51
|
Mao Y, Zhao C, Zheng P, Zhang X, Xu J. Current status and future development of anti-HIV chimeric antigen receptor T-cell therapy. Immunotherapy 2020; 13:177-184. [PMID: 33225803 DOI: 10.2217/imt-2020-0199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite the success of antiretroviral therapy in suppressing HIV to an undetectable level in the blood and improving patients' quality of life, HIV persists in antiretroviral therapy-treated patients and threatens their lives. Anti-HIV chimeric antigen receptor (CAR) T cells could offer a cure by recognizing and killing virus-producing cells in an Env-specific manner. In this review, the authors summarize several important aspects of the development of anti-HIV CAR T cells, with a special focus on the evolution of CAR design for enhanced potency and targeting specificity, and also outline the challenges that still need to be addressed to take anti-HIV CAR T cells from a hopeful approach to a real HIV cure.
Collapse
Affiliation(s)
- Yunyu Mao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Peiyong Zheng
- LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| |
Collapse
|
52
|
Pediatric HIV: the Potential of Immune Therapeutics to Achieve Viral Remission and Functional Cure. Curr HIV/AIDS Rep 2020; 17:237-248. [PMID: 32356090 DOI: 10.1007/s11904-020-00495-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW In the absence of antiretroviral therapy (ART), more than 50% of perinatally HIV-infected children die by 2 years of age. Early ART from infancy is therefore a global recommendation and significantly improves immune health, child survival, and disease outcome. However, even early treatment does not prevent or eradicate the latent reservoir necessitating life-long ART. Adherence to life-long ART is challenging for children and longstanding ART during chronic HIV infection led to higher risks of non-AIDS co-morbidities and virologic failure in infected children. Thus, HIV-infected children are an important population for consideration for immune-based interventions to achieve ART-free remission and functional cure. This review summarizes how the uniqueness of the early life immune system can be harnessed for the development of ART-free remission and functional cure, which means complete virus control in absence of ART. In addition, recent advances in therapeutics in the HIV cure field and their potential for the treatment of pediatric HIV infections are discussed. RECENT FINDINGS Preclinical studies and clinical trials demonstrated that immune-based interventions target HIV replication, limit size of virus reservoir, maintain virus suppression, and delay time to virus rebound. However, these studies have been performed so far only in carefully selected HIV-infected adults, highlighting the need to evaluate the efficacy of immune-based therapeutics in HIV-infected children and to design interventions tailored to the early life maturing immune system. Immune-based therapeutics alone or in combination with ART should be actively explored as potential strategies to achieve viral remission and functional cure in HIV-infected pediatric populations.
Collapse
|
53
|
Hong M, Clubb JD, Chen YY. Engineering CAR-T Cells for Next-Generation Cancer Therapy. Cancer Cell 2020; 38:473-488. [PMID: 32735779 DOI: 10.1016/j.ccell.2020.07.005] [Citation(s) in RCA: 353] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023]
Abstract
T cells engineered to express chimeric antigen receptors (CARs) with tumor specificity have shown remarkable success in treating patients with hematologic malignancies and revitalized the field of adoptive cell therapy. However, realizing broader therapeutic applications of CAR-T cells necessitates engineering approaches on multiple levels to enhance efficacy and safety. Particularly, solid tumors present unique challenges due to the biological complexity of the solid-tumor microenvironment (TME). In this review, we highlight recent strategies to improve CAR-T cell therapy by engineering (1) the CAR protein, (2) T cells, and (3) the interaction between T cells and other components in the TME.
Collapse
Affiliation(s)
- Mihe Hong
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Justin D Clubb
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
54
|
[Chimeric antigen receptors in oncology: clinical applications and new developments]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:1331-1340. [PMID: 33021679 PMCID: PMC7648004 DOI: 10.1007/s00103-020-03222-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022]
Abstract
In 2018, two novel cancer therapies based on chimeric antigen receptors (CARs) were granted marketing authorization in the European Union. Authorized for use against advanced lymphoma and/or leukemia, the products were at the center of international attention, not only due to their novel mode of action and their encouraging efficacy but also because of their sometimes severe side effects and the economic and logistic challenges posed by their manufacture. Now, almost two years later, hundreds of active clinical trials emphasize the global drive to harness the full potential of CAR technology.In this article, we describe the mode of action of CAR T and CAR NK cells and review the clinical testing situation as well as early real-world data. In recent years, preclinical studies using advanced animal models have provided first insights into the mechanisms underlying the severe side effects of CAR T therapy. We summarize their results and describe the available models. Additionally, we discuss potential solutions to the hurdles currently limiting CAR technology. So far used as last-line treatment for patients with aggressive disease, CAR technology has the potential to become a new, broadly effective standard for tumor therapy.
