51
|
Bowitch A, Chinsky TM, Yu MC, Ferkey DM. The C. elegans OCTR-1 and Human Alpha-2A Adrenergic Receptors are Methylated within the Third Intracellular Loop by Human PRMT5 in vitro. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000546. [PMID: 35622502 PMCID: PMC9007614 DOI: 10.17912/micropub.biology.000546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/06/2022]
Abstract
Arginines within the third intracellular loop of the
C. elegans
OCTR-1 and human ADRA2A receptors are methylated by the human protein arginine methyltransferase PRMT5
in vitro
. Methylation of these residues could serve to modulate receptor signaling
in vivo
.
Collapse
Affiliation(s)
- Alexander Bowitch
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260 USA
| | - Tyler M. Chinsky
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260 USA
| | - Michael C. Yu
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260 USA
| | - Denise M. Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260 USA
,
Correspondence to: Denise M. Ferkey (
)
| |
Collapse
|
52
|
Chen H, Zhang S, Zhang X, Liu H. QR code model: a new possibility for GPCR phosphorylation recognition. Cell Commun Signal 2022; 20:23. [PMID: 35236365 PMCID: PMC8889771 DOI: 10.1186/s12964-022-00832-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/23/2022] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane proteins in the human body and are responsible for accurately transmitting extracellular information to cells. Arrestin is an important member of the GPCR signaling pathway. The main function of arrestin is to assist receptor desensitization, endocytosis and signal transduction. In these processes, the recognition and binding of arrestin to phosphorylated GPCRs is fundamental. However, the mechanism by which arrestin recognizes phosphorylated GPCRs is not fully understood. The GPCR phosphorylation recognition "bar code model" and "flute" model describe the basic process of receptor phosphorylation recognition in terms of receptor phosphorylation sites, arrestin structural changes and downstream signaling. These two models suggest that GPCR phosphorylation recognition is a process involving multiple factors. This process can be described by a "QR code" model in which ligands, GPCRs, G protein-coupled receptor kinase, arrestin, and phosphorylation sites work together to determine the biological functions of phosphorylated receptors. Video Abstract.
Collapse
Affiliation(s)
- Hao Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men Street, Beijing, 100069, People's Republic of China
| | - Suli Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men Street, Beijing, 100069, People's Republic of China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Xi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men Street, Beijing, 100069, People's Republic of China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men Street, Beijing, 100069, People's Republic of China. .,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
53
|
Millette MA, Roy S, Salesse C. Farnesylation and lipid unsaturation are critical for the membrane binding of the C-terminal segment of G-Protein Receptor Kinase 1. Colloids Surf B Biointerfaces 2022; 211:112315. [PMID: 35026543 DOI: 10.1016/j.colsurfb.2021.112315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/15/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Many proteins are modified by the covalent addition of different types of lipids, such as myristoylation, palmitoylation and prenylation. Lipidation is expected to promote membrane association of proteins. Visual phototransduction involves many lipid-modified proteins. The G-Protein-coupled receptor of rod photoreceptors, rhodopsin, is inactivated by G-Protein-coupled Receptor Kinase 1 (GRK1). The C-terminus of GRK1 is farnesylated and its truncation has been shown to result in a very high decrease of its enzymatic activity, most likely because of the loss of its membrane localization. Little information is available on the membrane binding of GRK1 as well as of most prenylated proteins. Measurements of the membrane binding of the non-farnesylated and farnesylated C-terminal segment of GRK1 were thus performed using lipids typical of those found in rod outer segment disk membranes. Their random coil secondary structure was determined using circular dichroism and infrared spectroscopy. The non-farnesylated C-terminal segment of GRK1 has no surface activity. In contrast, the farnesylated C-terminal segment of GRK1 shows a particularly strong binding to lipid monolayers bearing at least one unsaturated fatty acyl chain. No binding is observed in the presence of monolayers of saturated phospholipids, in agreement with the low affinity of farnesylated Ras proteins for lipids in the liquid-ordered state. Altogether, these data demonstrate that the farnesyl group of the C-terminal segment of GRK1 is mandatory for its membrane binding, which is favored by particular lipids or lipid mixtures. This information will also be useful for the understanding of the membrane binding of other prenylated proteins.
Collapse
Affiliation(s)
- Marc-Antoine Millette
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Sarah Roy
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Christian Salesse
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
54
|
Olabiyi AA, Tope-Eniola OS, Oluwatuyi AO, Alabi O, Ademola OG, Oguntimehin OM, AlliSmith YR. Quercetin boosts nitric oxide levels and modulates the activities of arginase, acetylcholinesterase and adenosine deaminase in the corpus cavernosum of cyclosporine-treated rats. Andrologia 2022; 54:e14404. [PMID: 35212420 DOI: 10.1111/and.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 11/26/2022] Open
Abstract
One of the primary causes of erectile dysfunction (ED) in males is cardiovascular disease, such as hypertension (HT). As a result, the goal of this study is to see how quercetin (Q) affects the important biochemical parameters (nitric oxide, endogenous antioxidant enzymes)/specific enzymes (arginase, acetylcholinesterase and adenosine deaminase) linked to be responsible for smooth muscle relaxation in respect to sexual function. Wistar male rats (30) weighing 200-250 g were placed into five groups at random as follows: normal control group given normal saline (CTRL), hypertensive rats administered 25 mg/kg/day cyclosporine classified as ED group (HT), positive control administered Sildenafil (SIL, 5 mg/kg/day), quercetin (Q) 25 mg/kg/day (25 Q) and Q 50 mg/kg/day (50 Q). For 30 days, cyclosporine was administered i.p., while Q therapy was orally. HT was confirmed before the Q therapy after which the experimental rats were subjected to euthanasia. Nitric oxide (NO) levels, as well as enzymes [Superoxide dismutase, catalase, arginase, acetylcholinesterase (AChE) and adenosine deaminase (ADA)], were measured in the corpus cavernosum. Cyclosporine elevated arginase, AChE and ADA activity while lowering NO levels. Compared to the control group, Q of both concentrations reduced the activity of these enzymes and improved antioxidant status and NO levels. Thus, one of the mechanisms of action via which Q acts in the management of ED could be its ability to modulate these important enzymes and boost NO production.
