a role in ribosome synthesis in the budding yeast, Saccharomyces cerevisiae. Yeast strains lacking the inositol hexakisphosphate (IP6) kinase Kcs1, which is required for the synthesis of inositol pyrophosphates, display increased sensitivity to translation inhibitors and decreased protein synthesis. These phenotypes are reversed on expression of enzymatically active Kcs1, but not on expression of the inactive form. The kcs1Δ yeast cells exhibit reduced levels of ribosome subunits, suggesting that they are defective in ribosome biogenesis. The rate of rRNA synthesis, the first step of ribosome biogenesis, is decreased in kcs1Δ yeast strains, suggesting that RNA polymerase I (Pol I) activity may be reduced in these cells. We determined that the Pol I subunits, A190, A43 and A34.5, can accept a β-phosphate moiety from inositol pyrophosphates to undergo serine pyrophosphorylation. Although there is impaired rRNA synthesis in kcs1Δ yeast cells, we did not find any defect in recruitment of Pol I on rDNA, but observed that the rate of transcription elongation was compromised. Taken together, our findings highlight inositol pyrophosphates as novel regulators of rRNA transcription. Inositol pyrophosphates are phosphate-rich metabolic messengers that regulate many cellular processes. We observed that RNA polymerase I is pyrophosphorylated by inositol pyrophosphates, and its transcription elongation activity was reduced in budding yeast strains devoid of inositol pyrophosphates.
Collapse
|
52
|
Fiume R, Stijf-Bultsma Y, Shah ZH, Keune WJ, Jones DR, Jude JG, Divecha N. PIP4K and the role of nuclear phosphoinositides in tumour suppression. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:898-910. [PMID: 25728392 DOI: 10.1016/j.bbalip.2015.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/03/2015] [Accepted: 02/17/2015] [Indexed: 12/27/2022]
Abstract
Phosphatidylinositol-5-phosphate (PtdIns5P)-4-kinases (PIP4Ks) are stress-regulated lipid kinases that phosphorylate PtdIns5P to generate PtdIns(4,5)P₂. There are three isoforms of PIP4Ks: PIP4K2A, 2B and 2C, which localise to different subcellular compartments with the PIP4K2B isoform being localised predominantly in the nucleus. Suppression of PIP4K expression selectively prevents tumour cell growth in vitro and prevents tumour development in mice that have lost the tumour suppressor p53. p53 is lost or mutated in over 70% of all human tumours. These studies suggest that inhibition of PIP4K signalling constitutes a novel anti-cancer therapeutic target. In this review we will discuss the role of PIP4K in tumour suppression and speculate on how PIP4K modulates nuclear phosphoinositides (PPIns) and how this might impact on nuclear functions to regulate cell growth. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Roberta Fiume
- Cellular Signalling Laboratory, DIBINEM, University of Bologna, Bologna, Italy.
| | - Yvette Stijf-Bultsma
- Inositide Laboratory, Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, Life Sciences Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Zahid H Shah
- Inositide Laboratory, Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, Life Sciences Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Willem Jan Keune
- The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| | - David R Jones
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield SK10 4TF, UK
| | - Julian Georg Jude
- IMP - Institute of Molecular Pathology, Vienna Biocenter, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Nullin Divecha
- Inositide Laboratory, Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, Life Sciences Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.
| |
Collapse
|
53
|
Lee HS, Lee DH, Cho HK, Kim SH, Auh JH, Pai HS. InsP6-sensitive variants of the Gle1 mRNA export factor rescue growth and fertility defects of the ipk1 low-phytic-acid mutation in Arabidopsis. THE PLANT CELL 2015; 27:417-31. [PMID: 25670768 PMCID: PMC4456929 DOI: 10.1105/tpc.114.132134] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/19/2014] [Accepted: 01/22/2015] [Indexed: 05/22/2023]
Abstract
Myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP(6)), also known as phytic acid, accumulates in large quantities in plant seeds, serving as a phosphorus reservoir, but is an animal antinutrient and an important source of water pollution. Here, we report that Gle1 (GLFG lethal 1) in conjunction with InsP(6) functions as an activator of the ATPase/RNA helicase LOS4 (low expression of osmotically responsive genes 4), which is involved in mRNA export in plants, supporting the Gle1-InsP(6)-Dbp5 (LOS4 homolog) paradigm proposed in yeast. Interestingly, plant Gle1 proteins have modifications in several key residues of the InsP(6) binding pocket, which reduce the basicity of the surface charge. Arabidopsis thaliana Gle1 variants containing mutations that increase the basic charge of the InsP(6) binding surface show increased sensitivity to InsP(6) concentrations for the stimulation of LOS4 ATPase activity in vitro. Expression of the Gle1 variants with enhanced InsP(6) sensitivity rescues the mRNA export defect of the ipk1 (inositol 1,3,4,5,6-pentakisphosphate 2-kinase) InsP(6)-deficient mutant and, furthermore, significantly improves vegetative growth, seed yield, and seed performance of the mutant. These results suggest that Gle1 is an important factor responsible for mediating InsP(6) functions in plant growth and reproduction and that Gle1 variants with increased InsP(6) sensitivity may be useful for engineering high-yielding low-phytate crops.