Collapse
|
55
|
Zheng Y, Liu X, Le W, Xie L, Li H, Wen W, Wang S, Ma S, Huang Z, Ye J, Shi W, Ye Y, Liu Z, Song M, Zhang W, Han JDJ, Belmonte JCI, Xiao C, Qu J, Wang H, Liu GH, Su W. A human circulating immune cell landscape in aging and COVID-19. Protein Cell 2020; 11:740-770. [PMID: 32780218 PMCID: PMC7417788 DOI: 10.1007/s13238-020-00762-2] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022] Open
Abstract
Age-associated changes in immune cells have been linked to an increased risk for infection. However, a global and detailed characterization of the changes that human circulating immune cells undergo with age is lacking. Here, we combined scRNA-seq, mass cytometry and scATAC-seq to compare immune cell types in peripheral blood collected from young and old subjects and patients with COVID-19. We found that the immune cell landscape was reprogrammed with age and was characterized by T cell polarization from naive and memory cells to effector, cytotoxic, exhausted and regulatory cells, along with increased late natural killer cells, age-associated B cells, inflammatory monocytes and age-associated dendritic cells. In addition, the expression of genes, which were implicated in coronavirus susceptibility, was upregulated in a cell subtype-specific manner with age. Notably, COVID-19 promoted age-induced immune cell polarization and gene expression related to inflammation and cellular senescence. Therefore, these findings suggest that a dysregulated immune system and increased gene expression associated with SARS-CoV-2 susceptibility may at least partially account for COVID-19 vulnerability in the elderly.
Collapse
Affiliation(s)
- Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Wenqing Le
- Department of Critical Care, Wuhan Hankou Hospital, Wuhan, 430012, China
| | - Lihui Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Wen Wen
- National Center for Liver Cancer, Second Military Medical University, Shanghai, 200433, China
| | - Si Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jinguo Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Wen Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yanxia Ye
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | | | - Chuanle Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hongyang Wang
- National Center for Liver Cancer, Second Military Medical University, Shanghai, 200433, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
56
|
McNamara RP, Dittmer DP. Extracellular vesicles in virus infection and pathogenesis. Curr Opin Virol 2020; 44:129-138. [PMID: 32846272 PMCID: PMC7755726 DOI: 10.1016/j.coviro.2020.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
Viruses are obligate intracellular parasites that usurp cellular signaling networks to promote pathogen spread and disease progression. Signaling through extracellular vesicles (EVs) is an emerging field of study in the virus-host interaction network. EVs relay information both locally and distally through incorporated contents, typically without tripping innate immune sensors. Therefore, this extracellular signaling axis presents itself as a tantalizing target for promoting a favorable niche for the pathogen(s) takeover of the host, particularly for chronic infections. From the incorporation of virus-encoded molecules such as micro RNAs and proteins/enzymes to the envelopment of entire infectious particles, evolutionary distinct viruses have shown a remarkable ability to converge on this means of communication. In this review, we will cover the recent advances in this field and explore how EV can be used as potential biomarkers for chronic, persistent, or latent virus infections.
Collapse
Affiliation(s)
- Ryan P McNamara
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States.
| |
Collapse
|
57
|
Sutherland AR, Owens MN, Geyer CR. Modular Chimeric Antigen Receptor Systems for Universal CAR T Cell Retargeting. Int J Mol Sci 2020; 21:E7222. [PMID: 33007850 PMCID: PMC7582510 DOI: 10.3390/ijms21197222] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
The engineering of T cells through expression of chimeric antigen receptors (CARs) against tumor-associated antigens (TAAs) has shown significant potential for use as an anti-cancer therapeutic. The development of strategies for flexible and modular CAR T systems is accelerating, allowing for multiple antigen targeting, precise programming, and adaptable solutions in the field of cellular immunotherapy. Moving beyond the fixed antigen specificity of traditional CAR T systems, the modular CAR T technology splits the T cell signaling domains and the targeting elements through use of a switch molecule. The activity of CAR T cells depends on the presence of the switch, offering dose-titratable response and precise control over CAR T cells. In this review, we summarize developments in universal or modular CAR T strategies that expand on current CAR T systems and open the door for more customizable T cell activity.
