51
|
Pakula H, Omar M, Carelli R, Pederzoli F, Fanelli GN, Pannellini T, Socciarelli F, Van Emmenis L, Rodrigues S, Fidalgo-Ribeiro C, Nuzzo PV, Brady NJ, Dinalankara W, Jere M, Valencia I, Saladino C, Stone J, Unkenholz C, Garner R, Alexanderani MK, Khani F, de Almeida FN, Abate-Shen C, Greenblatt MB, Rickman DS, Barbieri CE, Robinson BD, Marchionni L, Loda M. Distinct mesenchymal cell states mediate prostate cancer progression. Nat Commun 2024; 15:363. [PMID: 38191471 PMCID: PMC10774315 DOI: 10.1038/s41467-023-44210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
In the complex tumor microenvironment (TME), mesenchymal cells are key players, yet their specific roles in prostate cancer (PCa) progression remain to be fully deciphered. This study employs single-cell RNA sequencing to delineate molecular changes in tumor stroma that influence PCa progression and metastasis. Analyzing mesenchymal cells from four genetically engineered mouse models (GEMMs) and correlating these findings with human tumors, we identify eight stromal cell populations with distinct transcriptional identities consistent across both species. Notably, stromal signatures in advanced mouse disease reflect those in human bone metastases, highlighting periostin's role in invasion and differentiation. From these insights, we derive a gene signature that predicts metastatic progression in localized disease beyond traditional Gleason scores. Our results illuminate the critical influence of stromal dynamics on PCa progression, suggesting new prognostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Hubert Pakula
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Mohamed Omar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA
| | - Ryan Carelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Filippo Pederzoli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Giuseppe Nicolò Fanelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Laboratory Medicine, Pisa University Hospital, Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, 56126, Italy
| | - Tania Pannellini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Fabio Socciarelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Lucie Van Emmenis
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Silvia Rodrigues
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Caroline Fidalgo-Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Pier Vitale Nuzzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nicholas J Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Wikum Dinalankara
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Madhavi Jere
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Itzel Valencia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Christopher Saladino
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jason Stone
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Caitlin Unkenholz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Richard Garner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Mohammad K Alexanderani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francisca Nunes de Almeida
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Cory Abate-Shen
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Christopher E Barbieri
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA.
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA.
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, UK.
| |
Collapse
|
52
|
Bai L, Wu Y, Li G, Zhang W, Zhang H, Su J. AI-enabled organoids: Construction, analysis, and application. Bioact Mater 2024; 31:525-548. [PMID: 37746662 PMCID: PMC10511344 DOI: 10.1016/j.bioactmat.2023.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023] Open
Abstract
Organoids, miniature and simplified in vitro model systems that mimic the structure and function of organs, have attracted considerable interest due to their promising applications in disease modeling, drug screening, personalized medicine, and tissue engineering. Despite the substantial success in cultivating physiologically relevant organoids, challenges remain concerning the complexities of their assembly and the difficulties associated with data analysis. The advent of AI-Enabled Organoids, which interfaces with artificial intelligence (AI), holds the potential to revolutionize the field by offering novel insights and methodologies that can expedite the development and clinical application of organoids. This review succinctly delineates the fundamental concepts and mechanisms underlying AI-Enabled Organoids, summarizing the prospective applications on rapid screening of construction strategies, cost-effective extraction of multiscale image features, streamlined analysis of multi-omics data, and precise preclinical evaluation and application. We also explore the challenges and limitations of interfacing organoids with AI, and discuss the future direction of the field. Taken together, the AI-Enabled Organoids hold significant promise for advancing our understanding of organ development and disease progression, ultimately laying the groundwork for clinical application.
Collapse
Affiliation(s)
- Long Bai
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| | - Yan Wu
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 201941, China
| | - Wencai Zhang
- Department of Orthopedics, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Hao Zhang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
53
|
Chen H, Yang Y, Shi J, Yan T, Wang J, Yang Y, Lu Q, Feng H, Du J, Cao Z, Weygant N. Comparison of Surgical and Colonoscopy Tissue to Establish Colorectal Patient-derived Organoids. Curr Cancer Drug Targets 2024; 24:546-555. [PMID: 37997804 DOI: 10.2174/0115680096263866231024112120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Patient-derived organoids (PDOs) are ex vivo models that retain the functions and characteristics of individualized source tissues, including a simulated tumor microenvironment. However, the potential impact of undiscovered differences between tissue sources on PDO growth and progression remains unclear. OBJECTIVE This study aimed to compare the growth and condition of PDO models originating from surgical resection and colonoscopy and to provide practical insights for PDO studies. METHODS Tissue samples and relevant patient clinical information were collected to establish organoid models. PDOs were derived from both surgical and colonoscopy tissues. The growth of the organoids, including their state, size, and success rate of establishment, was recorded and analyzed. The activity of the organoids at the end stage of growth was detected using calcein-AM fluorescence staining. RESULTS The results showed that the early growth phase of 2/3 colonoscopy-derived organoids was faster compared to surgical PDOs, with a growth difference observed within 11-13 days of establishment. However, colonoscopy-derived organoids exhibited a diminished growth trend after this time. There were no significant differences observed in the terminal area and quantity between the two types of tissue-derived organoids. Immunofluorescence assays of the PDOs revealed that the surgical PDOs possessed a denser cell mass with relatively higher viability than colonoscopy-derived PDOs. CONCLUSION In the establishment of colorectal patient-derived organoids, surgically derived organoids require a slightly longer establishment period, while colonoscopy-derived organoids should be passaged prior to growth inhibition to preserve organoid viability.
Collapse
Affiliation(s)
- Hong Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Key Laboratory of Integrative Medicine, Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yuping Yang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Key Laboratory of Integrative Medicine, Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jinsen Shi
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Key Laboratory of Integrative Medicine, Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Ting Yan
- Department of General Surgery, Second Affiliated People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jun Wang
- Department of General Surgery, Second Affiliated People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yuning Yang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Key Laboratory of Integrative Medicine, Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Qin Lu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Key Laboratory of Integrative Medicine, Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Hailan Feng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Key Laboratory of Integrative Medicine, Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jian Du
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine, Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Zhiyun Cao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Key Laboratory of Integrative Medicine, Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Key Laboratory of Integrative Medicine, Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| |
Collapse
|
54
|
Khan S, Baligar P, Tandon C, Nayyar J, Tandon S. Molecular heterogeneity in prostate cancer and the role of targeted therapy. Life Sci 2024; 336:122270. [PMID: 37979833 DOI: 10.1016/j.lfs.2023.122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Data collected from large-scale studies has shown that the incidence of prostate cancer globally is on the rise, which could be attributed to an overall increase in lifespan. So, the question is how has modern science with all its new technologies and clinical breakthroughs mitigated or managed this disease? The answer is not a simple one as prostate cancer exhibits various subtypes, each with its unique characteristics or signatures which creates challenges in treatment. To understand the complexity of prostate cancer these signatures must be deciphered. Molecular studies of prostate cancer samples have identified certain genetic and epigenetic alterations, which are instrumental in tumorigenesis. Some of these candidates include the androgen receptor (AR), various oncogenes, tumor suppressor genes, and the tumor microenvironment, which serve as major drivers that lead to cancer progression. These aberrant genes and their products can give an insight into prostate cancer development and progression by acting as potent markers to guide future therapeutic approaches. Thus, understanding the complexity of prostate cancer is crucial for targeting specific markers and tailoring treatments accordingly.
Collapse
Affiliation(s)
- Sabiha Khan
- Amity Institute of Molecular Medicine, Amity University Uttar Pradesh, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine, Amity University Uttar Pradesh, India
| | - Chanderdeep Tandon
- Amity School of Biological Sciences, Amity University Punjab, Mohali, India
| | - Jasamrit Nayyar
- Department of Chemistry, Goswami Ganesh Dutt Sanatan Dharam College, Chandigarh, India
| | - Simran Tandon
- Amity School of Health Sciences, Amity University Punjab, Mohali, India.
| |
Collapse
|
55
|
Wang XH, Liu N, Zhang H, Yin ZS, Zha ZG. From cells to organs: progress and potential in cartilaginous organoids research. J Transl Med 2023; 21:926. [PMID: 38129833 PMCID: PMC10740223 DOI: 10.1186/s12967-023-04591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/04/2023] [Indexed: 12/23/2023] Open
Abstract
While cartilage tissue engineering has significantly improved the speed and quality of cartilage regeneration, the underlying metabolic mechanisms are complex, making research in this area lengthy and challenging. In the past decade, organoids have evolved rapidly as valuable research tools. Methods to create these advanced human cell models range from simple tissue culture techniques to complex bioengineering approaches. Cartilaginous organoids in part mimic the microphysiology of human cartilage and fill a gap in high-fidelity cartilage disease models to a certain extent. They hold great promise to elucidate the pathogenic mechanism of a diversity of cartilage diseases and prove crucial in the development of new drugs. This review will focus on the research progress of cartilaginous organoids and propose strategies for cartilaginous organoid construction, study directions, and future perspectives.
Collapse
Affiliation(s)
- Xiao-He Wang
- Department of Bone and Joint Surgery, the First Affliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Ning Liu
- Department of Bone and Joint Surgery, the First Affliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Hui Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Zong-Sheng Yin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Zhen-Gang Zha
- Department of Bone and Joint Surgery, the First Affliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
56
|
Zhu Y, Ding Z, Wang Y, Wu Q, Chen D, Wang L, Li Y, Yao Y, Huang J, Li Y, Wang X, Lin Y, Guan T, Zeng H, Li C. BME-free primary patient-specific organoids obtained with a one-day mimicking method to replicate the corresponding tumor for personalized treatment options. Front Oncol 2023; 13:1239957. [PMID: 38162496 PMCID: PMC10757363 DOI: 10.3389/fonc.2023.1239957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction In cancer treatment, every minute counts. Due to the unpredictable behavior of cancer cells caused by continuous mutations, each cancer patient has a unique situation and may or may not respond to a specific drug or treatment. The process of finding an effective therapy can be time-consuming, but cancer patients do not have the luxury of time for trial and error. Therefore, a novel technology to fast generate a patient relevant organoid for the therapies selecting is urgently needed. Methods Utilizing the new organoid technology by specially dissolving the mesenchyme in tumor tissues acquired from cancer patients, we realized the work of creating patient-specific organoids (PSO) within one day. Results PSO properties reflect those of its respective original in vivo tumor tissue and can be utilized to perform various in vitro drug sensitivity tests to identify the most effective clinical treatment for patients. Additionally, PSO can aid in assessing the efficacy of immune cell therapies. Discussion Organoid technology has advanced significantly in recent years. However, current cancer organoid methods involve creating 3D tumor tissue from 2D cancer cells or cell clusters, primarily for cancer research purposes aimed at investigating related molecular and cellular mechanisms of tumor development. These methods are research-driven, not tailored towards clinical applications, and cannot provide personalized information for individual patients. PSO filled the gap of clinic-driven and time-saving method for the personalized therapies selecting to the cancer patients.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Gynecological Oncology, Tumor Hospital Affiliated to Medical College of Shantou University, Shantou, China
| | - Zhechun Ding
- Department of Cancer Research, Guangdong Procapzoom Biosciences, Inc., Guangzhou, Guangdong, China
| | - Yini Wang
- Department of Gynecological Oncology, Tumor Hospital Affiliated to Medical College of Shantou University, Shantou, China
| | - Qing Wu
- Department of Gynecological Oncology, Tumor Hospital Affiliated to Medical College of Shantou University, Shantou, China
| | - Dongmei Chen
- Department of Cancer Research, Guangdong Procapzoom Biosciences, Inc., Guangzhou, Guangdong, China
| | - Luanhong Wang
- Department of Gynecological Oncology, Tumor Hospital Affiliated to Medical College of Shantou University, Shantou, China
| | - Yuancheng Li
- Department of Gynecological Oncology, Tumor Hospital Affiliated to Medical College of Shantou University, Shantou, China
| | - Yao Yao
- Department of Cancer Research, Guangdong Procapzoom Biosciences, Inc., Guangzhou, Guangdong, China
| | - Jiman Huang
- Department of Cancer Research, Guangdong Procapzoom Biosciences, Inc., Guangzhou, Guangdong, China
| | - Yun Li
- Department of Cancer Research, Guangdong Procapzoom Biosciences, Inc., Guangzhou, Guangdong, China
| | - Xiaojing Wang
- Department of Gynecological Oncology, Tumor Hospital Affiliated to Medical College of Shantou University, Shantou, China
| | - Yanchun Lin
- Department of Cancer Research, Guangdong Procapzoom Biosciences, Inc., Guangzhou, Guangdong, China
| | - Tian Guan
- Department of Cancer Research, Guangdong Procapzoom Biosciences, Inc., Guangzhou, Guangdong, China
| | - Haoyu Zeng
- Department of Cancer Research, Guangdong Procapzoom Biosciences, Inc., Guangzhou, Guangdong, China
| | - Congzhu Li
- Department of Gynecological Oncology, Tumor Hospital Affiliated to Medical College of Shantou University, Shantou, China
| |
Collapse
|
57
|
Chen S, Wang L, Yang L, Rana AS, He C. Engineering Biomimetic Microenvironment for Organoid. Macromol Biosci 2023; 23:e2300223. [PMID: 37531622 DOI: 10.1002/mabi.202300223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Organoid is an emerging frontier technology in the field of life science, in which pluripotent stem cells or tissue-derived differentiated/progenitor cells form 3D structures according to their multi-directional differentiation potential and self-assembly ability. Nowadays, although various types of organoids are widely investigated, their construction is still complicated in operation, uncertain in yield, and poor in reproducibility for the structure and function of native organs. Constructing a biomimetic microenvironment for stem cell proliferation and differentiation in vitro is recognized as a key to driving this field. This review reviews the recent development of engineered biomimetic microenvironments for organoids. First, the composition of the matrix for organoid culture is summarized. Then, strategies for engineering the microenvironment from biophysical, biochemical, and cellular perspectives are discussed in detail. Subsequently, the newly developed monitoring technologies are also reviewed. Finally, a brief conclusion and outlook are presented for the inspiration of future research.