Collapse
Affiliation(s)
- Ho-Seok Lee
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Du-Hwa Lee
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hui Kyung Cho
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Song Hee Kim
- Division of Food Science and Technology, Chung-Ang University, Ansung, Kyunggi-do 456-756, Korea
| | - Joong Hyuck Auh
- Division of Food Science and Technology, Chung-Ang University, Ansung, Kyunggi-do 456-756, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
54
|
Wang X, Bai X, Chen DF, Chen FZ, Li BZ, Yuan YJ. Increasing proline and myo-inositol improves tolerance of Saccharomyces cerevisiae to the mixture of multiple lignocellulose-derived inhibitors. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:142. [PMID: 26379774 PMCID: PMC4570682 DOI: 10.1186/s13068-015-0329-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/28/2015] [Indexed: 05/14/2023]
Abstract
BACKGROUND The development of robust microbes with tolerance to the combined lignocellulose-derived inhibitors is critical for the efficient cellulosic ethanol production. However, the lack of understanding on the inhibition mechanism limited the rational engineering of tolerant strain. Here, through the metabolomic analysis of an adaptation process of Saccharomyces cerevisiae to representative inhibitors, i.e., furfural, acetic acid and phenol (FAP), we figured out the new candidates for improving inhibitor tolerance. RESULTS After metabolomic analysis, proline and myo-inositol were identified as the potential metabolites responsible for strain tolerance to inhibitors. The deletion of genes involved in proline or myo-inositol synthesis weakened strain tolerance against FAP stress. On the contrary, the addition of proline or myo-inositol in medium exerted a protective effect on cell growth under FAP stress. Furthermore, the enhancement of proline or myo-inositol synthesis by overexpressing key gene PRO1 or INO1 conferred yeast strain significantly increased FAP tolerance. All the recombinant strains finished the fermentation within 60 h under FAP stress, while the control strain was still in the lag phase. Meanwhile, it was found that the intracellular level of reactive oxygen species (ROS) under FAP condition was decreased with the increase of proline content, suggesting the function of proline as a ROS scavenger to protect strains from inhibitor damage. CONCLUSION Increasing proline and myo-inositol were uncovered as the new determinants for improving strain tolerance to FAP under the guidance of metabolomics. Meanwhile, this study displayed the powerful application of metabolomics to develop rational strategies to increase stress tolerance and provided valuable insights into the design of recombinant microbes for the complex traits.
Collapse
Affiliation(s)
- Xin Wang
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Xue Bai
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Dong-Fang Chen
- />School of Management and Economics, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Fu-Zan Chen
- />School of Management and Economics, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Bing-Zhi Li
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Ying-Jin Yuan
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| |
Collapse
|
55
|
Wu M, Chong LS, Capolicchio S, Jessen HJ, Resnick AC, Fiedler D. Elucidating diphosphoinositol polyphosphate function with nonhydrolyzable analogues. Angew Chem Int Ed Engl 2014; 53:7192-7. [PMID: 24888434 DOI: 10.1002/anie.201402905] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/25/2014] [Indexed: 11/11/2022]
Abstract
The diphosphoinositol polyphosphates (PP-IPs) represent a novel class of high-energy phosphate-containing messengers which control a wide variety of cellular processes. It is thought that PP-IPs exert their pleiotropic effects as allosteric regulators and through pyrophosphorylation of protein substrates. However, most details of PP-IP signaling have remained elusive because of a paucity of suitable tools. We describe the synthesis of PP-IP bisphosphonate analogues (PCP-IPs), which are resistant to chemical and biochemical degradation. While the two regioisomers 1PCP-IP5 and 5PCP-IP5 inhibited Akt phosphorylation with similar potencies, 1PCP-IP5 was much more effective at inhibiting its cognate phosphatase hDIPP1. Furthermore, the PCP analogues inhibit protein pyrophosphorylation because of their inability to transfer the β-phosphoryl group, and thus enable the distinction between PP-IP signaling mechanisms. As such, the PCP analogues will find widespread applications for the structural and biochemical characterization of PP-IP signaling properties.
Collapse
Affiliation(s)
- Mingxuan Wu
- Department of Chemistry, Princeton University, Washington Rd, Princeton, NJ 08544 (USA)
| | | | | | | | | | | |
Collapse
|
56
|
Wu M, Chong LS, Capolicchio S, Jessen HJ, Resnick AC, Fiedler D. Elucidating Diphosphoinositol Polyphosphate Function with Nonhydrolyzable Analogues. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402905] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingxuan Wu
- Department of Chemistry, Princeton University, Washington Rd, Princeton, NJ 08544 (USA)
| | - Lucy S. Chong
- Colket Translational Research Bldg, The Children's Hospital of Philadelphia, 3501 Civic Center Blvd, Philadelphia, PA 19104 (USA)
| | - Samanta Capolicchio
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| | - Henning J. Jessen
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| | - Adam C. Resnick
- Colket Translational Research Bldg, The Children's Hospital of Philadelphia, 3501 Civic Center Blvd, Philadelphia, PA 19104 (USA)
| | - Dorothea Fiedler
- Department of Chemistry, Princeton University, Washington Rd, Princeton, NJ 08544 (USA)
| |
Collapse
|
57
|
Bernier LP, Ase AR, Séguéla P. Post-translational regulation of P2X receptor channels: modulation by phospholipids. Front Cell Neurosci 2013; 7:226. [PMID: 24324400 PMCID: PMC3838964 DOI: 10.3389/fncel.2013.00226] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/04/2013] [Indexed: 01/14/2023] Open
Abstract
P2X receptor channels mediate fast excitatory signaling by ATP and play major roles in sensory transduction, neuro-immune communication and inflammatory response. P2X receptors constitute a gene family of calcium-permeable ATP-gated cation channels therefore the regulation of P2X signaling is critical for both membrane potential and intracellular calcium homeostasis. Phosphoinositides (PIPn) are anionic signaling phospholipids that act as functional regulators of many types of ion channels. Direct PIPn binding was demonstrated for several ligand- or voltage-gated ion channels, however no generic motif emerged to accurately predict lipid-protein binding sites. This review presents what is currently known about the modulation of the different P2X subtypes by phospholipids and about critical determinants underlying their sensitivity to PIPn levels in the plasma membrane. All functional mammalian P2X subtypes tested, with the notable exception of P2X5, have been shown to be positively modulated by PIPn, i.e., homomeric P2X1, P2X2, P2X3, P2X4, and P2X7, as well as heteromeric P2X1/5 and P2X2/3 receptors. Based on various results reported on the aforementioned subtypes including mutagenesis of the prototypical PIPn-sensitive P2X4 and PIPn-insensitive P2X5 receptor subtypes, an increasing amount of functional, biochemical and structural evidence converges on the modulatory role of a short polybasic domain located in the proximal C-terminus of P2X subunits. This linear motif, semi-conserved in the P2X family, seems necessary and sufficient for encoding direct modulation of ATP-gated channels by PIPn. Furthermore, the physiological impact of the regulation of ionotropic purinergic responses by phospholipids on pain pathways was recently revealed in the context of native crosstalks between phospholipase C (PLC)-linked metabotropic receptors and P2X receptor channels in dorsal root ganglion sensory neurons and microglia.
