51
|
Zocher S, Toda T. Epigenetic aging in adult neurogenesis. Hippocampus 2023; 33:347-359. [PMID: 36624660 DOI: 10.1002/hipo.23494] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
Neural stem cells (NSCs) in the hippocampus generate new neurons throughout life, which functionally contribute to cognitive flexibility and mood regulation. Yet adult hippocampal neurogenesis substantially declines with age and age-related impairments in NSC activity underlie this reduction. Particularly, increased NSC quiescence and consequently reduced NSC proliferation are considered to be major drivers of the low neurogenesis levels in the aged brain. Epigenetic regulators control the gene expression programs underlying NSC quiescence, proliferation and differentiation and are hence critical to the regulation of adult neurogenesis. Epigenetic alterations have also emerged as central hallmarks of aging, and recent studies suggest the deterioration of the NSC-specific epigenetic landscape as a driver of the age-dependent decline in adult neurogenesis. In this review, we summarize the recently accumulating evidence for a role of epigenetic dysregulation in NSC aging and propose perspectives for future research directions.
Collapse
Affiliation(s)
- Sara Zocher
- Nuclear Architecture in Neural Plasticity and Aging Laboratory, German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Tomohisa Toda
- Nuclear Architecture in Neural Plasticity and Aging Laboratory, German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Institute of Medical Physics and Microtissue Engineering, Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
52
|
Shiraishi K, Shah PP, Morley MP, Loebel C, Santini GT, Katzen J, Basil MC, Lin SM, Planer JD, Cantu E, Jones DL, Nottingham AN, Li S, Cardenas-Diaz FL, Zhou S, Burdick JA, Jain R, Morrisey EE. Biophysical forces mediated by respiration maintain lung alveolar epithelial cell fate. Cell 2023; 186:1478-1492.e15. [PMID: 36870331 PMCID: PMC10065960 DOI: 10.1016/j.cell.2023.02.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/21/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023]
Abstract
Lungs undergo mechanical strain during breathing, but how these biophysical forces affect cell fate and tissue homeostasis are unclear. We show that biophysical forces through normal respiratory motion actively maintain alveolar type 1 (AT1) cell identity and restrict these cells from reprogramming into AT2 cells in the adult lung. AT1 cell fate is maintained at homeostasis by Cdc42- and Ptk2-mediated actin remodeling and cytoskeletal strain, and inactivation of these pathways causes a rapid reprogramming into the AT2 cell fate. This plasticity induces chromatin reorganization and changes in nuclear lamina-chromatin interactions, which can discriminate AT1 and AT2 cell identity. Unloading the biophysical forces of breathing movements leads to AT1-AT2 cell reprogramming, revealing that normal respiration is essential to maintain alveolar epithelial cell fate. These data demonstrate the integral function of mechanotransduction in maintaining lung cell fate and identifies the AT1 cell as an important mechanosensor in the alveolar niche.
Collapse
Affiliation(s)
- Kazushige Shiraishi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Parisha P Shah
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Morley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudia Loebel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Garrett T Santini
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeremy Katzen
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria C Basil
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan M Lin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph D Planer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Cantu
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dakota L Jones
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ana N Nottingham
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shanru Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fabian L Cardenas-Diaz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Su Zhou
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Rajan Jain
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
53
|
Toscano-Marquez F, Romero Y, Espina-Ordoñez M, Cisneros J. Absence of HDAC3 by Matrix Stiffness Promotes Chromatin Remodeling and Fibroblast Activation in Idiopathic Pulmonary Fibrosis. Cells 2023; 12:cells12071020. [PMID: 37048093 PMCID: PMC10093275 DOI: 10.3390/cells12071020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/05/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal disease characterized by progressive and irreversible lung scarring associated with persistent activation of fibroblasts. Epigenetics could integrate diverse microenvironmental signals, such as stiffness, to direct persistent fibroblast activation. Histone modifications by deacetylases (HDAC) may play an essential role in the gene expression changes involved in the pathological remodeling of the lung. Particularly, HDAC3 is crucial for maintaining chromatin and regulating gene expression, but little is known about its role in IPF. In the study, control and IPF-derived fibroblasts were used to determine the influence of HDAC3 on chromatin remodeling and gene expression associated with IPF signature. Additionally, the cells were grown on hydrogels to mimic the stiffness of a fibrotic lung. Our results showed a decreased HDAC3 in the nucleus of IPF fibroblasts, which correlates with changes in nucleus size and heterochromatin loss. The inhibition of HDAC3 with a pharmacological inhibitor causes hyperacetylation of H3K9 and provokes an increased expression of Col1A1, ACTA2, and p21. Comparable results were found in hydrogels, where matrix stiffness promotes the loss of nuclear HDAC3 and increases the profibrotic signature. Finally, latrunculin b was used to confirm that changes by stiffness depend on the mechanotransduction signals. Together, these results suggest that HDAC3 could be a link between epigenetic mechanisms and the fibrotic microenvironment.
Collapse
Affiliation(s)
- Fernanda Toscano-Marquez
- Laboratorio de Biopatología Pulmonar INER-Ciencias-UNAM, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Yair Romero
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Marco Espina-Ordoñez
- Laboratorio de Biopatología Pulmonar INER-Ciencias-UNAM, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - José Cisneros
- Laboratorio de Biopatología Pulmonar INER-Ciencias-UNAM, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico
- Correspondence:
| |
Collapse
|
54
|
Yang BA, da Rocha AM, Newton I, Shcherbina A, Wong SW, Fraczek PM, Larouche JA, Hiraki HL, Baker BM, Shin JW, Takayama S, Thouless MD, Aguilar CA. Manipulation of the nucleoscaffold potentiates cellular reprogramming kinetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.12.532246. [PMID: 36993714 PMCID: PMC10055010 DOI: 10.1101/2023.03.12.532246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Somatic cell fate is an outcome set by the activities of specific transcription factors and the chromatin landscape and is maintained by gene silencing of alternate cell fates through physical interactions with the nuclear scaffold. Here, we evaluate the role of the nuclear scaffold as a guardian of cell fate in human fibroblasts by comparing the effects of transient loss (knockdown) and mutation (progeria) of functional Lamin A/C, a core component of the nuclear scaffold. We observed that Lamin A/C deficiency or mutation disrupts nuclear morphology, heterochromatin levels, and increases access to DNA in lamina-associated domains. Changes in Lamin A/C were also found to impact the mechanical properties of the nucleus when measured by a microfluidic cellular squeezing device. We also show that transient loss of Lamin A/C accelerates the kinetics of cellular reprogramming to pluripotency through opening of previously silenced heterochromatin domains while genetic mutation of Lamin A/C into progerin induces a senescent phenotype that inhibits the induction of reprogramming genes. Our results highlight the physical role of the nuclear scaffold in safeguarding cellular fate.
Collapse
Affiliation(s)
- Benjamin A. Yang
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Isabel Newton
- Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna Shcherbina
- Dept. of Biomedical Informatics, Stanford University, Palo Alto, CA 94305, USA
| | - Sing-Wan Wong
- Dept. of Pharmacology and Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Paula M. Fraczek
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jacqueline A. Larouche
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Harrison L. Hiraki
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brendon M. Baker
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jae-Won Shin
- Dept. of Pharmacology and Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shuichi Takayama
- Wallace Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - M. D. Thouless
- Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Dept. of Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carlos A. Aguilar
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
55
|
Wang Y, Dobreva G. Epigenetics in LMNA-Related Cardiomyopathy. Cells 2023; 12:cells12050783. [PMID: 36899919 PMCID: PMC10001118 DOI: 10.3390/cells12050783] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Mutations in the gene for lamin A/C (LMNA) cause a diverse range of diseases known as laminopathies. LMNA-related cardiomyopathy is a common inherited heart disease and is highly penetrant with a poor prognosis. In the past years, numerous investigations using mouse models, stem cell technologies, and patient samples have characterized the phenotypic diversity caused by specific LMNA variants and contributed to understanding the molecular mechanisms underlying the pathogenesis of heart disease. As a component of the nuclear envelope, LMNA regulates nuclear mechanostability and function, chromatin organization, and gene transcription. This review will focus on the different cardiomyopathies caused by LMNA mutations, address the role of LMNA in chromatin organization and gene regulation, and discuss how these processes go awry in heart disease.
Collapse
Affiliation(s)
- Yinuo Wang
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), 68167 Mannheim, Germany
- Correspondence: (Y.W.); (G.D.)
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), 68167 Mannheim, Germany
- Correspondence: (Y.W.); (G.D.)
| |
Collapse
|
56
|
Ren J, Zeng Q, Wu H, Liu X, Guida MC, Huang W, Zhai Y, Li J, Ocorr K, Bodmer R, Tang M. Deacetylase-dependent and -independent role of HDAC3 in cardiomyopathy. J Cell Physiol 2023; 238:647-658. [PMID: 36745702 PMCID: PMC10152801 DOI: 10.1002/jcp.30957] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/14/2022] [Accepted: 01/11/2023] [Indexed: 02/08/2023]
Abstract
Cardiomyopathy is a common disease of cardiac muscle that negatively affects cardiac function. HDAC3 commonly functions as corepressor by removing acetyl moieties from histone tails. However, a deacetylase-independent role of HDAC3 has also been described. Cardiac deletion of HDAC3 causes reduced cardiac contractility accompanied by lipid accumulation, but the molecular function of HDAC3 in cardiomyopathy remains unknown. We have used powerful genetic tools in Drosophila to investigate the enzymatic and nonenzymatic roles of HDAC3 in cardiomyopathy. Using the Drosophila heart model, we showed that cardiac-specific HDAC3 knockdown (KD) leads to prolonged systoles and reduced cardiac contractility. Immunohistochemistry revealed structural abnormalities characterized by myofiber disruption in HDAC3 KD hearts. Cardiac-specific HDAC3 KD showed increased levels of whole-body triglycerides and increased fibrosis. The introduction of deacetylase-dead HDAC3 mutant in HDAC3 KD background showed comparable results with wild-type HDAC3 in aspects of contractility and Pericardin deposition. However, deacetylase-dead HDAC3 mutants failed to improve triglyceride accumulation. Our data indicate that HDAC3 plays a deacetylase-independent role in maintaining cardiac contractility and preventing Pericardin deposition as well as a deacetylase-dependent role to maintain triglyceride homeostasis.