Collapse
Affiliation(s)
- Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Lijuan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Lei Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Abdus Samad Rana
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
58
|
Giafaglione JM, Crowell PD, Delcourt AML, Hashimoto T, Ha SM, Atmakuri A, Nunley NM, Dang RMA, Tian M, Diaz JA, Tika E, Payne MC, Burkhart DL, Li D, Navone NM, Corey E, Nelson PS, Lin NYC, Blanpain C, Ellis L, Boutros PC, Goldstein AS. Prostate lineage-specific metabolism governs luminal differentiation and response to antiandrogen treatment. Nat Cell Biol 2023; 25:1821-1832. [PMID: 38049604 PMCID: PMC10709144 DOI: 10.1038/s41556-023-01274-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/26/2023] [Indexed: 12/06/2023]
Abstract
Lineage transitions are a central feature of prostate development, tumourigenesis and treatment resistance. While epigenetic changes are well known to drive prostate lineage transitions, it remains unclear how upstream metabolic signalling contributes to the regulation of prostate epithelial identity. To fill this gap, we developed an approach to perform metabolomics on primary prostate epithelial cells. Using this approach, we discovered that the basal and luminal cells of the prostate exhibit distinct metabolomes and nutrient utilization patterns. Furthermore, basal-to-luminal differentiation is accompanied by increased pyruvate oxidation. We establish the mitochondrial pyruvate carrier and subsequent lactate accumulation as regulators of prostate luminal identity. Inhibition of the mitochondrial pyruvate carrier or supplementation with exogenous lactate results in large-scale chromatin remodelling, influencing both lineage-specific transcription factors and response to antiandrogen treatment. These results establish reciprocal regulation of metabolism and prostate epithelial lineage identity.
Collapse
Affiliation(s)
- Jenna M Giafaglione
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Preston D Crowell
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amelie M L Delcourt
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Takao Hashimoto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sung Min Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aishwarya Atmakuri
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas M Nunley
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rachel M A Dang
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mao Tian
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Johnny A Diaz
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elisavet Tika
- Laboratory of Stem Cells and Cancer, WEL Research Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marie C Payne
- Department of Mechanical & Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Deborah L Burkhart
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dapei Li
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nora M Navone
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Eva Corey
- University of Washington, Seattle, WA, USA
| | | | - Neil Y C Lin
- Department of Mechanical & Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cedric Blanpain
- Laboratory of Stem Cells and Cancer, WEL Research Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Leigh Ellis
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul C Boutros
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrew S Goldstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
59
|
Roberto de Barros N, Wang C, Maity S, Peirsman A, Nasiri R, Herland A, Ermis M, Kawakita S, Gregatti Carvalho B, Hosseinzadeh Kouchehbaghi N, Donizetti Herculano R, Tirpáková Z, Mohammad Hossein Dabiri S, Lucas Tanaka J, Falcone N, Choroomi A, Chen R, Huang S, Zisblatt E, Huang Y, Rashad A, Khorsandi D, Gangrade A, Voskanian L, Zhu Y, Li B, Akbari M, Lee J, Remzi Dokmeci M, Kim HJ, Khademhosseini A. Engineered organoids for biomedical applications. Adv Drug Deliv Rev 2023; 203:115142. [PMID: 37967768 PMCID: PMC10842104 DOI: 10.1016/j.addr.2023.115142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/03/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
As miniaturized and simplified stem cell-derived 3D organ-like structures, organoids are rapidly emerging as powerful tools for biomedical applications. With their potential for personalized therapeutic interventions and high-throughput drug screening, organoids have gained significant attention recently. In this review, we discuss the latest developments in engineering organoids and using materials engineering, biochemical modifications, and advanced manufacturing technologies to improve organoid culture and replicate vital anatomical structures and functions of human tissues. We then explore the diverse biomedical applications of organoids, including drug development and disease modeling, and highlight the tools and analytical techniques used to investigate organoids and their microenvironments. We also examine the latest clinical trials and patents related to organoids that show promise for future clinical translation. Finally, we discuss the challenges and future perspectives of using organoids to advance biomedical research and potentially transform personalized medicine.
Collapse
Affiliation(s)
| | - Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Surjendu Maity
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Arne Peirsman
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Plastic and Reconstructive Surgery, Ghent University Hospital, Ghent, Belgium
| | - Rohollah Nasiri
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, 17165 Solna, Sweden
| | - Anna Herland
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, 17165 Solna, Sweden
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Bruna Gregatti Carvalho
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970 Campinas, Brazil
| | - Negar Hosseinzadeh Kouchehbaghi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, 1591634311 Tehran, Iran
| | - Rondinelli Donizetti Herculano
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; São Paulo State University (UNESP), Bioengineering and Biomaterials Group, School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Zuzana Tirpáková
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
| | - Seyed Mohammad Hossein Dabiri
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Jean Lucas Tanaka
- Butantan Institute, Viral Biotechnology Laboratory, São Paulo, SP Brazil; University of São Paulo (USP), São Paulo, SP Brazil
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Auveen Choroomi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - RunRun Chen
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Shuyi Huang
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Elisheva Zisblatt
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Yixuan Huang
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Ahmad Rashad
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Ankit Gangrade
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Leon Voskanian
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | | | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; College of Pharmacy, Korea University, Sejong 30019, Republic of Korea.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA.
| |
Collapse
|
60
|
Liao SY, Rudoy D, Frank SB, Phan LT, Klezovitch O, Kwan J, Coleman I, Haffner MC, Li D, Nelson PS, Emili A, Vasioukhin V. SND1 binds to ERG and promotes tumor growth in genetic mouse models of prostate cancer. Nat Commun 2023; 14:7435. [PMID: 37973913 PMCID: PMC10654515 DOI: 10.1038/s41467-023-43245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
SND1 and MTDH are known to promote cancer and therapy resistance, but their mechanisms and interactions with other oncogenes remain unclear. Here, we show that oncoprotein ERG interacts with SND1/MTDH complex through SND1's Tudor domain. ERG, an ETS-domain transcription factor, is overexpressed in many prostate cancers. Knocking down SND1 in human prostate epithelial cells, especially those overexpressing ERG, negatively impacts cell proliferation. Transcriptional analysis shows substantial overlap in genes regulated by ERG and SND1. Mechanistically, we show that ERG promotes nuclear localization of SND1/MTDH. Forced nuclear localization of SND1 prominently increases its growth promoting function irrespective of ERG expression. In mice, prostate-specific Snd1 deletion reduces cancer growth and tumor burden in a prostate cancer model (PB-Cre/Ptenflox/flox/ERG mice), Moreover, we find a significant overlap between prostate transcriptional signatures of ERG and SND1. These findings highlight SND1's crucial role in prostate tumorigenesis, suggesting SND1 as a potential therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Sheng-You Liao
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Dmytro Rudoy
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sander B Frank
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Luan T Phan
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Olga Klezovitch
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Julian Kwan
- Center for Network Systems Biology, Departments of Biochemistry & Biology, Boston University, Boston, MA, USA
| | - Ilsa Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Dapei Li
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew Emili
- Center for Network Systems Biology, Departments of Biochemistry & Biology, Boston University, Boston, MA, USA
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
61
|
Ge Q, Li J, Yang F, Tian X, Zhang M, Hao Z, Liang C, Meng J. Molecular classifications of prostate cancer: basis for individualized risk stratification and precision therapy. Ann Med 2023; 55:2279235. [PMID: 37939258 PMCID: PMC10653710 DOI: 10.1080/07853890.2023.2279235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Tumour classifications play a pivotal role in prostate cancer (PCa) management. It can predict the clinical outcomes of PCa as early as the disease is diagnosed and then guide therapeutic schemes, such as active monitoring, standalone surgical intervention, or surgery supplemented with postoperative adjunctive therapy, thereby circumventing disease exacerbation and excessive treatment. Classifications based on clinicopathological features, such as prostate cancer-specific antigen, Gleason score, and TNM stage, are still the main risk stratification strategies and have played an essential role in standardized clinical decision-making. However, mounting evidence indicates that clinicopathological parameters in isolation fail to adequately capture the heterogeneity exhibited among distinct PCa patients, such as those sharing identical Gleason scores yet experiencing divergent prognoses. As a remedy, molecular classifications have been introduced. Currently, molecular studies have revealed the characteristic genomic alterations, epigenetic modulations, and tumour microenvironment associated with different types of PCa, which provide a chance for urologists to refine the PCa classification. In this context, numerous invaluable molecular classifications have been devised, employing disparate statistical methodologies and algorithmic approaches, encompassing self-organizing map clustering, unsupervised cluster analysis, and multifarious algorithms. Interestingly, the classifier PAM50 was used in a phase-2 multicentre open-label trial, NRG-GU-006, for further validation, which hints at the promise of molecular classification for clinical use. Consequently, this review examines the extant molecular classifications, delineates the prevailing panorama of clinically pertinent molecular signatures, and delves into eight emblematic molecular classifications, dissecting their methodological underpinnings and clinical utility.
Collapse
Affiliation(s)
- Qintao Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Jiawei Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Feixiang Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | | | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| |
Collapse
|
62
|
Woodman IL. Modelling the distinct roles of epithelial and stromal androgen receptor in the regulation of prostate epithelial dynamics. FEBS J 2023; 290:5270-5291. [PMID: 37424435 DOI: 10.1111/febs.16900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
The prostate is an androgen-responsive organ, but the complex cellular and molecular interactions that mediate these responses remain incompletely defined. Here, I synthesise the existing literature to derive a simple conceptual framework describing the androgen-dependent regulation of prostate epithelial dynamics. In this framework, epithelial androgen receptor (AR) cell-autonomously controls luminal cell height, whereas stromal AR regulates the synthesis of growth factors that promote luminal cell survival and proliferation. With the additional aid of a reanalysis of single-cell RNA-seq data, I also propose that insulin-like growth factor 1 (IGF1) functions as a key androgen-dependent growth factor coordinating stromal-to-epithelial paracrine communication. A novel mathematical model based on this framework was able to quantitatively fit experimental data describing prostate regression and regeneration. Model analysis demonstrates how the luminal cell population can maintain a stable equilibrium size via competition for and degradation of stroma-derived IGF1 and how this population size can be controlled by androgen levels, without a requirement for distinct luminal cell subsets. Moreover, model simulations were able to qualitatively recapitulate experimental observations in inflammatory and cancerous states, thereby providing insights into potential disease mechanisms. This simple model could therefore serve as a foundation for more comprehensive modelling of both the healthy and diseased prostate.