Collapse
Affiliation(s)
- Louis-Philippe Bernier
- Department of Psychiatry, Brain Research Centre, University of British Columbia Vancouver, BC, Canada
| | | | | |
Collapse
|
58
|
Fujii M, Kita S, Hirata M, Iwamoto T. [Quantitative analysis of phosphoinositides and inositol polyphosphates using an HPLC system]. Nihon Yakurigaku Zasshi 2013; 142:236-40. [PMID: 24212593 DOI: 10.1254/fpj.142.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
59
|
Shah ZH, Jones DR, Sommer L, Foulger R, Bultsma Y, D'Santos C, Divecha N. Nuclear phosphoinositides and their impact on nuclear functions. FEBS J 2013; 280:6295-310. [PMID: 24112514 DOI: 10.1111/febs.12543] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/11/2013] [Accepted: 09/16/2013] [Indexed: 12/23/2022]
Abstract
Polyphosphoinositides (PPIn) are important lipid molecules whose levels are de-regulated in human diseases such as cancer, neurodegenerative disorders and metabolic syndromes. PPIn are synthesized and degraded by an array of kinases, phosphatases and lipases which are localized to various subcellular compartments and are subject to regulation in response to both extra- and intracellular cues. Changes in the activities of enzymes that metabolize PPIn lead to changes in the profiles of PPIn in various subcellular compartments. Understanding how subcellular PPIn are regulated and how they affect downstream signaling is critical to understanding their roles in human diseases. PPIn are present in the nucleus, and their levels are changed in response to various stimuli, suggesting that they may serve to regulate specific nuclear functions. However, the lack of nuclear downstream targets has hindered the definition of which pathways nuclear PPIn affect. Over recent years, targeted and global proteomic studies have identified a plethora of potential PPIn-interacting proteins involved in many aspects of transcription, chromatin remodelling and mRNA maturation, suggesting that PPIn signalling within the nucleus represents a largely unexplored novel layer of complexity in the regulation of nuclear functions.
Collapse
Affiliation(s)
- Zahid H Shah
- Cancer Research UK Inositide Laboratory, Paterson Institute for Cancer Research, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
60
|
Ghosh S, Sengupta A, Sharma S, Sonawat HM. Metabolic perturbations of kidney and spleen in murine cerebral malaria: (1)H NMR-based metabolomic study. PLoS One 2013; 8:e73113. [PMID: 24039868 PMCID: PMC3765208 DOI: 10.1371/journal.pone.0073113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/18/2013] [Indexed: 02/02/2023] Open
Abstract
A significant fraction of global population is under the threat of malaria. Majority of annual death is due to the more complicated form of the infection i.e. the cerebral form, also known as Cerebral Malaria (CM). Host parasite interaction is known to cause a cascade of events in various tissues like brain, liver, kidney, and spleen. We have employed (1)H NMR based metabolomics to understand the specific perturbations of various tissues in CM. In our previous paper we have delineated the differences between CM vis-a-vis non-cerebral malaria (NCM) mice in serum, liver and brain. In this paper we focus on their differences of metabolic profile in kidney and spleen as kidney dysfunction and splenomegaly are known to be associated to neurological outcome of the disease. Moreover we have also looked into how the biological compartments (kidney, spleen and serum) interact with each other. The various metabolites involved in such interactions and their correlational aspects across the compartments have been studied in CM, NCM and control mice. The idea was to find out the specific pathways that are altered in CM mice. Our results demonstrate that both the kidney as well as spleen metabolism are differentially perturbed in CM with respect to NCM. The results point out that glutamate levels are decreased in CM mice with respect to NCM mice both in case of spleen and kidney while creatine, myo-inositol and betaine levels are increased in kidney of CM mice with respect to NCM mice. From the analysis of Multiway Principal Component Analysis (MPCA) we see that lipid metabolism and TCA cycle is altered in kidney and spleen.
Collapse
Affiliation(s)
- Soumita Ghosh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Arjun Sengupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | |
Collapse
|
61
|
Loss O, Wu CT, Riccio A, Saiardi A. Modulation of inositol polyphosphate levels regulates neuronal differentiation. Mol Biol Cell 2013; 24:2981-9. [PMID: 23864704 PMCID: PMC3771958 DOI: 10.1091/mbc.e13-04-0198] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The modulation of inositol pentakisphosphate (IP5) and hexakisphosphate (IP6) intracellular levels controls the differentiation and survival of PC12 cells and primary neurons. These mechanisms are controlled by the levels of the protein kinase IP5-2K responsible for the conversion of IP5 into IP6. The binding of neurotrophins to tropomyosin receptor kinase receptors initiates several signaling pathways, including the activation of phospholipase C-γ, which promotes the release of diacylglycerol and inositol 1,4,5-trisphosphate (IP3). In addition to recycling back to inositol, IP3 serves as a precursor for the synthesis of higher phosphorylated inositols, such as inositol 1,3,4,5,6-pentakisphosphate (IP5) and inositol hexakisphosphate (IP6). Previous studies on the effect of neurotrophins on inositol signaling were limited to the analysis of IP3 and its dephosphorylation products. Here we demonstrate that nerve growth factor (NGF) regulates the levels of IP5 and IP6 during PC12 differentiation. Furthermore, both NGF and brain-derived neurotrophic factor alter IP5 and IP6 intracellular ratio in differentiated PC12 cells and primary neurons. Neurotrophins specifically regulate the expression of IP5-2 kinase (IP5-2K), which phosphorylates IP5 into IP6. IP5-2K is rapidly induced after NGF treatment, but its transcriptional levels sharply decrease in fully differentiated PC12 cells. Reduction of IP5-2K protein levels by small interfering RNA has an effect on the early stages of PC12 cell differentiation, whereas fully differentiated cells are not affected. Conversely, perturbation of IP5-2K levels by overexpression suggests that both differentiated PC12 cells and sympathetic neurons require low levels of the enzyme for survival. Therefore maintaining appropriate intracellular levels of inositol polyphosphates is necessary for neuronal survival and differentiation.