Collapse
Affiliation(s)
- Ayodeji A Olabiyi
- Functional Foods and Nutraceuticals Unit, Department of Medical Biochemistry, Afe Babalola University Ado-Ekiti, Ado-Ekiti, Nigeria
| | - Olamide S Tope-Eniola
- Department of Biochemistry, Faculty of Science, Ekiti State University, Ado Ekiti, Nigeria
| | - Adedotun O Oluwatuyi
- Department of Biochemistry, Faculty of Science, Ekiti State University, Ado Ekiti, Nigeria
| | - Oluwafunmilayo Alabi
- Department of Biochemistry, Faculty of Science, Ekiti State University, Ado Ekiti, Nigeria
| | - Olaoluwa G Ademola
- Department of Biochemistry, Faculty of Science, Ekiti State University, Ado Ekiti, Nigeria
| | - Opeyemi M Oguntimehin
- Department of Biochemistry, Faculty of Science, Ekiti State University, Ado Ekiti, Nigeria
| | - Yemisi R AlliSmith
- Department of Biochemistry, Faculty of Science, Ekiti State University, Ado Ekiti, Nigeria
| |
Collapse
|
55
|
Kolb P, Kenakin T, Alexander SPH, Bermudez M, Bohn LM, Breinholt CS, Bouvier M, Hill SJ, Kostenis E, Martemyanov K, Neubig RR, Onaran HO, Rajagopal S, Roth BL, Selent J, Shukla AK, Sommer ME, Gloriam DE. Community Guidelines for GPCR Ligand Bias: IUPHAR Review XX. Br J Pharmacol 2022; 179:3651-3674. [PMID: 35106752 PMCID: PMC7612872 DOI: 10.1111/bph.15811] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/29/2022] Open
Abstract
G protein-coupled receptors modulate a plethora of physiological processes and mediate the effects of one-third of FDA-approved drugs. Depending on which ligand activates a receptor, it can engage different intracellular transducers. This 'biased signaling' paradigm requires that we now characterize physiological signaling not just by receptors but by ligand-receptor pairs. Ligands eliciting biased signaling may constitute better drugs with higher efficacy and fewer adverse effects. However, ligand bias is very complex, making reproducibility and description challenging. Here, we provide guidelines and terminology for any scientists to design and report ligand bias experiments. The guidelines will aid consistency and clarity, as the basic receptor research and drug discovery communities continue to advance our understanding and exploitation of ligand bias. Scientific insight, biosensors, and analytical methods are still evolving and should benefit from and contribute to the implementation of the guidelines, together improving translation from in vitro to disease-relevant in vivo models.
Collapse
Affiliation(s)
- Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, North, Carolina, USA
| | | | - Marcel Bermudez
- Department of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Laura M Bohn
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Christian S Breinholt
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Québec, Canada
| | - Stephen J Hill
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Evi Kostenis
- Molecular, Cellular, and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Kirill Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Rick R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - H Ongun Onaran
- Molecular Biology and Technology Development Unit, Department of Pharmacology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, North, Carolina, USA
| | - Jana Selent
- Research Programme on Biomedical Informatics, Hospital Del Mar Medical Research Institute, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Martha E Sommer
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Current affiliation: ISAR Bioscience Institute, Munich-Planegg, Germany
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
56
|
Drube J, Haider RS, Matthees ESF, Reichel M, Zeiner J, Fritzwanker S, Ziegler C, Barz S, Klement L, Filor J, Weitzel V, Kliewer A, Miess-Tanneberg E, Kostenis E, Schulz S, Hoffmann C. GPCR kinase knockout cells reveal the impact of individual GRKs on arrestin binding and GPCR regulation. Nat Commun 2022; 13:540. [PMID: 35087057 PMCID: PMC8795447 DOI: 10.1038/s41467-022-28152-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) activate G proteins and undergo a complex regulation by interaction with GPCR kinases (GRKs) and the formation of receptor-arrestin complexes. However, the impact of individual GRKs on arrestin binding is not clear. We report the creation of eleven combinatorial HEK293 knockout cell clones lacking GRK2/3/5/6, including single, double, triple and the quadruple GRK knockout. Analysis of β-arrestin1/2 interactions for twelve GPCRs in our GRK knockout cells enables the differentiation of two main receptor subsets: GRK2/3-regulated and GRK2/3/5/6-regulated receptors. Furthermore, we identify GPCRs that interact with β-arrestins via the overexpression of specific GRKs even in the absence of agonists. Finally, using GRK knockout cells, PKC inhibitors and β-arrestin mutants, we present evidence for differential receptor-β-arrestin1/2 complex configurations mediated by selective engagement of kinases. We anticipate our GRK knockout platform to facilitate the elucidation of previously unappreciated details of GRK-specific GPCR regulation and β-arrestin complex formation.