Collapse
|
63
|
Tian H, Ren J, Mou R, Jia Y. Application of organoids in precision immunotherapy of lung cancer (Review). Oncol Lett 2023; 26:484. [PMID: 37818130 PMCID: PMC10561155 DOI: 10.3892/ol.2023.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/18/2023] [Indexed: 10/12/2023] Open
Abstract
In immunotherapy, the immune system is modulated in order to treat cancer. Traditional two dimensional in vitro models and in vivo animal models are insufficient to simulate the complex tumor microenvironment (TME) in the original tumor. As tumor immunotherapy involves the immune system, additional tumor mimic models, such as patient-derived organoids, are required for the evaluation of the efficacy of immunotherapy. Furthermore, non-tumor components and host tumor cells in the TME may interact to promote cancer incidence, progression, drug resistance and metastasis. It is possible to produce organoid models for lung cancer by retaining endogenous stromal components (e.g., multiple immune cell types), supplying cancer-associated fibroblasts and exogenous immune cells, constructing tumor vasculature and adding other biological or chemical components that emulate the TME. Therefore, the lung cancer organoid culture platform may facilitate preclinical testing of immunotherapy drugs for lung cancer by mimicking immunotherapy responses. The present review summarizes current lung cancer organoid culture methods for TME modeling and discusses the use of lung cancer-derived organoids for the detection of lung cancer immunotherapy and individualized cancer immunotherapy.
Collapse
Affiliation(s)
- Huichuan Tian
- Department of Medical Oncology, The First Teaching Hospital of Tianjin University of Chinese Medicine, Tianjin 300381, P.R. China
- National Clinical Research Center of Chinese Acupuncture and Moxibustion, Tianjin 300381, P.R. China
| | - Jiajun Ren
- Department of Medical Oncology, The First Teaching Hospital of Tianjin University of Chinese Medicine, Tianjin 300381, P.R. China
- National Clinical Research Center of Chinese Acupuncture and Moxibustion, Tianjin 300381, P.R. China
| | - Ruiyu Mou
- Department of Medical Oncology, The First Teaching Hospital of Tianjin University of Chinese Medicine, Tianjin 300381, P.R. China
- National Clinical Research Center of Chinese Acupuncture and Moxibustion, Tianjin 300381, P.R. China
| | - Yingjie Jia
- Department of Medical Oncology, The First Teaching Hospital of Tianjin University of Chinese Medicine, Tianjin 300381, P.R. China
- National Clinical Research Center of Chinese Acupuncture and Moxibustion, Tianjin 300381, P.R. China
| |
Collapse
|
64
|
Lee MJ, Cho Y, Hwang Y, Jo Y, Kim YG, Lee SH, Lee JH. Kaempferol Alleviates Mitochondrial Damage by Reducing Mitochondrial Reactive Oxygen Species Production in Lipopolysaccharide-Induced Prostate Organoids. Foods 2023; 12:3836. [PMID: 37893729 PMCID: PMC10606128 DOI: 10.3390/foods12203836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Common prostate diseases such as prostatitis and benign prostatic hyperplasia (BPH) have a high incidence at any age. Cellular stresses, such as reactive oxygen species (ROS) and chronic inflammation, are implicated in prostate enlargement and cancer progression and development. Kaempferol is a flavonoid found in abundance in various plants, including broccoli and spinach, and has been reported to exhibit positive biological activities, such as antioxidant and anti-inflammatory properties. In the present study, we introduced prostate organoids to investigate the protective effects of kaempferol against various cellular stresses. The levels of COX-2, iNOS, p-IκB, a pro-inflammatory cytokine, and ROS were increased by LPS treatment but reversed by kaempferol treatment. Kaempferol activated the nuclear factor erythroid 2-related factor 2(Nrf2)-related pathway and enhanced the mitochondrial quality control proteins PGC-1α, PINK1, Parkin, and Beclin. The increase in mitochondrial ROS and oxygen consumption induced by LPS was stabilized by kaempferol treatment. First, our study used prostate organoids as a novel evaluation platform. Secondly, it was demonstrated that kaempferol could alleviate the mitochondrial damage in LPS-induced induced prostate organoids by reducing the production of mitochondrial ROS.
Collapse
Affiliation(s)
- Myeong Joon Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea; (M.J.L.); (Y.C.); (Y.H.)
| | - Yeonoh Cho
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea; (M.J.L.); (Y.C.); (Y.H.)
| | - Yujin Hwang
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea; (M.J.L.); (Y.C.); (Y.H.)
| | - Youngheun Jo
- Department of Urology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea;
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seung Hwan Lee
- Department of Urology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea; (M.J.L.); (Y.C.); (Y.H.)
| |
Collapse
|
65
|
Rago V, Perri A, Di Agostino S. New Therapeutic Perspectives in Prostate Cancer: Patient-Derived Organoids and Patient-Derived Xenograft Models in Precision Medicine. Biomedicines 2023; 11:2743. [PMID: 37893116 PMCID: PMC10604340 DOI: 10.3390/biomedicines11102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
One of the major goals in the advancement of basic cancer research focuses on the development of new anticancer therapies. To understand the molecular mechanisms of cancer progression, acquired drug resistance, and the metastatic process, the use of preclinical in vitro models that faithfully summarize the properties of the tumor in patients is still a necessity. The tumor is represented by a diverse group of cell clones, and in recent years, to reproduce in vitro preclinical tumor models, monolayer cell cultures have been supplanted by patient-derived xenograft (PDX) models and cultured organoids derived from the patient (PDO). These models have proved indispensable for the study of the tumor microenvironment (TME) and its interaction with tumor cells. Prostate cancer (PCa) is the most common neoplasia in men in the world. It is characterized by genomic instability and resistance to conventional therapies. Despite recent advances in diagnosis and treatment, PCa remains a leading cause of cancer death. Here, we review the studies of the last 10 years as the number of papers is growing very fast in the field. We also discuss the discovered limitations and the new challenges in using the organoid culture system and in using PDXs in studying the prostate cancer phenotype, performing drug testing, and developing anticancer molecular therapies.
Collapse
Affiliation(s)
- Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Anna Perri
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Silvia Di Agostino
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
66
|
Jordan R, Ford-Scheimer SL, Alarcon RM, Atala A, Borenstein JT, Brimacombe KR, Cherry S, Clevers H, Davis MI, Funnell SGP, Gehrke L, Griffith LG, Grossman AC, Hartung T, Ingber DE, Kleinstreuer NC, Kuo CJ, Lee EM, Mummery CL, Pickett TE, Ramani S, Rosado-Olivieri EA, Struble EB, Wan Z, Williams MS, Hall MD, Ferrer M, Markossian S. Report of the Assay Guidance Workshop on 3-Dimensional Tissue Models for Antiviral Drug Development. J Infect Dis 2023; 228:S337-S354. [PMID: 37669225 PMCID: PMC10547463 DOI: 10.1093/infdis/jiad334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
The National Center for Advancing Translational Sciences (NCATS) Assay Guidance Manual (AGM) Workshop on 3D Tissue Models for Antiviral Drug Development, held virtually on 7-8 June 2022, provided comprehensive coverage of critical concepts intended to help scientists establish robust, reproducible, and scalable 3D tissue models to study viruses with pandemic potential. This workshop was organized by NCATS, the National Institute of Allergy and Infectious Diseases, and the Bill and Melinda Gates Foundation. During the workshop, scientific experts from academia, industry, and government provided an overview of 3D tissue models' utility and limitations, use of existing 3D tissue models for antiviral drug development, practical advice, best practices, and case studies about the application of available 3D tissue models to infectious disease modeling. This report includes a summary of each workshop session as well as a discussion of perspectives and challenges related to the use of 3D tissues in antiviral drug discovery.
Collapse
Affiliation(s)
- Robert Jordan
- Bill and Melinda Gates Foundation, Seattle, Washington, USA
| | - Stephanie L Ford-Scheimer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Rodolfo M Alarcon
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Kyle R Brimacombe
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Mindy I Davis
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Simon G P Funnell
- UK Health Security Agency, Salisbury, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Lee Gehrke
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Abigail C Grossman
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Thomas Hartung
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Donald E Ingber
- Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Nicole C Kleinstreuer
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle, North Carolina, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
| | - Emily M Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | | | - Thames E Pickett
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Evi B Struble
- US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Zhengpeng Wan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mark S Williams
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Sarine Markossian
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
67
|
Hao S, Wang M, Yin Z, Jing Y, Bai L, Su J. Microenvironment-targeted strategy steers advanced bone regeneration. Mater Today Bio 2023; 22:100741. [PMID: 37576867 PMCID: PMC10413201 DOI: 10.1016/j.mtbio.2023.100741] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Treatment of large bone defects represents a great challenge in orthopedic and craniomaxillofacial surgery. Traditional strategies in bone tissue engineering have focused primarily on mimicking the extracellular matrix (ECM) of bone in terms of structure and composition. However, the synergistic effects of other cues from the microenvironment during bone regeneration are often neglected. The bone microenvironment is a sophisticated system that includes physiological (e.g., neighboring cells such as macrophages), chemical (e.g., oxygen, pH), and physical factors (e.g., mechanics, acoustics) that dynamically interact with each other. Microenvironment-targeted strategies are increasingly recognized as crucial for successful bone regeneration and offer promising solutions for advancing bone tissue engineering. This review provides a comprehensive overview of current microenvironment-targeted strategies and challenges for bone regeneration and further outlines prospective directions of the approaches in construction of bone organoids.
Collapse
Affiliation(s)
- Shuyue Hao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Mingkai Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 201941, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200444, China
| |
Collapse
|
68
|
García-Vílchez R, Añazco-Guenkova AM, López J, Dietmann S, Tomé M, Jimeno S, Azkargorta M, Elortza F, Bárcena L, Gonzalez-Lopez M, Aransay AM, Sánchez-Martín MA, Huertas P, Durán RV, Blanco S. N7-methylguanosine methylation of tRNAs regulates survival to stress in cancer. Oncogene 2023; 42:3169-3181. [PMID: 37660182 PMCID: PMC10589097 DOI: 10.1038/s41388-023-02825-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/27/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
Tumour progression and therapy tolerance are highly regulated and complex processes largely dependent on the plasticity of cancer cells and their capacity to respond to stress. The higher plasticity of cancer cells highlights the need for identifying targetable molecular pathways that challenge cancer cell survival. Here, we show that N7-guanosine methylation (m7G) of tRNAs, mediated by METTL1, regulates survival to stress conditions in cancer cells. Mechanistically, we find that m7G in tRNAs protects them from stress-induced cleavage and processing into 5' tRNA fragments. Our analyses reveal that the loss of tRNA m7G methylation activates stress response pathways, sensitising cancer cells to stress. Furthermore, we find that the loss of METTL1 reduces tumour growth and increases cytotoxic stress in vivo. Our study uncovers the role of m7G methylation of tRNAs in stress responses and highlights the potential of targeting METTL1 to sensitise cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Raquel García-Vílchez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Ana M Añazco-Guenkova
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Judith López
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Sabine Dietmann
- Washington University School of Medicine in St. Louis, 660S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Mercedes Tomé
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Sevilla, Spain
| | - Sonia Jimeno
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Mikel Azkargorta
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 bld., 48160, Derio, Bizkaia, Spain
- Carlos III Networked Proteomics Platform (ProteoRed-ISCIII), Madrid, Spain
| | - Félix Elortza
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 bld., 48160, Derio, Bizkaia, Spain
- Carlos III Networked Proteomics Platform (ProteoRed-ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Laura Bárcena
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 bld., 48160, Derio, Bizkaia, Spain
| | - Monika Gonzalez-Lopez
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 bld., 48160, Derio, Bizkaia, Spain
| | - Ana M Aransay
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 bld., 48160, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Manuel A Sánchez-Martín
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Pablo Huertas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Raúl V Durán
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Sevilla, Spain
| | - Sandra Blanco
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
69
|
Daneshdoust D, Luo M, Li Z, Mo X, Alothman S, Kallakury B, Schlegel R, Zhang J, Guo D, Furth PA, Liu X, Li J. Unlocking Translational Potential: Conditionally Reprogrammed Cells in Advancing Breast Cancer Research. Cells 2023; 12:2388. [PMID: 37830602 PMCID: PMC10572051 DOI: 10.3390/cells12192388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Preclinical in vitro models play an important role in studying cancer cell biology and facilitating translational research, especially in the identification of drug targets and drug discovery studies. This is particularly relevant in breast cancer, where the global burden of disease is quite high based on prevalence and a relatively high rate of lethality. Predictive tools to select patients who will be responsive to invasive or morbid therapies (radiotherapy, chemotherapy, immunotherapy, and/or surgery) are relatively lacking. To be clinically relevant, a model must accurately replicate the biology and cellular heterogeneity of the primary tumor. Addressing these requirements and overcoming the limitations of most existing cancer cell lines, which are typically derived from a single clone, we have recently developed conditional reprogramming (CR) technology. The CR technology refers to a co-culture system of primary human normal or tumor cells with irradiated murine fibroblasts in the presence of a Rho-associated kinase inhibitor to allow the primary cells to acquire stem cell properties and the ability to proliferate indefinitely in vitro without any exogenous gene or viral transfection. This innovative approach fulfills many of these needs and offers an alternative that surpasses the deficiencies associated with traditional cancer cell lines. These CR cells (CRCs) can be reprogrammed to maintain a highly proliferative state and reproduce the genomic and histological characteristics of the parental tissue. Therefore, CR technology may be a clinically relevant model to test and predict drug sensitivity, conduct gene profile analysis and xenograft research, and undertake personalized medicine. This review discusses studies that have applied CR technology to conduct breast cancer research.