Collapse
Affiliation(s)
- Omar Loss
- Cell Biology Unit and Laboratory for Molecular Cell Biology, Medical Research Council, University College London, London WC1E 6BT, United Kingdom Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom Department of Neuroscience, University College London, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
62
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
63
|
Inositol hexakisphosphate kinase 1 maintains hemostasis in mice by regulating platelet polyphosphate levels. Blood 2013; 122:1478-86. [PMID: 23782934 DOI: 10.1182/blood-2013-01-481549] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Polyphosphate (polyP), a polymer of orthophosphate moieties released from the dense granules of activated platelets, is a procoagulant agent. Inositol pyrophosphates, another group of phosphate-rich molecules, consist of mono- and diphosphates substituted on an inositol ring. Diphosphoinositol pentakisphosphate (IP7), the most abundant inositol pyrophosphate, is synthesized on phosphorylation of inositol hexakisphosphate (IP6) by IP6 kinases, of which there are 3 mammalian isoforms (IP6K1/2/3) and a single yeast isoform. Yeast lacking IP6 kinase are devoid of polyP, suggesting a role for IP6 kinase in maintaining polyP levels. We theorized that the molecular link between IP6 kinase and polyP is conserved in mammals and investigated whether polyP-dependent platelet function is altered in IP6K1 knockout (Ip6k1(-/-)) mice. We observe a significant reduction in platelet polyP levels in Ip6k1(-/-) mice, along with slower platelet aggregation and lengthened plasma clotting time. Incorporation of polyP into fibrin clots was reduced in Ip6k1(-/-) mice, thereby altering clot ultrastructure, which was rescued on the addition of exogenous polyP. In vivo assays revealed longer tail bleeding time and resistance to thromboembolism in Ip6k1(-/-) mice. Taken together, our data suggest a novel role for IP6K1 in regulation of mammalian hemostasis via its control of platelet polyP levels.
Collapse
|
64
|
Keune WJ, Jones DR, Divecha N. PtdIns5P and Pin1 in oxidative stress signaling. Adv Biol Regul 2013; 53:179-189. [PMID: 23602596 DOI: 10.1016/j.jbior.2013.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/21/2013] [Indexed: 06/02/2023]
Abstract
Oxidative signaling is important in cellular health, involved in aging and contributes to the development of several diseases such as cancer, neurodegeneration and diabetes. Correct management of reactive oxygen species (ROS) prevents oxidative stress within cells and is imperative for cellular wellbeing. A key pathway that is regulated by oxidative stress is the activation of proline-directed stress kinases (p38, JNK). Phosphorylation induced by these kinases is often translated into cellular outcome through the recruitment of the prolyl-isomerase Pin1. Pin1 binds to phosphorylated substrates using its WW-domain and can induce conformational changes in the target protein through its prolyl-isomerase activity. We show that exposure of cells to UV irradiation or hydrogen peroxide (H₂O₂), induces the synthesis of the phosphoinositide second messenger PtdIns5P in part by inducing the interaction between phosphatidylinositol-5-phosphate 4-kinase (PIP4K) enzymes that remove PtdIns5P, with Pin1. In response to H₂O₂ exposure, Murine Embryonic Fibroblasts (MEFs) derived from Pin1⁻/⁻ mice showed increased cell viability and an increased abundance of PtdIns5P compared to wild-type MEFs. Decreasing the levels of PtdIns5P in Pin1⁻/⁻ MEFs decreased both their viability in response to H₂O₂ exposure and the expression of genes required for cellular ROS management. The decrease in the expression of these genes manifested itself in the increased accumulation of cellular ROS. These data strongly argue that PtdIns5P acts as a stress-induced second messenger that can calibrate how cells manage ROS.
Collapse
Affiliation(s)
- Willem-Jan Keune
- Inositide Laboratory CRUK, The Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, United Kingdom.
| | | | | |
Collapse
|
65
|
Parthasarathy RN, Lakshmanan J, Thangavel M, Seelan RS, Stagner JI, Janckila AJ, Vadnal RE, Casanova MF, Parthasarathy LK. Rat brain myo-inositol 3-phosphate synthase is a phosphoprotein. Mol Cell Biochem 2013; 378:83-9. [PMID: 23504145 DOI: 10.1007/s11010-013-1597-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/22/2013] [Indexed: 11/29/2022]
Abstract
The therapeutic effects of lithium in bipolar disorder are poorly understood. Lithium decreases free inositol levels by inhibiting inositol monophosphatase 1 and myo-inositol 3-phosphate synthase (IPS). In this study, we demonstrate for the first time that IPS can be phosphorylated. This was evident when purified rat IPS was dephosphorylated by lambda protein phosphatase and analyzed by phospho-specific ProQ-Diamond staining and Western blot analysis. These techniques demonstrated a mobility shift consistent with IPS being phosphorylated. Mass spectral analysis revealed that Serine-524 (S524), which resides in the hinge region derived from exon 11 of the gene, is the site for phosphorylation. Further, an antibody generated against a synthetic peptide of IPS containing monophosphorylated-S524, was able to discriminate the phosphorylated and non-phosphorylated forms of IPS. The phosphoprotein is found in the brain and testis, but not in the intestine. The intestinal IPS isoform lacks the peptide bearing S524, and hence, cannot be phosphorylated. Evidences suggest that IPS is monophosphorylated at S524 and that the removal of this phosphate does not alter its enzymatic activity. These observations suggest a novel function for IPS in brain and other tissues. Future studies should resolve the functional role of phospho-IPS in brain inositol signaling.