Collapse
Affiliation(s)
- J Drube
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - R S Haider
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - E S F Matthees
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - M Reichel
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - J Zeiner
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - S Fritzwanker
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Drackendorfer Straße 1, D-07747, Jena, Germany
| | - C Ziegler
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - S Barz
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - L Klement
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - J Filor
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - V Weitzel
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - A Kliewer
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Drackendorfer Straße 1, D-07747, Jena, Germany
| | - E Miess-Tanneberg
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Drackendorfer Straße 1, D-07747, Jena, Germany
| | - E Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - S Schulz
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Drackendorfer Straße 1, D-07747, Jena, Germany
| | - C Hoffmann
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany.
| |
Collapse
|
57
|
Kawakami K, Yanagawa M, Hiratsuka S, Yoshida M, Ono Y, Hiroshima M, Ueda M, Aoki J, Sako Y, Inoue A. Heterotrimeric Gq proteins act as a switch for GRK5/6 selectivity underlying β-arrestin transducer bias. Nat Commun 2022; 13:487. [PMID: 35078997 PMCID: PMC8789823 DOI: 10.1038/s41467-022-28056-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/04/2022] [Indexed: 12/23/2022] Open
Abstract
Signaling-biased ligands acting on G-protein-coupled receptors (GPCRs) differentially activate heterotrimeric G proteins and β-arrestins. Although a wealth of structural knowledge about signaling bias at the GPCR level exists (preferential engagement of a specific transducer), little is known about the bias at the transducer level (different functions mediated by a single transducer), partly due to a poor understanding of GPCR kinase (GRK)-mediated GPCR phosphorylation. Here, we reveal a unique role of the Gq heterotrimer as a determinant for GRK-subtype selectivity that regulates subsequent β-arrestin conformation and function. Using the angiotensin II (Ang II) type-1 receptor (AT1R), we show that β-arrestin recruitment depends on both GRK2/3 and GRK5/6 upon binding of Ang II, but solely on GRK5/6 upon binding of the β-arrestin-biased ligand TRV027. With pharmacological inhibition or genetic loss of Gq, GRK-subtype selectivity and β-arrestin functionality by Ang II is shifted to those of TRV027. Single-molecule imaging identifies relocation of AT1R and GRK5, but not GRK2, to an immobile phase under the Gq-inactive, AT1R-stimulated conditions. These findings uncover a previously unappreciated Gq-regulated mechanism that encodes GRK-subtype selectivity and imparts distinct phosphorylation-barcodes directing downstream β-arrestin functions. GPCR kinases (GRKs) phosphorylate active-form G-protein-coupled receptors (GPCRs). Here, the authors reveal that Gq heterotrimer coupled with the angiotensin II type-1 receptor (AT1R) determines the GRK subtypes recruited to the complex in a microdomain, thus defining subsequent AT1R phosphorylation patterns, β-arrestin conformation and functionality.
Collapse
|
58
|
Reichel M, Weitzel V, Klement L, Hoffmann C, Drube J. Suitability of GRK Antibodies for Individual Detection and Quantification of GRK Isoforms in Western Blots. Int J Mol Sci 2022; 23:ijms23031195. [PMID: 35163118 PMCID: PMC8835249 DOI: 10.3390/ijms23031195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are regulated by GPCR kinases (GRKs) which phosphorylate intracellular domains of the active receptor. This results in the recruitment of arrestins, leading to desensitization and internalization of the GPCR. Aside from acting on GPCRs, GRKs regulate a variety of membrane, cytosolic, and nuclear proteins not only via phosphorylation but also by acting as scaffolding partners. GRKs’ versatility is also reflected by their diverse roles in pathological conditions such as cancer, malaria, Parkinson’s-, cardiovascular-, and metabolic disease. Reliable tools to study GRKs are the key to specify their role in complex cellular signaling networks. Thus, we examined the specificity of eight commercially available antibodies targeting the four ubiquitously expressed GRKs (GRK2, GRK3, GRK5, and GRK6) in Western blot analysis. We identified one antibody that did not recognize its antigen, as well as antibodies that showed unspecific signals or cross-reactivity. Hence, we strongly recommend testing any antibody with exogenously expressed proteins to clearly confirm identity of the obtained Western blot results. Utilizing the most-suitable antibodies, we established the Western blot-based, cost-effective simple tag-guided analysis of relative protein abundance (STARPA). This method allows comparison of protein levels obtained by immunoblotting with different antibodies. Furthermore, we applied STARPA to determine GRK protein levels in nine commonly used cell lines, revealing differential isoform expression.
Collapse
|
59
|
Patel M, Matti C, Grimsey NL, Legler DF, Javitch JA, Finlay DB, Glass M. Delineating the interactions between the cannabinoid CB 2 receptor and its regulatory effectors; β-arrestins and G protein-coupled receptor kinases. Br J Pharmacol 2021; 179:2223-2239. [PMID: 34811740 DOI: 10.1111/bph.15748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/20/2021] [Accepted: 11/10/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE The cannabinoid CB2 receptor (CB2 ) is a promising therapeutic target for modulating inflammation. However, little is known surrounding the mechanisms underpinning CB2 desensitisation and regulation, particularly the role of G protein-coupled receptor kinases (GRKs). Here, we evaluated the role of six GRK isoforms in β-arrestin recruitment to CB2 . Mutagenesis of several distal C-terminal aspartic acid residues was also performed in an attempt to delineate additional structural elements involved in the regulation of CB2 . EXPERIMENTAL APPROACH In CB2 -expressing HEK 293 cells, β-arrestin translocation was measured using real-time BRET assays. G protein dissociation BRET assays were performed to assess the activation and desensitisation of CB2 in the presence of β-arrestin 2. KEY RESULTS Overexpression of GRK isoforms 1-6 failed to considerably improve translocation of either β-arrestin 1 or β-arrestin 2 to CB2 . Consistent with this, inhibition of endogenous GRK2/3 did not substantially reduce β-arrestin 2 translocation. Mutagenesis of C-terminal aspartic acid residues resulted in attenuation of β-arrestin 2 translocation, which translated to a reduction in desensitisation of G protein activation. CONCLUSION AND IMPLICATIONS Our findings suggest that CB2 does not adhere to the classical GPCR regulatory paradigm, entailing GRK- and β-arrestin-mediated desensitisation. Instead, C-terminal aspartic acid residues may act as phospho-mimics to induce β-arrestin activation. This study provides novel insights into the regulatory mechanisms of CB2 , which may aid in our understanding of drug tolerance and dependence.