Collapse
Affiliation(s)
- Danyal Daneshdoust
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Mingjue Luo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Zaibo Li
- Departments of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biostatics and Bioinformatics, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Sahar Alothman
- Departments of Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Bhaskar Kallakury
- Departments of Pathology, Lombardi Comprehensive Cancer Center, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Richard Schlegel
- Departments of Pathology, Lombardi Comprehensive Cancer Center, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Junran Zhang
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Deliang Guo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Priscilla A. Furth
- Departments of Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Departments of Pathology, Urology, and Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
70
|
Luca E, Zitzmann K, Bornstein S, Kugelmeier P, Beuschlein F, Nölting S, Hantel C. Three Dimensional Models of Endocrine Organs and Target Tissues Regulated by the Endocrine System. Cancers (Basel) 2023; 15:4601. [PMID: 37760571 PMCID: PMC10526768 DOI: 10.3390/cancers15184601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Immortalized cell lines originating from tumors and cultured in monolayers in vitro display consistent behavior and response, and generate reproducible results across laboratories. However, for certain endpoints, these cell lines behave quite differently from the original solid tumors. Thereby, the homogeneity of immortalized cell lines and two-dimensionality of monolayer cultures deters from the development of new therapies and translatability of results to the more complex situation in vivo. Organoids originating from tissue biopsies and spheroids from cell lines mimic the heterogeneous and multidimensional characteristics of tumor cells in 3D structures in vitro. Thus, they have the advantage of recapitulating the more complex tissue architecture of solid tumors. In this review, we discuss recent efforts in basic and preclinical cancer research to establish methods to generate organoids/spheroids and living biobanks from endocrine tissues and target organs under endocrine control while striving to achieve solutions in personalized medicine.
Collapse
Affiliation(s)
- Edlira Luca
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Kathrin Zitzmann
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Stefan Bornstein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | | | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| |
Collapse
|
71
|
Tan S, Deng J, Deng H, Lu L, Qin Z, Liu Y, Tang L, Li Z. Global cluster analysis and network visualization in organoids in cancer research: a scientometric mapping from 1991 to 2021. Front Oncol 2023; 13:1253573. [PMID: 37781203 PMCID: PMC10540838 DOI: 10.3389/fonc.2023.1253573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Objective In the last three decades, there has been a surge in research on cancer organoids using 3D culture technologies, which has resulted in the development of physiological human cancer models. This study aims to provide an overview of the global trends and frontiers in research on cancer organoids. Methods A total of 3189 publications on organoids in cancer research from 1991 to 2021 were collected from the Science Citation Index-Expanded (SCIE) of Web of Science (WoS). Bibliometric methods such as the R package "Bibliometrix," Citespace, and VOS viewer software were employed to investigate and visualize bibliographic coupling, co-citation, co-authorship, and co-occurrence trends, as well as publication trends in the field of organoids in cancer research. Results From 1991 to 2021, there has been a significant increase in publications on cancer organoids, with most articles being from North America, Eastern Asia, and Western Europe. The USA had the highest number of publications, citations, prolific authors, and research funding globally. Cancers was the journal with the most publications, while Nature had the best total link strength. Harvard University were the most contributive institutions. The global research in this field could be classified into five clusters: chemotherapy study, organoids for drug screening, different models, molecular mechanism study, and organoid construction. These areas are expected to remain hotspots for future research. Conclusions The number of publications on organoids in cancer research is expected to increase based on current global trends.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhonghua Li
- Department of Oncology, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| |
Collapse
|
72
|
Tiroille V, Krug A, Bokobza E, Kahi M, Bulcaen M, Ensinck MM, Geurts MH, Hendriks D, Vermeulen F, Larbret F, Gutierrez-Guerrero A, Chen Y, Van Zundert I, Rocha S, Rios AC, Medaer L, Gijsbers R, Mangeot PE, Clevers H, Carlon MS, Bost F, Verhoeyen E. Nanoblades allow high-level genome editing in murine and human organoids. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:57-74. [PMID: 37435135 PMCID: PMC10331042 DOI: 10.1016/j.omtn.2023.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/04/2023] [Indexed: 07/13/2023]
Abstract
Genome engineering has become more accessible thanks to the CRISPR-Cas9 gene-editing system. However, using this technology in synthetic organs called "organoids" is still very inefficient. This is due to the delivery methods for the CRISPR-Cas9 machinery, which include electroporation of CRISPR-Cas9 DNA, mRNA, or ribonucleoproteins containing the Cas9-gRNA complex. However, these procedures are quite toxic for the organoids. Here, we describe the use of the "nanoblade (NB)" technology, which outperformed by far gene-editing levels achieved to date for murine- and human tissue-derived organoids. We reached up to 75% of reporter gene knockout in organoids after treatment with NBs. Indeed, high-level NB-mediated knockout for the androgen receptor encoding gene and the cystic fibrosis transmembrane conductance regulator gene was achieved with single gRNA or dual gRNA containing NBs in murine prostate and colon organoids. Likewise, NBs achieved 20%-50% gene editing in human organoids. Most importantly, in contrast to other gene-editing methods, this was obtained without toxicity for the organoids. Only 4 weeks are required to obtain stable gene knockout in organoids and NBs simplify and allow rapid genome editing in organoids with little to no side effects including unwanted insertion/deletions in off-target sites thanks to transient Cas9/RNP expression.
Collapse
Affiliation(s)
- Victor Tiroille
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
- Equipe labélisée Ligue National Contre le Cancer, Basel, Switzerland
| | - Adrien Krug
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
| | - Emma Bokobza
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
- Equipe labélisée Ligue National Contre le Cancer, Basel, Switzerland
| | - Michel Kahi
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
- Equipe labélisée Ligue National Contre le Cancer, Basel, Switzerland
| | - Mattijs Bulcaen
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Marjolein M. Ensinck
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Maarten H. Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | | | | | - Alejandra Gutierrez-Guerrero
- CIRI – International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Indra Van Zundert
- Synthetic Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Susana Rocha
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Anne C. Rios
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Louise Medaer
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Rik Gijsbers
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Philippe E. Mangeot
- CIRI – International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Marianne S. Carlon
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Frédéric Bost
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
- Equipe labélisée Ligue National Contre le Cancer, Basel, Switzerland
| | - Els Verhoeyen
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
- CIRI – International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France
| |
Collapse
|
73
|
Guo J, Wang F, Huang Y, He H, Tan W, Yi M, Egelman EH, Xu B. Cell spheroid creation by transcytotic intercellular gelation. NATURE NANOTECHNOLOGY 2023; 18:1094-1104. [PMID: 37217766 PMCID: PMC10525029 DOI: 10.1038/s41565-023-01401-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/14/2023] [Indexed: 05/24/2023]
Abstract
Cell spheroids bridge the discontinuity between in vitro systems and in vivo animal models. However, inducing cell spheroids by nanomaterials remains an inefficient and poorly understood process. Here we use cryogenic electron microscopy to determine the atomic structure of helical nanofibres self-assembled from enzyme-responsive D-peptides and fluorescent imaging to show that the transcytosis of D-peptides induces intercellular nanofibres/gels that potentially interact with fibronectin to enable cell spheroid formation. Specifically, D-phosphopeptides, being protease resistant, undergo endocytosis and endosomal dephosphorylation to generate helical nanofibres. On secretion to the cell surface, these nanofibres form intercellular gels that act as artificial matrices and facilitate the fibrillogenesis of fibronectins to induce cell spheroids. No spheroid formation occurs without endo- or exocytosis, phosphate triggers or shape switching of the peptide assemblies. This study-coupling transcytosis and morphological transformation of peptide assemblies-demonstrates a potential approach for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Yimeng Huang
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Meihui Yi
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
74
|
Angori S, Banaei-Esfahani A, Mühlbauer K, Bolck HA, Kahraman A, Karakulak T, Poyet C, Feodoroff M, Potdar S, Kallioniemi O, Pietiäinen V, Schraml P, Moch H. Ex Vivo Drug Testing in Patient-derived Papillary Renal Cancer Cells Reveals EGFR and the BCL2 Family as Therapeutic Targets. Eur Urol Focus 2023; 9:751-759. [PMID: 36933996 DOI: 10.1016/j.euf.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/13/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors and antiangiogenic agents are used for first-line treatment of advanced papillary renal cell carcinoma (pRCC) but pRCC response rates to these therapies are low. OBJECTIVE To generate and characterise a functional ex vivo model to identify novel treatment options in advanced pRCC. DESIGN, SETTING, AND PARTICIPANTS We established patient-derived cell cultures (PDCs) from seven pRCC samples from patients and characterised them via genomic analysis and drug profiling. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Comprehensive molecular characterisation in terms of copy number analysis and whole-exome sequencing confirmed the concordance of pRCC PDCs with the original tumours. We evaluated their sensitivity to novel drugs by generating drug scores for each PDC. RESULTS AND LIMITATIONS PDCs confirmed pRCC-specific copy number variations such as gains in chromosomes 7, 16, and 17. Whole-exome sequencing revealed that PDCs retained mutations in pRCC-specific driver genes. We performed drug screening with 526 novel and oncological compounds. Whereas exposure to conventional drugs showed low efficacy, the results highlighted EGFR and BCL2 family inhibition as the most effective targets in our pRCC PDCs. CONCLUSIONS High-throughput drug testing on newly established pRCC PDCs revealed that inhibition of EGFR and BCL2 family members could be a therapeutic strategy in pRCC. PATIENT SUMMARY We used a new approach to generate patient-derived cells from a specific type of kidney cancer. We showed that these cells have the same genetic background as the original tumour and can be used as models to study novel treatment options for this type of kidney cancer.