Collapse
Affiliation(s)
- Jieyu Ren
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| | - Qun Zeng
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| | - Hongmei Wu
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| | - Xuewen Liu
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| | - Maria C. Guida
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Wen Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yiyuan Zhai
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| | - Junjie Li
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| | - Karen Ocorr
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Rolf Bodmer
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Min Tang
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| |
Collapse
|
57
|
Sandonà M, Cavioli G, Renzini A, Cedola A, Gigli G, Coletti D, McKinsey TA, Moresi V, Saccone V. Histone Deacetylases: Molecular Mechanisms and Therapeutic Implications for Muscular Dystrophies. Int J Mol Sci 2023; 24:4306. [PMID: 36901738 PMCID: PMC10002075 DOI: 10.3390/ijms24054306] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Histone deacetylases (HDACs) are enzymes that regulate the deacetylation of numerous histone and non-histone proteins, thereby affecting a wide range of cellular processes. Deregulation of HDAC expression or activity is often associated with several pathologies, suggesting potential for targeting these enzymes for therapeutic purposes. For example, HDAC expression and activity are higher in dystrophic skeletal muscles. General pharmacological blockade of HDACs, by means of pan-HDAC inhibitors (HDACi), ameliorates both muscle histological abnormalities and function in preclinical studies. A phase II clinical trial of the pan-HDACi givinostat revealed partial histological improvement and functional recovery of Duchenne Muscular Dystrophy (DMD) muscles; results of an ongoing phase III clinical trial that is assessing the long-term safety and efficacy of givinostat in DMD patients are pending. Here we review the current knowledge about the HDAC functions in distinct cell types in skeletal muscle, identified by genetic and -omic approaches. We describe the signaling events that are affected by HDACs and contribute to muscular dystrophy pathogenesis by altering muscle regeneration and/or repair processes. Reviewing recent insights into HDAC cellular functions in dystrophic muscles provides new perspectives for the development of more effective therapeutic approaches based on drugs that target these critical enzymes.
Collapse
Affiliation(s)
| | - Giorgia Cavioli
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Alessia Cedola
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), University of Rome “La Sapienza”, 00181 Rome, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), 73100 Lecce, Italy
| | - Dario Coletti
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy
- CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Aging B2A, Sorbonne Université, 75005 Paris, France
| | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Viviana Moresi
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), University of Rome “La Sapienza”, 00181 Rome, Italy
| | - Valentina Saccone
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
58
|
Heo SJ, Thakur S, Chen X, Loebel C, Xia B, McBeath R, Burdick JA, Shenoy VB, Mauck RL, Lakadamyali M. Aberrant chromatin reorganization in cells from diseased fibrous connective tissue in response to altered chemomechanical cues. Nat Biomed Eng 2023; 7:177-191. [PMID: 35996026 PMCID: PMC10053755 DOI: 10.1038/s41551-022-00910-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022]
Abstract
Changes in the micro-environment of fibrous connective tissue can lead to alterations in the phenotypes of tissue-resident cells, yet the underlying mechanisms are poorly understood. Here, by visualizing the dynamics of histone spatial reorganization in tenocytes and mesenchymal stromal cells from fibrous tissue of human donors via super-resolution microscopy, we show that physiological and pathological chemomechanical cues can directly regulate the spatial nanoscale organization and density of chromatin in these tissue-resident cell populations. Specifically, changes in substrate stiffness, altered oxygen tension and the presence of inflammatory signals drive chromatin relocalization and compaction into the nuclear boundary, mediated by the activity of the histone methyltransferase EZH2 and an intact cytoskeleton. In healthy cells, chemomechanically triggered changes in the spatial organization and density of chromatin are reversible and can be attenuated by dynamically stiffening the substrate. In diseased human cells, however, the link between mechanical or chemical inputs and chromatin remodelling is abrogated. Our findings suggest that aberrant chromatin organization in fibrous connective tissue may be a hallmark of disease progression that could be leveraged for therapeutic intervention.
Collapse
Affiliation(s)
- Su-Jin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Shreyasi Thakur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xingyu Chen
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudia Loebel
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Boao Xia
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Rowena McBeath
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jason A Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Vivek B Shenoy
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA.
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
| | - Melike Lakadamyali
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
59
|
Shah PP, Keough KC, Gjoni K, Santini GT, Abdill RJ, Wickramasinghe NM, Dundes CE, Karnay A, Chen A, Salomon REA, Walsh PJ, Nguyen SC, Whalen S, Joyce EF, Loh KM, Dubois N, Pollard KS, Jain R. An atlas of lamina-associated chromatin across twelve human cell types reveals an intermediate chromatin subtype. Genome Biol 2023; 24:16. [PMID: 36691074 PMCID: PMC9869549 DOI: 10.1186/s13059-023-02849-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/05/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Association of chromatin with lamin proteins at the nuclear periphery has emerged as a potential mechanism to coordinate cell type-specific gene expression and maintain cellular identity via gene silencing. Unlike many histone modifications and chromatin-associated proteins, lamina-associated domains (LADs) are mapped genome-wide in relatively few genetically normal human cell types, which limits our understanding of the role peripheral chromatin plays in development and disease. RESULTS To address this gap, we map LAMIN B1 occupancy across twelve human cell types encompassing pluripotent stem cells, intermediate progenitors, and differentiated cells from all three germ layers. Integrative analyses of this atlas with gene expression and repressive histone modification maps reveal that lamina-associated chromatin in all twelve cell types is organized into at least two subtypes defined by differences in LAMIN B1 occupancy, gene expression, chromatin accessibility, transposable elements, replication timing, and radial positioning. Imaging of fluorescently labeled DNA in single cells validates these subtypes and shows radial positioning of LADs with higher LAMIN B1 occupancy and heterochromatic histone modifications primarily embedded within the lamina. In contrast, the second subtype of lamina-associated chromatin is relatively gene dense, accessible, dynamic across development, and positioned adjacent to the lamina. Most genes gain or lose LAMIN B1 occupancy consistent with cell types along developmental trajectories; however, we also identify examples where the enhancer, but not the gene body and promoter, changes LAD state. CONCLUSIONS Altogether, this atlas represents the largest resource to date for peripheral chromatin organization studies and reveals an intermediate chromatin subtype.
Collapse
Affiliation(s)
- Parisha P Shah
- Departments of Medicine and Cell and Developmental Biology, Penn CVI, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Smilow TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Kathleen C Keough
- University of California, San Francisco, CA, 94117, USA
- Gladstone Institute of Data Science and Biotechnology, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Ketrin Gjoni
- University of California, San Francisco, CA, 94117, USA
- Gladstone Institute of Data Science and Biotechnology, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Garrett T Santini
- Departments of Medicine and Cell and Developmental Biology, Penn CVI, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Smilow TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Richard J Abdill
- Departments of Medicine and Cell and Developmental Biology, Penn CVI, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Smilow TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Nadeera M Wickramasinghe
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Carolyn E Dundes
- Department of Developmental Biology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ashley Karnay
- Departments of Medicine and Cell and Developmental Biology, Penn CVI, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Smilow TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Angela Chen
- Department of Developmental Biology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rachel E A Salomon
- Department of Developmental Biology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Patrick J Walsh
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Son C Nguyen
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sean Whalen
- Gladstone Institute of Data Science and Biotechnology, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Eric F Joyce
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kyle M Loh
- Department of Developmental Biology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nicole Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Katherine S Pollard
- University of California, San Francisco, CA, 94117, USA.
- Gladstone Institute of Data Science and Biotechnology, 1650 Owens Street, San Francisco, CA, 94158, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| | - Rajan Jain
- Departments of Medicine and Cell and Developmental Biology, Penn CVI, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Smilow TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Smilow TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
60
|
Vadrot N, Ader F, Moulin M, Merlant M, Chapon F, Gandjbakhch E, Labombarda F, Maragnes P, Réant P, Rooryck C, Probst V, Donal E, Richard P, Ferreiro A, Buendia B. Abnormal Cellular Phenotypes Induced by Three TMPO/LAP2 Variants Identified in Men with Cardiomyopathies. Cells 2023; 12:337. [PMID: 36672271 PMCID: PMC9857342 DOI: 10.3390/cells12020337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
A single missense variant of the TMPO/LAP2α gene, encoding LAP2 proteins, has been associated with cardiomyopathy in two brothers. To further evaluate its role in cardiac muscle, we included TMPO in our cardiomyopathy diagnostic gene panel. A screening of ~5000 patients revealed three novel rare TMPO heterozygous variants in six males diagnosed with hypertrophic or dilated cardiomypathy. We identified in different cellular models that (1) the frameshift variant LAP2α p.(Gly395Glufs*11) induced haploinsufficiency, impeding cell proliferation and/or producing a truncated protein mislocalized in the cytoplasm; (2) the C-ter missense variant LAP2α p.(Ala240Thr) led to a reduced proximity events between LAP2α and the nucleosome binding protein HMGN5; and (3) the LEM-domain missense variant p.(Leu124Phe) decreased both associations of LAP2α/β with the chromatin-associated protein BAF and inhibition of the E2F1 transcription factor activity which is known to be dependent on Rb, partner of LAP2α. Additionally, the LAP2α expression was lower in the left ventricles of male mice compared to females. In conclusion, our study reveals distinct altered properties of LAP2 induced by these TMPO/LAP2 variants, leading to altered cell proliferation, chromatin structure or gene expression-regulation pathways, and suggests a potential sex-dependent role of LAP2 in myocardial function and disease.
Collapse
Affiliation(s)
- Nathalie Vadrot
- Basic and Translational Myology Laboratory, Université Paris Cité, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Flavie Ader
- APHP—Sorbonne Université, Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire, Service de Biochimie Métabolique, HU Pitié Salpêtrière—Charles Foix, F-75013 Paris, France
- INSERM, UMR_S 1166, Sorbonne Université, F-75005 Paris, France
- Faculté de Pharmacie Paris Descartes, Département 3, Université Paris Cité, F-75006 Paris, France
| | - Maryline Moulin
- Basic and Translational Myology Laboratory, Université Paris Cité, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Marie Merlant
- Basic and Translational Myology Laboratory, Université Paris Cité, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | | | - Estelle Gandjbakhch
- INSERM, UMR_S 1166, Sorbonne Université, F-75005 Paris, France
- Département de cardiologie, APHP—Sorbonne Université, HU Pitié Salpêtrière- Charles Foix, F-75610 Paris, France
| | - Fabien Labombarda
- Service de Cardiologie, CHU de Caen, Université de Caen Normandie, F-14000 Caen, France
| | - Pascale Maragnes
- Cardiologie pédiatrique, Service de pédiatrie, CHU de Caen, F-14000 Caen, France
| | - Patricia Réant
- Service de Cardiologie, Hôpital Haut Lévêque, CHU de Bordeaux, INSERM 1045, Université de Bordeaux, F-33000 Bordeaux, France
| | - Caroline Rooryck
- Service de Génétique Médicale, CHU Bordeaux, F-33000 Bordeaux, France
| | - Vincent Probst
- Centre de référence des maladies rythmiques cardiaques, CHU de Nantes, F-44000 Nantes, France
| | - Erwan Donal
- Centre Cardio-Pneumologique, CHU de Rennes Hôpital de Pontchaillou, F-35000 Rennes, France
| | - Pascale Richard
- APHP—Sorbonne Université, Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire, Service de Biochimie Métabolique, HU Pitié Salpêtrière—Charles Foix, F-75013 Paris, France
- INSERM, UMR_S 1166, Sorbonne Université, F-75005 Paris, France
| | - Ana Ferreiro
- Basic and Translational Myology Laboratory, Université Paris Cité, BFA, UMR 8251, CNRS, F-75013 Paris, France
- APHP, Centre de référence des Maladies Neuromusculaires, Institut de Myologie, Neuromyology Department, CHU Pitié Salpêtrière—Charles Foix, F-75013 Paris, France
| | - Brigitte Buendia
- Basic and Translational Myology Laboratory, Université Paris Cité, BFA, UMR 8251, CNRS, F-75013 Paris, France
| |
Collapse
|
61
|
Nuclear envelope assembly and dynamics during development. Semin Cell Dev Biol 2023; 133:96-106. [PMID: 35249812 DOI: 10.1016/j.semcdb.2022.02.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 01/22/2023]
Abstract
The nuclear envelope (NE) protects but also organizes the eukaryotic genome. In this review we will discuss recent literature on how the NE disassembles and reassembles, how it varies in surface area and protein composition and how this translates into chromatin organization and gene expression in the context of animal development.
