51
|
Ye D, Sun J, Jiang R, Chang J, Liu Y, Wu X, Li L, Luo Y, Wang J, Guo K, Yang Z. β-lactam antibiotics induce metabolic perturbations linked to ROS generation leads to bacterial impairment. Front Microbiol 2024; 15:1514825. [PMID: 39712889 PMCID: PMC11659197 DOI: 10.3389/fmicb.2024.1514825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Understanding the impact of antibiotics on bacterial metabolism is crucial for elucidating their mechanisms of action and developing more effective therapeutic strategies. β-lactam antibiotics, distinguished by their distinctive β-lactam ring structure, are widely used as antimicrobial agents. This study investigates the global metabolic alterations induced by three β-lactam antibiotics-meropenem (a carbapenem), ampicillin (a penicillin), and ceftazidime (a cephalosporin)-in Escherichia coli. Our comprehensive metabolic profiling revealed significant perturbations in bacterial metabolism, particularly in pathways such as glutathione metabolism, pantothenate and CoA biosynthesis, pyrimidine metabolism, and purine metabolism. Antibiotic treatment markedly increased reactive oxygen species levels, with meropenem reaching nearly 200 ± 7%, ampicillin at 174 ± 11%, and ceftazidime at 152 ± 7%. Additionally, β-lactam antibiotics elevated 8-OHdG levels to 4.73 ± 0.56-fold for meropenem, 2.49 ± 0.19-fold for ampicillin, and 3.19 ± 0.34-fold for ceftazidime; 8-OHG levels increased to 5.57 ± 0.72-fold for meropenem, 3.08 ± 0.31-fold for ampicillin, and 4.45 ± 0.66-fold for ceftazidime, indicating that oxidative stress enhances oxidative damage to bacterial DNA and RNA. Notably, we observed a selective upregulation of specific amino acids associated with cellular repair mechanisms, indicating a metabolic adaptation to counteract oxidative damage. These findings illustrate that β-lactam antibiotics induce a complex metabolic perturbations associated with ROS production, potentially compromising critical cellular components. This study enhances our understanding of the intricate relationship between antibiotic action and bacterial metabolism, providing valuable insights for developing effective strategies against antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Dongyang Ye
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, China
- Key Laboratory of Animal-Derived Bacterial Resistance Monitoring (Co-Construction), Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, China
| | - Jing Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Experimental Animal Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Ran Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiashen Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiming Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangzheng Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Luqi Li
- Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Yihan Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, China
- Key Laboratory of Animal-Derived Bacterial Resistance Monitoring (Co-Construction), Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, China
- Experimental Animal Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, China
- Key Laboratory of Animal-Derived Bacterial Resistance Monitoring (Co-Construction), Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, China
| |
Collapse
|
52
|
Aragaw WW, Gebresilase TT, Negatu DA, Dartois V, Dick T. Multidrug tolerance conferred by loss-of-function mutations in anti-sigma factor RshA of Mycobacterium abscessus. Antimicrob Agents Chemother 2024; 68:e0105124. [PMID: 39470195 PMCID: PMC11619451 DOI: 10.1128/aac.01051-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/29/2024] [Indexed: 10/30/2024] Open
Abstract
Low-level drug resistance in noncanonical pathways can constitute steppingstones toward acquisition of high-level on-target resistance mutations in the clinic. To capture these intermediate steps in Mycobacterium abscessus (Mab), we performed classic mutant selection experiments with moxifloxacin at twofold its minimum inhibitory concentration (MIC) on solid medium. We found that low-level resistance emerged reproducibly as loss-of-function mutations in RshA (MAB_3542c), an anti-sigma factor that negatively regulates activity of SigH, which orchestrates a response to oxidative stress in mycobacteria. Since oxidative stress is generated in response to many antibiotics, we went on to show that deletion of rshA confers low to moderate resistance-by measure of MIC-to a dozen agents recommended or evaluated for the treatment of Mab pulmonary infections. Interestingly, this moderate resistance was associated with a wide range of drug tolerance, up to 1,000-fold increased survival of a ΔrshA Mab mutant upon exposure to several β-lactams and DNA gyrase inhibitors. Consistent with the putative involvement of the SigH regulon, we showed that addition of the transcription inhibitor rifabutin (RBT) abrogated the high-tolerance phenotype of ΔrshA to representatives of the β-lactam and DNA gyrase inhibitor classes. In a survey of 10,000 whole Mab genome sequences, we identified several loss-of-function mutations in rshA as well as non-synonymous polymorphisms in two cysteine residues critical for interactions with SigH. Thus, the multidrug multiform resistance phenotype we have uncovered may not only constitute a step toward canonical resistance acquisition during treatment but also contribute directly to treatment failure.
Collapse
Affiliation(s)
- Wassihun Wedajo Aragaw
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Tewodros T. Gebresilase
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Dereje A. Negatu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, Addis Ababa, Ethiopia
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
53
|
Zhao H, Zheng J, Huang W, He Z, Huang F, Zhang L, Zhong T, Li Y, Xia D, Shu L, He C. "Nano knife" for efficient piezocatalytic inactivation of amoeba spores and their intracellular bacteria: Synergetic effect between physical damage and chemical oxidation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136387. [PMID: 39500191 DOI: 10.1016/j.jhazmat.2024.136387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 12/01/2024]
Abstract
Microbial interactions between infectious agents severely interfere with the disinfection process, and current disinfection methods are unable to effectively inactivate intracellular pathogens, posing a new threat to drinking water safety. In this study, we first reported the high efficiency of piezocatalysis in inactivating amoebae and their intracellular bacteria. Results showed that the inactivation rates of the MoS2/rGO piezocatalytic system for amoebic spores and their intracellular bacteria were 4.18 and 5.02-log, respectively, within 180 min. Based on scavenger studies and ESR tests, the efficient inactivation of pathogens can be attributed to the generation of reactive oxygen species (ROS), and different pathogens exhibit varying tolerances to distinct ROS. Moreover, TEM analysis revealed that the sharp edge of MoS2/rGO was conducive to the physical cutting of amoeba's cell wall and membrane, promoting the attack of ROS and ensuring a more thorough deactivation. Additionally, the intracellular ROS produced by amoebae is not only conducive to the inactivation of amoebae but also the main reason for the inactivation of bacteria in spores. This study provides a new solution for the inactivation of amoeba spores and their intracellular bacteria and emphasizes the high efficiency of the synergistic effect of physical damage and chemical oxidation.
Collapse
Affiliation(s)
- Huinan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianyi Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenzhen He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fan Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Lin Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Tao Zhong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yadi Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| |
Collapse
|
54
|
Zhang B, Wang X, Meng F, Du S, Li H, Xia Y, Yao Y, Zhang P, Cui J, Cui Z. Metabolic variation and oxidative stress responses of clams (Ruditapes philippinarum) perturbed by ofloxacin exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135783. [PMID: 39276738 DOI: 10.1016/j.jhazmat.2024.135783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Ofloxacin (OFL), one of the most widely used fluoroquinolone antibiotics, has been frequently detected in marine environments. Nonetheless, researchers are yet to focus on the effects of OFL on the benthos. In the present study, marine clams (Ruditapes philippinarum) were exposed to OFL (0.5, 50, and 500 μg/L) for 14 d, followed by a 7 d depuration period. The accumulation of OFL, antioxidative defense responses, neurotoxicity, burrowing behavior, and metabolomic changes in clams were evaluated. The results indicated that OFL could accumulate in clams, albeit with a low bioaccumulation capacity. The intermediate (50 μg/L) and high (500 μg/L) levels of OFL induced significant antioxidative responses in the gills and digestive glands of clams, mainly manifesting as the inhibition of catalase activities and the induction of superoxide dismutase and glutathione S-transferase activities, which ultimately elevated the content of malondialdehyde, causing oxidative damage. Furthermore, the significant induction of acetylcholinesterase activities was observed, coinciding with a significant increase in burrowing rates of clams. The high level of OFL affected glycerophospholipid, arachidonic acid, steroid hormone biosynthesis, unsaturated fatty acids biosynthesis, and glycolysis/glycogenesis metabolism. In conclusion, this study has contributed to the understanding of the physiological and biochemical effects and molecular toxicity mechanisms of OFL to marine bivalves.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| | - Xiaotong Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China; College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China.
| | - Shuhao Du
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Haiping Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Yufan Xia
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Yu Yao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Ping Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Jiali Cui
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Zhengguo Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| |
Collapse
|
55
|
Mamardashvili G, Kaigorodova E, Solomonova N, Mamardashvili N. Towards antimicrobial agents: Design and antibacterial activity of a hybrid fluorophore where porphyrin and Rose Bengal moieties are linked through the hydroxyl group of a xanthene dye. Bioorg Chem 2024; 153:107960. [PMID: 39556933 DOI: 10.1016/j.bioorg.2024.107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
The axial complex of Sn(IV)-tetra(4-sulfophenyl)porphyrin (SnP) with Rose Bengal (RB) was obtained where RB axial binding is realized through the hydroxyl groups of the xanthene dye [SnP(RB)2]. The luminescent properties of the SnP(RB)2 (fluorescence and ability to generate singlet oxygen at room temperature) in aqueous media with additives of surfactant cetylpyridinium chloride (CPC) and ε-poly-l-lysine (EPL) were studied. It was found that nature of the medium (surfactant additives of different concentrations) determines the effectiveness of the photoinduced energy transfer from the RB fragment to the SnP fragment of the hybrid fluorophore (HF). It has been established that the ability of the HF to generate singlet oxygen in D2O and D2O-micellar media is higher than that of its constituent fragments. The dark and photodynamic antibacterial activity of the HF against two microorganisms [Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus)] was determined and analyzed. It was shown how the antibacterial activity of the HF depends on the nature of the bacteria, the micellar environment and radiation dose.
Collapse
Affiliation(s)
- G Mamardashvili
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Str. 1, 153045 Ivanovo, Russian Federation
| | - E Kaigorodova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Str. 1, 153045 Ivanovo, Russian Federation
| | - N Solomonova
- Ivanovo Regional Clinical Hospital, Lyubimova Str. 1, 115300 Ivanovo, Russian Federation
| | - N Mamardashvili
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Str. 1, 153045 Ivanovo, Russian Federation.
| |
Collapse
|
56
|
Kumar P, Saravanan P, Baskar G, Chitrashalini S, Omer SN, Subashini S, Rajeshkannan R, Venkatkumar S. Synthesis and characterization of Ag-decorated ZnO/MgO nanocomposite using a novel phyto-assisted biomimetic approach for anti-microbial and anti-biofilm applications. INORG CHEM COMMUN 2024; 170:113443. [DOI: 10.1016/j.inoche.2024.113443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
57
|
Wang J, Zhang M, Li C, Liu M, Qi Y, Xie X, Zhou C, Ma L. A novel cathelicidin TS-CATH derived from Thamnophis sirtalis combats drug-resistant gram-negative bacteria in vitro and in vivo. Comput Struct Biotechnol J 2024; 23:2388-2406. [PMID: 38882682 PMCID: PMC11176561 DOI: 10.1016/j.csbj.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Antimicrobial peptides are promising therapeutic agents for treating drug-resistant bacterial disease due to their broad-spectrum antimicrobial activity and decreased susceptibility to evolutionary resistance. In this study, three novel cathelicidin antimicrobial peptides were identified from Thamnophis sirtalis, Balaenoptera musculus, and Lipotes vexillifer by protein database mining and sequence alignment and were subsequently named TS-CATH, BM-CATH, and LV-CATH, respectively. All three peptides exhibited satisfactory antibacterial activity and broad antibacterial spectra against clinically isolated E. coli, P. aeruginosa, K. pneumoniae, and A. baumannii in vitro. Among them, TS-CATH displayed the best antimicrobial/bactericidal activity, with a rapid elimination efficiency against the tested drug-resistant gram-negative bacteria within 20 min, and exhibited the lowest cytotoxicity toward mammalian cells. Furthermore, TS-CATH effectively enhanced the survival rate of mice with ceftazidime-resistant E. coli bacteremia and promoted wound healing in meropenem-resistant P. aeruginosa infection. These results were achieved through the eradication of bacterial growth in target organs and wounds, further inhibiting the systemic dissemination of bacteria and the inflammatory response. TS-CATH exhibited direct antimicrobial activity by damaging the inner and outer membranes, resulting in leakage of the bacterial contents at super-MICs. Moreover, TS-CATH disrupted the bacterial respiratory chain, which inhibited ATP synthesis and induced ROS formation, significantly contributing to its antibacterial efficacy at sub-MICs. Overall, TS-CATH has potential for use as an antibacterial agent.