Collapse
Affiliation(s)
- Silvia Angori
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Amir Banaei-Esfahani
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Katharina Mühlbauer
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Hella A Bolck
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Abdullah Kahraman
- School for Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
| | - Tülay Karakulak
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; Swiss Informatics Institute, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Cédric Poyet
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Michaela Feodoroff
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Laboratory of Immunovirotherapy, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland; Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Solna, Sweden
| | - Vilja Pietiäinen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Peter Schraml
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
75
|
Buñay J, Kossai M, Damon-Soubeyrant C, De Haze A, Saru JP, Trousson A, de Joussineau C, Bouchareb E, Kocer A, Vialat M, Dallel S, Degoul F, Bost F, Clavel S, Penault-Llorca F, Valli MP, Guy L, Matthews J, Renaud Y, Ittmann M, Jones J, Morel L, Lobaccaro JM, Baron S. Persistent organic pollutants promote aggressiveness in prostate cancer. Oncogene 2023; 42:2854-2867. [PMID: 37587334 DOI: 10.1038/s41388-023-02788-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Increasing evidence points towards a causal link between exposure to persistent organic pollutants (POPs) with increased incidence and aggressivity of various cancers. Among these POPs, dioxin and PCB-153 are widely found in our environment and represent a significant source of contamination. Dioxin exposure has already been linked to cancer such as non-Hodgkin's lymphoma, but remains to be more extensively investigated in other cancers. Potential implications of dioxin and PCB-153 in prostate cancer progression spurred us to challenge both ex vivo and in vivo models with low doses of these POPs. We found that dioxin or PCB-153 exposure increased hallmarks of growth and metastasis of prostate cancer cells ex vivo and in grafted NOD-SCID mice. Exposure induced histopathological carcinoma-like patterns in the Ptenpc-/- mice. We identified up-regulation of Acetyl-CoA Acetyltransferase-1 (ACAT1) involved in ketone bodies pathway as a potential target. Mechanistically, genetic inhibition confirmed that ACAT1 mediated dioxin effect on cell migration. Using public prostate cancer datasets, we confirmed the deregulation of ACAT1 and associated gene encoded ketone bodies pathway enzymes such as OXCT1, BDH1 and HMGCL in advanced prostate cancer. To further explore this link between dioxin and ACAT1 deregulation, we analyzed a unique prostate-tumour tissue collection from the USA veterans exposed to agent orange, known to be highly contaminated by dioxin because of industrial production. We found that ACAT1 histoscore is significantly increased in exposed patients. Our studies reveal the implication of dioxin and PCB-153 to induce a prometastatic programme in prostate tumours and identify ACAT1 deregulation as a key event in this process.
Collapse
Affiliation(s)
- Julio Buñay
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Myriam Kossai
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre Jean Perrin, Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000, Clermont Ferrand, France
| | - Christelle Damon-Soubeyrant
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Angélique De Haze
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Jean-Paul Saru
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Amalia Trousson
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Cyrille de Joussineau
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Erwan Bouchareb
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Ayhan Kocer
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Marine Vialat
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Sarah Dallel
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Françoise Degoul
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Frédéric Bost
- Université Côte d'Azur, INSERM U1065, C3M, Equipe Labellisée Ligue Nationale contre le Cancer, 2022, F-06204, Nice, France
| | - Stephan Clavel
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRS UMR7275, Sophia-Antipolis, Valbonne, France
| | - Frédérique Penault-Llorca
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre Jean Perrin, Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000, Clermont Ferrand, France
| | - Marie-Pierre Valli
- Service d'Urologie, CHU Clermont-Ferrand, UMR1240 INSERM, Université Clermont-Auvergne, Clermont Ferrand, France
| | - Laurent Guy
- Service d'Urologie, CHU Clermont-Ferrand, UMR1240 INSERM, Université Clermont-Auvergne, Clermont Ferrand, France
| | - Jason Matthews
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Yoan Renaud
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Michael Ittmann
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Center for Metabolism and Experimental Therapeutics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, and Michael E. DeBakey VAMC Houston, Houston, TX, 77030, USA
| | - Jeffrey Jones
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Urology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Operative Care Line, Urology Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, 77030, USA
| | - Laurent Morel
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Jean-Marc Lobaccaro
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Silvère Baron
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France.
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France.
| |
Collapse
|
76
|
Chessa TAM, Jung P, Anwar A, Suire S, Anderson KE, Barneda D, Kielkowska A, Sadiq BA, Lai IW, Felisbino S, Turnham DJ, Pearson HB, Phillips WA, Sasaki J, Sasaki T, Oxley D, Spensberger D, Segonds-Pichon A, Wilson M, Walker S, Okkenhaug H, Cosulich S, Hawkins PT, Stephens LR. PLEKHS1 drives PI3Ks and remodels pathway homeostasis in PTEN-null prostate. Mol Cell 2023; 83:2991-3009.e13. [PMID: 37567175 DOI: 10.1016/j.molcel.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/05/2023] [Accepted: 07/13/2023] [Indexed: 08/13/2023]
Abstract
The PIP3/PI3K network is a central regulator of metabolism and is frequently activated in cancer, commonly by loss of the PIP3/PI(3,4)P2 phosphatase, PTEN. Despite huge research investment, the drivers of the PI3K network in normal tissues and how they adapt to overactivation are unclear. We find that in healthy mouse prostate PI3K activity is driven by RTK/IRS signaling and constrained by pathway feedback. In the absence of PTEN, the network is dramatically remodeled. A poorly understood YXXM- and PIP3/PI(3,4)P2-binding PH domain-containing adaptor, PLEKHS1, became the dominant activator and was required to sustain PIP3, AKT phosphorylation, and growth in PTEN-null prostate. This was because PLEKHS1 evaded pathway-feedback and experienced enhanced PI3K- and Src-family kinase-dependent phosphorylation of Y258XXM, eliciting PI3K activation. hPLEKHS1 mRNA and activating Y419 phosphorylation of hSrc correlated with PI3K pathway activity in human prostate cancers. We propose that in PTEN-null cells receptor-independent, Src-dependent tyrosine phosphorylation of PLEKHS1 creates positive feedback that escapes homeostasis, drives PIP3 signaling, and supports tumor progression.
Collapse
Affiliation(s)
| | - Piotr Jung
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Arqum Anwar
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Sabine Suire
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Karen E Anderson
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - David Barneda
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Anna Kielkowska
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Barzan A Sadiq
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Ieng Wai Lai
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Sergio Felisbino
- Department of Structural and Functional Biology, São Paulo State University, Botucatu, SP CEP: 18618-689, Brazil
| | - Daniel J Turnham
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff CF24 4HQ, UK
| | - Helen B Pearson
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff CF24 4HQ, UK
| | - Wayne A Phillips
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Junko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - David Oxley
- Mass Spectrometry Facility, Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | - Michael Wilson
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Simon Walker
- Imaging Facility, Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | | | - Len R Stephens
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, UK.
| |
Collapse
|
77
|
Fujimura T, Enomoto Y, Katsura H, Ogawa T, Baba S, Ogata A, Yamaoka A, Shiroguchi K, Morimoto M. Identifying a Lung Stem Cell Subpopulation by Combining Single-Cell Morphometrics, Organoid Culture, and Transcriptomics. Stem Cells 2023; 41:809-820. [PMID: 37468433 PMCID: PMC10427966 DOI: 10.1093/stmcls/sxad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/15/2023] [Indexed: 07/21/2023]
Abstract
Single-cell RNA sequencing is a valuable tool for dissecting cellular heterogeneity in complex systems. However, it is still challenging to estimate the proliferation and differentiation potentials of subpopulations within dormant tissue stem cells. Here, we established a new single-cell analysis method for profiling the organoid-forming capacity and differentiation potential of tissue stem cells to disclose stem cell subpopulations by integrating single-cell morphometrics, organoid-forming assay, and RNA sequencing, a method named scMORN. To explore lung epithelial stem cells, we initially developed feeder-free culture system, which could expand all major lung stem cells, including basal, club, and alveolar type 2 (AT2) cells, and found that club cells contained a subpopulation, which showed better survival rate and high proliferation capacity and could differentiate into alveolar cells. Using the scMORN method, we discovered a club cell subpopulation named Muc5b+ and large club (ML-club) cells that efficiently formed organoids than other club or AT2 cells in our feeder-free organoid culture and differentiated into alveolar cells in vitro. Single-cell transcriptome profiling and immunohistochemical analysis revealed that ML-club cells localized at the intrapulmonary proximal airway and distinct from known subpopulations of club cells such as BASCs. Furthermore, we identified CD14 as a cell surface antigen of ML-club cells and showed that purified CD14+ club cells engrafted into injured mouse lungs had better engraftment rate and expansion than other major lung stem cells, reflecting the observations in organoid culture systems. The scMORN method could be adapted to different stem cell tissues to discover useful stem-cell subpopulations.
Collapse
Affiliation(s)
- Takashi Fujimura
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Department of Drug Modality Development, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan
| | - Yasunori Enomoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Hiroaki Katsura
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Taisaku Ogawa
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Japan
| | - Saori Baba
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Akira Ogata
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Akira Yamaoka
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Katsuyuki Shiroguchi
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Japan
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
78
|
Buskin A, Scott E, Nelson R, Gaughan L, Robson CN, Heer R, Hepburn AC. Engineering prostate cancer in vitro: what does it take? Oncogene 2023; 42:2417-2427. [PMID: 37438470 PMCID: PMC10403358 DOI: 10.1038/s41388-023-02776-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
A key challenge in the clinical management and cause of treatment failure of prostate cancer (PCa) is its molecular, cellular and clinical heterogeneity. Modelling systems that fully recapitulate clinical diversity and resistant phenotypes are urgently required for the development of successful personalised PCa therapies. The advent of the three-dimensional (3D) organoid model has revolutionised preclinical cancer research through reflecting heterogeneity and offering genomic and environmental manipulation that has opened up unparalleled opportunities for applications in disease modelling, high-throughput drug screening and precision medicine. Despite these remarkable achievements of organoid technology, several shortcomings in emulating the complex tumor microenvironment and dynamic process of metastasis as well as the epigenome profile limit organoids achieving true in vivo functionality. Technological advances in tissue engineering have enabled the development of innovative tools to facilitate the design of improved 3D cancer models. In this review, we highlight the current in vitro 3D PCa models with a special focus on organoids and discuss engineering approaches to create more physiologically relevant PCa organoid models and maximise their translational relevance that ultimately will help to realise the transformational power of precision medicine.
Collapse
Affiliation(s)
- Adriana Buskin
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Emma Scott
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ryan Nelson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Luke Gaughan
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Craig N Robson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.
| | - Anastasia C Hepburn
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
79
|
Szabó L, Seubert AC, Kretzschmar K. Modelling adult stem cells and their niche in health and disease with epithelial organoids. Semin Cell Dev Biol 2023; 144:20-30. [PMID: 36127261 DOI: 10.1016/j.semcdb.2022.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Adult stem cells are responsible for homoeostasis and regeneration of epithelial tissues. Stem cell function is regulated by both cell autonomous mechanisms as well as the niche. Deregulated stem cell function contributes to diseases such as cancer. Epithelial organoid cultures generated from tissue-resident adult stem cells have allowed unprecedented insights into the biology of epithelial tissues. The subsequent adaptation of organoid technology enabled the modelling of the communication of stem cells with their cellular and non-cellular niche as well as diseases. Starting from its first model described in 2009, the murine small intestinal organoid, we discuss here how epithelial organoid cultures have been become a prime in vitro research tool for cell and developmental biology, bioengineering, and biomedicine in the last decade.
Collapse
Affiliation(s)
- Lili Szabó
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, IZKF/MSNZ, Würzburg, Germany
| | - Anna C Seubert
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, IZKF/MSNZ, Würzburg, Germany
| | - Kai Kretzschmar
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, IZKF/MSNZ, Würzburg, Germany.
| |
Collapse
|
80
|
Yan HHN, Chan AS, Lai FPL, Leung SY. Organoid cultures for cancer modeling. Cell Stem Cell 2023; 30:917-937. [PMID: 37315564 DOI: 10.1016/j.stem.2023.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Organoids derived from adult stem cells (ASCs) and pluripotent stem cells (PSCs) are important preclinical models for studying cancer and developing therapies. Here, we review primary tissue-derived and PSC-derived cancer organoid models and detail how they have the potential to inform personalized medical approaches in different organ contexts and contribute to the understanding of early carcinogenic steps, cancer genomes, and biology. We also compare the differences between ASC- and PSC-based cancer organoid systems, discuss their limitations, and highlight recent improvements to organoid culture approaches that have helped to make them an even better representation of human tumors.