Collapse
Affiliation(s)
- Monica Patel
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Christoph Matti
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Faculty of Biology, University of Konstanz, Konstanz, Germany.,Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Jonathan A Javitch
- Department of Psychiatry and Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, United States
| | - David B Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
60
|
Kim D, Lee J, Kwag R, Kim H, Oh H, Moon B, Kim HJ, Seong J, Jeon B, Kang T, Choo H. N
‐(Biphenyl‐3‐ylmethyl)ethanamines as G protein‐biased agonists of
5‐HT
7
R. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Doyoung Kim
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
- Department of Chemistry Sogang University Mapo‐gu, Seoul Republic of Korea
| | - Jieon Lee
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
- Division of Bio‐Medical Science and Technology, KIST School Korea University of Science and Technology Seongbuk‐gu, Seoul Republic of Korea
| | - Rina Kwag
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
- Department of Chemistry Korea University Seongbuk‐gu, Seoul Republic of Korea
| | - Hyunbin Kim
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
- Division of Bio‐Medical Science and Technology, KIST School Korea University of Science and Technology Seongbuk‐gu, Seoul Republic of Korea
| | - Hyunji Oh
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
- Department of Chemistry Sogang University Mapo‐gu, Seoul Republic of Korea
| | - Bongjin Moon
- Department of Chemistry Sogang University Mapo‐gu, Seoul Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry Korea University Seongbuk‐gu, Seoul Republic of Korea
| | - Jihye Seong
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
- Division of Bio‐Medical Science and Technology, KIST School Korea University of Science and Technology Seongbuk‐gu, Seoul Republic of Korea
| | - Byungsun Jeon
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
| | - Taek Kang
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
| | - Hyunah Choo
- Brain Science Institute Korea Institute of Science and Technology Seoul Republic of Korea
- Division of Bio‐Medical Science and Technology, KIST School Korea University of Science and Technology Seongbuk‐gu, Seoul Republic of Korea
| |
Collapse
|
61
|
Rosales TO, Horewicz VV, Ferreira MA, Nardi GM, Assreuy J. Dynamics of GRK2 in the kidney: a putative mechanism for sepsis-associated kidney injury. Clin Sci (Lond) 2021; 135:2341-2356. [PMID: 34622918 DOI: 10.1042/cs20210462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/24/2021] [Accepted: 10/07/2021] [Indexed: 01/09/2023]
Abstract
Renal vascular reactivity to vasoconstrictors is preserved in sepsis in opposition to what happens in the systemic circulation. We studied whether this distinct behavior was related to α1 adrenergic receptor density, G protein-coupled receptor kinase 2 (GRK2) and the putative role of nitric oxide (NO). Sepsis was induced in female mice by cecal ligation and puncture (CLP). Wildtype mice were treated with prazosin 12 h after CLP or nitric oxide synthase 2 (NOS-2) inhibitor, 30 min before and 6 and 12 h after CLP. In vivo experiments and biochemistry assays were performed 24 h after CLP. Sepsis decreased the systemic mean arterial pressure (MAP) and the vascular reactivity to phenylephrine. Sepsis also reduced basal renal blood flow which was normalized by treatment with prazosin. Sepsis led to a substantial decrease in GRK2 level associated with an increase in α1 adrenergic receptor density in the kidney. The disappearance of renal GRK2 was prevented in NOS-2-KO mice or mice treated with 1400 W. Treatment of non-septic mice with an NO donor reduced GRK2 content in the kidney. Therefore, our results show that an NO-dependent reduction in GRK2 level in the kidney leads to the maintenance of a normal α1 adrenergic receptor density. The preservation of the density and/or functionality of this receptor in the kidney together with a higher vasoconstrictor tonus in sepsis lead to vasoconstriction. Thus, the increased concentration of vasoconstrictor mediators together with the preservation (and even increase) of the response to them may help to explain sepsis-induced acute kidney injury.
Collapse
Affiliation(s)
| | | | | | - Geisson Marcos Nardi
- Department of Morphological Sciences, Universidade Federal de Santa Catarina, SC, Brazil
| | - Jamil Assreuy
- Department of Pharmacology, Universidade Federal de Santa Catarina, SC, Brazil
| |
Collapse
|
62
|
Yang F, Ling S, Zhou Y, Zhang Y, Lv P, Liu S, Fang W, Sun W, Hu LA, Zhang L, Shi P, Tian C. Different conformational responses of the β 2-adrenergic receptor-Gs complex upon binding of the partial agonist salbutamol or the full agonist isoprenaline. Natl Sci Rev 2021; 8:nwaa284. [PMID: 39040950 PMCID: PMC11261663 DOI: 10.1093/nsr/nwaa284] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/20/2020] [Accepted: 11/13/2020] [Indexed: 07/24/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are responsible for most cytoplasmic signaling in response to extracellular ligands with different efficacy profiles. Various spectroscopic techniques have identified that agonists exhibiting varying efficacies can selectively stabilize a specific conformation of the receptor. However, the structural basis for activation of the GPCR-G protein complex by ligands with different efficacies is incompletely understood. To better understand the structural basis underlying the mechanisms by which ligands with varying efficacies differentially regulate the conformations of receptors and G proteins, we determined the structures of β2AR-Gαs[Formula: see text]γ bound with partial agonist salbutamol or bound with full agonist isoprenaline using single-particle cryo-electron microscopy at resolutions of 3.26 Å and 3.80 Å, respectively. Structural comparisons between the β2AR-Gs-salbutamol and β2AR-Gs-isoprenaline complexes demonstrated that the decreased binding affinity and efficacy of salbutamol compared with those of isoprenaline might be attributed to weakened hydrogen bonding interactions, attenuated hydrophobic interactions in the orthosteric binding pocket and different conformational changes in the rotamer toggle switch in TM6. Moreover, the observed stronger interactions between the intracellular loop 2 or 3 (ICL2 or ICL3) of β2AR and Gαs with binding of salbutamol versus isoprenaline might decrease phosphorylation in the salbutamol-activated β2AR-Gs complex. From the observed structural differences between these complexes of β2AR, a mechanism of β2AR activation by partial and full agonists is proposed to provide structural insights into β2AR desensitization.