Collapse
|
62
|
Santini GT, Shah PP, Karnay A, Jain R. Aberrant chromatin organization at the nexus of laminopathy disease pathways. Nucleus 2022; 13:300-312. [PMID: 36503349 PMCID: PMC9746625 DOI: 10.1080/19491034.2022.2153564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Garrett T. Santini
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Parisha P. Shah
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ashley Karnay
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Rajan Jain
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
63
|
Belcheva KT, Chaudhuri J. Maintenance of Lineage Identity: Lessons from a B Cell. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2073-2081. [PMID: 36426973 DOI: 10.4049/jimmunol.2200497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/17/2022] [Indexed: 01/04/2023]
Abstract
The maintenance of B cell identity requires active transcriptional control that enforces a B cell-specific program and suppresses alternative lineage genes. Accordingly, disrupting the B cell identity regulatory network compromises B cell function and induces cell fate plasticity by allowing derepression of alternative lineage-specific transcriptional programs. Although the B lineage is incredibly resistant to most differentiating factors, loss of just a single B lineage-specific transcription factor or the forced expression of individual non-B cell lineage transcription factors can radically disrupt B cell maintenance and allow dedifferentiation or transdifferentiation into entirely distinct lineages. B lymphocytes thereby offer an insightful and useful case study of how a specific cell lineage can maintain a stable identity throughout life and how perturbations of a single master regulator can induce cellular plasticity. In this article, we review the regulatory mechanisms that safeguard B cell identity, and we discuss how dysregulation of the B cell maintenance program can drive malignant transformation and enable therapeutic resistance.
Collapse
Affiliation(s)
- Kalina T Belcheva
- Biochemistry, Cellular and Molecular Biology Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY; and
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
64
|
Lamin A/C-dependent chromatin architecture safeguards naïve pluripotency to prevent aberrant cardiovascular cell fate and function. Nat Commun 2022; 13:6663. [PMID: 36333314 PMCID: PMC9636150 DOI: 10.1038/s41467-022-34366-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Tight control of cell fate choices is crucial for normal development. Here we show that lamin A/C plays a key role in chromatin organization in embryonic stem cells (ESCs), which safeguards naïve pluripotency and ensures proper cell fate choices during cardiogenesis. We report changes in chromatin compaction and localization of cardiac genes in Lmna-/- ESCs resulting in precocious activation of a transcriptional program promoting cardiomyocyte versus endothelial cell fate. This is accompanied by premature cardiomyocyte differentiation, cell cycle withdrawal and abnormal contractility. Gata4 is activated by lamin A/C loss and Gata4 silencing or haploinsufficiency rescues the aberrant cardiovascular cell fate choices induced by lamin A/C deficiency. We uncover divergent functions of lamin A/C in naïve pluripotent stem cells and cardiomyocytes, which have distinct contributions to the transcriptional alterations of patients with LMNA-associated cardiomyopathy. We conclude that disruption of lamin A/C-dependent chromatin architecture in ESCs is a primary event in LMNA loss-of-function cardiomyopathy.
Collapse
|
65
|
Marano N, Holaska JM. Emerin interacts with histone methyltransferases to regulate repressive chromatin at the nuclear periphery. Front Cell Dev Biol 2022; 10:1007120. [PMID: 36274837 PMCID: PMC9583931 DOI: 10.3389/fcell.2022.1007120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
X-Linked Emery-Dreifuss muscular dystrophy is caused by mutations in the gene encoding emerin. Emerin is an inner nuclear membrane protein important for repressive chromatin organization at the nuclear periphery. Myogenic differentiation is a tightly regulated process characterized by genomic reorganization leading to coordinated temporal expression of key transcription factors, including MyoD, Pax7, and Myf5. Emerin was shown to interact with repressive histone modification machinery, including HDAC3 and EZH2. Using emerin-null myogenic progenitor cells we established several EDMD-causing emerin mutant lines in the effort to understand how the functional interaction of emerin with HDAC3 regulates histone methyltransferase localization or function to organize repressive chromatin at the nuclear periphery. We found that, in addition to its interaction with HDAC3, emerin interacts with the histone methyltransferases EZH2 and G9a in myogenic progenitor cells. Further, we show enhanced binding of emerin HDAC3-binding mutants S54F and Q133H to EZH2 and G9a. Treatment with small molecule inhibitors of EZH2 and G9a reduced H3K9me2 or H3K27me3 throughout differentiation. EZH2 and G9a inhibitors impaired cell cycle withdrawal, differentiation commitment, and myotube formation in wildtype progenitors, while they had no effect on emerin-null progenitors. Interestingly, these inhibitors exacerbated the impaired differentiation of emerin S54F and Q133H mutant progenitors. Collectively, these results suggest the functional interaction between emerin and HDAC3, EZH2, and G9a are important for myogenic differentiation.
Collapse
Affiliation(s)
| | - James M. Holaska
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
66
|
Ringel AR, Szabo Q, Chiariello AM, Chudzik K, Schöpflin R, Rothe P, Mattei AL, Zehnder T, Harnett D, Laupert V, Bianco S, Hetzel S, Glaser J, Phan MHQ, Schindler M, Ibrahim DM, Paliou C, Esposito A, Prada-Medina CA, Haas SA, Giere P, Vingron M, Wittler L, Meissner A, Nicodemi M, Cavalli G, Bantignies F, Mundlos S, Robson MI. Repression and 3D-restructuring resolves regulatory conflicts in evolutionarily rearranged genomes. Cell 2022; 185:3689-3704.e21. [PMID: 36179666 PMCID: PMC9567273 DOI: 10.1016/j.cell.2022.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/03/2022] [Accepted: 08/30/2022] [Indexed: 01/26/2023]
Abstract
Regulatory landscapes drive complex developmental gene expression, but it remains unclear how their integrity is maintained when incorporating novel genes and functions during evolution. Here, we investigated how a placental mammal-specific gene, Zfp42, emerged in an ancient vertebrate topologically associated domain (TAD) without adopting or disrupting the conserved expression of its gene, Fat1. In ESCs, physical TAD partitioning separates Zfp42 and Fat1 with distinct local enhancers that drive their independent expression. This separation is driven by chromatin activity and not CTCF/cohesin. In contrast, in embryonic limbs, inactive Zfp42 shares Fat1's intact TAD without responding to active Fat1 enhancers. However, neither Fat1 enhancer-incompatibility nor nuclear envelope-attachment account for Zfp42's unresponsiveness. Rather, Zfp42's promoter is rendered inert to enhancers by context-dependent DNA methylation. Thus, diverse mechanisms enabled the integration of independent Zfp42 regulation in the Fat1 locus. Critically, such regulatory complexity appears common in evolution as, genome wide, most TADs contain multiple independently expressed genes.
Collapse
Affiliation(s)
- Alessa R Ringel
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Quentin Szabo
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Konrad Chudzik
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Robert Schöpflin
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Rothe
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexandra L Mattei
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Tobias Zehnder
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dermot Harnett
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Verena Laupert
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Sara Hetzel
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Juliane Glaser
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Mai H Q Phan
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Magdalena Schindler
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel M Ibrahim
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Christina Paliou
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Cesar A Prada-Medina
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Stefan A Haas
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Peter Giere
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Martin Vingron
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Giacomo Cavalli
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Frédéric Bantignies
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.
| | - Michael I Robson
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
67
|
Hsia CR, McAllister J, Hasan O, Judd J, Lee S, Agrawal R, Chang CY, Soloway P, Lammerding J. Confined migration induces heterochromatin formation and alters chromatin accessibility. iScience 2022; 25:104978. [PMID: 36117991 PMCID: PMC9474860 DOI: 10.1016/j.isci.2022.104978] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/14/2022] [Accepted: 08/15/2022] [Indexed: 01/17/2023] Open
Abstract
During migration, cells often squeeze through small constrictions, requiring extensive deformation. We hypothesized that nuclear deformation associated with such confined migration could alter chromatin organization and function. By studying cells migrating through microfluidic devices that mimic interstitial spaces in vivo, we found that confined migration results in increased H3K9me3 and H3K27me3 heterochromatin marks that persist for days. This "confined migration-induced heterochromatin" (CMiH) was distinct from heterochromatin formation during migration initiation. Confined migration decreased chromatin accessibility at intergenic regions near centromeres and telomeres, suggesting heterochromatin spreading from existing sites. Consistent with the overall decrease in accessibility, global transcription was decreased during confined migration. Intriguingly, we also identified increased accessibility at promoter regions of genes linked to chromatin silencing, tumor invasion, and DNA damage response. Inhibiting CMiH reduced migration speed, suggesting that CMiH promotes confined migration. Together, our findings indicate that confined migration induces chromatin changes that regulate cell migration and other functions.
Collapse
Affiliation(s)
- Chieh-Ren Hsia
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jawuanna McAllister
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ovais Hasan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Seoyeon Lee
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Richa Agrawal
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Chao-Yuan Chang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Paul Soloway
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
68
|
Jain N, Lord JM, Vogel V. Mechanoimmunology: Are inflammatory epigenetic states of macrophages tuned by biophysical factors? APL Bioeng 2022; 6:031502. [PMID: 36051106 PMCID: PMC9427154 DOI: 10.1063/5.0087699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Many inflammatory diseases that are responsible for a majority of deaths are still uncurable, in part as the underpinning pathomechanisms and how to combat them is still poorly understood. Tissue-resident macrophages play pivotal roles in the maintenance of tissue homeostasis, but if they gradually convert to proinflammatory phenotypes, or if blood-born proinflammatory macrophages persist long-term after activation, they contribute to chronic inflammation and fibrosis. While biochemical factors and how they regulate the inflammatory transcriptional response of macrophages have been at the forefront of research to identify targets for therapeutic interventions, evidence is increasing that physical factors also tune the macrophage phenotype. Recently, several mechanisms have emerged as to how physical factors impact the mechanobiology of macrophages, from the nuclear translocation of transcription factors to epigenetic modifications, perhaps even DNA methylation. Insight into the mechanobiology of macrophages and associated epigenetic modifications will deliver novel therapeutic options going forward, particularly in the context of increased inflammation with advancing age and age-related diseases. We review here how biophysical factors can co-regulate pro-inflammatory gene expression and epigenetic modifications and identify knowledge gaps that require urgent attention if this therapeutic potential is to be realized.