Collapse
Affiliation(s)
- Ashley R. Sutherland
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (A.R.S.); (M.N.O.)
| | - Madeline N. Owens
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (A.R.S.); (M.N.O.)
| | - C. Ronald Geyer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
58
|
Dual CD4-based CAR T cells with distinct costimulatory domains mitigate HIV pathogenesis in vivo. Nat Med 2020; 26:1776-1787. [PMID: 32868878 PMCID: PMC9422086 DOI: 10.1038/s41591-020-1039-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
An effective strategy to cure HIV will likely require a potent and sustained antiviral T cell response. Here we explored the utility of chimeric antigen receptor (CAR) T cells, expressing the CD4 ectodomain to confer specificity for the HIV envelope, to mitigate HIV-induced pathogenesis in bone marrow, liver, thymus (BLT) humanized mice. CAR T cells expressing the 4-1BB/CD3-ζ endodomain were insufficient to prevent viral rebound and CD4+ T cell loss after the discontinuation of antiretroviral therapy. Through iterative improvements to the CAR T cell product, we developed Dual-CAR T cells that simultaneously expressed both 4-1BB/CD3-ζ and CD28/CD3-ζ endodomains. Dual-CAR T cells exhibited expansion kinetics that exceeded 4-1BB-, CD28- and third-generation costimulated CAR T cells, elicited effector functions equivalent to CD28-costimulated CAR T cells and prevented HIV-induced CD4+ T cell loss despite persistent viremia. Moreover, when Dual-CAR T cells were protected from HIV infection through expression of the C34-CXCR4 fusion inhibitor, these cells significantly reduced acute-phase viremia, as well as accelerated HIV suppression in the presence of antiretroviral therapy and reduced tissue viral burden. Collectively, these studies demonstrate the enhanced therapeutic potency of a novel Dual-CAR T cell product with the potential to effectively treat HIV infection.
Collapse
|
59
|
|
60
|
Lim RM, Rong L, Zhen A, Xie J. A Universal CAR-NK Cell Targeting Various Epitopes of HIV-1 gp160. ACS Chem Biol 2020; 15:2299-2310. [PMID: 32667183 DOI: 10.1021/acschembio.0c00537] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Engineering T cells and natural killer (NK) cells with anti-HIV chimeric antigen receptors (CAR) has emerged as a promising strategy to eradicate HIV-infected cells. However, current anti-HIV CARs are limited by targeting a single epitope of the HIV envelope glycoprotein gp160, which cannot counter the enormous diversity and mutability of viruses. Here, we report the development of a universal CAR-NK cell, which recognizes 2,4-dinitrophenyl (DNP) and can subsequently be redirected to target various epitopes of gp160 using DNP-conjugated antibodies as adaptor molecules. We show that this CAR-NK cell can recognize and kill mimic HIV-infected cell lines expressing subtypes B and C gp160. We additionally find that anti-gp160 antibodies targeting membrane-distal epitopes (including V1/V2, V3, and CD4bs) are more likely to activate universal CAR-NK cells against gp160+ target cells, compared with those targeting membrane-proximal epitopes located in the gp41 MPER. Finally, we confirm that HIV-infected primary human CD4+ T cells can be effectively killed using the same approach. Given that numerous anti-gp160 antibodies with different antigen specificities are readily available, this modular universal CAR-NK cell platform can potentially overcome HIV diversity, thus providing a promising strategy to eradicate HIV-infected cells.
Collapse
Affiliation(s)
- Rebecca M. Lim
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Liang Rong
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Anjie Zhen
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, California 90095, United States
| | - Jianming Xie
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
61
|
Li M, Liu W, Bauch T, Graviss EA, Arduino RC, Kimata JT, Chen M, Wang J. Clearance of HIV infection by selective elimination of host cells capable of producing HIV. Nat Commun 2020; 11:4051. [PMID: 32792548 PMCID: PMC7426846 DOI: 10.1038/s41467-020-17753-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
The RNA genome of the human immunodeficiency virus (HIV) is reverse-transcribed into DNA and integrated into the host genome, resulting in latent infections that are difficult to clear. Here we show an approach to eradicate HIV infections by selective elimination of host cells harboring replication-competent HIV (SECH), which includes viral reactivation, induction of cell death, inhibition of autophagy and the blocking of new infections. Viral reactivation triggers cell death specifically in HIV-1-infected T cells, which is promoted by agents that induce apoptosis and inhibit autophagy. SECH treatments can clear HIV-1 in >50% mice reconstituted with a human immune system, as demonstrated by the lack of viral rebound after withdrawal of treatments, and by adoptive transfer of treated lymphocytes into uninfected humanized mice. Moreover, SECH clears HIV-1 in blood samples from HIV-1-infected patients. Our results suggest a strategy to eradicate HIV infections by selectively eliminating host cells capable of producing HIV.