Collapse
Affiliation(s)
- Jian Wang
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Meina Zhang
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chao Li
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Mengyuan Liu
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yixin Qi
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiaolin Xie
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Changlin Zhou
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lingman Ma
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
58
|
Li H, E W, Zhao D, Liu H, Pei J, Du B, Liu K, Zhu X, Wang C. Response of Paenibacillus polymyxa SC2 to the stress of polymyxin B and a key ABC transporter YwjA involved. Appl Microbiol Biotechnol 2024; 108:17. [PMID: 38170316 DOI: 10.1007/s00253-023-12916-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 01/05/2024]
Abstract
Polymyxins are cationic peptide antibiotics and regarded as the "final line of defense" against multidrug-resistant bacterial infections. Meanwhile, some polymyxin-resistant strains and the corresponding resistance mechanisms have also been reported. However, the response of the polymyxin-producing strain Paenibacillus polymyxa to polymyxin stress remains unclear. The purpose of this study was to investigate the stress response of gram-positive P. polymyxa SC2 to polymyxin B and to identify functional genes involved in the stress response process. Polymyxin B treatment upregulated the expression of genes related to basal metabolism, transcriptional regulation, transport, and flagella formation and increased intracellular ROS levels, flagellar motility, and biofilm formation in P. polymyxa SC2. Adding magnesium, calcium, and iron alleviated the stress of polymyxin B on P. polymyxa SC2, furthermore, magnesium and calcium could improve the resistance of P. polymyxa SC2 to polymyxin B by promoting biofilm formation. Meanwhile, functional identification of differentially expressed genes indicated that an ABC superfamily transporter YwjA was involved in the stress response to polymyxin B of P. polymyxa SC2. This study provides an important reference for improving the resistance of P. polymyxa to polymyxins and increasing the yield of polymyxins. KEY POINTS: • Phenotypic responses of P. polymyxa to polymyxin B was performed and indicated by RNA-seq • Forming biofilm was a key strategy of P. polymyxa to alleviate polymyxin stress • ABC transporter YwjA was involved in the stress resistance of P. polymyxa to polymyxin B.
Collapse
Affiliation(s)
- Hui Li
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Wenhui E
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Dongying Zhao
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Haiyang Liu
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Jian Pei
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Binghai Du
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Kai Liu
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chengqiang Wang
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
59
|
Jaszczur M, Pham P, Ojha D, Pham C, McDonald J, Woodgate R, Goodman M. Pathogen-encoded Rum DNA polymerase drives rapid bacterial drug resistance. Nucleic Acids Res 2024; 52:12987-13002. [PMID: 39413207 PMCID: PMC11602152 DOI: 10.1093/nar/gkae899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
The acquisition of multidrug resistance by pathogenic bacteria is a potentially incipient pandemic. Horizontal transfer of DNA from mobile integrative conjugative elements (ICEs) provides an important way to introduce genes that confer antibiotic (Ab)-resistance in recipient cells. Sizable numbers of SXT/R391 ICEs encode a hypermutagenic Rum DNA polymerase (Rum pol), which has significant homology with Escherichia coli pol V. Here, we show that even under tight transcriptional and post-transcriptional regulation imposed by host bacteria and the R391 ICE itself, Rum pol rapidly accelerates development of multidrug resistance (CIPR, RifR, AmpR) in E. coli in response to SOS-inducing Ab and non-Ab external stressors bleomycin (BLM), ciprofloxacin (CIP) and UV radiation. The impact of Rum pol on the rate of acquisition of drug resistance appears to surpass potential contributions from other cellular processes. We have shown that RecA protein plays a central role in controlling the ability of Rum pol to accelerate antibiotic resistance. A single amino acid substitution in RecA, M197D, acts as a 'Master Regulator' that effectively eliminates the Rum pol-induced Ab resistance. We suggest that Rum pol should be considered as one of the major factors driving development of de novo Ab resistance in pathogens carrying SXT/R391 ICEs.
Collapse
Affiliation(s)
- Malgorzata M Jaszczur
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Phuong Pham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Debika Ojha
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Cecilia Q Pham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Myron F Goodman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA
| |
Collapse
|
60
|
Selvakumar S, Singh S, Swaminathan P. Resensitization of Multi Drug-Resistant Aeromonas caviae with Exogenous Hydrogen Sulfide Potentiated Antibiotics. Curr Microbiol 2024; 82:4. [PMID: 39579197 DOI: 10.1007/s00284-024-03985-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 11/25/2024]
Abstract
Antimicrobial resistance (AMR) is a growing public health threat caused by the widespread overuse of antibiotics. Bacteria with antibiotic resistance may acquire resistance genes from soil or water. Endogenous hydrogen sulfide (H2S) production in bacteria confers antibiotic tolerance in many, suggesting a universal defense mechanism against antibiotics. In this study, we isolated and identified soil-based antibiotic-resistant bacteria collected from contaminated areas. An antibiotic-resistant bacterium was identified as non-endogenous-H2S-producing, allowing us to examine the effect of exogenous H2S on its resistance mechanism. Therefore, we demonstrated that different classes of antibiotic resistance can be reverted by employing H2S with antibiotics like ampicillin and gentamicin. Methods like Kirby-Bauer Disk-Diffusion, Scanning Electron Microscopy, and Flow Cytometer analysis were performed to assess the antibacterial activity of H2S with ampicillin and gentamicin. The antioxidative efficiency of H2S was evaluated using the DCFH-DA (ROS) test, as well as lipid peroxidation, and LDH activity. These were further confirmed with enzymatic and non-enzymatic (SOD, CAT, GST, and GSH) antioxidant studies. These findings support H2S as an antibiotic-potentiator, causing bacterial membrane damage, oxidative stress, and disrupting DNA and proteins. Thus, supplying exogenous H2S can be a good agent for the reversal of Antibiotic resistance.
Collapse
Affiliation(s)
- Sahithya Selvakumar
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Shubhi Singh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Priya Swaminathan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
| |
Collapse
|
61
|
Zhao N, Liu Z, Chen X, Yu T, Yan F. Microbial biofilms: a comprehensive review of their properties, beneficial roles and applications. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39579053 DOI: 10.1080/10408398.2024.2432474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Biofilms are microbial communities nested in self-secreted extracellular polymeric substances that can provide microorganisms with strong tolerance and a favorable living environment. Deepening the understanding and research on positive effects of microbial biofilms is consequently necessary, since most researches focuses on how to control biofilms formation to reduce food safety issues. This paper highlights beneficial roles of biofilms including the formation mechanism, influencing factors, health benefits, strategies to improve its film-forming efficiency, as well as applications especially in fields of food industry, agriculture and husbandry, and environmental management. Beneficial biofilms can be affected by multiple factors such as strain characteristics, media composition, signal molecules, and carrier materials. The biofilm barrier composed of beneficial bacteria provides a more favorable microecological environment, keeping bacteria survival longer, and its derived metabolites are better conducive to health. However, in the practical application of biofilms, there are still significant challenges, especially in terms of film-forming efficiency, stability, and safety assessment. Continuous research is needed to discover innovative methods of utilizing biofilms for sustainable food development in the future, in order to fully unleash its potential and promote its application in the food industry.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhongyang Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xinyi Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
62
|
Shein AMS, Wannigama DL, Hurst C, Monk PN, Amarasiri M, Wongsurawat T, Jenjaroenpun P, Phattharapornjaroen P, Ditcham WGF, Ounjai P, Saethang T, Chantaravisoot N, Badavath VN, Luk-In S, Nilgate S, Rirerm U, Srisakul S, Kueakulpattana N, Laowansiri M, Rad SMAH, Wacharapluesadee S, Rodpan A, Ngamwongsatit N, Thammahong A, Ishikawa H, Storer RJ, Leelahavanichkul A, Ragupathi NKD, Classen AY, Kanjanabuch T, Pletzer D, Miyanaga K, Cui L, Hamamoto H, Higgins PG, Kicic A, Chatsuwan T, Hongsing P, Abe S. Phage cocktail amikacin combination as a potential therapy for bacteremia associated with carbapenemase producing colistin resistant Klebsiella pneumoniae. Sci Rep 2024; 14:28992. [PMID: 39578508 PMCID: PMC11584731 DOI: 10.1038/s41598-024-79924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
The increasing occurrence of hospital-associated infections, particularly bacteremia, caused by extensively drug-resistant (XDR) carbapenemase-producing colistin-resistant Klebsiella pneumoniae highlights a critical requirement to discover new therapeutic alternatives. Bacteriophages having host-specific bacteriolytic effects are promising alternatives for combating these pathogens. Among 12 phages isolated from public wastewater in Thailand, two phages-vB_kpnM_05 (myovirus) and vB_kpnP_08 (podovirus) showed broad-host range, producing bacteriolytic activities against 81.3% (n = 26) and 78.1% (n = 25) of 32 XDR carbapenemase-producing colistin-resistant K. pneumoniae, with capsular types-K15, K17, K50, K51, K52/wzi-50 and K2/wzi-2. Both phages showed short replication times, large burst sizes with rapid adsorptions. They exhibited significant stability under various environmental conditions. Genomic analysis revealed that both phages are genetically distinct phages from Myoviridae and Podoviridae family, with the lack of toxin, virulence, lysogeny and antibiotic resistance genes. These characteristics highlighted their promising potential for utilizing in phage therapy for combating XDR K. pneumoniae. Although phage cocktail combining vB_kpnM_05 and vB_kpnP_08 provided significant bacteriolysis for longer duration (8 h) than its monophage (6 h), bacterial regrowth was observed which suggested an evitable development of phage resistance under phages' selection pressures. Future study will be undertaken to elucidate the precise mechanisms by which these XDR K. pneumoniae developed phage resistance and their associated fitness cost. Remarkably, combining phage cocktail with amikacin at their sub-inhibitory concentrations produced potent synergy by completely suppressing bacterial regrowth in vitro. Our study demonstrated the significant therapeutic and prophylactic effectiveness of a phage cocktail-amikacin combination as a promising alternative strategy for overcoming bacteremia associated with XDR K. pneumoniae having carbapenemase and colistin resistance in vivo.
Collapse
Affiliation(s)
- Aye Mya Sithu Shein
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan.
- Faculty of Health and Medical Sciences, School of Medicine, The University of Western Australia, Nedlands, WA, Australia.
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, UK.
- Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan.
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata, 990-2212, Japan.
- Department of Infectious Diseases, Faculty of Medicine Yamagata University and Yamagata University Hospital, Yamagata, Japan.
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, Queensland, Australia
- Department of Clinical Epidemiology, Faculty of Medicine, Thammasat University, 10120, Rangsit, Thailand
- Center of Excellence in Applied Epidemiology, Thammasat University, 10120, Rangsit, Thailand
| | - Peter N Monk
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Mohan Amarasiri
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Miyagi, Japan
| | - Thidathip Wongsurawat
- Siriraj Long-Read Lab (Si-LoL), Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Piroon Jenjaroenpun
- Siriraj Long-Read Lab (Si-LoL), Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Phatthranit Phattharapornjaroen
- Faculty of Health Science Technology, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
- HRH Princess Chulabhorn Disaster and Emergency Medicine Center, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - William Graham Fox Ditcham
- Faculty of Health and Medical Sciences, School of Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thammakorn Saethang
- Department of Computer Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Naphat Chantaravisoot
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Vishnu Nayak Badavath
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad, 509301, India
| | - Sirirat Luk-In
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Sumanee Nilgate
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ubolrat Rirerm
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sukrit Srisakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Naris Kueakulpattana
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Matchima Laowansiri
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - S M Ali Hosseini Rad
- Department of Microbiology and Immunology, University of Otago, 9010, Dunedin, Otago, New Zealand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Apaporn Rodpan
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Arsa Thammahong
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata, 990-2212, Japan
| | - Robin James Storer
- Office of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Naveen Kumar Devanga Ragupathi
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, UK
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Annika Y Classen
- Department for Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Dialysis Policy and Practice Program (DiP3), Faculty of Medicine, School of Global Health, Chulalongkorn University, Bangkok, Thailand
- Peritoneal Dialysis Excellence Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland St., 9054, Dunedin, New Zealand
| | - Kazuhiko Miyanaga
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Hiroshi Hamamoto
- Department of Infectious Diseases, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Paul G Higgins
- Faculty of Medicine and University Hospital Cologne, Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935, Cologne, Germany
| | - Anthony Kicic
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, 6009, Australia.
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia.
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, 6009, Australia.
- School of Public Health, Curtin University, Bentley, WA, 6102, Australia.
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Parichart Hongsing
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand.
- Mae Fah Luang University Hospital, Chiang Rai, Thailand.
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan.
- Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan.
| |
Collapse
|
63
|
Li Q, Feng H, Tian Q, Xiang Y, Wang X, He YX, Zhu K. Discovery of antibacterial diketones against gram-positive bacteria. Cell Chem Biol 2024; 31:1874-1884.e6. [PMID: 39089260 DOI: 10.1016/j.chembiol.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/21/2024] [Accepted: 06/28/2024] [Indexed: 08/03/2024]
Abstract
The rapid rise of antibiotic resistance calls for the discovery of new antibiotics with distinct antibacterial mechanisms. New target mining is indispensable for developing antibiotics. Plant-microbial antibiotics are appealing to underexplored sources due to a dearth of comprehensive understanding of antibacterial activity and the excavation of new targets. Here, a series of phloroglucinol derivatives of plant-root-associated Pseudomonas fluorescens were synthesized for structure-activity relationship analysis. Notably, 2,4-diproylphloroglucinol (DPPG) displayed efficient bactericidal activity against a wide range of gram-positive bacteria. Importantly, mechanistic study exhibits that DPPG binds to type II NADH dehydrogenase (NDH-2), an essential enzyme catalyzing the transfer of electrons from NADH to quinones in the electron transport chain (ETC), blocking electron transfer in S. aureus. Last, we validated the efficacy of DPPG in vivo through animal infection models. Our findings not only provide a distinct antibiotic lead to treat multidrug resistant pathogens but also identify a promising antibacterial target.