Collapse
Affiliation(s)
- Helen H N Yan
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
| | - April S Chan
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Frank Pui-Ling Lai
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Suet Yi Leung
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China; Jockey Club Centre for Clinical Innovation and Discovery, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, China; Centre for PanorOmic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
81
|
Singh P, Lanman NA, Kendall HLR, Wilson L, Long R, Franco OE, Buskin A, Miles CG, Hayward SW, Heer R, Robson CN. Human prostate organoid generation and the identification of prostate development drivers using inductive rodent tissues. Development 2023; 150:dev201328. [PMID: 37376888 PMCID: PMC10357030 DOI: 10.1242/dev.201328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
The reactivation of developmental genes and pathways during adulthood may contribute to pathogenesis of diseases such as prostate cancer. Analysis of the mechanistic links between development and disease could be exploited to identify signalling pathways leading to disease in the prostate. However, the mechanisms underpinning prostate development require further characterisation to interrogate fully the link between development and disease. Previously, our group developed methods to produce prostate organoids using induced pluripotent stem cells (iPSCs). Here, we show that human iPSCs can be differentiated into prostate organoids using neonatal rat seminal vesicle mesenchyme in vitro. The organoids can be used to study prostate development or modified to study prostate cancer. We also elucidated molecular drivers of prostate induction through RNA-sequencing analyses of the rat urogenital sinus and neonatal seminal vesicles. We identified candidate drivers of prostate development evident in the inductive mesenchyme and epithelium involved with prostate specification. Our top candidates included Spx, Trib3, Snai1, Snai2, Nrg2 and Lrp4. This work lays the foundations for further interrogation of the reactivation of developmental genes in adulthood, leading to prostate disease.
Collapse
Affiliation(s)
- Parmveer Singh
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, NE2 4AD, UK
| | - Nadia A. Lanman
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Hannah L. R. Kendall
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, NE2 4AD, UK
| | - Laura Wilson
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, NE2 4AD, UK
| | - Ryan Long
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, NE2 4AD, UK
| | - Omar E. Franco
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL 60201, USA
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Adriana Buskin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, NE2 4AD, UK
| | - Colin G. Miles
- Translational and Clinical Research Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Simon W. Hayward
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL 60201, USA
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Rakesh Heer
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, NE2 4AD, UK
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - Craig N. Robson
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, NE2 4AD, UK
| |
Collapse
|
82
|
Qi H, Tan X, Zhang W, Zhou Y, Chen S, Zha D, Wang S, Wen J. The applications and techniques of organoids in head and neck cancer therapy. Front Oncol 2023; 13:1191614. [PMID: 37427120 PMCID: PMC10328716 DOI: 10.3389/fonc.2023.1191614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Head and neck cancer (HNC) is one of the most common cancers on the planet, with approximately 600,000 new cases diagnosed and 300,000 deaths every year. Research into the biological basis of HNC has advanced slowly over the past decades, which has made it difficult to develop new, more effective treatments. The patient-derived organoids (PDOs) are made from patient tumor cells, resembling the features of their tumors, which are high-fidelity models for studying cancer biology and designing new precision medicine therapies. In recent years, considerable effort has been focused on improving "organoids" technologies and identifying tumor-specific medicine using head and neck samples and a variety of organoids. A review of improved techniques and conclusions reported in publications describing the application of these techniques to HNC organoids is presented here. Additionally, we discuss the potential application of organoids in head and neck cancer research as well as the limitations associated with these models. As a result of the integration of organoid models into future precision medicine research and therapeutic profiling programs, the use of organoids will be extremely significant in the future.
Collapse
Affiliation(s)
- Hao Qi
- The Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xiaolin Tan
- The Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Department of Clinical Nutrition, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Wenshuo Zhang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yihong Zhou
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Shaoyi Chen
- The Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Dasong Zha
- The Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Siyang Wang
- The Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Jinming Wen
- The Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| |
Collapse
|
83
|
Liang D, Feng Y, Zandkarimi F, Wang H, Zhang Z, Kim J, Cai Y, Gu W, Stockwell BR, Jiang X. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 2023; 186:2748-2764.e22. [PMID: 37267948 PMCID: PMC10330611 DOI: 10.1016/j.cell.2023.05.003] [Citation(s) in RCA: 230] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 06/04/2023]
Abstract
Ferroptosis, a cell death process driven by iron-dependent phospholipid peroxidation, has been implicated in various diseases. There are two major surveillance mechanisms to suppress ferroptosis: one mediated by glutathione peroxidase 4 (GPX4) that catalyzes the reduction of phospholipid peroxides and the other mediated by enzymes, such as FSP1, that produce metabolites with free radical-trapping antioxidant activity. In this study, through a whole-genome CRISPR activation screen, followed by mechanistic investigation, we identified phospholipid-modifying enzymes MBOAT1 and MBOAT2 as ferroptosis suppressors. MBOAT1/2 inhibit ferroptosis by remodeling the cellular phospholipid profile, and strikingly, their ferroptosis surveillance function is independent of GPX4 or FSP1. MBOAT1 and MBOAT2 are transcriptionally upregulated by sex hormone receptors, i.e., estrogen receptor (ER) and androgen receptor (AR), respectively. A combination of ER or AR antagonist with ferroptosis induction significantly inhibited the growth of ER+ breast cancer and AR+ prostate cancer, even when tumors were resistant to single-agent hormonal therapies.
Collapse
Affiliation(s)
- Deguang Liang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yan Feng
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fereshteh Zandkarimi
- Department of Biological Sciences, Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Hua Wang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zeda Zhang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jinnie Kim
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yanyan Cai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wei Gu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
84
|
Augspach A, Drake KD, Roma L, Qian E, Lee SR, Clarke D, Kumar S, Jaquet M, Gallon J, Bolis M, Triscott J, Galván JA, Chen Y, Thalmann GN, Kruithof-de Julio M, Theurillat JPP, Wuchty S, Gerstein M, Piscuoglio S, Kanadia RN, Rubin MA. Minor intron splicing is critical for survival of lethal prostate cancer. Mol Cell 2023; 83:1983-2002.e11. [PMID: 37295433 PMCID: PMC10637423 DOI: 10.1016/j.molcel.2023.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
The evolutionarily conserved minor spliceosome (MiS) is required for protein expression of ∼714 minor intron-containing genes (MIGs) crucial for cell-cycle regulation, DNA repair, and MAP-kinase signaling. We explored the role of MIGs and MiS in cancer, taking prostate cancer (PCa) as an exemplar. Both androgen receptor signaling and elevated levels of U6atac, a MiS small nuclear RNA, regulate MiS activity, which is highest in advanced metastatic PCa. siU6atac-mediated MiS inhibition in PCa in vitro model systems resulted in aberrant minor intron splicing leading to cell-cycle G1 arrest. Small interfering RNA knocking down U6atac was ∼50% more efficient in lowering tumor burden in models of advanced therapy-resistant PCa compared with standard antiandrogen therapy. In lethal PCa, siU6atac disrupted the splicing of a crucial lineage dependency factor, the RE1-silencing factor (REST). Taken together, we have nominated MiS as a vulnerability for lethal PCa and potentially other cancers.
Collapse
Affiliation(s)
- Anke Augspach
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Kyle D Drake
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Luca Roma
- Institute of Pathology and Medical Genetics, University Hospital Basel, 4056 Basel, Switzerland
| | - Ellen Qian
- Department of Computer Science, Yale University, New Haven, CT 06520, USA; Yale College, New Haven, CT 06520, USA
| | - Se Ri Lee
- Department of Computer Science, Yale University, New Haven, CT 06520, USA; Yale College, New Haven, CT 06520, USA
| | - Declan Clarke
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Sushant Kumar
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Muriel Jaquet
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - John Gallon
- Institute of Pathology and Medical Genetics, University Hospital Basel, 4056 Basel, Switzerland
| | - Marco Bolis
- Institute of Oncology Research, 6500 Bellinzona, Switzerland; Computational Oncology Unit, Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, 20156 Milano, Italy
| | - Joanna Triscott
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - José A Galván
- Institute of Pathology, University of Bern, Bern 3008, Switzerland
| | - Yu Chen
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - George N Thalmann
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland; Bern Center for Precision Medicine, University of Bern and Inselspital, 3008 Bern, Switzerland
| | - Jean-Philippe P Theurillat
- Institute of Oncology Research, 6500 Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Coral Gables, FL 33146, USA; Sylvester Comprehensive Cancer Center, University of Miami, Coral Gables, FL 33136, USA; Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Mark Gerstein
- Department of Computer Science, Yale University, New Haven, CT 06520, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Salvatore Piscuoglio
- Institute of Pathology and Medical Genetics, University Hospital Basel, 4056 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Rahul N Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; Bern Center for Precision Medicine, University of Bern and Inselspital, 3008 Bern, Switzerland.
| |
Collapse
|
85
|
Horton C, Liu Y, Wang J, Green J, Tsyporin J, Chen B, Wang ZA. Modulation of the canonical Wnt activity by androgen signaling in prostate epithelial basal stem cells. Stem Cell Reports 2023; 18:1355-1370. [PMID: 37172587 PMCID: PMC10277819 DOI: 10.1016/j.stemcr.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Both the canonical Wnt and androgen receptor (AR) signaling pathways are important for prostate organogenesis and homeostasis. How they crosstalk to regulate prostate stem cell behaviors remains unclear. Here, we show in lineage-tracing mouse models that although Wnt is essential for basal stem cell multipotency, ectopic Wnt activity promotes basal cell over-proliferation and squamous phenotypes, which are counteracted by elevated levels of androgen. In prostate basal cell organoids, dihydrotestosterone (DHT) antagonizes R-spondin-stimulated growth in a concentration-dependent manner. DHT down-regulates the expressions of a Wnt reporter and target genes, and RNA sequencing (RNA-seq) analyses identify Wnt signaling as a key altered pathway. Mechanistically, DHT enhances AR and β-catenin protein binding, and CUT&RUN analyses reveal that ectopic AR sequesters β-catenin away from its Wnt-related cistrome. Our results suggest that an intermediate level of Wnt activity in prostate basal stem cells, achieved via AR-β-catenin interaction, is essential for normal prostate homeostasis.
Collapse
Affiliation(s)
- Corrigan Horton
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Yueli Liu
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jiawen Wang
- Sequencing Center, National Institute of Biological Sciences, Beijing 102206, China
| | - Jonathan Green
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jeremiah Tsyporin
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Bin Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Zhu A Wang
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
86
|
Huang J, Zhang L, Lu A, Liang C. Organoids as Innovative Models for Bone and Joint Diseases. Cells 2023; 12:1590. [PMID: 37371060 DOI: 10.3390/cells12121590] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Bone is one of the key components of the musculoskeletal system. Bone and joint disease are the fourth most widespread disease, in addition to cardiovascular disease, cancer, and diabetes, which seriously affect people's quality of life. Bone organoids seem to be a great model by which to promote the research method, which further could improve the treatment of bone and joint disease in the future. Here, we introduce the various bone and joint diseases and their biology, and the conditions of organoid culture, comparing the in vitro models among 2D, 3D, and organoids. We summarize the differing potential methods for culturing bone-related organoids from pluripotent stem cells, adult stem cells, or progenitor cells, and discuss the current and promising bone disease organoids for drug screening and precision medicine. Lastly, we discuss the challenges and difficulties encountered in the application of bone organoids and look to the future in order to present potential methods via which bone organoids might advance organoid construction and application.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200052, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510120, China
| | - Chao Liang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
87
|
Pitzen SP, Dehm SM. Basal epithelial cells in prostate development, tumorigenesis, and cancer progression. Cell Cycle 2023; 22:1303-1318. [PMID: 37098827 PMCID: PMC10228417 DOI: 10.1080/15384101.2023.2206502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 04/27/2023] Open
Abstract
The prostate epithelium is composed of two predominant cell populations: luminal and basal epithelial cells. Luminal cells have a secretory function that supports male fertility while basal cells function in regeneration and maintenance of epithelial tissue. Recent studies in humans and mice have expanded our knowledge of the role and regulation of luminal and basal cells in prostate organogenesis, development, and homeostasis. The insights from healthy prostate biology can inform studies focused on the origins of prostate cancer, progression of the disease, and development of resistance to targeted hormonal therapies. In this review, we discuss a critical role for basal cells in the development and maintenance of healthy prostate tissue. Additionally, we provide evidence supporting a role for basal cells in oncogenesis and therapeutic resistance mechanisms of prostate cancer. Finally, we describe basal cell regulators that may promote lineage plasticity and basal cell identity in prostate cancers that have developed therapeutic resistance. These regulators could serve as therapeutic targets to inhibit or delay resistance and thereby improve outcomes for prostate cancer patients.