Collapse
Affiliation(s)
- Nikhil Jain
- Authors to whom correspondence should be addressed: and
| | | | - Viola Vogel
- Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
69
|
Histone Deacetylase 3 Inhibitor Alleviates Cerebellar Defects in Perinatal Hypothyroid Mice by Stimulating Histone Acetylation and Transcription at Thyroid Hormone-Responsive Gene Loci. Int J Mol Sci 2022; 23:ijms23147869. [PMID: 35887216 PMCID: PMC9319938 DOI: 10.3390/ijms23147869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/27/2023] Open
Abstract
Perinatal hypothyroidism impairs cerebellar organogenesis and results in motor coordination defects. The thyroid hormone receptor binds to corepressor complexes containing histone deacetylase (HDAC) 3 in the absence of ligands and acts as a transcriptional repressor. Although histone acetylation status is strongly correlated with transcriptional regulation, its role in cerebellar development remains largely unknown. We aimed to study whether the cerebellar developmental defects induced by perinatal hypothyroidism can be rescued by treatment with a specific HDAC3 inhibitor, RGFP966. Motor coordination was analyzed using three behavioral tests. The cerebella were subjected to RT-qPCR and chromatin immunoprecipitation assays for acetylated histone H3. The treatment with RGFP966 partially reversed the cerebellar morphological defects in perinatal hypothyroid mice. These findings were associated with the alleviation of motor coordination defects in these mice. In addition, the RGFP966 administration increased the mRNA levels of cerebellar thyroid hormone-responsive genes. These increases were accompanied by augmented histone acetylation status at these gene loci. These findings indicate that HDAC3 plays an important role in the cerebellar developmental defects induced by perinatal hypothyroidism. The HDAC3 inhibitor might serve as a novel therapeutic agent for hypothyroidism-induced cerebellar defects by acetylating histone tails and stimulating transcription at thyroid hormone-responsive gene loci.
Collapse
|
70
|
Jang J, Song G, Pettit SM, Li Q, Song X, Cai CL, Kaushal S, Li D. Epicardial HDAC3 Promotes Myocardial Growth Through a Novel MicroRNA Pathway. Circ Res 2022; 131:151-164. [PMID: 35722872 PMCID: PMC9308743 DOI: 10.1161/circresaha.122.320785] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Establishment of the myocardial wall requires proper growth cues from nonmyocardial tissues. During heart development, the epicardium and epicardium-derived cells instruct myocardial growth by secreting essential factors including FGF (fibroblast growth factor) 9 and IGF (insulin-like growth factor) 2. However, it is poorly understood how the epicardial secreted factors are regulated, in particular by chromatin modifications for myocardial formation. The current study is to investigate whether and how HDAC (histone deacetylase) 3 in the developing epicardium regulates myocardial growth. METHODS Various cellular and mouse models in conjunction with biochemical and molecular tools were employed to study the role of HDAC3 in the developing epicardium. RESULTS We deleted Hdac3 in the developing murine epicardium, and mutant hearts showed ventricular myocardial wall hypoplasia with reduction of epicardium-derived cells. The cultured embryonic cardiomyocytes with supernatants from Hdac3 knockout (KO) mouse epicardial cells also showed decreased proliferation. Genome-wide transcriptomic analysis revealed that Fgf9 and Igf2 were significantly downregulated in Hdac3 KO mouse epicardial cells. We further found that Fgf9 and Igf2 expression is dependent on HDAC3 deacetylase activity. The supplementation of FGF9 or IGF2 can rescue the myocardial proliferation defects treated by Hdac3 KO supernatant. Mechanistically, we identified that microRNA (miR)-322 and miR-503 were upregulated in Hdac3 KO mouse epicardial cells and Hdac3 epicardial KO hearts. Overexpression of miR-322 or miR-503 repressed FGF9 and IGF2 expression, while knockdown of miR-322 or miR-503 restored FGF9 and IGF2 expression in Hdac3 KO mouse epicardial cells. CONCLUSIONS Our findings reveal a critical signaling pathway in which epicardial HDAC3 promotes compact myocardial growth by stimulating FGF9 and IGF2 through repressing miR-322 or miR-503, providing novel insights in elucidating the etiology of congenital heart defects and conceptual strategies to promote myocardial regeneration.
Collapse
Affiliation(s)
- Jihyun Jang
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Guang Song
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Sarah M. Pettit
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Qinshan Li
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Xiaosu Song
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Chen-leng Cai
- Department of Pediatrics, Herman Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46201
| | - Sunjay Kaushal
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Deqiang Li
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
71
|
Nagano M, Hu B, Yokobayashi S, Yamamura A, Umemura F, Coradin M, Ohta H, Yabuta Y, Ishikura Y, Okamoto I, Ikeda H, Kawahira N, Nosaka Y, Shimizu S, Kojima Y, Mizuta K, Kasahara T, Imoto Y, Meehan K, Stocsits R, Wutz G, Hiraoka Y, Murakawa Y, Yamamoto T, Tachibana K, Peters J, Mirny LA, Garcia BA, Majewski J, Saitou M. Nucleome programming is required for the foundation of totipotency in mammalian germline development. EMBO J 2022; 41:e110600. [PMID: 35703121 PMCID: PMC9251848 DOI: 10.15252/embj.2022110600] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
Germ cells are unique in engendering totipotency, yet the mechanisms underlying this capacity remain elusive. Here, we perform comprehensive and in-depth nucleome analysis of mouse germ-cell development in vitro, encompassing pluripotent precursors, primordial germ cells (PGCs) before and after epigenetic reprogramming, and spermatogonia/spermatogonial stem cells (SSCs). Although epigenetic reprogramming, including genome-wide DNA de-methylation, creates broadly open chromatin with abundant enhancer-like signatures, the augmented chromatin insulation safeguards transcriptional fidelity. These insulatory constraints are then erased en masse for spermatogonial development. Notably, despite distinguishing epigenetic programming, including global DNA re-methylation, the PGCs-to-spermatogonia/SSCs development entails further euchromatization. This accompanies substantial erasure of lamina-associated domains, generating spermatogonia/SSCs with a minimal peripheral attachment of chromatin except for pericentromeres-an architecture conserved in primates. Accordingly, faulty nucleome maturation, including persistent insulation and improper euchromatization, leads to impaired spermatogenic potential. Given that PGCs after epigenetic reprogramming serve as oogenic progenitors as well, our findings elucidate a principle for the nucleome programming that creates gametogenic progenitors in both sexes, defining a basis for nuclear totipotency.
Collapse
|
72
|
Yang L, Sun J, Chen Z, Liu L, Sun Y, Lin J, Hu X, Zhao M, Ma Y, Lu D, Li Y, Guo Y, Dong E. The LMNA p.R541C mutation causes dilated cardiomyopathy in human and mice. Int J Cardiol 2022; 363:149-158. [PMID: 35714719 DOI: 10.1016/j.ijcard.2022.06.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022]
Abstract
Dilated cardiomyopathy (DCM) is a major cause of heart failure. LMNA variants contribute to 6-10% DCM cases, but the underlying mechanisms remain incompletely understood. Here, we reported two patients carrying the LMNA c.1621C > T/ p.R541C variant and generated a knock-in mouse model (LmnaRC) to study the role of this variant in DCM pathogenesis. We found LmnaRC/RC mice exhibited ventricular dilation and reduced systolic functions at 6 months after birth. The LmnaRC/RC cardiomyocytes increased in size but no nuclear morphology defects were detected. Transcriptomic and microscopic analyses revealed suppressed gene expression and perturbed ultrastructure in LmnaRC/RC mitochondria. These defects were associated with increased heterochromatin structures and epigenetic markers including H3K9me2/3. Together, these data implied that the LMNA c.1621C > T/ p.R541C variant enhanced heterochromatic gene suppression and disrupted mitochondria functions as a cause of DCM.
Collapse
Affiliation(s)
- Luzi Yang
- Peking University Health Science Center, School of Basic Medical Sciences, The Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Jinhuan Sun
- Peking University Health Science Center, School of Basic Medical Sciences, The Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Zhan Chen
- Peking University Health Science Center, School of Basic Medical Sciences, The Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Lei Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yueshen Sun
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Junsen Lin
- Peking University Health Science Center, School of Basic Medical Sciences, The Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Xiaomin Hu
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Mingming Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; The Institute of Cardiovascular Sciences, Peking University; National Health Commission of China (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science of Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research. Beijing 100191, China
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC) and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Dan Lu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC) and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Yuxuan Guo
- Peking University Health Science Center, School of Basic Medical Sciences, The Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Erdan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; The Institute of Cardiovascular Sciences, Peking University; National Health Commission of China (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science of Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research. Beijing 100191, China
| |
Collapse
|
73
|
Feng Y, Cai L, Hong W, Zhang C, Tan N, Wang M, Wang C, Liu F, Wang X, Ma J, Gao C, Kumar M, Mo Y, Geng Q, Luo C, Lin Y, Chen H, Wang SY, Watson MJ, Jegga AG, Pedersen RA, Fu JD, Wang ZV, Fan GC, Sadayappan S, Wang Y, Pauklin S, Huang F, Huang W, Jiang L. Rewiring of 3D Chromatin Topology Orchestrates Transcriptional Reprogramming and the Development of Human Dilated Cardiomyopathy. Circulation 2022; 145:1663-1683. [PMID: 35400201 PMCID: PMC9251830 DOI: 10.1161/circulationaha.121.055781] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/18/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Transcriptional reconfiguration is central to heart failure, the most common cause of which is dilated cardiomyopathy (DCM). The effect of 3-dimensional chromatin topology on transcriptional dysregulation and pathogenesis in human DCM remains elusive. METHODS We generated a compendium of 3-dimensional epigenome and transcriptome maps from 101 biobanked human DCM and nonfailing heart tissues through highly integrative chromatin immunoprecipitation (H3K27ac [acetylation of lysine 27 on histone H3]), in situ high-throughput chromosome conformation capture, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin using sequencing, and RNA sequencing. We used human induced pluripotent stem cell-derived cardiomyocytes and mouse models to interrogate the key transcription factor implicated in 3-dimensional chromatin organization and transcriptional regulation in DCM pathogenesis. RESULTS We discovered that the active regulatory elements (H3K27ac peaks) and their connectome (H3K27ac loops) were extensively reprogrammed in DCM hearts and contributed to transcriptional dysregulation implicated in DCM development. For example, we identified that nontranscribing NPPA-AS1 (natriuretic peptide A antisense RNA 1) promoter functions as an enhancer and physically interacts with the NPPA (natriuretic peptide A) and NPPB (natriuretic peptide B) promoters, leading to the cotranscription of NPPA and NPPB in DCM hearts. We revealed that DCM-enriched H3K27ac loops largely resided in conserved high-order chromatin architectures (compartments, topologically associating domains) and their anchors unexpectedly had equivalent chromatin accessibility. We discovered that the DCM-enriched H3K27ac loop anchors exhibited a strong enrichment for HAND1 (heart and neural crest derivatives expressed 1), a key transcription factor involved in early cardiogenesis. In line with this, its protein expression was upregulated in human DCM and mouse failing hearts. To further validate whether HAND1 is a causal driver for the reprogramming of enhancer-promoter connectome in DCM hearts, we performed comprehensive 3-dimensional epigenome mappings in human induced pluripotent stem cell-derived cardiomyocytes. We found that forced overexpression of HAND1 in human induced pluripotent stem cell-derived cardiomyocytes induced a distinct gain of enhancer-promoter connectivity and correspondingly increased the expression of their connected genes implicated in DCM pathogenesis, thus recapitulating the transcriptional signature in human DCM hearts. Electrophysiology analysis demonstrated that forced overexpression of HAND1 in human induced pluripotent stem cell-derived cardiomyocytes induced abnormal calcium handling. Furthermore, cardiomyocyte-specific overexpression of Hand1 in the mouse hearts resulted in dilated cardiac remodeling with impaired contractility/Ca2+ handling in cardiomyocytes, increased ratio of heart weight/body weight, and compromised cardiac function, which were ascribed to recapitulation of transcriptional reprogramming in DCM. CONCLUSIONS This study provided novel chromatin topology insights into DCM pathogenesis and illustrated a model whereby a single transcription factor (HAND1) reprograms the genome-wide enhancer-promoter connectome to drive DCM pathogenesis.