Collapse
Affiliation(s)
- R N Parthasarathy
- Molecular Neuroscience and Bioinformatics Laboratories, Mental Health, Behavioral Science and Research Services, Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Siniossoglou S. Phospholipid metabolism and nuclear function: Roles of the lipin family of phosphatidic acid phosphatases. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:575-81. [DOI: 10.1016/j.bbalip.2012.09.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/19/2012] [Accepted: 09/24/2012] [Indexed: 01/22/2023]
|
67
|
Jadav RS, Chanduri MVL, Sengupta S, Bhandari R. Inositol pyrophosphate synthesis by inositol hexakisphosphate kinase 1 is required for homologous recombination repair. J Biol Chem 2013; 288:3312-21. [PMID: 23255604 PMCID: PMC3561551 DOI: 10.1074/jbc.m112.396556] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 12/12/2012] [Indexed: 01/08/2023] Open
Abstract
Inositol pyrophosphates, such as diphosphoinositol pentakisphosphate (IP(7)), are water-soluble inositol phosphates that contain high energy diphosphate moieties on the inositol ring. Inositol hexakisphosphate kinase 1 (IP6K1) participates in inositol pyrophosphate synthesis, converting inositol hexakisphosphate (IP(6)) to IP(7). In the present study, we show that mouse embryonic fibroblasts (MEFs) lacking IP6K1 exhibit impaired DNA damage repair via homologous recombination (HR). IP6K1 knock-out MEFs show decreased viability and reduced recovery after induction of DNA damage by the replication stress inducer, hydroxyurea, or the radiomimetic antibiotic, neocarzinostatin. Cells lacking IP6K1 arrest after genotoxic stress, and markers associated with DNA repair are recruited to DNA damage sites, indicating that HR repair is initiated in these cells. However, repair does not proceed to completion because these markers persist as nuclear foci long after drug removal. A fraction of IP6K1-deficient MEFs continues to proliferate despite the persistence of DNA damage, rendering the cells more susceptible to chromosomal aberrations. Expression of catalytically active but not inactive IP6K1 can restore the repair process in knock-out MEFs, implying that inositol pyrophosphates are required for HR-mediated repair. Our study therefore highlights inositol pyrophosphates as novel small molecule regulators of HR signaling in mammals.
Collapse
Affiliation(s)
- Rathan S. Jadav
- From the Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001 and
| | - Manasa V. L. Chanduri
- From the Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001 and
| | - Sagar Sengupta
- the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rashna Bhandari
- From the Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001 and
| |
Collapse
|
68
|
Gillaspy GE. The Role of Phosphoinositides and Inositol Phosphates in Plant Cell Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:141-57. [DOI: 10.1007/978-94-007-6331-9_8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
69
|
Wu M, Dul BE, Trevisan AJ, Fiedler D. Synthesis and characterization of non-hydrolysable diphosphoinositol polyphosphate second messengers. Chem Sci 2013; 4:405-410. [PMID: 23378892 DOI: 10.1039/c2sc21553e] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The diphosphoinositol polyphosphates (PP-IPs) are a central group of eukaryotic second messengers. They regulate numerous processes, including cellular energy homeostasis and adaptation to environmental stresses. To date, most of the molecular details in PP-IP signalling have remained elusive, due to a lack of appropriate methods and reagents. Here we describe the expedient synthesis of methylene-bisphosphonate PP-IP analogues. Their characterization revealed that the analogues exhibit significant stability and mimic their natural counterparts very well. This was further confirmed in two independent biochemical assays, in which our analogues potently inhibited phosphorylation of the protein kinase Akt and hydrolytic activity of the Ddp1 phosphohydrolase. The non-hydrolysable PP-IPs thus emerge as important tools and hold great promise for a variety of applications.
Collapse
Affiliation(s)
- Mingxuan Wu
- Department of Chemistry, Princeton University, Washington Rd., 85 Princeton, NJ, 08544, USA. Tel: +1 609 258 1025
| | | | | | | |
Collapse
|
70
|
Bosch D, Saiardi A. Arginine transcriptional response does not require inositol phosphate synthesis. J Biol Chem 2012; 287:38347-55. [PMID: 22992733 PMCID: PMC3488103 DOI: 10.1074/jbc.m112.384255] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/17/2012] [Indexed: 12/25/2022] Open
Abstract
Inositol phosphates are key signaling molecules affecting a large variety of cellular processes. Inositol-polyphosphate multikinase (IPMK) is a central component of the inositol phosphate biosynthetic routes, playing essential roles during development. IPMK phosphorylates inositol 1,4,5-trisphosphate to inositol tetrakisphosphate and subsequently to inositol pentakisphosphate and has also been described to function as a lipid kinase. Recently, a catalytically inactive mammalian IPMK was reported to be involved in nutrient signaling by way of mammalian target of rapamycin and AMP-activated protein kinase. In yeast, the IPMK homologue, Arg82, is the sole inositol-trisphosphate kinase. Arg82 has been extensively studied as part of the transcriptional complex regulating nitrogen sensing, in particular arginine metabolism. Whether this role requires Arg82 catalytic activity has long been a matter of contention. In this study, we developed a novel method for the real time study of promoter strength in vivo and used it to demonstrate that catalytically inactive Arg82 fully restored the arginine-dependent transcriptional response. We also showed that expression in yeast of catalytically active, but structurally very different, mammalian or plant IPMK homologue failed to restore arginine regulation. Our work indicates that inositol phosphates do not regulate arginine-dependent gene expression.