Collapse
Affiliation(s)
- Fan Yang
- Hefei National Laboratory of Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Shenglong Ling
- Hefei National Laboratory of Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yingxin Zhou
- Hefei National Laboratory of Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yanan Zhang
- Hefei National Laboratory of Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Pei Lv
- Hefei National Laboratory of Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Sanling Liu
- Hefei National Laboratory of Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Wei Fang
- Hefei National Laboratory of Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Wenjing Sun
- Hefei National Laboratory of Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Liaoyuan A Hu
- Amgen Asia R&D Center, Amgen Research, Shanghai 201210, China
| | - Longhua Zhang
- Hefei National Laboratory of Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Pan Shi
- Hefei National Laboratory of Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Changlin Tian
- Hefei National Laboratory of Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230030, China
| |
Collapse
|
63
|
Cheng W, Cao J, Xia Y, Lei X, Wu L, Shi L. A DNA methylation profile of long non-coding RNAs can predict OS in prostate cancer. Bioengineered 2021; 12:3252-3262. [PMID: 34238128 PMCID: PMC8806446 DOI: 10.1080/21655979.2021.1945991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the most common male reproductive tract malignant tumor, accurate evaluation of PCa characterization and prognostic prediction at diagnosis are vital for the effective administration of the disease, especially at the molecular level. In this study, 48 CpG sites with differential methylation associated with overall survival (OS) were screened out between PCa and normal adjacent tissues. 16 CpG sites were selected by the least absolute shrinkage and selection operator (LASSO) and the risk score formula for methylated-based classifier was established. For 16-lncRNAs-CpG-classifier, the area under the curve (AUC) were 0.890, 0.917, and 0.932 at 3 years, 5 years and 7 years, respectively. Kaplan–Meier curves indicated that patients with high-risk scores had worse OS than those with low-risk scores. Prognostic methylation model of lncRNAs was identified from the whole genome in patients with PCa. This novel finding provides a novel insight for screening biomarkers of a prognosis for PCa.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Neurology, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Jie Cao
- Department of Tanslational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Xia
- Department of Clinical Medical Laboratory, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xin Lei
- Department of Tanslational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Wu
- Department of Clinical Transfusion, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liang Shi
- Department of Tanslational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
64
|
Guimarães TR, Swanson E, Kofler J, Thathiah A. G protein-coupled receptor kinases are associated with Alzheimer's disease pathology. Neuropathol Appl Neurobiol 2021; 47:942-957. [PMID: 34164834 DOI: 10.1111/nan.12742] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
AIM Alzheimer's disease (AD) is characterised by extracellular deposition of amyloid-β (Aβ) in amyloid plaques and intracellular aggregation and accumulation of hyperphosphorylated tau in neurofibrillary tangles (NFTs). Although several kinases have been identified to contribute to the pathological phosphorylation of tau, kinase-targeted therapies for AD have not been successful in clinical trials. Critically, the kinases responsible for numerous identified tau phosphorylation sites remain unknown. G protein-coupled receptor (GPCR) kinases (GRKs) have recently been implicated in phosphorylation of non-GPCR substrates, for example, tubulin and α-synuclein, and in neurological disorders, including schizophrenia and Parkinson's disease. Accordingly, we investigated the involvement of GRKs in the pathophysiology of AD. METHODS We performed a comprehensive immunohistochemical and biochemical analysis of the ubiquitously expressed GRKs, namely, GRK2, 3, 5 and 6, in postmortem human brain tissue of control subjects and AD patients. RESULTS GRKs display unique cell-type-specific expression patterns in neurons, astrocytes and microglia. Levels of GRKs 2, 5 and 6 are specifically decreased in the CA1 region of the AD hippocampus. Biochemical evidence indicates that the GRKs differentially associate with total, soluble and insoluble pools of tau in the AD brain. Complementary immunohistochemical studies indicate that the GRKs differentially colocalise with total tau, phosphorylated tau and NFTs. Notably, GRKs 3 and 5 also colocalise with amyloid plaques. CONCLUSION These studies establish a link between GRKs and the pathological phosphorylation and accumulation of tau and amyloid pathology in AD brains and suggest a novel role for these kinases in regulation of the pathological hallmarks of AD.
Collapse
Affiliation(s)
- Thais Rafael Guimarães
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eric Swanson
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Brain Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amantha Thathiah
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Brain Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
65
|
Conley JM, Sun H, Ayers KL, Zhu H, Chen R, Shen M, Hall MD, Ren H. Human GPR17 missense variants identified in metabolic disease patients have distinct downstream signaling profiles. J Biol Chem 2021; 297:100881. [PMID: 34144038 PMCID: PMC8267566 DOI: 10.1016/j.jbc.2021.100881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
GPR17 is a G-protein-coupled receptor (GPCR) implicated in the regulation of glucose metabolism and energy homeostasis. Such evidence is primarily drawn from mouse knockout studies and suggests GPR17 as a potential novel therapeutic target for the treatment of metabolic diseases. However, links between human GPR17 genetic variants, downstream cellular signaling, and metabolic diseases have yet to be reported. Here, we analyzed GPR17 coding sequences from control and disease cohorts consisting of individuals with adverse clinical metabolic deficits including severe insulin resistance, hypercholesterolemia, and obesity. We identified 18 nonsynonymous GPR17 variants, including eight variants that were exclusive to the disease cohort. We characterized the protein expression levels, membrane localization, and downstream signaling profiles of nine GPR17 variants (F43L, V96M, V103M, D105N, A131T, G136S, R248Q, R301H, and G354V). These nine GPR17 variants had similar protein expression and subcellular localization as wild-type GPR17; however, they showed diverse downstream signaling profiles. GPR17-G136S lost the capacity for agonist-mediated cAMP, Ca2+, and β-arrestin signaling. GPR17-V96M retained cAMP inhibition similar to GPR17-WT, but showed impaired Ca2+ and β-arrestin signaling. GPR17-D105N displayed impaired cAMP and Ca2+ signaling, but unaffected agonist-stimulated β-arrestin recruitment. The identification and functional profiling of naturally occurring human GPR17 variants from individuals with metabolic diseases revealed receptor variants with diverse signaling profiles, including differential signaling perturbations that resulted in GPCR signaling bias. Our findings provide a framework for structure–function relationship studies of GPR17 signaling and metabolic disease.