Collapse
Affiliation(s)
- Min Li
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Wei Liu
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Tonya Bauch
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Edward A Graviss
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Roberto C Arduino
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
62
|
Mu W, Carrillo MA, Kitchen SG. Engineering CAR T Cells to Target the HIV Reservoir. Front Cell Infect Microbiol 2020; 10:410. [PMID: 32903563 PMCID: PMC7438537 DOI: 10.3389/fcimb.2020.00410] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
The HIV reservoir remains to be a difficult barrier to overcome in order to achieve a therapeutic cure for HIV. Several strategies have been developed to purge the reservoir, including the “kick and kill” approach, which is based on the notion that reactivating the latent reservoir will allow subsequent elimination by the host anti-HIV immune cells. However, clinical trials testing certain classes of latency reactivating agents (LRAs) have so far revealed the minimal impact on reducing the viral reservoir. A robust immune response to reactivated HIV expressing cells is critical for this strategy to work. A current focus to enhance anti-HIV immunity is through the use of chimeric antigen receptors (CARs). Currently, HIV-specific CARs are being applied to peripheral T cells, NK cells, and stem cells to boost recognition and killing of HIV infected cells. In this review, we summarize current developments in engineering HIV directed CAR-expressing cells to facilitate HIV elimination. We also summarize current LRAs that enhance the “kick” strategy and how new generation and combinations of LRAs with HIV specific CAR T cell therapies could provide an optimal strategy to target the viral reservoir and achieve HIV clearance from the body.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mayra A Carrillo
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Scott G Kitchen
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
63
|
Namdari H, Rezaei F, Teymoori-Rad M, Mortezagholi S, Sadeghi A, Akbari A. CAR T cells: Living HIV drugs. Rev Med Virol 2020; 30:1-14. [PMID: 32713110 DOI: 10.1002/rmv.2139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1), the virus that causes AIDS (acquired immunodeficiency syndrome), is a major global public health issue. Although the advent of combined antiretroviral therapy (ART) has made significant progress in inhibiting HIV replication in patients, HIV-infected cells remain the principal cellular reservoir of HIV, this allows HIV to rebound immediately upon stopping ART, which is considered the major obstacle to curing HIV infection. Chimeric antigen receptor (CAR) cell therapy has provided new opportunities for HIV treatment. Engineering T cells or hematopoietic stem cells (HSCs) to generate CAR T cells is a rapidly growing approach to develop an efficient immune cell to fight HIV. Herein, we review preclinical and clinical data available for the development of CAR T cells. Further, the advantages and disadvantages of clinical application of anti-HIV CAR T cells will be discussed.
Collapse
Affiliation(s)
- Haideh Namdari
- Iranian Tissue Bank Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Mortezagholi
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Sadeghi
- Iranian Tissue Bank Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
64
|
Maldini CR, Gayout K, Leibman RS, Dopkin DL, Mills JP, Shan X, Glover JA, Riley JL. HIV-Resistant and HIV-Specific CAR-Modified CD4 + T Cells Mitigate HIV Disease Progression and Confer CD4 + T Cell Help In Vivo. Mol Ther 2020; 28:1585-1599. [PMID: 32454027 PMCID: PMC7335752 DOI: 10.1016/j.ymthe.2020.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
HIV infection preferentially depletes HIV-specific CD4+ T cells, thereby impairing antiviral immunity. In this study, we explored the therapeutic utility of adoptively transferred CD4+ T cells expressing an HIV-specific chimeric antigen receptor (CAR4) to restore CD4+ T cell function to the global HIV-specific immune response. We demonstrated that CAR4 T cells directly suppressed in vitro HIV replication and eliminated virus-infected cells. Notably, CAR4 T cells containing intracellular domains (ICDs) derived from the CD28 receptor family (ICOS and CD28) exhibited superior effector functions compared to the tumor necrosis factor receptor (TNFR) family ICDs (CD27, OX40, and 4-1BB). However, despite demonstrating limited in vitro efficacy, only HIV-resistant CAR4 T cells expressing the 4-1BBζ ICD exhibited profound expansion, concomitant with reduced rebound viremia after antiretroviral therapy (ART) cessation and protection of CD4+ T cells (CAR-) from HIV-induced depletion in humanized mice. Moreover, CAR4 T cells enhanced the in vivo persistence and efficacy of HIV-specific CAR-modified CD8+ T cells expressing the CD28ζ ICD, which alone exhibited poor survival. Collectively, these studies demonstrate that HIV-resistant CAR4 T cells can directly control HIV replication and augment the virus-specific CD8+ T cell response, highlighting the therapeutic potential of engineered CD4+ T cells to engender a functional HIV cure.