Collapse
Affiliation(s)
- Qian Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hanzhong Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiong Tian
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
64
|
Wang X, Jowsey WJ, Cheung CY, Smart CJ, Klaus HR, Seeto NE, Waller NJ, Chrisp MT, Peterson AL, Ofori-Anyinam B, Strong E, Nijagal B, West NP, Yang JH, Fineran PC, Cook GM, Jackson SA, McNeil MB. Whole genome CRISPRi screening identifies druggable vulnerabilities in an isoniazid resistant strain of Mycobacterium tuberculosis. Nat Commun 2024; 15:9791. [PMID: 39537607 PMCID: PMC11560980 DOI: 10.1038/s41467-024-54072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Drug-resistant strains of Mycobacterium tuberculosis are a major global health problem. Resistance to the front-line antibiotic isoniazid is often associated with mutations in the katG-encoded bifunctional catalase-peroxidase. We hypothesise that perturbed KatG activity would generate collateral vulnerabilities in isoniazid-resistant katG mutants, providing potential pathway targets to combat isoniazid resistance. Whole genome CRISPRi screens, transcriptomics, and metabolomics were used to generate a genome-wide map of cellular vulnerabilities in an isoniazid-resistant katG mutant strain of M. tuberculosis. Here, we show that metabolic and transcriptional remodelling compensates for the loss of KatG but in doing so generates vulnerabilities in respiration, ribosome biogenesis, and nucleotide and amino acid metabolism. Importantly, these vulnerabilities are more sensitive to inhibition in an isoniazid-resistant katG mutant and translated to clinical isolates. This work highlights how changes in the physiology of drug-resistant strains generates druggable vulnerabilities that can be exploited to improve clinical outcomes.
Collapse
Affiliation(s)
- XinYue Wang
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - William J Jowsey
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Caitlan J Smart
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Hannah R Klaus
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Noon Ej Seeto
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Natalie Je Waller
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Michael T Chrisp
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Amanda L Peterson
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Boatema Ofori-Anyinam
- Center for Emerging and Re-emerging Pathogens, Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Emily Strong
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Brunda Nijagal
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jason H Yang
- Center for Emerging and Re-emerging Pathogens, Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Matthew B McNeil
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
65
|
Baussier C, Oriol C, Durand S, Py B, Mandin P. Small RNA OxyS induces resistance to aminoglycosides during oxidative stress by controlling Fe-S cluster biogenesis in Escherichia coli. Proc Natl Acad Sci U S A 2024; 121:e2317858121. [PMID: 39495911 PMCID: PMC11572966 DOI: 10.1073/pnas.2317858121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/27/2024] [Indexed: 11/06/2024] Open
Abstract
Fe-S clusters are essential cofactors involved in many reactions across all domains of life. Their biogenesis in Escherichia coli and other enterobacteria involves two machineries: Isc and Suf. Under conditions where cells operate with the Suf system, such as during oxidative stress or iron limitation, the entry of aminoglycosides is reduced, leading to resistance to these antibiotics. The transition between Isc and Suf machineries is controlled by the transcriptional regulator IscR. Here, we found that two small regulatory RNAs (sRNAs), FnrS and OxyS, control iscR expression by base pairing to the 5'-UTR of the iscR mRNA. These sRNAs act in opposite ways and in opposite conditions: FnrS, expressed in anaerobiosis, represses the expression of iscR while OxyS, expressed during oxidative stress, activates it. Using an E. coli strain experiencing protracted oxidative stress, we further demonstrate that iscR expression is rapidly and significantly enhanced in the presence of OxyS. Consequently, we further show that OxyS induces resistance to aminoglycosides during oxidative stress through regulation of Fe-S cluster biogenesis, revealing a major role for this sRNA.
Collapse
Affiliation(s)
- Corentin Baussier
- CNRS, Aix-Marseille Université, Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditérannée, Institut Microbiologie, Bioénergies et Biotechnologie, MarseilleF-13009, France
| | - Charlotte Oriol
- CNRS, Aix-Marseille Université, Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditérannée, Institut Microbiologie, Bioénergies et Biotechnologie, MarseilleF-13009, France
| | - Sylvain Durand
- CNRS–UMR8261/Université Paris Cité–Institut de Biologie Physico-Chimique, Expression Génétique Microbienne, Paris75005, France
| | - Béatrice Py
- CNRS, Aix-Marseille Université, Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditérannée, Institut Microbiologie, Bioénergies et Biotechnologie, MarseilleF-13009, France
| | - Pierre Mandin
- CNRS, Aix-Marseille Université, Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditérannée, Institut Microbiologie, Bioénergies et Biotechnologie, MarseilleF-13009, France
| |
Collapse
|
66
|
Gupta R, Bhando T, Pathania R. Overexpression of l,d-Transpeptidase A Induces Dispensability of Rod Complex in Escherichia coli. ACS Infect Dis 2024; 10:3928-3938. [PMID: 39412350 DOI: 10.1021/acsinfecdis.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
Antimicrobial resistance (AMR) is a significant global threat, and the presence of resistance-determinant genes is one of the major driving forces behind it. The bacterial rod complex is an essential set of proteins that is crucial for cell survival due to its role in cell wall biogenesis and shape maintenance. Therefore, these proteins offer excellent potential as drug targets; however, compensatory mutations in nontarget genes render this complex nonessential. The MreB protein of this complex is an actin homologue that rotates along the longitudinal axis of the cell to provide rod shape to the bacteria. In this study, using chemical-chemical interaction profiling and FtsZ suppression assay, we identified the MreB targeting activity of IITR07865, a previously discovered small molecule in our lab. Escherichia coli suppressors against IITR07865 revealed mutations in two cell division-associated genes, min C and pal, that have not been previously implicated in rod complex essentiality. IITR07865 resistant mutants were found to inactivate and render the rod complex nonessential, making the rod complex inhibitors ineffective. Further, through transcriptome analysis, we reveal the primary cause of resistance in suppressor strains to be the overexpression of an l, d-transpeptidase A enzyme, which is involved in peptidoglycan and Braun's lipoprotein cross-linking. Our results demonstrate a novel mechanism of resistance development in rod-shaped Gram-negative bacterial pathogen E. coli involved in UTIs where mecillinam, a clinically used antibiotic that targets rod complex, is a drug of choice.
Collapse
Affiliation(s)
- Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667, India
| | - Timsy Bhando
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667, India
| |
Collapse
|
67
|
Smirnova G, Tyulenev A, Sutormina L, Kalashnikova T, Samoilova Z, Muzyka N, Ushakov V, Oktyabrsky O. Effect of H 2S and cysteine homeostasis disturbance on ciprofloxacin sensitivity of Escherichia coli in cystine-free and cystine-fed minimal medium. Arch Microbiol 2024; 206:456. [PMID: 39495300 DOI: 10.1007/s00203-024-04185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Endogenous H2S has been proposed to be a universal defense mechanism against different antibiotics. Here, we studied the role of H2S transiently generated during ciprofloxacin (CF) treatment in M9 minimal medium with sulfate or produced by E. coli when fed with cystine. The cysM and mstA mutants did not produce H2S, while gshA generated more H2S in response to ciprofloxacin in cystine-free media. All mutants showed a reduced ability to maintain cysteine homeostasis under these conditions. We found no relationship between H2S generation, cysteine concentration and sensitivity to ciprofloxacin. Excess cysteine, which occurred during E. coli growth in cystine-fed media, triggered continuous H2S production, accelerated glutathione synthesis and cysteine export. This was accompanied by a twofold increase in ciprofloxacin tolerance in all strains except gshA, whose sensitivity increased 5-8-fold at high CF doses, indicating the importance of GSH in restoring the intracellular redox situation during growth in cystine-fed media.
Collapse
Affiliation(s)
- Galina Smirnova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia.
| | - Aleksey Tyulenev
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Lyubov Sutormina
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Tatyana Kalashnikova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Zoya Samoilova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Nadezda Muzyka
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Vadim Ushakov
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Oleg Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| |
Collapse
|
68
|
Song M, Chen S, Lin W, Zhu K. Targeting bacterial phospholipids and their synthesis pathways for antibiotic discovery. Prog Lipid Res 2024; 96:101307. [PMID: 39566858 DOI: 10.1016/j.plipres.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/31/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Bacterial infections in humans and animals caused by multidrug-resistant (MDR) pathogens pose a serious threat to public health. New antibacterial targets are extremely urgent to solve the dilemma of cross-resistance. Phospholipids are critical components in bacterial envelopes and involve diverse crucial processes to maintain homeostasis and modulate metabolism. Targeting phospholipids and their synthesis pathways has been largely overlooked because conventional membrane-targeted substances are non-specific with cytotoxicity. In this review, we first introduce the structure and physiological function of phospholipids in bacteria. Subsequently, we describe the chemical diversity of novel ligands targeting phospholipids, structure-activity relationships (SAR), modes of action (MOA), and pharmacological effects. Finally, we prospect the advantage of bacterial phospholipids as promising antibacterial targets. In conclusion, these findings will shed light on discovering and developing new antibacterial drugs to combat MDR bacteria-associated infections.
Collapse
Affiliation(s)
- Meirong Song
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shang Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
69
|
Pinho MG, Foster SJ. Cell Growth and Division of Staphylococcus aureus. Annu Rev Microbiol 2024; 78:293-310. [PMID: 39565951 DOI: 10.1146/annurev-micro-041222-125931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Bacterial cell growth and division require temporal and spatial coordination of multiple processes to ensure viability and morphogenesis. These mechanisms both determine and are determined by dynamic cellular structures and components, from within the cytoplasm to the cell envelope. The characteristic morphological changes during the cell cycle are largely driven by the architecture and mechanics of the cell wall. A constellation of proteins governs growth and division in Staphylococcus aureus, with counterparts also found in other organisms, alluding to underlying conserved mechanisms. Here, we review the status of knowledge regarding the cell cycle of this important pathogen and describe how this informs our understanding of the action of antibiotics and the specter of antimicrobial resistance.
Collapse
Affiliation(s)
- Mariana G Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal;
| | - Simon J Foster
- The Florey Institute, School of Biosciences, University of Sheffield, Sheffield, United Kingdom;
| |
Collapse
|
70
|
Bi Z, Wang W, Zhao L, Wang X, Xing D, Zhou Y, Lee DJ, Ren N, Chen C. The generation and transformation mechanisms of reactive oxygen species in the environment and their implications for pollution control processes: A review. ENVIRONMENTAL RESEARCH 2024; 260:119592. [PMID: 39002629 DOI: 10.1016/j.envres.2024.119592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Reactive oxygen species (ROS), substances with strong activity generated by oxygen during electron transfer, play a significant role in the decomposition of organic matter in various environmental settings, including soil, water and atmosphere. Although ROS has a short lifespan (ranging from a few nanoseconds to a few days), it continuously generated during the interaction between microorganisms and their environment, especially in environments characterized by strong ultraviolet radiation, fluctuating oxygen concentration or redox conditions, and the abundance of metal minerals. A comprehensive understanding of the fate of ROS in nature can provide new ideas for pollutant degradation and is of great significance for the development of green degradation technologies for organic pollutants. At present, the review of ROS generally revolves around various advanced oxidation processes, but lacks a description and summary of the fate of ROS in nature, this article starts with the definition of reactive oxidants species and reviews the production, migration, and transformation mechanisms of ROS in soil, water and atmospheric environments, focusing on recent developments. In addition, the stimulating effects of ROS on organisms were reviewed. Conclusively, the article summarizes the classic processes, possible improvements, and future directions for ROS-mediated degradation of pollutants. This review offers suggestions for future research directions in this field and provides the possible ROS technology application in pollutants treatment.
Collapse
Affiliation(s)
- Zhihao Bi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Xueting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Yanfeng Zhou
- Heilongjiang Agricultural Engineering Vocational College, Harbin, Heilongjiang Province, 150070, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li, 32003, Taiwan
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China; Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|
71
|
Geng X, Li Y, Hao R, Xu C, Li Z, Yang Y, Liu X, Li J, Pu W. Isobavachalcone enhances sensitivity of colistin-resistant Klebsiella pneumoniae: In vitro and in vivo proof-of-concept studies. Int J Antimicrob Agents 2024; 64:107338. [PMID: 39293773 DOI: 10.1016/j.ijantimicag.2024.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
OBJECTIVE Antibiotic resistance poses a considerable worldwide concern, particularly in clinical environments where drug-resistant Gram-negative bacteria like Klebsiella pneumoniae (K. pneumoniae) present a major challenge. The objective of this research was to investigate the mechanisms by which isobavachalcone (IBC) restores the sensitivity of K. pneumoniae to colistin in vitro and to validate the synergistic therapeutic effect in vivo. RESULTS The results indicate that the combined administration of colistin and IBC exhibits a potent antibacterial effect both in vitro and in vivo. The in vitro concurrent administration of colistin and IBC resulted in increased membrane permeability, compromised cell integrity, diminished membrane fluidity, and disrupted membrane homeostasis. Additionally, this combination reduced biofilm production, inhibited the synthesis of the autoinducer factor, altered membrane potential, and affected levels of reactive oxygen species and adenosine triphosphate synthesis, ultimately leading to bacterial death. In vivo experiments on Galleria mellonella and mice demonstrated that the co-administration of colistin and IBC increased the survival rate and significantly reduced pathological damage compared to colistin alone. CONCLUSION These results suggested that IBC effectively restores the sensitivity of colistin by inducing physical disruption of bacterial membranes and oxidative stress. The combination therapy of colistin and IBC presents a viable and safe strategy to combat drug-resistant K. pneumoniae-associated infections.