Collapse
Affiliation(s)
- Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford Old Road, Headington, Oxford, OX3 7LD, UK
- These authors contributed equally to this work
| | - Liuyang Cai
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR 999077, China
- These authors contributed equally to this work
| | - Wanzi Hong
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
- These authors contributed equally to this work
| | - Chunxiang Zhang
- Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
- These authors contributed equally to this work
| | - Ning Tan
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Mingyang Wang
- College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Cheng Wang
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland D02 VF25
| | - Feng Liu
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford Old Road, Headington, Oxford, OX3 7LD, UK
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Chen Gao
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mohit Kumar
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45236, USA
| | - Yuanxi Mo
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Qingshan Geng
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Changjun Luo
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yan Lin
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Haiyang Chen
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shuang-Yin Wang
- Department of Immunology, Weizmann Institute of Science, Rehovot WR35+R8, Israel
| | - Michael J. Watson
- Department of Surgery, Cardiovascular & Thoracic, Duke University, Durham, NC 27710, USA
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Computer Science, University of Cincinnati College of Engineering, Cincinnati, OH 45221, USA
| | - Roger A. Pedersen
- Department of OB-GYN/Reproductive, Perinatal and Stem Cell Biology Research, Stanford University, Stanford, California, USA
| | - Ji-dong Fu
- Departments of Physiology and Cell Biology, the Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, the Ohio State University, Columbus, OH 43210, USA
| | - Zhao V. Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sakthivel Sadayappan
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45236, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford Old Road, Headington, Oxford, OX3 7LD, UK
| | - Feng Huang
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lei Jiang
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
- Lead contact
| |
Collapse
|
74
|
Balsalobre A, Drouin J. Pioneer factors as master regulators of the epigenome and cell fate. Nat Rev Mol Cell Biol 2022; 23:449-464. [PMID: 35264768 DOI: 10.1038/s41580-022-00464-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/23/2022]
Abstract
Pioneer factors are transcription factors with the unique ability to initiate opening of closed chromatin. The stability of cell identity relies on robust mechanisms that maintain the epigenome and chromatin accessibility to transcription factors. Pioneer factors counter these mechanisms to implement new cell fates through binding of DNA target sites in closed chromatin and introduction of active-chromatin histone modifications, primarily at enhancers. As master regulators of enhancer activation, pioneers are thus crucial for the implementation of correct cell fate decisions in development, and as such, they hold tremendous potential for therapy through cellular reprogramming. The power of pioneer factors to reshape the epigenome also presents an Achilles heel, as their misexpression has major pathological consequences, such as in cancer. In this Review, we discuss the emerging mechanisms of pioneer factor functions and their roles in cell fate specification, cellular reprogramming and cancer.
Collapse
Affiliation(s)
- Aurelio Balsalobre
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montreal, QC, Canada
| | - Jacques Drouin
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montreal, QC, Canada.
| |
Collapse
|
75
|
Abstract
Lamins interact with a host of nuclear membrane proteins, transcription factors, chromatin regulators, signaling molecules, splicing factors, and even chromatin itself to form a nuclear subcompartment, the nuclear lamina, that is involved in a variety of cellular processes such as the governance of nuclear integrity, nuclear positioning, mitosis, DNA repair, DNA replication, splicing, signaling, mechanotransduction and -sensation, transcriptional regulation, and genome organization. Lamins are the primary scaffold for this nuclear subcompartment, but interactions with lamin-associated peptides in the inner nuclear membrane are self-reinforcing and mutually required. Lamins also interact, directly and indirectly, with peripheral heterochromatin domains called lamina-associated domains (LADs) and help to regulate dynamic 3D genome organization and expression of developmentally regulated genes.
Collapse
Affiliation(s)
- Xianrong Wong
- Laboratory of Developmental and Regenerative Biology, Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore 138648
| | - Ashley J Melendez-Perez
- Department of Biological Chemistry and Center for Epigenetics, Johns Hopkins University of Medicine, Baltimore, Maryland 21205, USA
| | - Karen L Reddy
- Department of Biological Chemistry and Center for Epigenetics, Johns Hopkins University of Medicine, Baltimore, Maryland 21205, USA
- Sidney Kimmel Cancer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| |
Collapse
|
76
|
Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol 2022; 23:329-349. [PMID: 35042977 DOI: 10.1038/s41580-021-00441-y] [Citation(s) in RCA: 418] [Impact Index Per Article: 139.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Lysine acetylation is a widespread and versatile protein post-translational modification. Lysine acetyltransferases and lysine deacetylases catalyse the addition or removal, respectively, of acetyl groups at both histone and non-histone targets. In this Review, we discuss several features of acetylation and deacetylation, including their diversity of targets, rapid turnover, exquisite sensitivity to the concentrations of the cofactors acetyl-CoA, acyl-CoA and NAD+, and tight interplay with metabolism. Histone acetylation and non-histone protein acetylation influence a myriad of cellular and physiological processes, including transcription, phase separation, autophagy, mitosis, differentiation and neural function. The activity of lysine acetyltransferases and lysine deacetylases can, in turn, be regulated by metabolic states, diet and specific small molecules. Histone acetylation has also recently been shown to mediate cellular memory. These features enable acetylation to integrate the cellular state with transcriptional output and cell-fate decisions.
Collapse
Affiliation(s)
- Maria Shvedunova
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| |
Collapse
|
77
|
Chromatin alterations during the epididymal maturation of mouse sperm refine the paternally inherited epigenome. Epigenetics Chromatin 2022; 15:2. [PMID: 34991687 PMCID: PMC8734183 DOI: 10.1186/s13072-021-00433-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Paternal lifestyle choices and male exposure history have a critical influence on the health and fitness of the next generation. Accordingly, defining the processes of germline programming is essential to resolving how the epigenetic memory of paternal experiences transmits to their offspring. Established dogma holds that all facets of chromatin organization and histone posttranslational modification are complete before sperm exits the testes. However, recent clinical and animal studies suggest that patterns of DNA methylation change during epididymal maturation. In this study, we used complementary proteomic and deep-sequencing approaches to test the hypothesis that sperm posttranslational histone modifications change during epididymal transit. RESULTS Using proteomic analysis to contrast immature spermatozoa and mature sperm isolated from the mouse epididymis, we find progressive changes in multiple histone posttranslational modifications, including H3K4me1, H3K27ac, H3K79me2, H3K64ac, H3K122ac, H4K16ac, H3K9me2, and H4K20me3. Interestingly, some of these changes only occurred on histone variant H3.3, and most involve chromatin modifications associated with gene enhancer activity. In contrast, the bivalent chromatin modifications, H3K4me3, and H3K27me3 remained constant. Using chromatin immunoprecipitation coupled with deep sequencing, we find that changes in histone h3, lysine 27 acetylation (H3K27ac) involve sharpening broad diffuse regions into narrow peaks centered on the promoter regions of genes driving embryonic development. Significantly, many of these regions overlap with broad domains of H3K4me3 in oocytes and ATAC-seq signatures of open chromatin identified in MII oocytes and sperm. In contrast, histone h3, lysine 9 dimethylation (H3K9me2) becomes enriched within the promoters of genes driving meiosis and in the distal enhancer regions of tissue-specific genes sequestered at the nuclear lamina. Maturing sperm contain the histone deacetylase enzymes HDAC1 and HDAC3, suggesting the NuRD complex may drive some of these changes. Finally, using Western blotting, we detected changes in chromatin modifications between caput and caudal sperm isolated from rams (Ovis aries), inferring changes in histone modifications are a shared feature of mammalian epididymal maturation. CONCLUSIONS These data extend our understanding of germline programming and reveal that, in addition to trafficking noncoding RNAs, changes in histone posttranslational modifications are a core feature of epididymal maturation.
Collapse
|
78
|
Bianconi V, Mozzetta C. Epigenetic control of muscle stem cells: time for a new dimension. Trends Genet 2022; 38:501-513. [DOI: 10.1016/j.tig.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
|
79
|
Shao R, Kumar B, Lidschreiber K, Lidschreiber M, Cramer P, Elsässer SJ. Distinct transcription kinetics of pluripotent cell states. Mol Syst Biol 2022; 18:e10407. [PMID: 35020268 PMCID: PMC8754154 DOI: 10.15252/msb.202110407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Mouse embryonic stem cells (mESCs) can adopt naïve, ground, and paused pluripotent states that give rise to unique transcriptomes. Here, we use transient transcriptome sequencing (TT-seq) to define both coding and non-coding transcription units (TUs) in these three pluripotent states and combine TT-seq with RNA polymerase II occupancy profiling to unravel the kinetics of RNA metabolism genome-wide. Compared to the naïve state (serum), RNA synthesis and turnover rates are globally reduced in the ground state (2i) and the paused state (mTORi). The global reduction in RNA synthesis goes along with a genome-wide decrease of polymerase elongation velocity, which is related to epigenomic features and alterations in the Pol II termination window. Our data suggest that transcription activity is the main determinant of steady state mRNA levels in the naïve state and that genome-wide changes in transcription kinetics invoke ground and paused pluripotent states.
Collapse
Affiliation(s)
- Rui Shao
- Science for Life LaboratoryDepartment of Medical Biochemistry and BiophysicsDivision of Genome BiologyKarolinska InstitutetStockholmSweden
- Ming Wai Lau Centre for Reparative MedicineStockholm nodeKarolinska InstitutetStockholmSweden
| | - Banushree Kumar
- Science for Life LaboratoryDepartment of Medical Biochemistry and BiophysicsDivision of Genome BiologyKarolinska InstitutetStockholmSweden
- Ming Wai Lau Centre for Reparative MedicineStockholm nodeKarolinska InstitutetStockholmSweden
| | - Katja Lidschreiber
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of Molecular BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Michael Lidschreiber
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of Molecular BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Patrick Cramer
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of Molecular BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Simon J Elsässer
- Science for Life LaboratoryDepartment of Medical Biochemistry and BiophysicsDivision of Genome BiologyKarolinska InstitutetStockholmSweden
- Ming Wai Lau Centre for Reparative MedicineStockholm nodeKarolinska InstitutetStockholmSweden
| |
Collapse
|
80
|
Herman AB, Occean JR, Sen P. Epigenetic dysregulation in cardiovascular aging and disease. THE JOURNAL OF CARDIOVASCULAR AGING 2021; 1. [PMID: 34790973 PMCID: PMC8594871 DOI: 10.20517/jca.2021.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality and morbidity for all sexes, racial and ethnic groups. Age, and its associated physiological and pathological consequences, exacerbate CVD incidence and progression, while modulation of biological age with interventions track with cardiovascular health. Despite the strong link between aging and CVD, surprisingly few studies have directly investigated heart failure and vascular dysfunction in aged models and subjects. Nevertheless, strong correlations have been found between heart disease, atherosclerosis, hypertension, fibrosis, and regeneration efficiency with senescent cell burden and its proinflammatory sequelae. In agreement, senotherapeutics have had success in reducing the detrimental effects in experimental models of cardiovascular aging and disease. Aside from senotherapeutics, cellular reprogramming strategies targeting epigenetic enzymes remain an unexplored yet viable option for reversing or delaying CVD. Epigenetic alterations comprising local and global changes in DNA and histone modifications, transcription factor binding, disorganization of the nuclear lamina, and misfolding of the genome are hallmarks of aging. Limited studies in the aging cardiovascular system of murine models or human patient samples have identified strong correlations between the epigenome, age, and senescence. Here, we compile the findings in published studies linking epigenetic changes to CVD and identify clear themes of epigenetic deregulation during aging. Pending direct investigation of these general mechanisms in aged tissues, this review predicts that future work will establish epigenetic rejuvenation as a potent method to delay CVD.