Collapse
Affiliation(s)
- Colby R Maldini
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin Gayout
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel S Leibman
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Derrick L Dopkin
- Deparment of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua P Mills
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaochuan Shan
- Deparment of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua A Glover
- Deparment of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James L Riley
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
65
|
Landgraf KE, Williams SR, Steiger D, Gebhart D, Lok S, Martin DW, Roybal KT, Kim KC. convertibleCARs: A chimeric antigen receptor system for flexible control of activity and antigen targeting. Commun Biol 2020; 3:296. [PMID: 32518350 PMCID: PMC7283332 DOI: 10.1038/s42003-020-1021-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
We have developed a chimeric antigen receptor (CAR) platform that functions as a modular system to address limitations of traditional CAR therapies. An inert form of the human NKG2D extracellular domain (iNKG2D) was engineered as the ectodomain of the CAR to generate convertibleCARTM-T cells. These cells were specifically directed to kill antigen-expressing target cells only in the presence of an activating bispecific adapter comprised of an iNKG2D-exclusive ULBP2-based ligand fused to an antigen-targeting antibody (MicAbodyTM). Efficacy against Raji tumors in NSG mice was dependent upon doses of both a rituximab-based MicAbody and convertibleCAR-T cells. We have also demonstrated that the exclusive ligand-receptor partnering enabled the targeted delivery of a mutant form of IL-2 to selectively promote the expansion of convertibleCAR-T cells in vitro and in vivo. By altering the Fv domains of the MicAbody or the payload fused to the orthogonal ligand, convertibleCAR-T cells can be readily targeted or regulated.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigen Presentation/immunology
- Apoptosis
- Cell Proliferation
- Female
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunotherapy, Adoptive/methods
- Interleukin-2/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/therapy
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mutation
- NK Cell Lectin-Like Receptor Subfamily K/genetics
- NK Cell Lectin-Like Receptor Subfamily K/immunology
- NK Cell Lectin-Like Receptor Subfamily K/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Sequence Homology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kyle E Landgraf
- Reflexion Pharmaceuticals, 937 Tahoe Blvd, Suite 150, Incline Village, NV, 89451, USA
| | - Steven R Williams
- Xyphos Biosciences, an Astellas Company, 100 Kimball Way, South San Francisco, CA, 94080, USA
| | - Daniel Steiger
- Freenome, 279 E Grand Ave 5th Floor, South San Francisco, CA, 94080, USA
| | - Dana Gebhart
- Xyphos Biosciences, an Astellas Company, 100 Kimball Way, South San Francisco, CA, 94080, USA
| | - Stephen Lok
- Zymergen, 5980 Horton St #105, Emeryville, CA, 94608, USA
| | - David W Martin
- Xyphos Biosciences, an Astellas Company, 100 Kimball Way, South San Francisco, CA, 94080, USA
| | - Kole T Roybal
- University of California, San Francisco, 513 Parnassus Avenue HSE-301, San Francisco, CA, 94143, USA
| | - Kaman Chan Kim
- Xyphos Biosciences, an Astellas Company, 100 Kimball Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
66
|
Shukla A, Ramirez NGP, D’Orso I. HIV-1 Proviral Transcription and Latency in the New Era. Viruses 2020; 12:v12050555. [PMID: 32443452 PMCID: PMC7291205 DOI: 10.3390/v12050555] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Three decades of extensive work in the HIV field have revealed key viral and host cell factors controlling proviral transcription. Various models of transcriptional regulation have emerged based on the collective information from in vitro assays and work in both immortalized and primary cell-based models. Here, we provide a recount of the past and current literature, highlight key regulatory aspects, and further describe potential limitations of previous studies. We particularly delve into critical steps of HIV gene expression including the role of the integration site, nucleosome positioning and epigenomics, and the transition from initiation to pausing and pause release. We also discuss open questions in the field concerning the generality of previous regulatory models to the control of HIV transcription in patients under suppressive therapy, including the role of the heterogeneous integration landscape, clonal expansion, and bottlenecks to eradicate viral persistence. Finally, we propose that building upon previous discoveries and improved or yet-to-be discovered technologies will unravel molecular mechanisms of latency establishment and reactivation in a “new era”.