Collapse
Affiliation(s)
- Xiang Geng
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuxi Li
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ruochen Hao
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunyan Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhun Li
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yajun Yang
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiwang Liu
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Jianyong Li
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wanxia Pu
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
72
|
Zhang M, Yang S, Liu Y, Zou Z, Zhang Y, Tian Y, Zhang R, Liu D, Wu C, Shen J, Song H, Wang Y. Anticancer agent 5-fluorouracil reverses meropenem resistance in carbapenem-resistant Gram-negative pathogens. Int J Antimicrob Agents 2024; 64:107337. [PMID: 39293771 DOI: 10.1016/j.ijantimicag.2024.107337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
The global increasing incidence of clinical infections caused by carbapenem-resistant Gram-negative pathogens requires urgent and effective treatment strategies. Antibiotic adjuvants represent a promising approach to enhance the efficacy of meropenem against carbapenem-resistant bacteria. This study shows that the anticancer agent 5-fluorouracil (5-FU, 50 µM) significantly reduced the minimum inhibitory concentration of meropenem against blaNDM-5 positive Escherichia coli by 32-fold through cell-based high-throughput screening. Further pharmacological studies indicated that 5-FU exhibited potentiation effects on carbapenem antibiotics against 42 Gram-negative bacteria producing either metallo-β-lactamases (MBLs), such as NDM and IMP, or serine β-lactamases (Ser-BLs), like KPC and OXA. These bacteria included E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp., 32 of which were obtained from human clinical samples. Mechanistic investigations revealed that 5-FU inhibited the transcription and expression of the blaNDM-5 gene. In addition, 5-FU combined with meropenem enhanced bacterial metabolism, and stimulated the production of reactive oxygen species (ROS), thereby rendering bacteria more susceptible to meropenem. In a mouse systemic infection model, 5-FU combined with meropenem reduced bacterial loads and effectively elevated the survival rate of 83.3%, compared with 16.7% with meropenem monotherapy. Collectively, these findings indicate the potential of 5-FU as a novel meropenem adjuvant to improve treatment outcomes against infections caused by carbapenem-resistant bacteria.
Collapse
Affiliation(s)
- Muchen Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China agricultural University, Beijing, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Siyuan Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China agricultural University, Beijing, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yongqing Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China agricultural University, Beijing, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhiyu Zou
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China agricultural University, Beijing, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yan Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China agricultural University, Beijing, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yunrui Tian
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China agricultural University, Beijing, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Rong Zhang
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Dejun Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China agricultural University, Beijing, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Congming Wu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China agricultural University, Beijing, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China agricultural University, Beijing, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Huangwei Song
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China agricultural University, Beijing, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
73
|
Bates NA, Rodriguez R, Drwich R, Ray A, Stanley SA, Penn BH. Reactive Oxygen Detoxification Contributes to Mycobacterium abscessus Antibiotic Survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618103. [PMID: 39554100 PMCID: PMC11565942 DOI: 10.1101/2024.10.13.618103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
When a population of bacteria encounter a bactericidal antibiotic most cells die rapidly. However, a sub-population, known as "persister cells", can survive for prolonged periods in a non-growing, but viable, state. Persister cell frequency is dramatically increased by stresses such as nutrient deprivation, but it is unclear what pathways are required to maintain viability, and how this process is regulated. To identify the genetic determinants of antibiotic persistence in mycobacteria, we carried out transposon mutagenesis high-throughput sequencing (Tn-Seq) screens in Mycobacterium abscessus (Mabs). This analysis identified genes essential in both spontaneous and stress-induced persister cells, allowing the first genetic comparison of these states in mycobacteria, and unexpectedly identified multiple genes involved in the detoxification of reactive oxygen species (ROS). We found that endogenous ROS were generated following antibiotic exposure, and that the KatG catalase-peroxidase contributed to survival in both spontaneous and starvation-induced persisters. We also found that that hypoxia significantly impaired bacterial killing, and notably, in the absence of oxygen, KatG became dispensable. Thus, the lethality of some antibiotics is amplified by toxic ROS accumulation, and persister cells depend on detoxification systems to remain viable.
Collapse
Affiliation(s)
- Nicholas A. Bates
- Department of Internal Medicine, University of California, Davis, California, USA
- Graduate Group in Immunology, University of California, Davis, California, USA
| | - Ronald Rodriguez
- Department of Molecular & Cell Biology, University of California, Berkeley, California, USA
- Department of Plant & Microbial Biology, University of California, Berkeley, California, USA
| | - Rama Drwich
- Department of Internal Medicine, University of California, Davis, California, USA
| | - Abigail Ray
- Microbiology Graduate Group, University of California, Davis, California, USA
| | - Sarah A. Stanley
- Department of Molecular & Cell Biology, University of California, Berkeley, California, USA
| | - Bennett H. Penn
- Department of Internal Medicine, University of California, Davis, California, USA
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| |
Collapse
|
74
|
Wang C, Zhang Z, Liu D, Li X, Zhang Z, Zeng Y, Dong W, Tan C, Liu M. Restoring Colistin Sensitivity in Multidrug-Resistant Pathogenic E. coli Using Cinacalcet Hydrochloride. Int J Mol Sci 2024; 25:11574. [PMID: 39519127 PMCID: PMC11546906 DOI: 10.3390/ijms252111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Restoring colistin's efficacy is crucial in addressing the resistance crisis of colistin. This study utilized a high-throughput screening method to identify 43 compounds from 800 FDA-approved drugs that exhibited significant antibacterial effects when combined with colistin. Among these, cinacalcet hydrochloride (CH) was selected for its potential synergistic effect with colistin against multidrug-resistant (MDR) E. coli strains, including mcr-1-positive strains. A series of experiments revealed that the combination of CH and colistin showed strong synergy, especially in mcr-1-positive strains, restoring colistin sensitivity. The combination significantly inhibited bacterial growth and reduced CFU counts more effectively than either drug alone. Additionally, CH and colistin together significantly inhibited biofilm formation and eradicated existing biofilms, as visualized through confocal microscopy. Mechanistic studies showed that the combination increased bacterial membrane permeability and disrupted membrane integrity. The treatment also elevated extracellular ATP release and ROS production, indicating oxidative stress-induced bacterial death. Safety evaluations showed that the combination did not increase toxicity in host cells. Finally, animal models further validated the combination's efficacy. Overall, this study showed that the combination of colistin and CH significantly restored colistin sensitivity in mcr-1-positive E. coli, revealing their synergistic antibacterial mechanism involving membrane damage and oxidative stress, with promising clinical applications.
Collapse
Affiliation(s)
- Chenchen Wang
- Hubei Biopesticide Engineering Research Centre, Wuhan 430000, China;
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (Z.Z.); (D.L.); (X.L.); (Z.Z.); (Y.Z.); (W.D.); (C.T.)
| | - Ziyi Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (Z.Z.); (D.L.); (X.L.); (Z.Z.); (Y.Z.); (W.D.); (C.T.)
| | - Di Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (Z.Z.); (D.L.); (X.L.); (Z.Z.); (Y.Z.); (W.D.); (C.T.)
| | - Xiaodan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (Z.Z.); (D.L.); (X.L.); (Z.Z.); (Y.Z.); (W.D.); (C.T.)
| | - Zhaoran Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (Z.Z.); (D.L.); (X.L.); (Z.Z.); (Y.Z.); (W.D.); (C.T.)
| | - Yan Zeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (Z.Z.); (D.L.); (X.L.); (Z.Z.); (Y.Z.); (W.D.); (C.T.)
| | - Wenqi Dong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (Z.Z.); (D.L.); (X.L.); (Z.Z.); (Y.Z.); (W.D.); (C.T.)
| | - Chen Tan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (Z.Z.); (D.L.); (X.L.); (Z.Z.); (Y.Z.); (W.D.); (C.T.)
| | - Manli Liu
- Hubei Biopesticide Engineering Research Centre, Wuhan 430000, China;
| |
Collapse
|
75
|
Zhang J, Xu L, Zhang K, Yue J, Dong K, Luo Q, Yu W, Huang Y. Synergistic effect of fosfomycin and colistin against KPC-producing Klebsiella pneumoniae: pharmacokinetics-pharmacodynamics combined with transcriptomic approach. BMC Microbiol 2024; 24:430. [PMID: 39455935 PMCID: PMC11515340 DOI: 10.1186/s12866-024-03581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVES The aim of this study was to identify the synergistic effect and mechanisms of fosfomycin (FM) combined with colistin (COL) against KPC-producing Klebsiella pneumoniae (KPC-Kp). METHODS The bactericidal effects, induced drug resistance and cytotoxicity of FM combined with COL were evaluated by time-kill assays and mutation rate test. Time-kill assays and transcriptomics analysis were used to further clarify the mechanism of FM combined with COL. The bacteria were taken from different points in time-kill assays, reactive oxygen species (ROS), nitric oxide and redox related enzymes were detected. The mechanism of synergistic bactericidal action was analyzed by transcriptome. RESULTS The bactericidal effect of FM combined with COL was better than that of monotherapy. The mutation frequency of FM alone at low dose (8 mg/L) was higher than that at high dose (64 mg/L). COL induced resistant isolates resulted in FM and COL resistance, while FM alone or combined with COL only resulted in FM resistance. The survival rate of Thp-1 cells in FM combined with COL against K. pneumoniae was higher than that of monotherapy. The intracellular nitric oxide, activities of total superoxide dismutase and catalase were increased along with the increase of FM concentration against KPC-Kp. FM combined with COL induced ROS accumulation and antioxidant capacity increase. Transcriptome analysis showed FM combined with COL could regulate the levels of soxRS and oxidative phosphorylation, in order to clear ROS and repair damage. In addition, FM combined with COL could result in synergetic bactericidal efficacy by inhibiting ribosomal transcription. CONCLUSIONS FM combined with COL mediated synergistic bactericidal effect by regulating ROS accumulation and inhibiting ribosomal protein transcription, resulting in lower resistance and cytotoxicity.
Collapse
Affiliation(s)
- Jiajie Zhang
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Liqian Xu
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yicheng Huang
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
76
|
Peng Y, Moffat JG, DuPai C, Kofoed EM, Skippington E, Modrusan Z, Gloor SL, Clark K, Xu Y, Li S, Chen L, Liu X, Wu P, Harris SF, Wang S, Crawford TD, Li CS, Liu Z, Wai J, Tan MW. Differential effects of inosine monophosphate dehydrogenase (IMPDH/GuaB) inhibition in Acinetobacter baumannii and Escherichia coli. J Bacteriol 2024; 206:e0010224. [PMID: 39235234 PMCID: PMC11500612 DOI: 10.1128/jb.00102-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024] Open
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH), known as GuaB in bacteria, catalyzes the rate-limiting step in de novo guanine biosynthesis and is conserved from humans to bacteria. We developed a series of potent inhibitors that selectively target GuaB over its human homolog. Here, we show that these GuaB inhibitors are bactericidal, generate phenotypic signatures that are distinct from other antibiotics, and elicit different time-kill kinetics and regulatory responses in two important Gram-negative pathogens: Acinetobacter baumannii and Escherichia coli. Specifically, the GuaB inhibitor G6 rapidly kills A. baumannii but only kills E. coli after 24 h. After exposure to G6, the expression of genes involved in purine biosynthesis and stress responses change in opposite directions while siderophore biosynthesis is downregulated in both species. Our results suggest that different species respond to GuaB inhibition using distinct regulatory programs and possibly explain the different bactericidal kinetics upon GuaB inhibition. The comparison highlights opportunities for developing GuaB inhibitors as novel antibiotics.IMPORTANCEA. baumannii is a priority bacterial pathogen for which development of new antibiotics is urgently needed due to the emergence of multidrug resistance. We recently developed a series of specific inhibitors against GuaB, a bacterial inosine 5'-monophosphate dehydrogenase, and achieved sub-micromolar minimum inhibitory concentrations against A. baumannii. GuaB catalyzes the rate-limiting step of de novo guanine biosynthesis and is highly conserved across bacterial pathogens. This study shows that inhibition of GuaB induced a bacterial morphological profile distinct from that of other classes of antibiotics, highlighting a novel mechanism of action. Moreover, our transcriptomic analysis showed that regulation of de novo purine biosynthesis and stress responses of A. baumannii upon GuaB inhibition differed significantly from that of E. coli.