Collapse
Affiliation(s)
- Jason M Conley
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hongmao Sun
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Kristin L Ayers
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Sema4, a Mount Sinai venture, Stamford, Connecticut, USA
| | - Hu Zhu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Rong Chen
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Sema4, a Mount Sinai venture, Stamford, Connecticut, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Hongxia Ren
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
66
|
Lee J, Kwag R, Lee S, Kim D, Woo J, Cho Y, Kim HJ, Kim J, Jeon B, Choo H. Discovery of G Protein-Biased Ligands against 5-HT 7R. J Med Chem 2021; 64:7453-7467. [PMID: 34032427 DOI: 10.1021/acs.jmedchem.1c00110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There has been significant attention concerning the biased agonism of G protein-coupled receptors (GPCRs), and it has resulted in various pharmacological benefits. 5-HT7R belongs to a GPCR, and it is a promising pharmaceutical target for the treatment of neurodevelopmental and neuropsychiatric disorders. Based on our previous research, we synthesized a series of 6-chloro-2'-methoxy biphenyl derivatives 1, 2, and 3 with a variety of amine scaffolds. These compounds were evaluated for their binding affinities to 5-HTR subtypes and their functional selectivity toward the Gs protein and the β-arrestin signaling pathways of 5-HT7R. Among them, 2-(6-chloro-2'-methoxy-[1,1'-biphenyl]-3-yl)-N-ethylethan-1-amine, 2b, was found to be a G-protein-biased ligand of 5-HT7R. In an in vivo study with Shank3 transgenic mice, the self-grooming behavior test was performed with 2b, which increased the duration of self-grooming. The experiments further suggested that 5-HT7R is associated with autism spectrum disorders (ASDs) and could be a therapeutic target for the treatment of stereotypy in ASDs.
Collapse
Affiliation(s)
- Jieon Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Rina Kwag
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea.,Department of Chemistry, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Soyeon Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea.,Department of Chemistry, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Doyoung Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea.,Department of Chemistry, Sogang University, Mapo-gu, Seoul 04107, Republic of Korea
| | - Jiwan Woo
- Research Animal Resource Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Yakdol Cho
- Research Animal Resource Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeongjin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Byungsun Jeon
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hyunah Choo
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
67
|
Manning JJ, Green HM, Glass M, Finlay DB. Pharmacological selection of cannabinoid receptor effectors: Signalling, allosteric modulation and bias. Neuropharmacology 2021; 193:108611. [PMID: 34000272 DOI: 10.1016/j.neuropharm.2021.108611] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
The type-1 cannabinoid receptor (CB1) is a promising drug target for a wide range of diseases. However, many existing and novel candidate ligands for CB1 have shown only limited therapeutic potential. Indeed, no ligands are currently approved for the clinic except formulations of the phytocannabinoids Δ9-THC and CBD and a small number of analogues. A key limitation of many promising CB1 ligands are their on-target adverse effects, notably including psychoactivity (agonists) and depression/suicidal ideation (inverse agonists). Recent drug development attempts have therefore focussed on altering CB1 signalling profiles in two ways. Firstly, with compounds that enhance or reduce the signalling of endogenous (endo-) cannabinoids, namely allosteric modulators. Secondly, with compounds that probe the capability of selectively targeting specific cellular signalling pathways that may mediate therapeutic effects using biased ligands. This review will summarise the current paradigm of CB1 signalling in terms of the intracellular transduction pathways acted on by the receptor. The development of compounds that selectively activate CB1 signalling pathways, whether allosterically or via orthosteric agonist bias, will also be addressed.
Collapse
Affiliation(s)
- Jamie J Manning
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand, PO Box 56, Dunedin, 9054, New Zealand
| | - Hayley M Green
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand, PO Box 56, Dunedin, 9054, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand, PO Box 56, Dunedin, 9054, New Zealand
| | - David B Finlay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
68
|
GRK6 regulates the hemostatic response to injury through its rate-limiting effects on GPCR signaling in platelets. Blood Adv 2021; 4:76-86. [PMID: 31899801 DOI: 10.1182/bloodadvances.2019000467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022] Open
Abstract
G protein-coupled receptors (GPCRs) mediate the majority of platelet activation in response to agonists. However, questions remain regarding the mechanisms that provide negative feedback toward activated GPCRs to limit platelet activation and thrombus formation. Here we provide the first evidence that GPCR kinase 6 (GRK6) serves this role in platelets, using GRK6-/- mice generated by CRISPR-Cas9 genome editing to examine the consequences of GRK6 knockout on GPCR-dependent signaling. Hemostatic thrombi formed in GRK6-/- mice are larger than in wild-type (WT) controls during the early stages of thrombus formation, with a rapid increase in platelet accumulation at the site of injury. GRK6-/- platelets have increased platelet activation, but in an agonist-selective manner. Responses to PAR4 agonist or adenosine 5'-diphosphate stimulation in GRK6-/- platelets are increased compared with WT littermates, whereas the response to thromboxane A2 (TxA2) is normal. Underlying these changes in GRK6-/- platelets is an increase in Ca2+ mobilization, Akt activation, and granule secretion. Furthermore, deletion of GRK6 in human MEG-01 cells causes an increase in Ca2+ response and PAR1 surface expression in response to thrombin. Finally, we show that human platelet activation in response to thrombin causes an increase in binding of GRK6 to PAR1, as well as an increase in the phosphorylation of PAR1. Deletion of GRK6 in MEG-01 cells causes a decrease in PAR1 phosphorylation. Taken together, these data show that GRK6 regulates the hemostatic response to injury through PAR- and P2Y12-mediated effects, helping to limit the rate of platelet activation during thrombus growth and prevent inappropriate platelet activation.