Collapse
|
67
|
Bertoletti A, Tan AT. HBV as a target for CAR or TCR-T cell therapy. Curr Opin Immunol 2020; 66:35-41. [PMID: 32361634 DOI: 10.1016/j.coi.2020.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/24/2020] [Accepted: 04/04/2020] [Indexed: 01/02/2023]
Abstract
Engineering HBV-specific T cells utilizing a chimeric antigen receptor (CAR) or a classical T cell receptor (TCR) provides a well characterized, sizeable and functionally intact population of HBV-specific T cells with identical in vitro functionality to the T cells isolated in patients who resolved acute HBV infection. In this review we present evidences of the virological and immunological features of chronic HBV infection, alone or in combination with Hepatitis Delta that might make it amenable for CAR/TCR-T cells therapy.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore; Singapore Immunology Network (SigN), Agency of Science Technology and Research (ASTAR), Singapore.
| | - Anthony Tanoto Tan
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
68
|
Zhang MH, Slaby EM, Stephanie G, Yu C, Watts DM, Liu H, Szeto GL. Lipid-Mediated Insertion of Toll-Like Receptor (TLR) Ligands for Facile Immune Cell Engineering. Front Immunol 2020; 11:560. [PMID: 32425924 PMCID: PMC7212467 DOI: 10.3389/fimmu.2020.00560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/11/2020] [Indexed: 01/21/2023] Open
Abstract
Cell-based immunotherapies have tremendous potential to treat many diseases, such as activating immunity in cancer or suppressing it in autoimmune diseases. Most cell-based cancer immunotherapies in the clinic provide adjuvant signals through genetic engineering to enhance T cell functions. However, genetically encoded signals have minimal control over dosing and persist for the life of a cell lineage. These properties make it difficult to balance increasing therapeutic efficacy with reducing toxicities. Here, we demonstrated the potential of phospholipid-coupled ligands as a non-genetic system for immune cell engineering. This system provides simple, controlled, non-genetic adjuvant delivery to immune cells via lipid-mediated insertion into plasma membranes. Lipid-mediated insertion (termed depoting) successfully delivered Toll-like receptor (TLR) ligands intracellularly and onto cell surfaces of diverse immune cells. These ligands depoted into immune cells in a dose-controlled fashion and did not compete during multiplex pairwise loading. Immune cell activation could be enhanced by autocrine and paracrine mechanisms depending on the biology of the TLR ligand tested. Depoted ligands functionally persisted on plasma membranes for up to 4 days in naïve and activated T cells, enhancing their activation, proliferation, and skewing cytokine secretion. Our data showed that depoted ligands provided a persistent yet non-permanent adjuvant signal to immune cells that may minimize the intensity and duration of toxicities compared to permanent genetic delivery. Altogether, these findings demonstrate potential for lipid-mediated depoting as a universal cell engineering approach with unique, complementary advantages to other cell engineering methods.
Collapse
Affiliation(s)
- Michael H. Zhang
- Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States
| | - Emily M. Slaby
- Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Georgina Stephanie
- Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Chunsong Yu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, United States
| | - Darcy M. Watts
- Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Haipeng Liu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, United States
| | - Gregory L. Szeto
- Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Translational Center for Age-Related Disease and Disparities, University of Maryland Baltimore County, Baltimore, MD, United States
| |
Collapse
|
69
|
Next-generation stem cells - ushering in a new era of cell-based therapies. Nat Rev Drug Discov 2020; 19:463-479. [PMID: 32612263 DOI: 10.1038/s41573-020-0064-x] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
Naturally occurring stem cells isolated from humans have been used therapeutically for decades. This has primarily involved the transplantation of primary cells such as haematopoietic and mesenchymal stem cells and, more recently, derivatives of pluripotent stem cells. However, the advent of cell-engineering approaches is ushering in a new generation of stem cell-based therapies, greatly expanding their therapeutic utility. These next-generation stem cells are being used as 'Trojan horses' to improve the delivery of drugs and oncolytic viruses to intractable tumours and are also being engineered with angiogenic, neurotrophic and anti-inflammatory molecules to accelerate the repair of injured or diseased tissues. Moreover, gene therapy and gene editing technologies are being used to create stem cell derivatives with improved functionality, specificity and responsiveness compared with their natural counterparts. Here, we review these engineering approaches and areas in which they will help broaden the utility and clinical applicability of stem cells.