Collapse
Affiliation(s)
- Yutian Peng
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| | - John G. Moffat
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Cory DuPai
- Department of Bioinformatics, Genentech Inc., South San Francisco, California, USA
| | - Eric M. Kofoed
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| | | | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech Inc., South San Francisco, California, USA
| | - Susan L. Gloor
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Kevin Clark
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Yiming Xu
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Shuxuan Li
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Liuxi Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Xingrong Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Ping Wu
- Department of Structural Biology, Genentech Inc., South San Francisco, California, USA
| | - Seth F. Harris
- Department of Structural Biology, Genentech Inc., South San Francisco, California, USA
| | - Shumei Wang
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Terry D. Crawford
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Chun Sing Li
- WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China
| | - Zhiguo Liu
- WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China
| | - John Wai
- WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| |
Collapse
|
77
|
Zhang J, Wang X, Li P, Gao Y, Wang R, Li S, Yi K, Cui X, Hu G, Zhai Y. Colistin-niclosamide-loaded nanoemulsions and nanoemulsion gels for effective therapy of colistin-resistant Salmonella infections. Front Vet Sci 2024; 11:1492543. [PMID: 39507218 PMCID: PMC11539104 DOI: 10.3389/fvets.2024.1492543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Colistin (COL) is regarded as a last-resort treatment for infections by multidrug-resistant (MDR) Gram-negative bacteria. The emergence of colistin-resistant Enterobacterales poses a significant global public health concern. Our study discovered that niclosamide (NIC) reverses COL resistance in Salmonella via a checkerboard assay. However, poor solubility and bioavailability of NIC pose challenges. In this study, we prepared a self-nanoemulsifying drug delivery system (SNEDDS) co-encapsulating NIC and COL. We characterized the physicochemical properties of the resulting colistin-niclosamide-loaded nanoemulsions (COL/NIC-NEs) and colistin-niclosamide-loaded nanoemulsion gels (COL/NIC-NEGs), assessing their antibacterial efficacy in vitro and in vivo. The COL/NIC-NEs exhibited a droplet size of 19.86 nm with a zeta potential of -1.25 mV. COL/NIC-NEs have excellent stability, significantly enhancing the solubility of NIC while also demonstrating a pronounced sustained-release effect. Antimicrobial assays revealed that the MIC of COL in COL/NIC-NEs was reduced by 16-128 times compared to free COL. Killing kinetics and scanning electron microscopy confirmed enhanced antibacterial activity. Antibacterial mechanism studies reveal that the COL/NIC-NEs and COL/NIC-NEGs could enhance the bactericidal activity by damaging cell membranes, disrupting proton motive force (PMF), inhibiting multidrug efflux pump, and promoting oxidative damage. The therapeutic efficacy of the COL/NIC-NEs and COL/NIC-NEGs is further demonstrated in mouse intraperitoneal infection models with COL-resistant Salmonella. To sum up, COL/NIC-NEs and COL/NIC-NEGs are a potentially effective strategies promising against COL-resistant Salmonella infections.
Collapse
Affiliation(s)
- Junkai Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xilong Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Pengliang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanling Gao
- Henan Vocational College of Agriculture, Zhengzhou, China
| | - Ruiyun Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shuaihua Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Kaifang Yi
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiaodie Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yajun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
78
|
Hernandez DM, Marzouk M, Cole M, Fortoul MC, Reddy Kethireddy S, Contractor R, Islam H, Moulder T, Kalifa AR, Marin Meneses E, Barbosa Mendoza M, Thomas R, Masud S, Pubien S, Milanes P, Diaz-Tang G, Lopatkin AJ, Smith RP. Purine and pyrimidine synthesis differently affect the strength of the inoculum effect for aminoglycoside and β-lactam antibiotics. Microbiol Spectr 2024; 12:e0189524. [PMID: 39436125 PMCID: PMC11619438 DOI: 10.1128/spectrum.01895-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
The inoculum effect has been observed for nearly all antibiotics and bacterial species. However, explanations accounting for its occurrence and strength are lacking. Previous work found that the relationship between [ATP] and growth rate can account for the strength and occurrence of the inoculum effect for bactericidal antibiotics. However, the molecular pathway(s) underlying this relationship, and therefore determining the inoculum effect, remain undiscovered. Using a combination of flux balance analysis and experimentation, we show that nucleotide synthesis can determine the relationship between [ATP] and growth and thus the strength of inoculum effect in an antibiotic class-dependent manner. If the [ATP]/growth rate is sufficiently high as determined by exogenously supplied nitrogenous bases, the inoculum effect does not occur. This is consistent for both Escherichia coli and Pseudomonas aeruginosa. Interestingly, and separate from activity through the tricarboxylic acid cycle, we find that transcriptional activity of genes involved in purine and pyrimidine synthesis can predict the strength of the inoculum effect for β-lactam and aminoglycosides antibiotics, respectively. Our work highlights the antibiotic class-specific effect of purine and pyrimidine synthesis on the severity of the inoculum effect, which may pave the way for intervention strategies to reduce the inoculum effect in the clinic. IMPORTANCE If a bacterial population can grow and reach a sufficiently high density, routine doses of antibiotics can be ineffective. This phenomenon, called the inoculum effect, has been observed for nearly all antibiotics and bacterial species. It has also been reported to result in antibiotic failure in the clinic. Understanding how to reduce the inoculum effect can make high-density infections easier to treat. Here, we show that purine and pyrimidine synthesis affect the strength of the inoculum effect; as the transcriptional activity of pyrimidine synthesis increases, the strength of the inoculum effect for aminoglycosides decreases. Conversely, as the transcriptional activity of purine synthesis increases, the strength of the inoculum effect for β-lactam antibiotics decreases. Our work highlights the importance of nucleotide synthesis in determining the strength of the inoculum effect, which may lead to the identification of new ways to treat high-density infections in the clinic.
Collapse
Affiliation(s)
- Daniella M. Hernandez
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Melissa Marzouk
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Madeline Cole
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Marla C. Fortoul
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Saipranavi Reddy Kethireddy
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Rehan Contractor
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Habibul Islam
- Department of Chemical Engineering, University of Rochester, Rochester, New York, USA
| | - Trent Moulder
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Ariane R. Kalifa
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Estefania Marin Meneses
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Maximiliano Barbosa Mendoza
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Ruth Thomas
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Saad Masud
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Sheena Pubien
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Patricia Milanes
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Gabriela Diaz-Tang
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Allison J. Lopatkin
- Department of Chemical Engineering, University of Rochester, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, New York, USA
| | - Robert P. Smith
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
79
|
Whittle EE, Orababa O, Osgerby A, Siasat P, Element SJ, Blair JMA, Overton TW. Efflux pumps mediate changes to fundamental bacterial physiology via membrane potential. mBio 2024; 15:e0237024. [PMID: 39248573 PMCID: PMC11481890 DOI: 10.1128/mbio.02370-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024] Open
Abstract
Efflux pumps are well known to be an important mechanism for removing noxious substances such as antibiotics from bacteria. Given that many antibiotics function by accumulating inside bacteria, efflux pumps contribute to resistance. Efflux pump inactivation is a potential strategy to combat antimicrobial resistance, as bacteria would not be able to pump out antibiotics. We recently discovered that the impact of loss of efflux function is only apparent in actively growing cells. We demonstrated that the global transcriptome of Salmonella Typhimurium is drastically altered during slower growth leading to stationary-phase cells having a remodeled, less permeable envelope that prevents antibiotics entering the cell. Here, we investigated the effects of deleting the major efflux pump of Salmonella Typhimurium, AcrB, on global gene transcription across growth. We revealed that an acrB knockout entered stationary phase later than the wild-type strain SL1344 and displayed increased and prolonged expression of genes responsible for anaerobic energy metabolism. We devised a model linking efflux and membrane potential, whereby deactivation of AcrB prevents influx of protons across the inner membrane and thereby hyperpolarization. Knockout or deactivation of AcrB was demonstrated to increase membrane potential. We propose that the global transcription regulator ArcBA senses changes to the redox state of the quinol pool (linked to the membrane potential of the bacterium) and coordinates the shift from exponential to stationary phase via the key master regulators RpoS, Rsd, and Rmf. Inactivation of efflux pumps therefore influences the fundamental physiology of Salmonella, with likely impacts on multiple phenotypes.IMPORTANCEWe demonstrate for the first time that deactivation of efflux pumps brings about changes to gross bacterial physiology and metabolism. Rather than simply being a response to noxious substances, efflux pumps appear to play a key role in maintenance of membrane potential and thereby energy metabolism. This discovery suggests that efflux pump inhibition or inactivation might have unforeseen positive consequences on antibiotic activity. Given that stationary-phase bacteria are more resistant to antibiotic uptake, late entry into stationary phase would prolong antibiotic accumulation by bacteria. Furthermore, membrane hyperpolarization could result in increased generation of reactive species proposed to be important for the activity of some antibiotics. Finally, changes in gross physiology could also explain the decreased virulence of efflux mutants.
Collapse
Affiliation(s)
- Emily E. Whittle
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Oluwatosin Orababa
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Alexander Osgerby
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Pauline Siasat
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Sarah J. Element
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Jessica M. A. Blair
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Tim W. Overton
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
80
|
Zhang X, Xue X, Hu J. Combined ozonation-biological activated carbon process for antibiotic resistance control in treated effluent from wastewater treatment plant. WATER RESEARCH 2024; 268:122610. [PMID: 39426045 DOI: 10.1016/j.watres.2024.122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Biological activated carbon (BAC) treatment plays a crucial role in wastewater treatment plants due to its economic and effective promotion of organic matter degradation or mineralization. However, whether the changes in antibiotic resistance (AR) resulting from BAC or O3-BAC treatment are related to environmental factors remains unclear, as previous studies have primarily focused on isolated aspects, or have combined these aspects without systematically comparing the BAC and O3-BAC treatment processes or analyzing their interrelationships. In this study, to gain a clearer understanding of the factors related to AR during the BAC treatment, the treatment process of BAC and O3-BAC were comprehensively compared, including antibiotics removal, wastewater matrix changes, antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs), and bacterial community characteristics. The roles of O3 pretreatment and the bed depth of BAC were also clarified. ARGs were found to be not as sensitive to ozone as ARB. In addition, further strengthening of control measures should be needed for trimethoprim and tetracycline, due to their low removal efficiencies by ozone pretreatment, and their close relationship with the increased AR. Besides, 2 mg/L ozonation pretreatment could significantly influence the microbial community composition of wastewater and biofilm samples, while 1 mg/L ozonation could not. Finally, the correlation of environmental factors, bacterial communities, and ARGs revealed that to reduce the AR risks of O3-BAC treatment, antibiotics in wastewater should be strictly controlled, since they were positively correlated with the accumulation of ARGs and Pseudomonadota, Actinomycetota, and Bacteroidota, which were responsible for carrying and disseminating ARGs. The results showed that higher dose ozonation pre-treatment and longer bed depth of BAC process could help control the AR of BAC.
Collapse
Affiliation(s)
- Xinyang Zhang
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Xi Xue
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Jiangyong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
81
|
Liu QH, Yuan L, Li ZH, Leung KMY, Sheng GP. Natural Organic Matter Enhances Natural Transformation of Extracellular Antibiotic Resistance Genes in Sunlit Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17990-17998. [PMID: 39324609 DOI: 10.1021/acs.est.4c08211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Antibiotic resistance genes (ARGs) as emerging environmental contaminants exacerbate the risk of spreading antibiotic resistance. Natural organic matter (NOM) is ubiquitous in aquatic environments and plays a crucial role in biogeochemical cycles. However, its impact on the dissemination of extracellular antibiotic resistance genes (eARGs) under sunlight exposure remains elusive. This study reveals that environmentally relevant levels of NOM (0.1-20 mg/L) can significantly enhance the natural transformation frequency of the model bacterium Acinetobacter baylyi ADP1 by up to 7.6-fold under simulated sunlight. Similarly, this enhancement was consistently observed in natural water and wastewater systems. Further mechanism analysis revealed that reactive oxygen species (ROS) generated by NOM under sunlight irradiation, primarily singlet oxygen and hydroxyl radicals, play a crucial role in this process. These ROS induce intracellular oxidative stress and elevated cellular membrane permeability, thereby indirectly boosting ATP production and enhancing cell competence of extracellular DNA uptake and integration. Our findings highlight a previously underestimated role of natural factors in the dissemination of eARGs within aquatic ecosystems and deepen our understanding of the complex interplay between NOM, sunlight, and microbes in environmental water bodies. This underscores the importance of developing comprehensive strategies to mitigate the spread of antibiotic resistance in aquatic environments.