Collapse
|
69
|
Olson TL, Zhang S, Labban D, Kaschner E, Aceves M, Iyer S, Meza-Aguilar JD, Zook JD, Chun E, Craciunescu FM, Liu W, Shi CX, Stewart AK, Hansen DT, Meurice N, Fromme P. Protein expression and purification of G-protein coupled receptor kinase 6 (GRK6), toward structure-based drug design and discovery for multiple myeloma. Protein Expr Purif 2021; 185:105890. [PMID: 33971243 DOI: 10.1016/j.pep.2021.105890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Human G-protein coupled receptor kinase 6 (GRK6) belongs to the GRK4 kinase subfamily of the G protein-coupled receptor kinase family which comprises of GRK1, GRK2, and GRK4. These kinases phosphorylate ligand-activated G-protein coupled receptors (GPCRs), driving heterotrimeric G protein coupling, desensitization of GPCR, and β-arrestin recruitment. This reaction series mediates cellular signal pathways for cell survival, proliferation, migration and chemotaxis. GRK6 is a kinase target in multiple myeloma since it is highly expressed in myeloma cells compared to epithelial cells and has a significant role in mediating the chemotactic responses of T and B-lymphocytes. To support structure-based drug design, we describe three human GRK6 constructs, GRK6, GRK6His/EK, and GRK6His/TEV, designed for protein expression in Spodoptera frugiperda Sf9 insect cells. The first construct did not contain any purification tag whereas the other two constructs contained the His10 affinity tag, which increased purification yields. We report here that all three constructs of GRK6 were overexpressed in Sf9 insect cells and purified to homogeneity at levels that were suitable for co-crystallization of GRK6 with potential inhibitors. The yields of purified GRK6, GRK6His/EK, and GRK6His/TEV were 0.3 mg, 0.8 mg and 0.7 mg per liter of cell culture, respectively. In addition, we have shown that GRK6His/TEV with the His10 tag removed was highly homogeneous and monodisperse as observed by dynamic light scattering measurement and actively folded as exhibited by circular dichroism spectroscopy. The described methods will support the structure-based development of additional therapeutics against multiple myeloma.
Collapse
Affiliation(s)
- Tien L Olson
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Shangji Zhang
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Dillon Labban
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Emily Kaschner
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Manuel Aceves
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Srivatsan Iyer
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Jose Domingo Meza-Aguilar
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA
| | - James D Zook
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA
| | - Eugene Chun
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA
| | - Felicia M Craciunescu
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA
| | - Wei Liu
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Chang-Xin Shi
- Department of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ, 85289, USA; Precision Cancer Therapeutics, Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ, 85289, USA
| | - A Keith Stewart
- Department of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ, 85289, USA; Precision Cancer Therapeutics, Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ, 85289, USA
| | - Debra T Hansen
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; Center for Innovations in Medicine, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA
| | - Nathalie Meurice
- Department of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ, 85289, USA; Precision Cancer Therapeutics, Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ, 85289, USA
| | - Petra Fromme
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
70
|
Abreu N, Acosta-Ruiz A, Xiang G, Levitz J. Mechanisms of differential desensitization of metabotropic glutamate receptors. Cell Rep 2021; 35:109050. [PMID: 33910009 PMCID: PMC9750234 DOI: 10.1016/j.celrep.2021.109050] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/04/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs) interact with intracellular transducers to control both signal initiation and desensitization, but the distinct mechanisms that control the regulation of different GPCR subtypes are unclear. Here we use fluorescence imaging and electrophysiology to examine the metabotropic glutamate receptor (mGluR) family. We find distinct properties across subtypes in both rapid desensitization and internalization, with striking differences between the group II mGluRs. mGluR3, but not mGluR2, undergoes glutamate-dependent rapid desensitization, internalization, trafficking, and recycling. We map differences between mGluRs to variable Ser/Thr-rich sequences in the C-terminal domain (CTD) that control interaction with both GPCR kinases and β-arrestins. Finally, we identify a cancer-associated mutation, G848E, within the mGluR3 CTD that enhances β-arrestin coupling and internalization, enabling an analysis of mGluR3 β-arrestin-coupling properties and revealing biased variants. Together, this work provides a framework for understanding the distinct regulation and functional roles of mGluR subtypes.
Collapse
Affiliation(s)
- Nohely Abreu
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Amanda Acosta-Ruiz
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Guoqing Xiang
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Joshua Levitz
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
71
|
Arveseth CD, Happ JT, Hedeen DS, Zhu JF, Capener JL, Klatt Shaw D, Deshpande I, Liang J, Xu J, Stubben SL, Nelson IB, Walker MF, Kawakami K, Inoue A, Krogan NJ, Grunwald DJ, Hüttenhain R, Manglik A, Myers BR. Smoothened transduces Hedgehog signals via activity-dependent sequestration of PKA catalytic subunits. PLoS Biol 2021; 19:e3001191. [PMID: 33886552 PMCID: PMC8096101 DOI: 10.1371/journal.pbio.3001191] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 05/04/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
The Hedgehog (Hh) pathway is essential for organ development, homeostasis, and regeneration. Dysfunction of this cascade drives several cancers. To control expression of pathway target genes, the G protein-coupled receptor (GPCR) Smoothened (SMO) activates glioma-associated (GLI) transcription factors via an unknown mechanism. Here, we show that, rather than conforming to traditional GPCR signaling paradigms, SMO activates GLI by binding and sequestering protein kinase A (PKA) catalytic subunits at the membrane. This sequestration, triggered by GPCR kinase (GRK)-mediated phosphorylation of SMO intracellular domains, prevents PKA from phosphorylating soluble substrates, releasing GLI from PKA-mediated inhibition. Our work provides a mechanism directly linking Hh signal transduction at the membrane to GLI transcription in the nucleus. This process is more fundamentally similar between species than prevailing hypotheses suggest. The mechanism described here may apply broadly to other GPCR- and PKA-containing cascades in diverse areas of biology.