Collapse
Affiliation(s)
- Daniel Bosch
- From the Cell Biology Unit, Medical Research Council Laboratory for Molecular Cell Biology, and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Adolfo Saiardi
- From the Cell Biology Unit, Medical Research Council Laboratory for Molecular Cell Biology, and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
71
|
Moir RD, Gross DA, Silver DL, Willis IM. SCS3 and YFT2 link transcription of phospholipid biosynthetic genes to ER stress and the UPR. PLoS Genet 2012; 8:e1002890. [PMID: 22927826 PMCID: PMC3426550 DOI: 10.1371/journal.pgen.1002890] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/19/2012] [Indexed: 11/21/2022] Open
Abstract
The ability to store nutrients in lipid droplets (LDs) is an ancient function that provides the primary source of metabolic energy during periods of nutrient insufficiency and between meals. The Fat storage-Inducing Transmembrane (FIT) proteins are conserved ER–resident proteins that facilitate fat storage by partitioning energy-rich triglycerides into LDs. FIT2, the ancient ortholog of the FIT gene family first identified in mammals has two homologs in Saccharomyces cerevisiae (SCS3 and YFT2) and other fungi of the Saccharomycotina lineage. Despite the coevolution of these genes for more than 170 million years and their divergence from higher eukaryotes, SCS3, YFT2, and the human FIT2 gene retain some common functions: expression of the yeast genes in a human embryonic kidney cell line promotes LD formation, and expression of human FIT2 in yeast rescues the inositol auxotrophy and chemical and genetic phenotypes of strains lacking SCS3. To better understand the function of SCS3 and YFT2, we investigated the chemical sensitivities of strains deleted for either or both genes and identified synthetic genetic interactions against the viable yeast gene-deletion collection. We show that SCS3 and YFT2 have shared and unique functions that connect major biosynthetic processes critical for cell growth. These include lipid metabolism, vesicular trafficking, transcription of phospholipid biosynthetic genes, and protein synthesis. The genetic data indicate that optimal strain fitness requires a balance between phospholipid synthesis and protein synthesis and that deletion of SCS3 and YFT2 impacts a regulatory mechanism that coordinates these processes. Part of this mechanism involves a role for SCS3 in communicating changes in the ER (e.g. due to low inositol) to Opi1-regulated transcription of phospholipid biosynthetic genes. We conclude that SCS3 and YFT2 are required for normal ER membrane biosynthesis in response to perturbations in lipid metabolism and ER stress. The ability to form lipid droplets is a conserved property of eukaryotic cells that allows the storage of excess metabolic energy in a form that can be readily accessed. In adipose tissue, the storage of excess calories in lipid droplets normally protects other tissues from lipotoxicity and insulin resistance, but this protection is lost with chronic over-nutrition. The FAT storage-inducing transmembrane (FIT) proteins were recently identified as a conserved family of proteins that reside in the lipid bilayer of the endoplasmic reticulum and are implicated in lipid droplet formation. In this work we show that specific functions of the FIT proteins are conserved between yeast and humans and that SCS3 and YFT2, the yeast homologs of mammalian FIT2, are part of a large genetic interaction network connecting lipid metabolism, vesicle trafficking, transcription, and protein synthesis. From these interactions we determined that yeast strains lacking SCS3 and YFT2 are defective in their response to chronic ER stress and cannot induce the unfolded protein response pathway or transcription of phospholipid biosynthetic genes in low inositol. Our findings suggest that the mammalian FIT genes may play an important role in ER stress pathways, which are linked to obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Robyn D. Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David A. Gross
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke–NUS Graduate Medical School Singapore, Singapore, Singapore
| | - David L. Silver
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke–NUS Graduate Medical School Singapore, Singapore, Singapore
- * E-mail: (IMW); (DLS)
| | - Ian M. Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (IMW); (DLS)
| |
Collapse
|
72
|
Runkel F, Hintze M, Griesing S, Michels M, Blanck B, Fukami K, Guénet JL, Franz T. Alopecia in a viable phospholipase C delta 1 and phospholipase C delta 3 double mutant. PLoS One 2012; 7:e39203. [PMID: 22723964 PMCID: PMC3378570 DOI: 10.1371/journal.pone.0039203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/21/2012] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Inositol 1,4,5trisphosphate (IP(3)) and diacylglycerol (DAG) are important intracellular signalling molecules in various tissues. They are generated by the phospholipase C family of enzymes, of which phospholipase C delta (PLCD) forms one class. Studies with functional inactivation of Plcd isozyme encoding genes in mice have revealed that loss of both Plcd1 and Plcd3 causes early embryonic death. Inactivation of Plcd1 alone causes loss of hair (alopecia), whereas inactivation of Plcd3 alone has no apparent phenotypic effect. To investigate a possible synergy of Plcd1 and Plcd3 in postnatal mice, novel mutations of these genes compatible with life after birth need to be found. METHODOLOGY/PRINCIPAL FINDINGS We characterise a novel mouse mutant with a spontaneously arisen mutation in Plcd3 (Plcd3(mNab)) that resulted from the insertion of an intracisternal A particle (IAP) into intron 2 of the Plcd3 gene. This mutation leads to the predominant expression of a truncated PLCD3 protein lacking the N-terminal PH domain. C3H mice that carry one or two mutant Plcd3(mNab) alleles are phenotypically normal. However, the presence of one Plcd3(mNab) allele exacerbates the alopecia caused by the loss of functional Plcd1 in Del(9)olt1Pas mutant mice with respect to the number of hair follicles affected and the body region involved. Mice double homozygous for both the Del(9)olt1Pas and the Plcd3(mNab) mutations survive for several weeks and exhibit total alopecia associated with fragile hair shafts showing altered expression of some structural genes and shortened phases of proliferation in hair follicle matrix cells. CONCLUSIONS/SIGNIFICANCE The Plcd3(mNab) mutation is a novel hypomorphic mutation of Plcd3. Our investigations suggest that Plcd1 and Plcd3 have synergistic effects on the murine hair follicle in specific regions of the body surface.