Collapse
Affiliation(s)
- Qian-He Liu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou 215123, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
82
|
Wang Z, Hülpüsch C, Foesel B, Traidl-Hoffmann C, Reiger M, Schloter M. Genomic and functional divergence of Staphylococcus aureus strains from atopic dermatitis patients and healthy individuals: insights from global and local scales. Microbiol Spectr 2024; 12:e0057124. [PMID: 39162515 PMCID: PMC11448032 DOI: 10.1128/spectrum.00571-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/27/2024] [Indexed: 08/21/2024] Open
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease worldwide and is characterized by a complex interplay with skin microbiota, with Staphylococcus aureus often abnormally more abundant in AD patients than in healthy individuals (HE). S. aureus harbors diverse strains with varied genetic compositions and functionalities, which exhibit differential connections with the severity of AD. However, the differences in S. aureus strains between AD and HE remain unclear, with most variations seen at a specific geographic level, implying spontaneous adaptations rather than systematic distinctions. This study presents genomic and functional differences between these S. aureus strains from AD and HE on both global and local levels. We observed reduced gene content diversity but increased functional variation in the global AD-associated strains. Two additional AD-dominant clusters emerged, with Cluster 1 enriched in transposases and Cluster 2 showcasing genes linked to adaptability and antibiotic resistance. Particularly, robust evidence illustrates that the lantibiotic operon of S. aureus, involved in the biosynthesis of lantibiotics, was acquired via horizontal gene transfer from environmental bacteria. Comparisons of the gene abundance profiles in functional categories also indicate limited zoonotic potential between human and animal isolates. Local analysis mirrored global gene diversity but showed distinct functional variations between AD and HE strains. Overall, this research provides foundational insights into the genomic evolution, adaptability, and antibiotic resistance of S. aureus, with significant implications for clinical microbiology.IMPORTANCEOur study uncovers significant genomic variations in Staphylococcus aureus strains associated with atopic dermatitis. We observed adaptive evolution tailored to the disease microenvironment, characterized by a smaller pan-genome than strains from healthy skin both on the global and local levels. Key functional categories driving strain diversification include "replication and repair" and "transporters," with transposases being pivotal. Interestingly, the local strains predominantly featured metal-related genes, whereas global ones emphasized antimicrobial resistances, signifying scale-dependent diversification nuances. We also pinpointed horizontal gene transfer events, indicating interactions between human-associated and environmental bacteria. These insights expand our comprehension of S. aureus's genetic adaptation in atopic dermatitis, yielding valuable implications for clinical approaches.
Collapse
Affiliation(s)
- Zhongjie Wang
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Hülpüsch
- Institute of Environmental Medicine, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Bärbel Foesel
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Traidl-Hoffmann
- Institute of Environmental Medicine, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- CK CARE, Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Matthias Reiger
- Institute of Environmental Medicine, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Environmental Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
83
|
da Cruz Nizer WS, Adams ME, Montgomery MC, Allison KN, Beaulieu C, Overhage J. Genetic determinants of increased sodium hypochlorite and ciprofloxacin susceptibility in Pseudomonas aeruginosa PA14 biofilms. BIOFOULING 2024; 40:563-579. [PMID: 39189148 DOI: 10.1080/08927014.2024.2395378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/12/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
Reactive chlorine species (RCS) like sodium hypochlorite (NaOCl) are potent oxidizing agents and widely used biocides in surface disinfection, water treatment, and biofilm elimination. Moreover, RCS are also produced by the human immune system to kill invading pathogens. However, bacteria have developed mechanisms to survive the damage caused by RCS. Using the comprehensive Pseudomonas aeruginosa PA14 transposon mutant library in a genetic screen, we identified a total of 28 P. aeruginosa PA14 mutants whose biofilms showed increased susceptibility to NaOCl in comparison to PA14 WT biofilms. Of these, ten PA14 mutants with a disrupted apaH, PA0793, acsA, PA1506, PA1547, PA3728, yajC, queA, PA3869, or PA14_32840 gene presented a 4-fold increase in NaOCl susceptibility compared to wild-type biofilms. While none of these mutants showed a defect in biofilm formation or attenuated susceptibility of biofilms toward the oxidant hydrogen peroxide (H2O2), all but PA14_32840 also exhibited a 2-4-fold increase in susceptibility toward the antibiotic ciprofloxacin. Further analyses revealed attenuated levels of intracellular ROS and catalase activity only for the apaH and PA1547 mutant, providing insights into the oxidative stress response in P. aeruginosa biofilms. The findings of this paper highlight the complexity of biofilm resistance and the intricate interplay between different mechanisms to survive oxidative stress. Understanding resistance strategies adopted by biofilms is crucial for developing more effective ways to fight resistant bacteria, ultimately contributing to better management of bacterial growth and resistance in clinical and environmental settings.
Collapse
Affiliation(s)
| | | | | | | | - Carole Beaulieu
- Department of Health Sciences, Carleton University, Ottawa, Canada
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, Ottawa, Canada
| |
Collapse
|
84
|
Kilianova Z, Cizmarova I, Spaglova M, Piestansky J. Recent Trends in Therapeutic Drug Monitoring of Peptide Antibiotics. J Sep Sci 2024; 47:e202400583. [PMID: 39400453 DOI: 10.1002/jssc.202400583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Antimicrobial peptides take a specific position in the field of antibiotics (ATBs), however, from a large number of available molecules only a few of them were approved and are used in clinics. These therapeutic modalities play a crucial role in the management of diseases caused by multidrug-resistant bacterial pathogens and represent the last-line therapy for bacterial infections. Therefore, there is a demand for a rationale use of such ATBs based on optimization of the dosing strategy to minimize the risk of resistance and ensure the sustainable efficacy of the drug in real clinical practice. Therapeutic drug monitoring, as a measurement of drug concentration in the body fluids or tissues, results in the optimization of the patient´s medication and therapy outcome. This strategy is beneficial and could result in tailored therapy for different types of infection and the prolongation of the use and efficacy of ATBs in hospitals. This review paper provides an actual overview of approved antimicrobial peptides used in clinical practice and covers current trends in their analysis by convenient and advanced methodologies used for their identification and/or quantitation in biological matrices for therapeutic drug monitoring purposes. Special emphasis is given to the methods with perspective clinical outcomes.
Collapse
Affiliation(s)
- Zuzana Kilianova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Ivana Cizmarova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Miroslava Spaglova
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Juraj Piestansky
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
85
|
Abstract
Ribosomes synthesize protein in all cells. Maintaining both the correct number and composition of ribosomes is critical for protein homeostasis. To address this challenge, cells have evolved intricate quality control mechanisms during assembly to ensure that only correctly matured ribosomes are released into the translating pool. However, these assembly-associated quality control mechanisms do not deal with damage that arises during the ribosomes' exceptionally long lifetimes and might equally compromise their function or lead to reduced ribosome numbers. Recent research has revealed that ribosomes with damaged ribosomal proteins can be repaired by the release of the damaged protein, thereby ensuring ribosome integrity at a fraction of the energetic cost of producing new ribosomes, appropriate for stress conditions. In this article, we cover the types of ribosome damage known so far, and then we review the known repair mechanisms before surveying the literature for possible additional instances of repair.
Collapse
Affiliation(s)
- Yoon-Mo Yang
- Current affiliation: Graduate School of Biomedical Science and Engineering and Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea;
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Katrin Karbstein
- Current affiliation: Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| |
Collapse
|
86
|
Gaudreau A, Watson DW, Flannagan RS, Roy P, Shen C, Abdelmoneim A, Beavers WN, Gillies ER, El-Halfawy OM, Heinrichs DE. Mechanistic insights and in vivo efficacy of thiosemicarbazones against methicillin-resistant Staphylococcus aureus. J Biol Chem 2024; 300:107689. [PMID: 39159815 PMCID: PMC11492055 DOI: 10.1016/j.jbc.2024.107689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/27/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
Staphylococcus aureus poses a significant threat in both community and hospital settings due to its infective and pathogenic nature combined with its ability to resist the action of chemotherapeutic agents. Methicillin-resistant S. aureus (MRSA) represents a critical challenge. Metal-chelating thiosemicarbazones (TSCs) have shown promise in combating MRSA and while previous studies hinted at the antimicrobial potential of TSCs, their mechanisms of action against MRSA are still under investigation. We screened a chemical library for anti-staphylococcal compounds and identified a potent molecule named R91 that contained the NNSN structural motif found within TSCs. We identified that R91 and several structural analogs exhibited antimicrobial activity against numerous S. aureus isolates as well as other Gram-positive bacteria. RNAseq analysis revealed that R91 induces copper and oxidative stress responses. Checkerboard assays demonstrated synergy of R91 with copper, nickel, and zinc. Mutation of the SrrAB two-component regulatory system sensitizes S. aureus to R91 killing, further linking the oxidative stress response to R91 resistance. Moreover, R91 was found to induce hydrogen peroxide production, which contributed to its antimicrobial activity. Remarkably, no mutants with elevated R91 resistance were identified, despite extensive attempts. We further demonstrate that R91 can be used to effectively treat an intracellular reservoir of S. aureus in cell culture and can reduce bacterial burdens in a murine skin infection model. Combined, these data position R91 as a potent TSC effective against MRSA and other Gram-positive bacteria, with implications for future therapeutic development.
Collapse
Affiliation(s)
- Avery Gaudreau
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - David W Watson
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Ronald S Flannagan
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Paroma Roy
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Chenfangfei Shen
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | - Ahmed Abdelmoneim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA; Louisiana Animal Disease Diagnostic Laboratory, Louisiana State University, Baton Rouge, Louisiana, USA
| | - William N Beavers
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Elizabeth R Gillies
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada; Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada
| | - Omar M El-Halfawy
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada; Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - David E Heinrichs
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
87
|
Zhang N, Dhumal D, Kuo SH, Lew SQ, Patil PD, Taher R, Vaidya S, Galanakou C, Elkihel A, Oh MW, Chong SY, Marson D, Zheng J, Rouvinski O, Abolarin WO, Pricl S, Lau GW, Lee LTO, Peng L. Targeting the phosphatidylglycerol lipid: An amphiphilic dendrimer as a promising antibacterial candidate. SCIENCE ADVANCES 2024; 10:eadn8117. [PMID: 39321303 PMCID: PMC11423894 DOI: 10.1126/sciadv.adn8117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
The rapid emergence and spread of multidrug-resistant bacterial pathogens require the development of antibacterial agents that are robustly effective while inducing no toxicity or resistance development. In this context, we designed and synthesized amphiphilic dendrimers as antibacterial candidates. We report the promising potent antibacterial activity shown by the amphiphilic dendrimer AD1b, composed of a long hydrophobic alkyl chain and a tertiary amine-terminated poly(amidoamine) dendron, against a panel of Gram-negative bacteria, including multidrug-resistant Escherichia coli and Acinetobacter baumannii. AD1b exhibited effective activity against drug-resistant bacterial infections in vivo. Mechanistic studies revealed that AD1b targeted the membrane phospholipids phosphatidylglycerol (PG) and cardiolipin (CL), leading to the disruption of the bacterial membrane and proton motive force, metabolic disturbance, leakage of cellular components, and, ultimately, cell death. Together, AD1b that specifically interacts with PG/CL in bacterial membranes supports the use of small amphiphilic dendrimers as a promising strategy to target drug-resistant bacterial pathogens and addresses the global antibiotic crisis.
Collapse
Affiliation(s)
- Nian Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Dinesh Dhumal
- Aix-Marseille Universite, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, "Equipe Labellisee Ligue Contre le Cancer," 13288 Marseille, France
| | - Shanny Hsuan Kuo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shi Qian Lew
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Pankaj D Patil
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Raleb Taher
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Sanika Vaidya
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Christina Galanakou
- Aix-Marseille Universite, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, "Equipe Labellisee Ligue Contre le Cancer," 13288 Marseille, France
| | - Abdechakour Elkihel
- Aix-Marseille Universite, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, "Equipe Labellisee Ligue Contre le Cancer," 13288 Marseille, France
| | - Myung Whan Oh
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sook Yin Chong
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Trieste, Italy
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Oleg Rouvinski
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Williams O Abolarin
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Trieste, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Leo Tsz On Lee
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Ling Peng
- Aix-Marseille Universite, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, "Equipe Labellisee Ligue Contre le Cancer," 13288 Marseille, France
| |
Collapse
|
88
|
Maity R, Zhang X, Liberati FR, Scribani Rossi C, Cutruzzolá F, Rinaldo S, Gaetani M, Aínsa JA, Sancho J. Merging multi-omics with proteome integral solubility alteration unveils antibiotic mode of action. eLife 2024; 13:RP96343. [PMID: 39329363 PMCID: PMC11434622 DOI: 10.7554/elife.96343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Antimicrobial resistance is responsible for an alarming number of deaths, estimated at 5 million per year. To combat priority pathogens, like Helicobacter pylori, the development of novel therapies is of utmost importance. Understanding the molecular alterations induced by medications is critical for the design of multi-targeting treatments capable of eradicating the infection and mitigating its pathogenicity. However, the application of bulk omics approaches for unraveling drug molecular mechanisms of action is limited by their inability to discriminate between target-specific modifications and off-target effects. This study introduces a multi-omics method to overcome the existing limitation. For the first time, the Proteome Integral Solubility Alteration (PISA) assay is utilized in bacteria in the PISA-Express format to link proteome solubility with different and potentially immediate responses to drug treatment, enabling us the resolution to understand target-specific modifications and off-target effects. This study introduces a comprehensive method for understanding drug mechanisms and optimizing the development of multi-targeting antimicrobial therapies.