Collapse
Affiliation(s)
- Allison B Herman
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - James R Occean
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
81
|
Tang S, Davoudi Z, Wang G, Xu Z, Rehman T, Prominski A, Tian B, Bratlie KM, Peng H, Wang Q. Soft materials as biological and artificial membranes. Chem Soc Rev 2021; 50:12679-12701. [PMID: 34636824 DOI: 10.1039/d1cs00029b] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past few decades have seen emerging growth in the field of soft materials for synthetic biology. This review focuses on soft materials involved in biological and artificial membranes. The biological membranes discussed here are mainly those involved in the structure and function of cells and organelles. As building blocks in medicine, non-native membranes including nanocarriers (NCs), especially liposomes and DQAsomes, and polymeric membranes for scaffolds are constructed from amphiphilic combinations of lipids, proteins, and carbohydrates. Artificial membranes can be prepared using synthetic, soft materials and molecules and then incorporated into structures through self-organization to form micelles or niosomes. The modification of artificial membranes can be realized using traditional chemical methods such as click reactions to target the delivery of NCs and control the release of therapeutics. The biomembrane, a lamellar structure inlaid with ion channels, receptors, lipid rafts, enzymes, and other functional units, separates cells and organelles from the environment. An active domain inserted into the membrane and organelles for energy conversion and cellular communication can target disease by changing the membrane's composition, structure, and fluidity and affecting the on/off status of the membrane gates. The biological membrane targets analyzing pathological mechanisms and curing complex diseases, which inspires us to create NCs with artificial membranes.
Collapse
Affiliation(s)
- Shukun Tang
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing, 163319, China.
| | - Zahra Davoudi
- Department of Chemical and Biological Engineering, Iowa State University, 1014 Sweeney Hall, Ames, IA 50011, USA.
| | - Guangtian Wang
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing, 163319, China.
| | - Zihao Xu
- Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
| | - Tanzeel Rehman
- Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
| | - Aleksander Prominski
- The James Franck Institute, Department of Chemistry, The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Bozhi Tian
- The James Franck Institute, Department of Chemistry, The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kaitlin M Bratlie
- Department of Chemical and Biological Engineering, Iowa State University, 1014 Sweeney Hall, Ames, IA 50011, USA. .,Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
| | - Haisheng Peng
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing, 163319, China.
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, 1014 Sweeney Hall, Ames, IA 50011, USA.
| |
Collapse
|
82
|
Malashicheva A, Perepelina K. Diversity of Nuclear Lamin A/C Action as a Key to Tissue-Specific Regulation of Cellular Identity in Health and Disease. Front Cell Dev Biol 2021; 9:761469. [PMID: 34722546 PMCID: PMC8548693 DOI: 10.3389/fcell.2021.761469] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
A-type lamins are the main structural components of the nucleus, which are mainly localized at the nucleus periphery. First of all, A-type lamins, together with B-type lamins and proteins of the inner nuclear membrane, form a stiff structure-the nuclear lamina. Besides maintaining the nucleus cell shape, A-type lamins play a critical role in many cellular events, such as gene transcription and epigenetic regulation. Nowadays it is clear that lamins play a very important role in determining cell fate decisions. Various mutations in genes encoding A-type lamins lead to damages of different types of tissues in humans, collectively known as laminopathies, and it is clear that A-type lamins are involved in the regulation of cell differentiation and stemness. However, the mechanisms of this regulation remain unclear. In this review, we discuss how A-type lamins can execute their regulatory role in determining the differentiation status of a cell. We have summarized recent data focused on lamin A/C action mechanisms in regulation of cell differentiation and identity development of stem cells of different origin. We also discuss how this knowledge can promote further research toward a deeper understanding of the role of lamin A/C mutations in laminopathies.
Collapse
Affiliation(s)
- Anna Malashicheva
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Kseniya Perepelina
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
83
|
Cha HJ, Uyan Ö, Kai Y, Liu T, Zhu Q, Tothova Z, Botten GA, Xu J, Yuan GC, Dekker J, Orkin SH. Inner nuclear protein Matrin-3 coordinates cell differentiation by stabilizing chromatin architecture. Nat Commun 2021; 12:6241. [PMID: 34716321 PMCID: PMC8556400 DOI: 10.1038/s41467-021-26574-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Precise control of gene expression during differentiation relies on the interplay of chromatin and nuclear structure. Despite an established contribution of nuclear membrane proteins to developmental gene regulation, little is known regarding the role of inner nuclear proteins. Here we demonstrate that loss of the nuclear scaffolding protein Matrin-3 (Matr3) in erythroid cells leads to morphological and gene expression changes characteristic of accelerated maturation, as well as broad alterations in chromatin organization similar to those accompanying differentiation. Matr3 protein interacts with CTCF and the cohesin complex, and its loss perturbs their occupancy at a subset of sites. Destabilization of CTCF and cohesin binding correlates with altered transcription and accelerated differentiation. This association is conserved in embryonic stem cells. Our findings indicate Matr3 negatively affects cell fate transitions and demonstrate that a critical inner nuclear protein impacts occupancy of architectural factors, culminating in broad effects on chromatin organization and cell differentiation.
Collapse
Affiliation(s)
- Hye Ji Cha
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute (DFCI), Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Özgün Uyan
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yan Kai
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Tianxin Liu
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute (DFCI), Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Qian Zhu
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute (DFCI), Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Zuzana Tothova
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Giovanni A Botten
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian Xu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guo-Cheng Yuan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute (DFCI), Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
84
|
Smith CL, Lan Y, Jain R, Epstein JA, Poleshko A. Global chromatin relabeling accompanies spatial inversion of chromatin in rod photoreceptors. SCIENCE ADVANCES 2021; 7:eabj3035. [PMID: 34559565 PMCID: PMC8462898 DOI: 10.1126/sciadv.abj3035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The nuclear architecture of rod photoreceptor cells in nocturnal mammals is unlike that of other animal cells. Murine rod cells have an “inverted” chromatin organization with euchromatin at the nuclear periphery and heterochromatin packed in the center of the nucleus. In conventional nuclear architecture, euchromatin is mostly in the interior, and heterochromatin is largely at the nuclear periphery. We demonstrate that inverted nuclear architecture is achieved through global relabeling of the rod cell epigenome. During rod cell maturation, H3K9me2-labeled nuclear peripheral heterochromatin is relabeled with H3K9me3 and repositioned to the nuclear center, while transcriptionally active euchromatin is labeled with H3K9me2 and positioned at the nuclear periphery. Global chromatin relabeling is correlated with spatial rearrangement, suggesting a critical role for histone modifications, specifically H3K9 methylation, in nuclear architecture. These results reveal a dramatic example of genome-wide epigenetic relabeling of chromatin that accompanies altered nuclear architecture in a postnatal, postmitotic cell.
Collapse
Affiliation(s)
- Cheryl L. Smith
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yemin Lan
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rajan Jain
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Penn Cardiovascular Institute, and Institute of Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan A. Epstein
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Penn Cardiovascular Institute, and Institute of Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrey Poleshko
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
85
|
Yoon S, Eom GH, Kang G. Nitrosative Stress and Human Disease: Therapeutic Potential of Denitrosylation. Int J Mol Sci 2021; 22:ijms22189794. [PMID: 34575960 PMCID: PMC8464666 DOI: 10.3390/ijms22189794] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/22/2023] Open
Abstract
Proteins dynamically contribute towards maintaining cellular homeostasis. Posttranslational modification regulates the function of target proteins through their immediate activation, sudden inhibition, or permanent degradation. Among numerous protein modifications, protein nitrosation and its functional relevance have emerged. Nitrosation generally initiates nitric oxide (NO) production in association with NO synthase. NO is conjugated to free thiol in the cysteine side chain (S-nitrosylation) and is propagated via the transnitrosylation mechanism. S-nitrosylation is a signaling pathway frequently involved in physiologic regulation. NO forms peroxynitrite in excessive oxidation conditions and induces tyrosine nitration, which is quite stable and is considered irreversible. Two main reducing systems are attributed to denitrosylation: glutathione and thioredoxin (TRX). Glutathione captures NO from S-nitrosylated protein and forms S-nitrosoglutathione (GSNO). The intracellular reducing system catalyzes GSNO into GSH again. TRX can remove NO-like glutathione and break down the disulfide bridge. Although NO is usually beneficial in the basal context, cumulative stress from chronic inflammation or oxidative insult produces a large amount of NO, which induces atypical protein nitrosation. Herein, we (1) provide a brief introduction to the nitrosation and denitrosylation processes, (2) discuss nitrosation-associated human diseases, and (3) discuss a possible denitrosylation strategy and its therapeutic applications.
Collapse
Affiliation(s)
- Somy Yoon
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Korea;
- Correspondence: (G.-H.E.); (G.K.); Tel.: +82-61-379-2837 (G.-H.E.); +82-62-220-5262 (G.K.)
| | - Gaeun Kang
- Division of Clinical Pharmacology, Chonnam National University Hospital, Gwangju 61469, Korea
- Correspondence: (G.-H.E.); (G.K.); Tel.: +82-61-379-2837 (G.-H.E.); +82-62-220-5262 (G.K.)
| |
Collapse
|
86
|
Llorens-Giralt P, Camilleri-Robles C, Corominas M, Climent-Cantó P. Chromatin Organization and Function in Drosophila. Cells 2021; 10:cells10092362. [PMID: 34572010 PMCID: PMC8465611 DOI: 10.3390/cells10092362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic genomes are packaged into high-order chromatin structures organized in discrete territories inside the cell nucleus, which is surrounded by the nuclear envelope acting as a barrier. This chromatin organization is complex and dynamic and, thus, determining the spatial and temporal distribution and folding of chromosomes within the nucleus is critical for understanding the role of chromatin topology in genome function. Primarily focusing on the regulation of gene expression, we review here how the genome of Drosophila melanogaster is organized into the cell nucleus, from small scale histone–DNA interactions to chromosome and lamina interactions in the nuclear space.