Collapse
Affiliation(s)
- Samuel P. Pitzen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Molecular, Cellular, and Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Scott M. Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
88
|
Kang HM. Kidney Organoid Derived from Human Pluripotent and Adult Stem Cells for Disease Modeling. Dev Reprod 2023; 27:57-65. [PMID: 37529017 PMCID: PMC10390101 DOI: 10.12717/dr.2023.27.2.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/26/2023] [Indexed: 08/03/2023]
Abstract
Kidney disease affects a significant portion of the global population, yet effective therapies are lacking despite advancements in identifying genetic causes. This limitation can be attributed to the absence of adequate in vitro models that accurately mimic human kidney disease, hindering targeted therapeutic development. However, the emergence of human induced pluripotent stem cells (PSCs) and the development of organoids using them have opened up a way to model kidney development and disease in humans, as well as validate the effects of new drugs. To fully leverage their capabilities in these fields, it is crucial for kidney organoids to closely resemble the structure and functionality of adult human kidneys. In this review, we aim to discuss the potential of using human PSCs or adult kidney stem cell-derived kidney organoids to model genetic kidney disease and renal cancer.
Collapse
Affiliation(s)
- Hyun Mi Kang
- Korea Research Institute of Bioscience
and Biotechnology (KRIBB), Daejeon 34141,
Korea
- Department of Functional Genomics, Korea
University of Science and Technology (UST), Daejeon
34113, Korea
| |
Collapse
|
89
|
Phan TV, Oo Y, Ahmed K, Rodboon T, Rosa V, Yodmuang S, Ferreira JN. Salivary gland regeneration: from salivary gland stem cells to three-dimensional bioprinting. SLAS Technol 2023; 28:199-209. [PMID: 37019217 DOI: 10.1016/j.slast.2023.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Hyposalivation and severe dry mouth syndrome are the most common complications in patients with head and neck cancer (HNC) after receiving radiation therapy. Conventional treatment for hyposalivation relies on the use of sialogogues such as pilocarpine; however, their efficacy is constrained by the limited number of remnant acinar cells after radiation. After radiotherapy, the salivary gland (SG) secretory parenchyma is largely destroyed, and due to the reduced stem cell niche, this gland has poor regenerative potential. To tackle this, researchers must be able to generate highly complex cellularized 3D constructs for clinical transplantation via technologies, including those that involve bioprinting of cells and biomaterials. A potential stem cell source with promising clinical outcomes to reserve dry mouth is adipose mesenchymal stem cells (AdMSC). MSC-like cells like human dental pulp stem cells (hDPSC) have been tested in novel magnetic bioprinting platforms using nanoparticles that can bind cell membranes by electrostatic interaction, as well as their paracrine signals arising from extracellular vesicles. Both magnetized cells and their secretome cues were found to increase epithelial and neuronal growth of in vitro and ex vivo irradiated SG models. Interestingly, these magnetic bioprinting platforms can be applied as a high-throughput drug screening system due to the consistency in structure and functions of their organoids. Recently, exogenous decellularized porcine ECM was added to this magnetic platform to stimulate an ideal environment for cell tethering, proliferation, and/or differentiation. The combination of these SG tissue biofabrication strategies will promptly allow for in vitro organoid formation and establishment of cellular senescent organoids for aging models, but challenges remain in terms of epithelial polarization and lumen formation for unidirectional fluid flow. Current magnetic bioprinting nanotechnologies can provide promising functional and aging features to in vitro craniofacial exocrine gland organoids, which can be utilized for novel drug discovery and/or clinical transplantation.
Collapse
Affiliation(s)
- Toan V Phan
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; International Graduate Program in Oral Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Yamin Oo
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Khurshid Ahmed
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Teerapat Rodboon
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Clinical Pathology, Faculty of Medicine, Navamindradhiraj University, Bangkok, Thailand
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore; Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore; Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore, Singapore
| | - Supansa Yodmuang
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
90
|
Thompson RE, Meyers MA, Palmer J, Veeramachaneni DNR, Magee C, de Mestre AM, Antczak DF, Hollinshead FK. Production of Mare Chorionic Girdle Organoids That Secrete Equine Chorionic Gonadotropin. Int J Mol Sci 2023; 24:ijms24119538. [PMID: 37298490 DOI: 10.3390/ijms24119538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The equine chorionic girdle is comprised of specialized invasive trophoblast cells that begin formation approximately 25 days after ovulation (day 0) and invade the endometrium to become endometrial cups. These specialized trophoblast cells transition from uninucleate to differentiated binucleate trophoblast cells that secrete the glycoprotein hormone equine chorionic gonadotropin (eCG; formerly known as pregnant mare serum gonadotropin or PMSG). This eCG has LH-like activity in the horse but variable LH- and FSH-like activity in other species and has been utilized for these properties both in vivo and in vitro. To produce eCG commercially, large volumes of whole blood must be collected from pregnant mares, which negatively impacts equine welfare due to repeated blood collections and the birth of an unwanted foal. Attempts to produce eCG in vitro using long-term culture of chorionic girdle explants have not been successful beyond 180 days, with peak eCG production at 30 days of culture. Organoids are three-dimensional cell clusters that self-organize and can remain genetically and phenotypically stable throughout long-term culture (i.e., months). Human trophoblast organoids have been reported to successfully produce human chorionic gonadotropin (hCG) and proliferate long-term (>1 year). The objective of this study was to evaluate whether organoids derived from equine chorionic girdle maintain physiological functionality. Here we show generation of chorionic girdle organoids for the first time and demonstrate in vitro production of eCG for up to 6 weeks in culture. Therefore, equine chorionic girdle organoids provide a physiologically representative 3D in vitro model for chorionic girdle development of early equine pregnancy.
Collapse
Affiliation(s)
- Riley E Thompson
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - Mindy A Meyers
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - Jennifer Palmer
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - D N Rao Veeramachaneni
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Christianne Magee
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Amanda M de Mestre
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Douglas F Antczak
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Fiona K Hollinshead
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
91
|
Millen R, De Kort WWB, Koomen M, van Son GJF, Gobits R, Penning de Vries B, Begthel H, Zandvliet M, Doornaert P, Raaijmakers CPJ, Geurts MH, Elias SG, van Es RJJ, de Bree R, Devriese LA, Willems SM, Kranenburg O, Driehuis E, Clevers H. Patient-derived head and neck cancer organoids allow treatment stratification and serve as a tool for biomarker validation and identification. MED 2023; 4:290-310.e12. [PMID: 37178682 DOI: 10.1016/j.medj.2023.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Organoids are in vitro three-dimensional structures that can be grown from patient tissue. Head and neck cancer (HNC) is a collective term used for multiple tumor types including squamous cell carcinomas and salivary gland adenocarcinomas. METHODS Organoids were established from HNC patient tumor tissue and characterized using immunohistochemistry and DNA sequencing. Organoids were exposed to chemo- and radiotherapy and a panel of targeted agents. Organoid response was correlated with patient clinical response. CRISPR-Cas9-based gene editing of organoids was applied for biomarker validation. FINDINGS A HNC biobank consisting of 110 models, including 65 tumor models, was generated. Organoids retained DNA alterations found in HNC. Comparison of organoid and patient response to radiotherapy (primary [n = 6] and adjuvant [n = 15]) indicated potential for guiding treatment options in the adjuvant setting. In organoids, the radio-sensitizing potential of cisplatin and carboplatin could be validated. However, cetuximab conveyed radioprotection in most models. HNC-targeted treatments were tested on 31 models, indicating possible novel treatment options with the potential for treatment stratification in the future. Activating PIK3CA mutations did not predict alpelisib response in organoids. Protein arginine methyltransferase 5 (PRMT5) inhibitors were identified as a potential treatment option for cyclin-dependent kinase inhibitor 2A (CDKN2A) null HNC. CONCLUSIONS Organoids hold potential as a diagnostic tool in personalized medicine for HNC. In vitro organoid response to radiotherapy (RT) showed a trend that mimics clinical response, indicating the predictive potential of patient-derived organoids. Moreover, organoids could be used for biomarker discovery and validation. FUNDING This work was funded by Oncode PoC 2018-P0003.
Collapse
Affiliation(s)
- Rosemary Millen
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands.
| | - Willem W B De Kort
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mandy Koomen
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands
| | - Gijs J F van Son
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands; Princess Maxima Center, Utrecht, the Netherlands
| | - Roán Gobits
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands
| | - Bas Penning de Vries
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Harry Begthel
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands
| | - Maurice Zandvliet
- Department of Clinical Sciences - Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Patricia Doornaert
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Maarten H Geurts
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands
| | - Sjoerd G Elias
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Robert J J van Es
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lot A Devriese
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stefan M Willems
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Pathology, University Medical Center Groningen, Groningen, the Netherlands
| | - Onno Kranenburg
- Utrecht Platform for Organoid Technology (U-PORT), Utrecht Medical Center Utrecht, Utrecht, the Netherlands
| | - Else Driehuis
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands.
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands.
| |
Collapse
|
92
|
Haider S, Beristain AG. Human organoid systems in modeling reproductive tissue development, function, and disease. Hum Reprod 2023:7147082. [PMID: 37119533 DOI: 10.1093/humrep/dead085] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/12/2023] [Indexed: 05/01/2023] Open
Abstract
Research focused on human reproductive biology has primarily relied upon clinical samples affording mainly descriptive studies with limited implementation of functional or mechanistic understanding. More importantly, restricted access to human embryonic material has necessitated the use of animals, primarily rats and mice, and short-term primary cell cultures derived from human patient material. While reproductive developmental processes are generally conserved across mammals, specific features unique to human reproduction have resulted in the development of human-based in vitro systems designed to retain or recapitulate key molecular and cellular processes important in humans. Of note, major advances in 3D epithelial stem cell-based systems modeling human reproductive organ development have been made. These cultures, broadly referred to as organoids, enable research aimed at understanding cellular hierarchies and processes controlling cellular differentiation and function. Moreover, organoids allow the pre-clinical testing of pharmacological substances, both from safety and efficacy standpoints, and hold large potential in driving aspects of personalized medicine that were previously not possible with traditional models. In this mini-review, we focus on summarizing the current state of regenerative organoid culture systems of the female and male reproductive tracts that model organ development, maintenance, and function. Specifically, we will introduce stem cell-based organoid models of the ovary/fallopian tube, endometrium, cervix, prostate gland, and testes. We will also describe organoid systems of the pre-implanting blastocyst and trophoblast, as the blastocyst and its extraembryonic trophectoderm are central to fetal, maternal, and overall pregnancy health. We describe the foundational studies leading to their development and outline the utility as well as specific limitations that are unique and common to many of these in vitro platforms.