Collapse
Affiliation(s)
- Ritwik Maity
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit GBsC-CSIC, University of ZaragozaZaragozaSpain
- Departamento de Bioquímica y Biología Molecular y Celular, Faculty of Science, University of ZaragozaZaragozaSpain
- Aragon Health Research Institute (IIS Aragón)ZaragozaSpain
| | - Xuepei Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska InstitutetStockholmSweden
- Chemical Proteomics Unit, Science for Life Laboratory (SciLifeLab)StockholmSweden
- Chemical Proteomics, Swedish National Infrastructure for Biological Mass Spectrometry (BioMS)StockholmSweden
| | | | - Chiara Scribani Rossi
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of RomeRomeItaly
| | - Francesca Cutruzzolá
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of RomeRomeItaly
| | - Serena Rinaldo
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of RomeRomeItaly
| | - Massimiliano Gaetani
- Department of Medical Biochemistry and Biophysics, Karolinska InstitutetStockholmSweden
- Chemical Proteomics Unit, Science for Life Laboratory (SciLifeLab)StockholmSweden
- Chemical Proteomics, Swedish National Infrastructure for Biological Mass Spectrometry (BioMS)StockholmSweden
| | - José Antonio Aínsa
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit GBsC-CSIC, University of ZaragozaZaragozaSpain
- Aragon Health Research Institute (IIS Aragón)ZaragozaSpain
- Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Faculty of Medicine, University of ZaragozaZaragozaSpain
- CIBER de Enfermedades Respiratorias—CIBERES, Instituto de Salud Carlos IIIMadridSpain
| | - Javier Sancho
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit GBsC-CSIC, University of ZaragozaZaragozaSpain
- Departamento de Bioquímica y Biología Molecular y Celular, Faculty of Science, University of ZaragozaZaragozaSpain
- Aragon Health Research Institute (IIS Aragón)ZaragozaSpain
| |
Collapse
|
89
|
Maliar T, Blažková M, Polák J, Maliarová M, Ürgeová E, Viskupičová J. Antioxidant and Pro-Oxidant Properties of Selected Clinically Applied Antibiotics: Therapeutic Insights. Pharmaceuticals (Basel) 2024; 17:1257. [PMID: 39458897 PMCID: PMC11510234 DOI: 10.3390/ph17101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The balance between antioxidants and pro-oxidants plays a significant role in the context of oxidative stress, influenced by both physiological and non-physiological factors. OBJECTIVES In this study, 18 prescribed antibiotics (including doxycycline hydrochloride, tigecycline, rifampicin, tebipenem, cefuroxime, cefixime, potassium clavulanate, colistin, ampicillin, amoxicillin, amikacin, nalidixic acid, azithromycin, pipemidic acid trihydrate, pivmecillinam, aztreonam, fosfomycin sodium, and ciprofloxacin) were subjected to simultaneous determination of antioxidant and pro-oxidant potential to assess if pro-oxidant activity is a dominant co-mechanism of antibacterial activity or if any antibiotic exhibits a balanced effect. METHODS This study presents a recently developed approach for the simultaneous assessment of antioxidant and pro-oxidant potential on a single microplate in situ, applied to prescribed antibiotics. RESULTS Ten antibiotics from eighteen showed lower antioxidant or pro-oxidant potential, while five exhibited only mild potential with DPPH50 values over 0.5 mM. The pro-oxidant antioxidant balance index (PABI) was also calculated to determine whether antioxidant or pro-oxidant activity was dominant for each antibiotic. Surprisingly, three antibiotics-doxycycline hydrochloride, tigecycline, and rifampicin-showed significant measures of both antioxidant and pro-oxidant activities. Especially notable was tebipenem, a broad-spectrum, orally administered carbapenem, showed a positive PABI index ratio, indicating a dominant antioxidant over pro-oxidant effect. CONCLUSIONS These findings could be significant for both therapy, where the antibacterial effect is enhanced by radical scavenging activity, and biotechnology, where substantial pro-oxidant activity might limit microbial viability in cultures and consequently affect yield.
Collapse
Affiliation(s)
- Tibor Maliar
- Institute of Chemistry and Environmental Sciences, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia;
| | - Marcela Blažková
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.B.); (E.Ü.)
- National Agricultural and Food Centre, Hlohovecká 2, 951 41 Lužianky, Slovakia
| | - Jaroslav Polák
- Helgeheim Inc., Palackého 6403, 911 01 Trenčín, Slovakia;
| | - Mária Maliarová
- Institute of Chemistry and Environmental Sciences, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia;
| | - Eva Ürgeová
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.B.); (E.Ü.)
| | - Jana Viskupičová
- Centre of Experimental Medicine SAS, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia;
| |
Collapse
|
90
|
Rodionova IA, Lim HG, Gao Y, Rodionov DA, Hutchison Y, Szubin R, Dalldorf C, Monk J, Palsson BO. CyuR is a dual regulator for L-cysteine dependent antimicrobial resistance in Escherichia coli. Commun Biol 2024; 7:1160. [PMID: 39289465 PMCID: PMC11408624 DOI: 10.1038/s42003-024-06831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
Hydrogen sulfide (H2S), mainly produced from L-cysteine (Cys), renders bacteria highly resistant to oxidative stress and potentially increases antimicrobial resistance (AMR). CyuR is a Cys-dependent transcription regulator, responsible for the activation of the cyuPA operon and generation of H2S. Despite its potential importance, its regulatory network remains poorly understood. In this study, we investigate the roles of the CyuR regulon in a Cys-dependent AMR mechanism in E. coli strains. We show: (1) Generation of H2S from Cys affects the sensitivities to growth inhibitors; (2) Cys supplementation decreases stress responses; (3) CyuR negatively controls the expression of mdlAB encoding a potential transporter for antibiotics; (4) CyuR binds to a DNA sequence motif 'GAAwAAATTGTxGxxATTTsyCC' in the absence of Cys; and (5) CyuR may regulate 25 additional genes which were not reported previously. Collectively, our findings expand the understanding of the biological roles of CyuR relevant to antibiotic resistance associated with Cys.
Collapse
Affiliation(s)
- Irina A Rodionova
- Department of Bioengineering, Division of Engineering, University of California San Diego, La Jolla, CA, USA.
| | - Hyun Gyu Lim
- Department of Bioengineering, Division of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Korea
| | - Ye Gao
- Department of Bioengineering, Division of Engineering, University of California San Diego, La Jolla, CA, USA
- The Second Hospital of Shandong University, Jinan, Shandong, PR China
| | - Dmitry A Rodionov
- Sanford-Burnhams-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ying Hutchison
- Department of Bioengineering, Division of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Richard Szubin
- Department of Bioengineering, Division of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Christopher Dalldorf
- Department of Bioengineering, Division of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Jonathan Monk
- Department of Bioengineering, Division of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Bernhard O Palsson
- Department of Bioengineering, Division of Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
91
|
Aljuwayd M, Malli IA, Ricke SC, Kwon YM. Reactive Oxygen Species Mediate the Bactericidal Activity of Chlorine Against Salmonella. Curr Microbiol 2024; 81:355. [PMID: 39278982 DOI: 10.1007/s00284-024-03880-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 09/02/2024] [Indexed: 09/18/2024]
Abstract
Chlorine and its derivatives have been used as an antibacterial agent to reduce Salmonella contamination in poultry meat during processing. We evaluated the survival of 4 different Salmonella serotypes (Typhimurium, Enteritidis, Heidelberg, and Gaminara) in the presence of 50 ppm sodium hypochlorite (NaOCl) alone or with the addition of thiourea (radical scavenger) or Dip (iron chelator) to determine the contribution of reactive oxygen species (ROS) in the bactericidal activity of NaOCl. The result showed that for all four serotypes the addition of thiourea or Dip significantly increased the % survival as compared to the respective NaOCl treatment groups, while it was significantly higher with thiourea as compared to Dip (P < 0.05). We also evaluated the survival of 11 deletion mutants of S. Typhimurium, which were demonstrated to increase (∆atpC, ∆cyoA, ∆gnd, ∆nuoG, ∆pta, ∆sdhC, and ∆zwf) or decrease the production of ROS (∆edd, ∆fumB, ∆pykA, and ∆tktB) in Escherichia coli (E. coli), in the presence of 50 ppm. The results showed that only two (∆sdhC and ∆zwf) out of 7 ROS-increasing mutants showed reduced % survival as compared to the wild-type (P < 0.05), while all four deletion ROS-decreasing mutants showed significantly higher % survival as compared to the wild-type (P < 0.05). This work suggests that the production of ROS is a major component of the bactericidal activity of NaOCl against Salmonella serotypes and there might be a significant difference in the metabolic pathways involved in ROS production between Salmonella and E. coli.
Collapse
Affiliation(s)
- Mohammed Aljuwayd
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA
- College of Medical Applied Sciences, The Northern Border University, 91431, Arar, Saudi Arabia
| | - Israa Abdullah Malli
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, 21423, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, 22384, Jeddah, Saudi Arabia
| | - Steven C Ricke
- Department of Animal and Dairy Sciences, Meat Science & Animal Biologics Discovery Program (MSABD), University of Wisconsin, Office 2124 MSABD, 1933 Observatory Drive, Madison, WI, 53706, USA.
| | - Young Min Kwon
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA
- Department of Poultry Science, Division of Agriculture, University of Arkansas System, Fayetteville, AR, 72701, USA
| |
Collapse
|
92
|
Eoh H, Lee JJ, Swanson D, Lee SK, Dihardjo S, Lee GY, Sree G, Maskill E, Taylor Z, Van Nieuwenhze M, Singh A, Lee JS, Eum SY, Cho SN, Swarts B. Trehalose catalytic shift is an intrinsic factor in Mycobacterium tuberculosis that enhances phenotypic heterogeneity and multidrug resistance. RESEARCH SQUARE 2024:rs.3.rs-4999164. [PMID: 39315249 PMCID: PMC11419184 DOI: 10.21203/rs.3.rs-4999164/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Drug-resistance (DR) in many bacterial pathogens often arises from the repetitive formation of drug-tolerant bacilli, known as persisters. However, it is unclear whether Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis (TB), undergoes a similar phenotypic transition. Recent metabolomics studies have identified that a change in trehalose metabolism is necessary for Mtb to develop persisters and plays a crucial role in metabolic networks of DR-TB strains. The present study used Mtb mutants lacking the trehalose catalytic shift and showed that the mutants exhibited a significantly lower frequency of the emergence of DR mutants compared to wildtype, due to reduced persister formation. The trehalose catalytic shift enables Mtb persisters to survive under bactericidal antibiotics by increasing metabolic heterogeneity and drug tolerance, ultimately leading to development of DR. Intriguingly, rifampicin (RIF)-resistant bacilli exhibit cross-resistance to a second antibiotic, due to a high trehalose catalytic shift activity. This phenomenon explains how the development of multidrug resistance (MDR) is facilitated by the acquisition of RIF resistance. In this context, the heightened risk of MDR-TB in the lineage 4 HN878 W-Beijing strain can be attributed to its greater trehalose catalytic shift. Genetic and pharmacological inactivation of the trehalose catalytic shift significantly reduced persister formation, subsequently decreasing the incidence of MDR-TB in HN878 W-Beijing strain. Collectively, the trehalose catalytic shift serves as an intrinsic factor of Mtb responsible for persister formation, cross-resistance to multiple antibiotics, and the emergence of MDR-TB. This study aids in the discovery of new TB therapeutics by targeting the trehalose catalytic shift of Mtb.
Collapse
|
93
|
Song D, Kim B, Kim M, Lee JK, Choi J, Lee H, Shin S, Shin D, Nam HY, Lee Y, Lee S, Kim Y, Seo J. Impact of Conjugation of the Reactive Oxygen Species (ROS)-Generating Catalytic Moiety with Membrane-Active Antimicrobial Peptoids: Promoting Multitarget Mechanism and Enhancing Selectivity. J Med Chem 2024; 67:15148-15167. [PMID: 39207209 DOI: 10.1021/acs.jmedchem.4c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Antimicrobial peptides (AMPs) represent promising therapeutic modalities against multidrug-resistant bacterial infections. As a mimic of natural AMPs, peptidomimetic oligomers like peptoids (i.e., oligo-N-substituted glycines) have been utilized for antimicrobials with resistance against proteolytic degradation. Here, we explore the conjugation of catalytic metal-binding motifs─the amino terminal Cu(II) and Ni(II) binding (ATCUN) motif─with cationic amphipathic antimicrobial peptoids to enhance their efficacy. Upon complexation with Cu(II) or Ni(II), the conjugates catalyzed hydroxyl radical generation, and 22 and 22-Cu exhibited over 10-fold improved selectivity compared to the parent peptoid, likely due to reduced hydrophobicity. Cu-ATCUN-peptoids caused bacterial membrane disruption, aggregation of intracellular biomolecules, DNA oxidation, and lipid peroxidation, promoting multiple killing mechanisms. In a mouse sepsis model, 22 demonstrated antimicrobial and anti-inflammatory efficacy with low toxicity. This study suggests a strategy to improve the potency of membrane-acting antimicrobial peptoids by incorporating ROS-generating motifs, thereby adding oxidative damage as a killing mechanism.
Collapse
Affiliation(s)
- Dasom Song
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Byeongkwon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minsang Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jin Kyeong Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jieun Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyeju Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Sujin Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Dongmin Shin
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ho Yeon Nam
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
- Department of Bio-Analysis Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
94
|
Vo KC, Sakamoto JJ, Furuta M, Tsuchido T. The impact of heat treatment on E. coli cell physiology in rich and minimal media considering oxidative secondary stress. J Appl Microbiol 2024; 135:lxae216. [PMID: 39165131 DOI: 10.1093/jambio/lxae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
AIMS This study investigates the cell physiology of thermally injured bacterial cells, with a specific focus on oxidative stress and the repair mechanisms associated with oxidative secondary stress. METHODS AND RESULTS We explored the effect of heat treatment on the activity of two protective enzymes, levels of intracellular reactive oxygen species, and redox potential. The findings reveal that enzyme activity slightly increased after heat treatment, gradually returning to baseline levels during subculture. The response of Escherichia coli cells to heat treatment, as assessed by the level of superoxide radicals generated and redox potential, varied based on growth conditions, namely minimal and rich media. Notably, the viability of injured cells improved when antioxidants were added to agar media, even in the presence of metabolic inhibitors. CONCLUSIONS These results suggest a complex system involved in repairing damage in heat-treated cells, particularly in rich media. While repairing membrane damage is crucial for cell regrowth and the electron transport system plays a critical role in the recovery process of injured cells under both tested conditions.