Collapse
|
87
|
Ahanger SH, Delgado RN, Gil E, Cole MA, Zhao J, Hong SJ, Kriegstein AR, Nowakowski TJ, Pollen AA, Lim DA. Distinct nuclear compartment-associated genome architecture in the developing mammalian brain. Nat Neurosci 2021; 24:1235-1242. [PMID: 34239128 PMCID: PMC8410652 DOI: 10.1038/s41593-021-00879-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Nuclear compartments are thought to play a role in three-dimensional genome organization and gene expression. In mammalian brain, the architecture and dynamics of nuclear compartment-associated genome organization is not known. In this study, we developed Genome Organization using CUT and RUN Technology (GO-CaRT) to map genomic interactions with two nuclear compartments-the nuclear lamina and nuclear speckles-from different regions of the developing mouse, macaque and human brain. Lamina-associated domain (LAD) architecture in cells in vivo is distinct from that of cultured cells, including major differences in LADs previously considered to be cell type invariant. In the mouse and human forebrain, dorsal and ventral neural precursor cells have differences in LAD architecture that correspond to their regional identity. LADs in the human and mouse cortex contain transcriptionally highly active sub-domains characterized by broad depletion of histone-3-lysine-9 dimethylation. Evolutionarily conserved LADs in human, macaque and mouse brain are enriched for transcriptionally active neural genes associated with synapse function. By integrating GO-CaRT maps with genome-wide association study data, we found speckle-associated domains to be enriched for schizophrenia risk loci, indicating a physical relationship between these disease-associated genetic variants and a specific nuclear structure. Our work provides a framework for understanding the relationship between distinct nuclear compartments and genome function in brain development and disease.
Collapse
Affiliation(s)
- Sajad Hamid Ahanger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Ryan N Delgado
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Eugene Gil
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Mitchel A Cole
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Jingjing Zhao
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Sung Jun Hong
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Arnold R Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel A Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.
| |
Collapse
|
88
|
Peng XF, Huang SF, Chen LJ, Xu L, Ye WC. Targeting epigenetics and lncRNAs in liver disease: From mechanisms to therapeutics. Pharmacol Res 2021; 172:105846. [PMID: 34438063 DOI: 10.1016/j.phrs.2021.105846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Early onset and progression of liver diseases can be driven by aberrant transcriptional regulation. Different transcriptional regulation processes, such as RNA/DNA methylation, histone modification, and ncRNA-mediated targeting, can regulate biological processes in healthy cells, as well also under various pathological conditions, especially liver disease. Numerous studies over the past decades have demonstrated that liver disease has a strong epigenetic component. Therefore, the epigenetic basis of liver disease has challenged our knowledge of epigenetics, and epigenetics field has undergone an important transformation: from a biological phenomenon to an emerging focus of disease research. Furthermore, inhibitors of different epigenetic regulators, such as m6A-related factors, are being explored as potential candidates for preventing and treating liver diseases. In the present review, we summarize and discuss the current knowledge of five distinct but interconnected and interdependent epigenetic processes in the context of hepatic diseases: RNA methylation, DNA methylation, histone methylation, miRNAs, and lncRNAs. Finally, we discuss the potential therapeutic implications and future challenges and ongoing research in the field. Our review also provides a perspective for identifying therapeutic targets and new hepatic biomarkers of liver disease, bringing precision research and disease therapy to the modern era of epigenetics.
Collapse
Affiliation(s)
- Xiao-Fei Peng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Shi-Feng Huang
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Ling-Juan Chen
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Lingqing Xu
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Wen-Chu Ye
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China.
| |
Collapse
|
89
|
Ishii S. The Role of Histone Deacetylase 3 Complex in Nuclear Hormone Receptor Action. Int J Mol Sci 2021; 22:ijms22179138. [PMID: 34502048 PMCID: PMC8431225 DOI: 10.3390/ijms22179138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Nuclear hormone receptors (NRs) regulate transcription of the target genes in a ligand-dependent manner in either a positive or negative direction, depending on the case. Deacetylation of histone tails is associated with transcriptional repression. A nuclear receptor corepressor (N-CoR) and a silencing mediator for retinoid and thyroid hormone receptors (SMRT) are the main corepressors responsible for gene suppression mediated by NRs. Among numerous histone deacetylases (HDACs), HDAC3 is the core component of the N-CoR/SMRT complex, and plays a central role in NR-dependent repression. Here, the roles of HDAC3 in ligand-independent repression, gene repression by orphan NRs, NRs antagonist action, ligand-induced repression, and the activation of a transcriptional coactivator are reviewed. In addition, some perspectives regarding the non-canonical mechanisms of HDAC3 action are discussed.
Collapse
Affiliation(s)
- Sumiyasu Ishii
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8501, Japan
| |
Collapse
|
90
|
Lityagina O, Dobreva G. The LINC Between Mechanical Forces and Chromatin. Front Physiol 2021; 12:710809. [PMID: 34408666 PMCID: PMC8365421 DOI: 10.3389/fphys.2021.710809] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022] Open
Abstract
The heart continually senses and responds to mechanical stimuli that balance cardiac structure and activity. Tensile forces, compressive forces, and shear stress are sensed by the different cardiac cell types and converted into signals instructing proper heart morphogenesis, postnatal growth, and function. Defects in mechanotransduction, the ability of cells to convert mechanical stimuli into biochemical signals, are implicated in cardiovascular disease development and progression. In this review, we summarize the current knowledge on how mechanical forces are transduced to chromatin through the tensed actomyosin cytoskeleton, the linker of nucleoskeleton and cytoskeleton (LINC) complex and the nuclear lamina. We also discuss the functional significance of the LINC complex in cardiovascular disease.
Collapse
Affiliation(s)
- Olga Lityagina
- Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gergana Dobreva
- Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| |
Collapse
|
91
|
Zheng XH, Wang LL, Zheng MZ, Zhong JJ, Chen YY, Shen YL. RGFP966 inactivation of the YAP pathway attenuates cardiac dysfunction induced by prolonged hypothermic preservation. J Zhejiang Univ Sci B 2021; 21:703-715. [PMID: 32893527 PMCID: PMC7519627 DOI: 10.1631/jzus.b2000026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022]
Abstract
Oxidative stress and apoptosis are the key factors that limit the hypothermic preservation time of donor hearts to within 4-6 h. The aim of this study was to investigate whether the histone deacetylase 3 (HDAC3) inhibitor RGFP966 could protect against cardiac injury induced by prolonged hypothermic preservation. Rat hearts were hypothermically preserved in Celsior solution with or without RGFP966 for 12 h followed by 60 min of reperfusion. Hemodynamic parameters during reperfusion were evaluated. The expression and phosphorylation levels of mammalian STE20-like kinase-1 (Mst1) and Yes-associated protein (YAP) were determined by western blotting. Cell apoptosis was measured by the terminal deoxynucleotidyl-transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) method. Addition of RGFP966 in Celsior solution significantly inhibited cardiac dysfunction induced by hypothermic preservation. RGFP966 inhibited the hypothermic preservation-induced increase of the phosphorylated (p)-Mst1/Mst1 and p-YAP/YAP ratios, prevented a reduction in total YAP protein expression, and increased the nuclear YAP protein level. Verteporfin (VP), a small molecular inhibitor of YAP-transcriptional enhanced associate domain (TEAD) interaction, partially abolished the protective effect of RGFP966 on cardiac function, and reduced lactate dehydrogenase activity and malondialdehyde content. RGFP966 increased superoxide dismutase, catalase, and glutathione peroxidase gene and protein expression, which was abolished by VP. RGFP966 inhibited hypothermic preservation-induced overexpression of B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax) and cleaved caspase-3, increased Bcl-2 mRNA and protein expression, and reduced cardiomyocyte apoptosis. The antioxidant and anti-apoptotic effects of RGFP966 were cancelled by VP. The results suggest that supplementation of Celsior solution with RGFP966 attenuated prolonged hypothermic preservation-induced cardiac dysfunction. The mechanism may involve inhibition of oxidative stress and apoptosis via inactivation of the YAP pathway.
Collapse
Affiliation(s)
- Xiao-he Zheng
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lin-lin Wang
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Ming-zhi Zheng
- Department of Pharmacology, Hangzhou Medical College, Hangzhou 310053, China
| | - Jin-jie Zhong
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Obstetrics, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ying-ying Chen
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Obstetrics, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yue-liang Shen
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
92
|
Smith CL, Poleshko A, Epstein JA. The nuclear periphery is a scaffold for tissue-specific enhancers. Nucleic Acids Res 2021; 49:6181-6195. [PMID: 34023908 PMCID: PMC8216274 DOI: 10.1093/nar/gkab392] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Nuclear architecture influences gene regulation and cell identity by controlling the three-dimensional organization of genes and their distal regulatory sequences, which may be far apart in linear space. The genome is functionally and spatially segregated in the eukaryotic nucleus with transcriptionally active regions in the nuclear interior separated from repressive regions, including those at the nuclear periphery. Here, we describe the identification of a novel type of nuclear peripheral chromatin domain that is enriched for tissue-specific transcriptional enhancers. Like other chromatin at the nuclear periphery, these regions are marked by H3K9me2. But unlike the nuclear peripheral Lamina-Associated Domains (LADs), these novel, enhancer-rich domains have limited Lamin B interaction. We therefore refer to them as H3K9me2-Only Domains (KODs). In mouse embryonic stem cells, KODs are found in Hi-C-defined A compartments and feature relatively accessible chromatin. KODs are characterized by low gene expression and enhancers located in these domains bear the histone marks of an inactive or poised state. These results indicate that KODs organize a subset of inactive, tissue-specific enhancers at the nuclear periphery. We hypothesize that KODs may play a role in facilitating and perhaps constraining the enhancer-promoter interactions underlying spatiotemporal regulation of gene expression programs in differentiation and development.
Collapse
Affiliation(s)
- Cheryl L Smith
- Department of Cell and Developmental Biology and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Andrey Poleshko
- Department of Cell and Developmental Biology and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Jonathan A Epstein
- Department of Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| |
Collapse
|
93
|
Zhou W, Ma T, Ding S. Non-viral approaches for somatic cell reprogramming into cardiomyocytes. Semin Cell Dev Biol 2021; 122:28-36. [PMID: 34238675 DOI: 10.1016/j.semcdb.2021.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 11/27/2022]
Abstract
Heart disease is the leading cause of human deaths worldwide. Due to lacking cardiomyocytes with replicative capacity and cardiac progenitor cells with differentiation potential in adult hearts, massive loss of cardiomyocytes after ischemic events produces permanent damage, ultimately leading to heart failure. Cellular reprogramming is a promising strategy to regenerate heart by induction of cardiomyocytes from other cell types, such as cardiac fibroblasts. In contrast to conventional virus-based cardiac reprogramming, non-viral approaches greatly reduce the potential risk that includes disruption of genome integrity by integration of foreign DNAs, expression of exogenous genes with oncogenic potential, and appearance of partially reprogrammed cells harmful for the physiological functions of tissues/organs, which impedes their in-vivo applications. Here, we review the recent progress in development of non-viral approaches to directly reprogram somatic cells towards cardiomyocytes and their therapeutic application for heart regeneration.