Collapse
Affiliation(s)
- Fabian Runkel
- Anatomisches Institut, Universität Bonn, Bonn, Germany
| | - Maik Hintze
- Anatomisches Institut, Universität Bonn, Bonn, Germany
- Studiengang Molekulare Biomedizin, LIMES, Bonn, Germany
| | - Sebastian Griesing
- Anatomisches Institut, Universität Bonn, Bonn, Germany
- Studiengang Molekulare Biomedizin, LIMES, Bonn, Germany
| | | | - Birgit Blanck
- Anatomisches Institut, Universität Bonn, Bonn, Germany
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Science, Hachioji-city, Tokyo, Japan
| | - Jean-Louis Guénet
- Département de Biologie du Développement, Institut Pasteur, Paris, France
| | - Thomas Franz
- Anatomisches Institut, Universität Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
73
|
Dieck CB, Boss WF, Perera IY. A role for phosphoinositides in regulating plant nuclear functions. FRONTIERS IN PLANT SCIENCE 2012; 3:50. [PMID: 22645589 PMCID: PMC3355785 DOI: 10.3389/fpls.2012.00050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/27/2012] [Indexed: 05/21/2023]
Abstract
Nuclear localized inositol phospholipids and inositol phosphates are important for regulating many essential processes in animal and yeast cells such as DNA replication, recombination, RNA processing, mRNA export and cell cycle progression. An overview of the current literature indicates the presence of a plant nuclear phosphoinositide (PI) pathway. Inositol phospholipids, inositol phosphates, and enzymes of the PI pathway have been identified in plant nuclei and are implicated in DNA replication, chromatin remodeling, stress responses and hormone signaling. In this review, the potential functions of the nuclear PI pathway in plants are discussed within the context of the animal and yeast literature. It is anticipated that future research will help shed light on the functional significance of the nuclear PI pathway in plants.
Collapse
Affiliation(s)
| | - Wendy F. Boss
- Department of Plant Biology, North Carolina State UniversityRaleigh, NC, USA
| | - Imara Y. Perera
- Department of Plant Biology, North Carolina State UniversityRaleigh, NC, USA
| |
Collapse
|
74
|
|
75
|
Abstract
Studies in the past several years highlight important features of the messenger RNA (mRNA) export process. For instance, groups of mRNAs acting in the same biochemical processes can be retained or exported in a coordinated manner thereby impacting on specific biochemistries and ultimately on cell physiology. mRNAs can be transported by either bulk export pathways involving NXF1/TAP or more specialized pathways involving chromosome region maintenance 1 (CRM1). Studies on primary tumor specimens indicate that many common and specialized mRNA export factors are dysregulated in cancer including CRM1, eukaryotic translation initiation factor 4E (eIF4E), HuR, nucleoporin 88, REF/Aly, and THO. This positions these pathways as potential therapeutic targets. Recently, specific targeting of the eIF4E-dependent mRNA export pathway in a phase II proof-of-principle trial with ribavirin led to impaired eIF4E-dependent mRNA export correlating with clinical responses including remissions in leukemia patients. Here, we provide an overview of these mRNA export pathways and highlight their relationship to cancer.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada
| | | |
Collapse
|
76
|
Bru M, Kotkar SP, Kar N, Köhn M. Development of a solid phase synthesis strategy for soluble phosphoinositide analogues. Chem Sci 2012. [DOI: 10.1039/c2sc01061e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
77
|
Shears SB, Ganapathi SB, Gokhale NA, Schenk TMH, Wang H, Weaver JD, Zaremba A, Zhou Y. Defining signal transduction by inositol phosphates. Subcell Biochem 2012; 59:389-412. [PMID: 22374098 PMCID: PMC3925325 DOI: 10.1007/978-94-007-3015-1_13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ins(1,4,5)P(3) is a classical intracellular messenger: stimulus-dependent changes in its levels elicits biological effects through its release of intracellular Ca(2+) stores. The Ins(1,4,5)P(3) response is "switched off" by its metabolism to a range of additional inositol phosphates. These metabolites have themselves come to be collectively described as a signaling "family". The validity of that latter definition is critically examined in this review. That is, we assess the strength of the hypothesis that Ins(1,4,5)P(3) metabolites are themselves "classical" signals. Put another way, what is the evidence that the biological function of a particular inositol phosphate depends upon stimulus dependent changes in its levels? In this assessment, examples of an inositol phosphate acting as a cofactor (i.e. its function is not stimulus-dependent) do not satisfy our signaling criteria. We conclude that Ins(3,4,5,6)P(4) is, to date, the only Ins(1,4,5)P(3) metabolite that has been validated to act as a second messenger.