Collapse
|
70
|
De la Torre-Tarazona HE, Jiménez R, Bueno P, Camarero S, Román L, Fernández-García JL, Beltrán M, Nothias LF, Cachet X, Paolini J, Litaudon M, Alcami J, Bedoya LM. 4-Deoxyphorbol inhibits HIV-1 infection in synergism with antiretroviral drugs and reactivates viral reservoirs through PKC/MEK activation synergizing with vorinostat. Biochem Pharmacol 2020; 177:113937. [PMID: 32224142 DOI: 10.1016/j.bcp.2020.113937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/24/2020] [Indexed: 01/06/2023]
Abstract
Latent HIV reservoirs are the main obstacle to eradicate HIV infection. One strategy proposes to eliminate these viral reservoirs by pharmacologically reactivating the latently infected T cells. We show here that a 4-deoxyphorbol ester derivative isolated from Euphorbia amygdaloides ssp. semiperfoliata, 4β-dPE A, reactivates HIV-1 from latency and could potentially contribute to decrease the viral reservoir. 4β-dPE A shows two effects in the HIV replication cycle, infection inhibition and HIV transactivation, similarly to other phorboids PKC agonists such PMA and prostratin and to other diterpene esters such SJ23B. Our data suggest 4β-dPE A is non-tumorigenic, unlike the related compound PMA. As the compounds are highly similar, the lack of tumorigenicity by 4β-dPE A could be due to the lack of a long side lipophilic chain that is present in PMA. 4β-dPE activates HIV transcription at nanomolar concentrations, lower than the concentration needed by other latency reversing agents (LRAs) such as prostratin and similar to bryostatin. PKCθ/MEK activation is required for the transcriptional activity, and thus, anti-latency activity of 4β-dPE A. However, CD4, CXCR4 and CCR5 receptors down-regulation effect seems to be independent of PCK/MEK, suggesting the existence of at least two different targets for 4β-dPE A. Furthermore, NF-κb transcription factor is involved in 4β-dPE HIV reactivation, as previously shown for other PKCs agonists. We also studied the effects of 4β-dPE A in combination with other LRAs. When 4β-dPE A was combined with another PKC agonists such as prostratin an antagonic effect was achieved, while, when combined with an HDAC inhibitor such as vorinostat, a strong synergistic effect was obtained. Interestingly, the latency reversing effect of the combination was synergistically diminishing the EC50 value but also increasing the efficacy showed by the drugs alone. In addition, combinations of 4β-dPE A with antiretroviral drugs as CCR5 antagonist, NRTIs, NNRTIs and PIs, showed a consistent synergistic effect, suggesting that the combination would not interefer with antiretroviral therapy (ART). Finally, 4β-dPE A induced latent HIV reactivation in CD4 + T cells of infected patients under ART at similar levels than the tumorigenic phorbol derivative PMA, showing a clear reactivation effect. In summary, we describe here the mechanism of action of a new potent deoxyphorbol derivative as a latency reversing agent candidate to decrease the size of HIV reservoirs.
Collapse
Affiliation(s)
- H E De la Torre-Tarazona
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain
| | - R Jiménez
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain
| | - P Bueno
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain
| | - S Camarero
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain
| | - L Román
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain
| | - J L Fernández-García
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain; Pharmacology Department, Pharmacy Faculty, Universidad Complutense de Madrid, Pz. Ramón Y Cajal s/n, 28040 Madrid, Spain
| | - M Beltrán
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain
| | - L F Nothias
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - X Cachet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay, 91198 Gif-sur-Yvette, France; CiTCoM Laboratory, UMR 8038 CNRS-University of Paris, Faculty of Pharmacy, University of Paris, 75006 Paris, France
| | - J Paolini
- Laboratoire de Chimie des Produits Naturels, CNRS, UMR SPE 6134, University of Corsica, 20250 Corte, France
| | - M Litaudon
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - J Alcami
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain; Infectious Diseases Unit, IBIDAPS, Hospital Clínic, University of Barcelona, Spain.