Collapse
Affiliation(s)
- Sandra Haider
- Department of Obstetrics & Gynecology, Medical University of Vienna, Vienna, Austria
| | - Alexander G Beristain
- The British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
93
|
Kutle I, Polten R, Hachenberg J, Klapdor R, Morgan M, Schambach A. Tumor Organoid and Spheroid Models for Cervical Cancer. Cancers (Basel) 2023; 15:cancers15092518. [PMID: 37173984 PMCID: PMC10177622 DOI: 10.3390/cancers15092518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Cervical cancer is one of the most common malignant diseases in women worldwide. Despite the global introduction of a preventive vaccine against the leading cause of cervical cancer, human papillomavirus (HPV) infection, the incidence of this malignant disease is still very high, especially in economically challenged areas. New advances in cancer therapy, especially the rapid development and application of different immunotherapy strategies, have shown promising pre-clinical and clinical results. However, mortality from advanced stages of cervical cancer remains a significant concern. Precise and thorough evaluation of potential novel anti-cancer therapies in pre-clinical phases is indispensable for efficient development of new, more successful treatment options for cancer patients. Recently, 3D tumor models have become the gold standard in pre-clinical cancer research due to their capacity to better mimic the architecture and microenvironment of tumor tissue as compared to standard two-dimensional (2D) cell cultures. This review will focus on the application of spheroids and patient-derived organoids (PDOs) as tumor models to develop novel therapies against cervical cancer, with an emphasis on the immunotherapies that specifically target cancer cells and modulate the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Ivana Kutle
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Robert Polten
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Jens Hachenberg
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| | - Rüdiger Klapdor
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
94
|
Steiner I, Flores-Tellez TDNJ, Mevel R, Ali A, Wang P, Schofield P, Behan C, Forsythe N, Ashton G, Taylor C, Mills IG, Oliveira P, McDade SS, Zaiss DM, Choudhury A, Lacaud G, Baena E. Autocrine activation of MAPK signaling mediates intrinsic tolerance to androgen deprivation in LY6D prostate cancer cells. Cell Rep 2023; 42:112377. [PMID: 37060563 DOI: 10.1016/j.celrep.2023.112377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/12/2022] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
The emergence of castration-resistant prostate cancer remains an area of unmet clinical need. We recently identified a subpopulation of normal prostate progenitor cells, characterized by an intrinsic resistance to androgen deprivation and expression of LY6D. We here demonstrate that conditional deletion of PTEN in the murine prostate epithelium causes an expansion of transformed LY6D+ progenitor cells without impairing stem cell properties. Transcriptomic analyses of LY6D+ luminal cells identified an autocrine positive feedback loop, based on the secretion of amphiregulin (AREG)-mediated activation of mitogen-activated protein kinase (MAPK) signaling, increasing cellular fitness and organoid formation. Pharmacological interference with this pathway overcomes the castration-resistant properties of LY6D+ cells with a suppression of organoid formation and loss of LY6D+ cells in vivo. Notably, LY6D+ tumor cells are enriched in high-grade and androgen-resistant prostate cancer, providing clinical evidence for their contribution to advanced disease. Our data indicate that early interference with MAPK inhibitors can prevent progression of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Ivana Steiner
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Teresita Del N J Flores-Tellez
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Renaud Mevel
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Amin Ali
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Pengbo Wang
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Pieta Schofield
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Caron Behan
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Nicholas Forsythe
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7BL Northern Ireland, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Garry Ashton
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Catherine Taylor
- The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, M20 4BX Manchester, UK
| | - Ian G Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7BL Northern Ireland, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK; Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, OX3 9DU Oxford, UK; Department of Clinical Sciences and Centre for Cancer Biomarkers, University of Bergen, 7804 Bergen, Norway
| | - Pedro Oliveira
- Department of Pathology, The Christie NHS Foundation Trust, M20 4BX Manchester, UK
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7BL Northern Ireland, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Dietmar M Zaiss
- Department of Immune Medicine, University Regensburg, Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, and Leibniz Institute for Immunotherapy (LIT), 93053 Regensburg, Germany
| | - Ananya Choudhury
- The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, M20 4BX Manchester, UK; The University of Manchester, Manchester Cancer Research Centre, M20 4BX Manchester, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Esther Baena
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK.
| |
Collapse
|
95
|
Manduca N, Maccafeo E, De Maria R, Sistigu A, Musella M. 3D cancer models: One step closer to in vitro human studies. Front Immunol 2023; 14:1175503. [PMID: 37114038 PMCID: PMC10126361 DOI: 10.3389/fimmu.2023.1175503] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer immunotherapy is the great breakthrough in cancer treatment as it displayed prolonged progression-free survival over conventional therapies, yet, to date, in only a minority of patients. In order to broad cancer immunotherapy clinical applicability some roadblocks need to be overcome, first among all the lack of preclinical models that faithfully depict the local tumor microenvironment (TME), which is known to dramatically affect disease onset, progression and response to therapy. In this review, we provide the reader with a detailed overview of current 3D models developed to mimick the complexity and the dynamics of the TME, with a focus on understanding why the TME is a major target in anticancer therapy. We highlight the advantages and translational potentials of tumor spheroids, organoids and immune Tumor-on-a-Chip models in disease modeling and therapeutic response, while outlining pending challenges and limitations. Thinking forward, we focus on the possibility to integrate the know-hows of micro-engineers, cancer immunologists, pharmaceutical researchers and bioinformaticians to meet the needs of cancer researchers and clinicians interested in using these platforms with high fidelity for patient-tailored disease modeling and drug discovery.
Collapse
Affiliation(s)
- Nicoletta Manduca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ester Maccafeo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario ‘A. Gemelli’ - Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Martina Musella
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
96
|
Bii VM, Rudoy D, Klezovitch O, Vasioukhin V. Lethal giant larvae gene family ( Llgl1 and Llgl2 ) functions as a tumor suppressor in mouse skin epidermis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531408. [PMID: 36945368 PMCID: PMC10028895 DOI: 10.1101/2023.03.06.531408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Loss of cell polarity and tissue disorganization occurs in majority of epithelial cancers. Studies in simple model organisms identified molecular mechanisms responsible for the establishment and maintenance of cellular polarity, which play a pivotal role in establishing proper tissue architecture. The exact role of these cell polarity pathways in mammalian cancer is not completely understood. Here we analyzed the mammalian orthologs of drosophila apical-basal polarity gene lethal giant larvae ( lgl ), which regulates asymmetric stem cell division and functions as a tumor suppressor in flies. There are two mammalian orthologs of lgl ( Llgl1 and Llgl2 ). To determine the role of the entire lgl signaling pathway in mammals we generated mice with ablation of both Llgl1 and Llgl2 in skin epidermis using K14-Cre ( Llgl1/2 -/- cKO mice). Surprisingly, we found that ablation of Llgl1/2 genes does not impact epidermal polarity in adult mice. However, old Llgl1/2 cKO mice present with focal skin lesions which are missing epidermal layer and ripe with inflammation. To determine the role of lgl signaling pathway in cancer we generated Trp53 -/- /Llgl1/2 -/- cKO and Trp53 -/+ /Llgl1/2 -/- cKO mice. Loss of Llgl1/2 promoted squamous cell carcinoma (SCC) development in Trp53 -/- cKO and caused SCC in Trp53 -/+ cKO mice, while no cancer was observed in Trp53 -/+ cKO controls. Mechanistically, we show that ablation of Llgl1/2 causes activation of aPKC and upregulation of NF-kB signaling pathway, which may be necessary for SCC in Trp53 -/+ /Llgl1/2 -/- cKO mice. We conclude that Lgl signaling pathway functions as a tumor suppressor in mammalian skin epidermis.
Collapse
|
97
|
Calà G, Sina B, De Coppi P, Giobbe GG, Gerli MFM. Primary human organoids models: Current progress and key milestones. Front Bioeng Biotechnol 2023; 11:1058970. [PMID: 36959902 PMCID: PMC10029057 DOI: 10.3389/fbioe.2023.1058970] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
During the past 10 years the world has experienced enormous progress in the organoids field. Human organoids have shown huge potential to study organ development, homeostasis and to model diseases in vitro. The organoid technology has been widely and increasingly applied to generate patient-specific in vitro 3D cultures, starting from both primary and reprogrammed stem/progenitor cells. This has consequently fostered the development of innovative disease models and new regenerative therapies. Human primary, or adult stem/progenitor cell-derived, organoids can be derived from both healthy and pathological primary tissue samples spanning from fetal to adult age. The resulting 3D culture can be maintained for several months and even years, while retaining and resembling its original tissue's properties. As the potential of this technology expands, new approaches are emerging to further improve organoid applications in biology and medicine. This review discusses the main organs and tissues which, as of today, have been modelled in vitro using primary organoid culture systems. Moreover, we also discuss the advantages, limitations, and future perspectives of primary human organoids in the fields of developmental biology, disease modelling, drug testing and regenerative medicine.
Collapse
Affiliation(s)
- Giuseppe Calà
- Division of Surgery and Interventional Science, Department of Surgical Biotechnology, University College London, London, United Kingdom
- Stem Cell and Regenerative Medicine Section, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Beatrice Sina
- Division of Surgery and Interventional Science, Department of Surgical Biotechnology, University College London, London, United Kingdom
- Politecnico di Milano, Milano, Italy
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Giovanni Giuseppe Giobbe
- Stem Cell and Regenerative Medicine Section, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Mattia Francesco Maria Gerli
- Division of Surgery and Interventional Science, Department of Surgical Biotechnology, University College London, London, United Kingdom
- Stem Cell and Regenerative Medicine Section, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
98
|
Patrício D, Santiago J, Mano JF, Fardilha M. Organoids of the male reproductive system: Challenges, opportunities, and their potential use in fertility research. WIREs Mech Dis 2023; 15:e1590. [PMID: 36442887 DOI: 10.1002/wsbm.1590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/17/2022] [Accepted: 11/12/2022] [Indexed: 11/30/2022]
Abstract
Organoids are units of function of a given organ able to reproduce, in culture, a biological structure similar in architecture and function to its counterpart in vivo. Today, it is possible to develop an organoid from a fragment of tissue, a stem cell located in an adult organ, an embryonic stem cell, or an induced pluripotent stem cell. In the past decade, many organoids have been developed which mimic stomach, pancreas, liver and brain tissues, optic cups, among many others. Additionally, different male reproductive system organs have already been developed as organoids, including the prostate and testis. These 3D cultures may be of great importance for urological cancer research and have the potential to be used in fertility research for the study of spermatozoa production and maturation, germ cells-somatic cells interactions, and mechanisms of disease. They also provide an accurate preclinical pipeline for drug testing and discovery, as well as for the study of drug resistance. In this work, we revise the current knowledge on organoid technology and its use in healthcare and research, describe the male reproductive system organoids and other biomaterials already developed, and discuss their current application. Finally, we highlight the research gaps, challenges, and opportunities in the field and propose strategies to improve the use of organoids for the study of male infertility situations. This article is categorized under: Reproductive System Diseases > Stem Cells and Development Reproductive System Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Daniela Patrício
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.,Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Joana Santiago
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
99
|
Zhu J, Ji L, Chen Y, Li H, Huang M, Dai Z, Wang J, Xiang D, Fu G, Lei Z, Chu X. Organoids and organs-on-chips: insights into predicting the efficacy of systemic treatment in colorectal cancer. Cell Death Discov 2023; 9:72. [PMID: 36813783 PMCID: PMC9947255 DOI: 10.1038/s41420-023-01354-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Cancer heterogeneity has posed a great challenge to traditional cancer treatment, with the reappearance of cancer heterogeneity of inter and intra patients being especially critical. Based on this, personalized therapy has emerged as significant research focus in recent and even future years. Cancer-related therapeutic models are developing, including cell lines, patient-derived xenografts, organoids, etc. Organoids are three-dimensional in vitro models emerged in the past dozen years and are able to reproduce the cellular and molecular composition of the original tumor. These advantages demonstrate the great potential for patient-derived organoids to develop personalized anticancer therapies, including preclinical drug screening and the prediction of patient treatment response. The impact of microenvironment on cancer treatment cannot be underestimated, and the remodeling of microenvironment also allows organoids to interact with other technologies, among which organs-on-chips is a representative one. This review highlights the use of organoids and organs-on-chips as complementary reference tools in treating colorectal cancer from the perspective of clinical efficacy predictability. We also discuss the limitations of both techniques and how they complement each other well.
Collapse
Affiliation(s)
- Jialong Zhu
- grid.284723.80000 0000 8877 7471Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000 China
| | - Linlin Ji
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Yitian Chen
- grid.284723.80000 0000 8877 7471Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000 China ,grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China ,grid.89957.3a0000 0000 9255 8984Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000 China ,grid.410745.30000 0004 1765 1045Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000 China
| | - Huiyu Li
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Mengxi Huang
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Zhe Dai
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Jing Wang
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Dan Xiang
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Gongbo Fu
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| |
Collapse
|
100
|
Liu Y, Li N, Zhu Y. Pancreatic Organoids: A Frontier Method for Investigating Pancreatic-Related Diseases. Int J Mol Sci 2023; 24:4027. [PMID: 36835437 PMCID: PMC9959977 DOI: 10.3390/ijms24044027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
The pancreas represents an important organ that has not been comprehensively studied in many fields. To fill this gap, many models have been generated, and traditional models have shown good performance in addressing pancreatic-related diseases, but are increasingly struggling to keep up with the need for further research due to ethical issues, genetic heterogeneity and difficult clinical translation. The new era calls for new and more reliable research models. Therefore, organoids have been proposed as a novel model for the evaluation of pancreatic-related diseases such as pancreatic malignancy, diabetes, and pancreatic cystic fibrosis. Compared with common traditional models, including 2D cell culture and gene editing mice, organoids derived from living humans or mice cause minimal harm to the donor, raise fewer ethical concerns, and reasonably address the claims of heterogeneity, which allows for the further development of pathogenesis studies and clinical trial analysis. In this review, we analyse studies on the use of pancreatic organoids in research on pancreatic-related diseases, discuss the advantages and disadvantages, and hypothesize future trends.
Collapse
Affiliation(s)
- Yuxiang Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
| | - Nianshuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
- Jiangxi Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
| |
Collapse
|