Collapse
Affiliation(s)
- Wei Zhou
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Tianhua Ma
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Sheng Ding
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
94
|
Biferali B, Bianconi V, Perez DF, Kronawitter SP, Marullo F, Maggio R, Santini T, Polverino F, Biagioni S, Summa V, Toniatti C, Pasini D, Stricker S, Di Fabio R, Chiacchiera F, Peruzzi G, Mozzetta C. Prdm16-mediated H3K9 methylation controls fibro-adipogenic progenitors identity during skeletal muscle repair. SCIENCE ADVANCES 2021; 7:7/23/eabd9371. [PMID: 34078594 PMCID: PMC8172132 DOI: 10.1126/sciadv.abd9371] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 04/06/2021] [Indexed: 05/15/2023]
Abstract
H3K9 methylation maintains cell identity orchestrating stable silencing and anchoring of alternate fate genes within the heterochromatic compartment underneath the nuclear lamina (NL). However, how cell type-specific genomic regions are specifically targeted to the NL is still elusive. Using fibro-adipogenic progenitors (FAPs) as a model, we identified Prdm16 as a nuclear envelope protein that anchors H3K9-methylated chromatin in a cell-specific manner. We show that Prdm16 mediates FAP developmental capacities by orchestrating lamina-associated domain organization and heterochromatin sequestration at the nuclear periphery. We found that Prdm16 localizes at the NL where it cooperates with the H3K9 methyltransferases G9a/GLP to mediate tethering and silencing of myogenic genes, thus repressing an alternative myogenic fate in FAPs. Genetic and pharmacological disruption of this repressive pathway confers to FAP myogenic competence, preventing fibro-adipogenic degeneration of dystrophic muscles. In summary, we reveal a druggable mechanism of heterochromatin perinuclear sequestration exploitable to reprogram FAPs in vivo.
Collapse
Affiliation(s)
- Beatrice Biferali
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy c/o Department of Biology and Biotechnology "C. Darwin," Sapienza University, 00185 Rome, Italy
- Department of Biology and Biotechnology "C. Darwin," Sapienza University, 00185 Rome, Italy
| | - Valeria Bianconi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy c/o Department of Biology and Biotechnology "C. Darwin," Sapienza University, 00185 Rome, Italy
- Department of Biology and Biotechnology "C. Darwin," Sapienza University, 00185 Rome, Italy
| | - Daniel Fernandez Perez
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | | | - Fabrizia Marullo
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy c/o Department of Biology and Biotechnology "C. Darwin," Sapienza University, 00185 Rome, Italy
- Department of Biology and Biotechnology "C. Darwin," Sapienza University, 00185 Rome, Italy
| | - Roberta Maggio
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnology "C. Darwin," Sapienza University, 00185 Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Federica Polverino
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy c/o Department of Biology and Biotechnology "C. Darwin," Sapienza University, 00185 Rome, Italy
| | - Stefano Biagioni
- Department of Biology and Biotechnology "C. Darwin," Sapienza University, 00185 Rome, Italy
| | - Vincenzo Summa
- IRBM Science Park, Via Pontina Km 30.600, 00070 Pomezia, Italy
| | - Carlo Toniatti
- IRBM Science Park, Via Pontina Km 30.600, 00070 Pomezia, Italy
| | - Diego Pasini
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Department of Health Sciences, University of Milan, Via A. di Rudini 8, 20142 Milan, Italy
| | - Sigmar Stricker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Romano Di Fabio
- IRBM Science Park, Via Pontina Km 30.600, 00070 Pomezia, Italy
- Promidis, Via Olgettina 60, 20132 Milano, Italy
| | - Fulvio Chiacchiera
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Chiara Mozzetta
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy c/o Department of Biology and Biotechnology "C. Darwin," Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
95
|
Shah PP, Lv W, Rhoades JH, Poleshko A, Abbey D, Caporizzo MA, Linares-Saldana R, Heffler JG, Sayed N, Thomas D, Wang Q, Stanton LJ, Bedi K, Morley MP, Cappola TP, Owens AT, Margulies KB, Frank DB, Wu JC, Rader DJ, Yang W, Prosser BL, Musunuru K, Jain R. Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and de-repress alternative fate genes. Cell Stem Cell 2021; 28:938-954.e9. [PMID: 33529599 PMCID: PMC8106635 DOI: 10.1016/j.stem.2020.12.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/13/2020] [Accepted: 12/18/2020] [Indexed: 01/08/2023]
Abstract
Pathogenic mutations in LAMIN A/C (LMNA) cause abnormal nuclear structure and laminopathies. These diseases have myriad tissue-specific phenotypes, including dilated cardiomyopathy (DCM), but how LMNA mutations result in tissue-restricted disease phenotypes remains unclear. We introduced LMNA mutations from individuals with DCM into human induced pluripotent stem cells (hiPSCs) and found that hiPSC-derived cardiomyocytes, in contrast to hepatocytes or adipocytes, exhibit aberrant nuclear morphology and specific disruptions in peripheral chromatin. Disrupted regions were enriched for transcriptionally active genes and regions with lower LAMIN B1 contact frequency. The lamina-chromatin interactions disrupted in mutant cardiomyocytes were enriched for genes associated with non-myocyte lineages and correlated with higher expression of those genes. Myocardium from individuals with LMNA variants similarly showed aberrant expression of non-myocyte pathways. We propose that the lamina network safeguards cellular identity and that pathogenic LMNA variants disrupt peripheral chromatin with specific epigenetic and molecular characteristics, causing misexpression of genes normally expressed in other cell types.
Collapse
Affiliation(s)
- Parisha P Shah
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Wenjian Lv
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Joshua H Rhoades
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Andrey Poleshko
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Deepti Abbey
- Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Matthew A Caporizzo
- Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Physiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Pennsylvania Muscle Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Ricardo Linares-Saldana
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Julie G Heffler
- Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Physiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Pennsylvania Muscle Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Department of Surgery, Division of Vascular Surgery, Stanford University, Stanford, CA 94305, USA
| | - Dilip Thomas
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Qiaohong Wang
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Liam J Stanton
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Kenneth Bedi
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Michael P Morley
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Lung Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Thomas P Cappola
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Anjali T Owens
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Kenneth B Margulies
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - David B Frank
- Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Daniel J Rader
- Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Wenli Yang
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Benjamin L Prosser
- Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Physiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Pennsylvania Muscle Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Kiran Musunuru
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA.
| | - Rajan Jain
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA.
| |
Collapse
|
96
|
Hoskins VE, Smith K, Reddy KL. The shifting shape of genomes: dynamics of heterochromatin interactions at the nuclear lamina. Curr Opin Genet Dev 2021; 67:163-173. [PMID: 33774266 PMCID: PMC8489734 DOI: 10.1016/j.gde.2021.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
The nucleus is a highly structured organelle with many chromatin and protein compartments that partition the genome into regulatory domains. One such a compartment within the mammalian nucleus is the microenvironment underlying the nuclear envelope (NE) where intermediate filament proteins, lamins, act as a link between cytoskeletal and inner nuclear membrane (INM) proteins, chromatin binders and modifiers, and heterochromatin. These dynamic interactions regulate many cellular processes and, when they are perturbed, can lead to genome dysregulation and disease.
Collapse
Affiliation(s)
- Victoria E Hoskins
- Johns Hopkins University, School of Medicine, Center for Epigenetics, Department of Biological Chemistry, Baltimore, MD 21205, United States
| | - Kristiana Smith
- Johns Hopkins University, School of Medicine, Center for Epigenetics, Department of Biological Chemistry, Baltimore, MD 21205, United States
| | - Karen L Reddy
- Johns Hopkins University, School of Medicine, Center for Epigenetics, Department of Biological Chemistry, Baltimore, MD 21205, United States; Sidney Kimmel Cancer Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, United States; Johns Hopkins University, School of Medicine, Department of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
97
|
Bertero A, Rosa-Garrido M. Three-dimensional chromatin organization in cardiac development and disease. J Mol Cell Cardiol 2021; 151:89-105. [PMID: 33242466 PMCID: PMC11056610 DOI: 10.1016/j.yjmcc.2020.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Recent technological advancements in the field of chromatin biology have rewritten the textbook on nuclear organization. We now appreciate that the folding of chromatin in the three-dimensional space (i.e. its 3D "architecture") is non-random, hierarchical, and highly complex. While 3D chromatin structure is partially encoded in the primary sequence and thereby broadly conserved across cell types and states, a substantial portion of the genome seems to be dynamic during development or in disease. Moreover, there is growing evidence that at least some of the 3D structure of chromatin is functionally linked to gene regulation, both being modulated by and impacting on multiple nuclear processes (including DNA replication, transcription, and RNA splicing). In recent years, these new concepts have nourished several investigations about the functional role of 3D chromatin topology dynamics in the heart during development and disease. This review aims to provide a comprehensive overview of our current understanding in this field, and to discuss how this knowledge can inform further research as well as clinical practice.
Collapse
Affiliation(s)
- Alessandro Bertero
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA 98109, USA.
| | - Manuel Rosa-Garrido
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, 650 Charles Young Dr, Los Angeles, CA 90095, USA.
| |
Collapse
|
98
|
The nuclear envelope protein Net39 is essential for muscle nuclear integrity and chromatin organization. Nat Commun 2021; 12:690. [PMID: 33514739 PMCID: PMC7846557 DOI: 10.1038/s41467-021-20987-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 12/24/2020] [Indexed: 01/14/2023] Open
Abstract
Lamins and transmembrane proteins within the nuclear envelope regulate nuclear structure and chromatin organization. Nuclear envelope transmembrane protein 39 (Net39) is a muscle nuclear envelope protein whose functions in vivo have not been explored. We show that mice lacking Net39 succumb to severe myopathy and juvenile lethality, with concomitant disruption in nuclear integrity, chromatin accessibility, gene expression, and metabolism. These abnormalities resemble those of Emery-Dreifuss muscular dystrophy (EDMD), caused by mutations in A-type lamins (LMNA) and other genes, like Emerin (EMD). We observe that Net39 is downregulated in EDMD patients, implicating Net39 in the pathogenesis of this disorder. Our findings highlight the role of Net39 at the nuclear envelope in maintaining muscle chromatin organization, gene expression and function, and its potential contribution to the molecular etiology of EDMD.
Collapse
|
99
|
Abstract
This review explores how different classes of drugs, including those with therapeutic and abuse potential, alter brain functions and behavior via the epigenome. Epigenetics, in its simplest interpretation, is the study of the regulation of a genes' transcriptional potential. The epigenome is established during development but is malleable throughout life by a wide variety of drugs, with both clinical utility and abuse potential. An epigenetic effect can be central to the drug's therapeutic or abuse potential, or it can be independent from the main effect but nevertheless produce beneficial or adverse side effects. Here, I discuss the various epigenetic effects of main pharmacological drug classes, including antidepressants, antiepileptics, and drugs of abuse.
Collapse
Affiliation(s)
- Miklos Toth
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA;
| |
Collapse
|
100
|
Rullens PMJ, Kind J. Attach and stretch: Emerging roles for genome-lamina contacts in shaping the 3D genome. Curr Opin Cell Biol 2020; 70:51-57. [PMID: 33360765 DOI: 10.1016/j.ceb.2020.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022]
Abstract
A large proportion of the metazoan genome is spatially segregated at the nuclear periphery through genomic contacts with the nuclear lamina, a thin meshwork of lamin filaments that lines the inner-nuclear membrane. Lamina-associated domains are believed to contribute to the regulation of gene transcription and to provide structural three-dimensional support to the organization of the genome in A and B compartments and topologically associating domains. In this review, we will evaluate recent work addressing the role of lamina-associated domains in three-dimensional genome organization and propose experimental frameworks that may expand our understanding of their interdependence.
Collapse
Affiliation(s)
- Pim M J Rullens
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jop Kind
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|