Collapse
Affiliation(s)
- Khanh C Vo
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Jin J Sakamoto
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- MPES-3 U and Faculty of Materials, Chemistry and Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Masakazu Furuta
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Radiation Research Center, Organization for Research Promotion, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Tetsuaki Tsuchido
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- TriBioX Laboratories Ltd., 1-125 Takano-Tamaoka-cho, Sakyo-ku, Kyoto 606-8106, Japan
| |
Collapse
|
95
|
Mikami M, Shimizu H, Iwama N, Yajima M, Kuwasako K, Ogura Y, Himeno H, Kurita D, Nameki N. Stalled ribosome rescue factors exert different roles depending on types of antibiotics in Escherichia coli. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:22. [PMID: 39843510 PMCID: PMC11721466 DOI: 10.1038/s44259-024-00039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/08/2024] [Indexed: 01/24/2025]
Abstract
Escherichia coli possesses three stalled-ribosome rescue factors, tmRNA·SmpB (primary factor), ArfA (alternative factor to tmRNA·SmpB), and ArfB. Here, we examined the susceptibility of rescue factor-deficient strains from E. coli SE15 to various ribosome-targeting antibiotics. Aminoglycosides specifically decreased the growth of the ΔssrA (tmRNA gene) strain, in which the levels of reactive oxygen species were elevated. The decrease in growth of ΔssrA could not be complemented by plasmid-borne expression of arfA, arfB, or ssrAAA to DD mutant gene possessing a proteolysis-resistant tag sequence. These results highlight the significance of tmRNA·SmpB-mediated proteolysis during growth under aminoglycoside stress. In contrast, tetracyclines or amphenicols decreased the growth of the ΔarfA strain despite the presence of tmRNA·SmpB. Quantitative RT-PCR revealed that tetracyclines and amphenicols, but not aminoglycosides, considerably induced mRNA expression of arfA. These findings indicate that tmRNA·SmpB, and ArfA exert differing functions during stalled-ribosome rescue depending on the type of ribosome-targeting antibiotic.
Collapse
Affiliation(s)
- Mayu Mikami
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan
| | - Hidehiko Shimizu
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan
| | - Norika Iwama
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan
| | - Mihono Yajima
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan
| | - Kanako Kuwasako
- Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Nobukazu Nameki
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan.
| |
Collapse
|
96
|
Nagraj AK, Shukla M, Kulkarni M, Patil P, Borgave M, Banerjee SK. Reversal of carbapenem resistance in Pseudomonas aeruginosa by camelid single domain antibody fragment (VHH) against the C4-dicarboxylate transporter. J Antibiot (Tokyo) 2024; 77:612-626. [PMID: 38886486 DOI: 10.1038/s41429-024-00748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024]
Abstract
Antimicrobial resistance is emerging as the new healthcare crisis necessitating the development of newer classes of drugs using non-traditional approaches. Pseudomonas aeruginosa, one of the most common pathogens involved in nosocomial infections, is extremely difficult to treat even with the last resort frontline drug, the carbapenems. As the pathogen has the ability to acquire resistance to new small-molecule antibiotics, being deployed, a novel biological approach has been tried using antibody fragments in combination with carbapenems and β-lactams as adjunct therapy for an enduring solution to the problem. In this study, we developed a camelid antibody fragment (VHH) library against P. aeruginosa and isolated a highly potent hit, PsC23. Mass spectrometry identified the target to be a component of the C4-dicarboxylate transporter that feeds metabolites to the glyoxylate shunt particularly under conditions of oxidative stress. PsC23 is bacteriostatic at a concentration of 1.66 µM (25 µg ml-1) and shows a synergistic effect with both the classes of drugs at an effective concentration of 100-200 nM (1.5-3.0 µg ml-1) when co administered with them. In combination with meropenem the VHH completely cleared the infection from a neutropenic mouse with a carbapenem-resistant P. aeruginosa systemic infection. Blocking the glyoxylate shunt by PsC23 resulted in disruption of energy transduction due to a respiratory shift to the oxygen-depleted TCA cycle causing inhibition of efflux and increased free radical generation from carbapenems and β-lactams exerting a strong bactericidal effect that reversed the resistance to multiple unrelated drugs.
Collapse
Affiliation(s)
| | | | | | - Pratik Patil
- AbGenics Life Sciences Pvt. Ltd, Pune, 411045, India
| | | | | |
Collapse
|
97
|
Tang Y, Yang C, Liu C, Xu Y, Peng M, Chan EWC, Chen S. Development of an effective meropenem/KPC-2 inhibitor combination to combat infections caused by carbapenem-resistant Klebsiella pneumoniae. Int J Antimicrob Agents 2024; 64:107268. [PMID: 38972552 DOI: 10.1016/j.ijantimicag.2024.107268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/01/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
The global public health threat of antibiotic resistance continues to escalate, and necessitates the implementation of urgent measures to expand the arsenal of antimicrobial drugs. This study identified a benzoxaborane compound, namely 5-chloro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2178), which can inhibit the catalytic activity of the Klebsiella pneumoniae carbapenemase (KPC-2) enzyme effectively. The efficacy of AN2718 as an inhibitor for the KPC-2 enzyme was verified through various assays, including enzyme activity assays and isothermal titration calorimetry. Results of multiple biochemical assays, minimum inhibitory concentration assays and time-killing assays also showed that binding of AN2718 to KPC-2 enabled restoration of the bactericidal effect of meropenem. The survival rate of mice infected with carbapenem-resistant, high-virulence strains increased significantly upon treatment with AN2718. Most importantly, the meropenem and AN2718 combination was effective on KPC-2 mutations such as KPC-33, which evolved clinically and exhibited resistance to ceftazidime-avibactam after clinical use for a couple of years. Comprehensive safety tests both in vitro and in vivo, such as cytotoxicity, haemolytic activity and cytochrome P450 inhibition assays, demonstrated that AN2718 was safe for clinical use. These promising data indicate that AN2718 has high potential for approval for the treatment of drug resistant-bacterial infections, including those caused by ceftazidime-avibactam-resistant strains. AN2718 can be regarded as a valuable addition to the current antimicrobial armamentarium, and a promising tool to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Yang Tang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chen Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chenyu Liu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yating Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Mingxiu Peng
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, PR China
| | - Edward Wai-Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, PR China.
| |
Collapse
|
98
|
Sarkar S, Roy A, Mitra R, Kundu S, Banerjee P, Acharya Chowdhury A, Ghosh S. Escaping the ESKAPE pathogens: A review on antibiofilm potential of nanoparticles. Microb Pathog 2024; 194:106842. [PMID: 39117012 DOI: 10.1016/j.micpath.2024.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
ESKAPE pathogens, a notorious consortium comprising Enterococcusfaecium, Staphylococcusaureus, Klebsiellapneumoniae, Acinetobacterbaumannii, Pseudomonasaeruginosa, and Enterobacter species, pose formidable challenges in healthcare settings due to their multidrug-resistant nature. The increasing global cases of antimicrobial-resistant ESKAPE pathogens are closely related to their remarkable ability to form biofilms. Thus, understanding the unique mechanisms of antimicrobial resistance of ESKAPE pathogens and the innate resilience of biofilms against traditional antimicrobial agents is important for developing innovative strategies to establish effective control methods against them. This review offers a thorough analysis of biofilm dynamics, with a focus on the general mechanisms of biofilm formation, the significant contribution of persister cells in the resistance mechanisms, and the recurrence of biofilms in comparison to planktonic cells. Additionally, this review highlights the potential strategies of nanoparticles for managing biofilms in the ESKAPE group of pathogens. Nanoparticles, with their unique physicochemical properties, provide promising opportunities for disrupting biofilm structures and improving antimicrobial effectiveness. The review has explored interactions between nanoparticles and biofilms, covering a range of nanoparticle types such as metal, metal-oxide, surface-modified, and functionalized nanoparticles, along with organic nanoparticles and nanomaterials. The additional focus of this review also encompasses green synthesis techniques of nanoparticles that involve plant extract and supernatants from bacterial and fungal cultures as reducing agents. Furthermore, the use of nanocomposites and nano emulsions in biofilm management of ESKAPE is also discussed. To conclude, the review addresses the current obstacles and future outlooks in nanoparticle-based biofilm management, stressing the necessity for further research and development to fully exploit the potential of nanoparticles in addressing biofilm-related challenges.
Collapse
Affiliation(s)
| | - Ankita Roy
- Department of Biosciences, JIS University, Kolkata, India
| | - Rangan Mitra
- Department of Biosciences, JIS University, Kolkata, India
| | - Sweta Kundu
- Department of Biosciences, JIS University, Kolkata, India
| | | | | | - Suparna Ghosh
- Department of Biosciences, JIS University, Kolkata, India.
| |
Collapse
|
99
|
Cheng K, Sun Y, Yu H, Hu Y, He Y, Shen Y. Staphylococcus aureus SOS response: Activation, impact, and drug targets. MLIFE 2024; 3:343-366. [PMID: 39359682 PMCID: PMC11442139 DOI: 10.1002/mlf2.12137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 10/04/2024]
Abstract
Staphylococcus aureus is a common cause of diverse infections, ranging from superficial to invasive, affecting both humans and animals. The widespread use of antibiotics in clinical treatments has led to the emergence of antibiotic-resistant strains and small colony variants. This surge presents a significant challenge in eliminating infections and undermines the efficacy of available treatments. The bacterial Save Our Souls (SOS) response, triggered by genotoxic stressors, encompasses host immune defenses and antibiotics, playing a crucial role in bacterial survival, invasiveness, virulence, and drug resistance. Accumulating evidence underscores the pivotal role of the SOS response system in the pathogenicity of S. aureus. Inhibiting this system offers a promising approach for effective bactericidal treatments and curbing the evolution of antimicrobial resistance. Here, we provide a comprehensive review of the activation, impact, and key proteins associated with the SOS response in S. aureus. Additionally, perspectives on therapeutic strategies targeting the SOS response for S. aureus, both individually and in combination with traditional antibiotics are proposed.
Collapse
Affiliation(s)
- Kaiying Cheng
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Yukang Sun
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Huan Yu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yingxuan Hu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yini He
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yuanyuan Shen
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| |
Collapse
|
100
|
Pham T, Nguyen TT, Nguyen NH, Hayles A, Li W, Pham DQ, Nguyen CK, Nguyen T, Vongsvivut J, Ninan N, Sabri Y, Zhang W, Vasilev K, Truong VK. Transforming Spirulina maxima Biomass into Ultrathin Bioactive Coatings Using an Atmospheric Plasma Jet: A New Approach to Healing of Infected Wounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305469. [PMID: 37715087 DOI: 10.1002/smll.202305469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Indexed: 09/17/2023]
Abstract
The challenge of wound healing, particularly in patients with comorbidities such as diabetes, is intensified by wound infection and the accelerating problem of bacterial resistance to current remedies such as antibiotics and silver. One promising approach harnesses the bioactive and antibacterial compound C-phycocyanin from the microalga Spirulina maxima. However, the current processes of extracting this compound and developing coatings are unsustainable and difficult to achieve. To circumvent these obstacles, a novel, sustainable argon atmospheric plasma jet (Ar-APJ) technology that transforms S. maxima biomass into bioactive coatings is presented. This Ar-APJ can selectively disrupt the cell walls of S. maxima, converting them into bioactive ultrathin coatings, which are found to be durable under aqueous conditions. The findings demonstrate that Ar-APJ-transformed bioactive coatings show better antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Moreover, these coatings exhibit compatibility with macrophages, induce an anti-inflammatory response by reducing interleukin 6 production, and promote cell migration in keratinocytes. This study offers an innovative, single-step, sustainable technology for transforming microalgae into bioactive coatings. The approach reported here has immense potential for the generation of bioactive coatings for combating wound infections and may offer a significant advance in wound care research and application.
Collapse
Affiliation(s)
- Tuyet Pham
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Tien Thanh Nguyen
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
- College of Medicine and Pharmacy, Tra Vinh University, Tra Vinh, 87000, Vietnam
| | - Ngoc Huu Nguyen
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
- School of Biomedical Engineering, University of Sydney, Darlington, NSW, 2006, Australia
| | - Andrew Hayles
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Wenshao Li
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Duy Quang Pham
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
- School of Engineering, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Chung Kim Nguyen
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Trung Nguyen
- College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy Beamline, ANSTO Australian Synchrotron, Clayton, Victoria, 3168, Australia
| | - Neethu Ninan
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Ylias Sabri
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Wei Zhang
- Advanced Marine Biomanufacturing Laboratory, Centre for Marine Bioproduct Development, College of Medicine and Public Health, Flinders University, Adelaide, 5042, Australia
| | - Krasimir Vasilev
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Vi Khanh Truong
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| |
Collapse
|