Collapse
Key Words
- adenosine deaminase
- akt
- β-cells
- calcium
- camp
- camkii
- chloride channel
- clc3
- compartmentalization
- dna repair
- endosomes
- erk
- frizzled receptor
- gap1ip4bp
- mrna export
- ins(1,4,5)p3
- ins(1,4,5)p4 receptor
- ins(1,3,4)p3
- ins(1,3,4,5)p4
- ins(1,3,4,5)p4 receptor
- ins(1,4,5,6)p4
- ins(3,4,5,6)p4
- ins(1,3,4,5,6)p5
- insp6
- insulin
- ipmk
- ipk2
- ip5k
- itp
- itpk1
- itpkb
- lymphocytes
- ku
- neutrophils
- protein phosphatase
- ptdins(4,5)p2
- ptdins(3,4,5)p3
- ph domain
- pten
- rasa3
- transcription
- wnt ligand
Collapse
Affiliation(s)
- Stephen B Shears
- Inositol Signaling Section, Laboratory of Signal Transduction, NIEHS, NIH, DHHS, Research Triangle Park, 27709, NC, USA, USA,
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
The simple polyol, myo-inositol, is used as a building block of a cellular language that plays various roles in signal transduction. This review describes the terminology used to denote myo-inositol-containing molecules, with an emphasis on how phosphate and fatty acids are added to create second messengers used in signaling. Work in model systems has delineated the genes and enzymes required for synthesis and metabolism of many myo-inositol-containing molecules, with genetic mutants and measurement of second messengers playing key roles in developing our understanding. There is increasing evidence that molecules such as myo- inositol(1,4,5)trisphosphate and phosphatidylinositol(4,5)bisphosphate are synthesized in response to various signals plants encounter. In particular, the controversial role of myo-inositol(1,4,5)trisphosphate is addressed, accompanied by a discussion of the multiple enzymes that act to regulate this molecule. We are also beginning to understand new connections of myo-inositol signaling in plants. These recent discoveries include the novel roles of inositol phosphates in binding to plant hormone receptors and that of phosphatidylinositol(3)phosphate binding to pathogen effectors.
Collapse
Affiliation(s)
- Glenda E Gillaspy
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
79
|
Wang H, Falck JR, Hall TMT, Shears SB. Structural basis for an inositol pyrophosphate kinase surmounting phosphate crowding. Nat Chem Biol 2011; 8:111-6. [PMID: 22119861 PMCID: PMC3923263 DOI: 10.1038/nchembio.733] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 08/30/2011] [Indexed: 01/16/2023]
Abstract
Inositol pyrophosphates (such as IP7 and IP8) are multifunctional signaling molecules that regulate diverse cellular activities. Inositol pyrophosphates have 'high-energy' phosphoanhydride bonds, so their enzymatic synthesis requires that a substantial energy barrier to the transition state be overcome. Additionally, inositol pyrophosphate kinases can show stringent ligand specificity, despite the need to accommodate the steric bulk and intense electronegativity of nature's most concentrated three-dimensional array of phosphate groups. Here we examine how these catalytic challenges are met by describing the structure and reaction cycle of an inositol pyrophosphate kinase at the atomic level. We obtained crystal structures of the kinase domain of human PPIP5K2 complexed with nucleotide cofactors and either substrates, product or a MgF(3)(-) transition-state mimic. We describe the enzyme's conformational dynamics, its unprecedented topological presentation of nucleotide and inositol phosphate, and the charge balance that facilitates partly associative in-line phosphoryl transfer.
Collapse
Affiliation(s)
- Huanchen Wang
- Inositol Signaling Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
| | | | | | | |
Collapse
|
80
|
Martelli AM, Ognibene A, Buontempo F, Fini M, Bressanin D, Goto K, McCubrey JA, Cocco L, Evangelisti C. Nuclear phosphoinositides and their roles in cell biology and disease. Crit Rev Biochem Mol Biol 2011; 46:436-57. [DOI: 10.3109/10409238.2011.609530] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
81
|
Hansen SB, Tao X, MacKinnon R. Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 2011; 477:495-8. [PMID: 21874019 PMCID: PMC3324908 DOI: 10.1038/nature10370] [Citation(s) in RCA: 486] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/15/2011] [Indexed: 11/10/2022]
Abstract
The regulation of ion channel activity by specific lipid molecules is widely recognized as an integral component of electrical signalling in cells. In particular, phosphatidylinositol 4,5-bisphosphate (PIP(2)), a minor yet dynamic phospholipid component of cell membranes, is known to regulate many different ion channels. PIP(2) is the primary agonist for classical inward rectifier (Kir2) channels, through which this lipid can regulate a cell's resting membrane potential. However, the molecular mechanism by which PIP(2) exerts its action is unknown. Here we present the X-ray crystal structure of a Kir2.2 channel in complex with a short-chain (dioctanoyl) derivative of PIP(2). We found that PIP(2) binds at an interface between the transmembrane domain (TMD) and the cytoplasmic domain (CTD). The PIP(2)-binding site consists of a conserved non-specific phospholipid-binding region in the TMD and a specific phosphatidylinositol-binding region in the CTD. On PIP(2) binding, a flexible expansion linker contracts to a compact helical structure, the CTD translates 6 Å and becomes tethered to the TMD and the inner helix gate begins to open. In contrast, the small anionic lipid dioctanoyl glycerol pyrophosphatidic acid (PPA) also binds to the non-specific TMD region, but not to the specific phosphatidylinositol region, and thus fails to engage the CTD or open the channel. Our results show how PIP(2) can control the resting membrane potential through a specific ion-channel-receptor-ligand interaction that brings about a large conformational change, analogous to neurotransmitter activation of ion channels at synapses.
Collapse
Affiliation(s)
- Scott B Hansen
- Laboratory of Molecular Neurobiology & Biophysics, The Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA
| | | | | |
Collapse
|
82
|
|
83
|
Chiou TJ, Lin SI. Signaling network in sensing phosphate availability in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:185-206. [PMID: 21370979 DOI: 10.1146/annurev-arplant-042110-103849] [Citation(s) in RCA: 438] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants acquire phosphorus in the form of phosphate (Pi), the concentration of which is often limited for plant uptake. Plants have developed diverse responses to conserve and remobilize internal Pi and to enhance Pi acquisition to secure them against Pi deficiency. These responses are achieved by the coordination of an elaborate signaling network comprising local and systemic machineries. Recent advances have revealed several important components involved in this network. Pi functions as a signal to report its own availability. miR399 and sugars act as systemic signals to regulate responses occurring in roots. Hormones also play crucial roles in modulating gene expression and in altering root system architecture. Transcription factors function as a hub to perceive the signals and to elicit steady outputs. In this review, we outline the current knowledge on this subject and present hypotheses pertaining to other potential signals and to the organization and coordination of signaling.
Collapse
Affiliation(s)
- Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
| | | |
Collapse
|