| | - L M Bedoya
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain; Pharmacology Department, Pharmacy Faculty, Universidad Complutense de Madrid, Pz. Ramón Y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
71
|
Schwarzer R, Gramatica A, Greene WC. Reduce and Control: A Combinatorial Strategy for Achieving Sustained HIV Remissions in the Absence of Antiretroviral Therapy. Viruses 2020; 12:v12020188. [PMID: 32046251 PMCID: PMC7077203 DOI: 10.3390/v12020188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) indefinitely persists, despite effective antiretroviral therapy (ART), within a small pool of latently infected cells. These cells often display markers of immunologic memory and harbor both replication-competent and -incompetent proviruses at approximately a 1:100 ratio. Although complete HIV eradication is a highly desirable goal, this likely represents a bridge too far for our current and foreseeable technologies. A more tractable goal involves engineering a sustained viral remission in the absence of ART––a “functional cure.” In this setting, HIV remains detectable during remission, but the size of the reservoir is small and the residual virus is effectively controlled by an engineered immune response or other intervention. Biological precedence for such an approach is found in the post-treatment controllers (PTCs), a rare group of HIV-infected individuals who, following ART withdrawal, do not experience viral rebound. PTCs are characterized by a small reservoir, greatly reduced inflammation, and the presence of a poorly understood immune response that limits viral rebound. Our goal is to devise a safe and effective means for replicating durable post-treatment control on a global scale. This requires devising methods to reduce the size of the reservoir and to control replication of this residual virus. In the following sections, we will review many of the approaches and tools that likely will be important for implementing such a “reduce and control” strategy and for achieving a PTC-like sustained HIV remission in the absence of ART.
Collapse
|
72
|
Pham HT, Yoo S, Mesplède T. Combination therapies currently under investigation in phase I and phase II clinical trials for HIV-1. Expert Opin Investig Drugs 2020; 29:273-283. [PMID: 31994943 DOI: 10.1080/13543784.2020.1724281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: HIV infection is manageable through the use of antiretroviral drugs. However, HIV reservoirs that are constituted early during infection are resistant to treatment. HIV persistence under treatment necessitates life-long treatment and is associated with various co-morbidities. Two significant research avenues are explored through the development of either new antiretroviral drugs or interventions aimed at stimulating the immune system to eradicate HIV reservoirs.Areas covered: This report provides a review of investigational drugs and cell-based interventions against HIV infection that are currently under Phase I or Phase II clinical trials. We report on new antiretroviral drugs, antibodies directed against viral or host targets, reactivating agents, immune modulators and immune checkpoint inhibitors, and cell-based interventions. These new therapies are often tested in combination, including with current antiretroviral drugs.Expert opinion: Islatravir and GS-6207 are promising antiretroviral drugs that are expected to perform well in phase III trials. Whether the host immune system can be activated sufficiently to reduce HIV reservoirs remains unknown. Additional research is needed to identify surrogate markers of success for curative interventions. Given the current safety and efficacy of antiretroviral treatment, risk-benefits should be carefully evaluated before interventions that risk triggering high levels of immune stimulation.
Collapse
Affiliation(s)
- Hanh Thi Pham
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Subin Yoo
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Thibault Mesplède
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
73
|
Liu Y, Cao W, Sun M, Li T. Broadly neutralizing antibodies for HIV-1: efficacies, challenges and opportunities. Emerg Microbes Infect 2020; 9:194-206. [PMID: 31985356 PMCID: PMC7040474 DOI: 10.1080/22221751.2020.1713707] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Combination antiretroviral therapy (cART) is effective but not curative, and no successful vaccine is currently available for human immunodeficiency virus-1 (HIV-1). Broadly neutralizing antibodies (bNAbs) provide a new approach to HIV-1 prevention and treatment, and these promising candidates advancing into clinical trials have shown certain efficacies in infected individuals. In addition, bNAbs have the potential to kill HIV-1-infected cells and to affect the course of HIV-1 infection by directly engaging host immunity. Nonetheless, challenges accompany the use of bNAbs, including transient suppression of viraemia, frequent emergence of resistant viruses in rebound viraemia, suboptimal efficacy in virus cell-to-cell transmission, and unclear effects on the cell-associated HIV-1 reservoir. In this review, we discuss opportunities and potential strategies to address current challenges to promote the future use of immunotherapy regimens.
Collapse
Affiliation(s)
- Yubin Liu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, People’s Republic of China,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People’s Republic of China, Ming Sun Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, People’s Republic of China Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People’s Republic of China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China,Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China,Tsinghua University Medical College, Beijing, People’s Republic of China,Taisheng Li Department of Infectious diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| |
Collapse
|
74
|
Human Vaccines & Immunotherapeutics: news. Hum Vaccin Immunother 2019; 15:2783-2784. [DOI: 10.1080/21645515.2019.1691423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|