Collapse
Affiliation(s)
- Corvin D. Arveseth
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - John T. Happ
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Danielle S. Hedeen
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Ju-Fen Zhu
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jacob L. Capener
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Dana Klatt Shaw
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Ishan Deshpande
- Department of Pharmaceutical Chemistry, Department of Anaesthesia and Perioperative Care, University of California, San Francisco, California, United States of America
| | - Jiahao Liang
- Department of Pharmaceutical Chemistry, Department of Anaesthesia and Perioperative Care, University of California, San Francisco, California, United States of America
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Sara L. Stubben
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Isaac B. Nelson
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Madison F. Walker
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - David J. Grunwald
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Ruth Hüttenhain
- Department of Cellular and Molecular Pharmacology, Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, Department of Anaesthesia and Perioperative Care, University of California, San Francisco, California, United States of America
| | - Benjamin R. Myers
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
72
|
Ferkey DM, Sengupta P, L’Etoile ND. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021; 217:iyab004. [PMID: 33693646 PMCID: PMC8045692 DOI: 10.1093/genetics/iyab004] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Chemosensory neurons translate perception of external chemical cues, including odorants, tastants, and pheromones, into information that drives attraction or avoidance motor programs. In the laboratory, robust behavioral assays, coupled with powerful genetic, molecular and optical tools, have made Caenorhabditis elegans an ideal experimental system in which to dissect the contributions of individual genes and neurons to ethologically relevant chemosensory behaviors. Here, we review current knowledge of the neurons, signal transduction molecules and regulatory mechanisms that underlie the response of C. elegans to chemicals, including pheromones. The majority of identified molecules and pathways share remarkable homology with sensory mechanisms in other organisms. With the development of new tools and technologies, we anticipate that continued study of chemosensory signal transduction and processing in C. elegans will yield additional new insights into the mechanisms by which this animal is able to detect and discriminate among thousands of chemical cues with a limited sensory neuron repertoire.
Collapse
Affiliation(s)
- Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Noelle D L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
73
|
Liu JJ, Sniezko RA, Zamany A, Williams H, Omendja K, Kegley A, Savin DP. Comparative Transcriptomics and RNA-Seq-Based Bulked Segregant Analysis Reveals Genomic Basis Underlying Cronartium ribicola vcr2 Virulence. Front Microbiol 2021; 12:602812. [PMID: 33776951 PMCID: PMC7990074 DOI: 10.3389/fmicb.2021.602812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/01/2021] [Indexed: 12/25/2022] Open
Abstract
Breeding programs of five-needle pines have documented both major gene resistance (MGR) and quantitative disease resistance (QDR) to Cronartium ribicola (Cri), a non-native, invasive fungal pathogen causing white pine blister rust (WPBR). WPBR is one of the most deadly forest diseases in North America. However, Cri virulent pathotypes have evolved and can successfully infect and kill trees carrying resistance (R) genes, including vcr2 that overcomes MGR conferred by the western white pine (WWP, Pinus monticola) R gene (Cr2). In the absence of a reference genome, the present study generated a vcr2 reference transcriptome, consisting of about 20,000 transcripts with 1,014 being predicted to encode secreted proteins (SPs). Comparative profiling of transcriptomes and secretomes revealed vcr2 was significantly enriched for several gene ontology (GO) terms relating to oxidation-reduction processes and detoxification, suggesting that multiple molecular mechanisms contribute to pathogenicity of the vcr2 pathotype for its overcoming Cr2. RNA-seq-based bulked segregant analysis (BSR-Seq) revealed genome-wide DNA variations, including about 65,617 single nucleotide polymorphism (SNP) loci in 7,749 polymorphic genes shared by vcr2 and avirulent (Avcr2) pathotypes. An examination of the distribution of minor allele frequency (MAF) uncovered a high level of genomic divergence between vcr2 and Avcr2 pathotypes. By integration of extreme-phenotypic genome-wide association (XP-GWAS) analysis and allele frequency directional difference (AFDD) mapping, we identified a set of vcr2-associated SNPs within functional genes, involved in fungal virulence and other molecular functions. These included six SPs that were top candidate effectors with putative activities of reticuline oxidase, proteins with common in several fungal extracellular membrane (CFEM) domain or ferritin-like domain, polysaccharide lyase, rds1p-like stress responsive protein, and two Cri-specific proteins without annotation. Candidate effectors and vcr2-associated genes provide valuable resources for further deciphering molecular mechanisms of virulence and pathogenicity by functional analysis and the subsequent development of diagnostic tools for monitoring the virulence landscape in the WPBR pathosystems.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Richard A Sniezko
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| | - Arezoo Zamany
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Holly Williams
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Kangakola Omendja
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Angelia Kegley
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| | - Douglas P Savin
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| |
Collapse
|
74
|
Mechanistic diversity involved in the desensitization of G protein-coupled receptors. Arch Pharm Res 2021; 44:342-353. [PMID: 33761113 DOI: 10.1007/s12272-021-01320-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/14/2021] [Indexed: 01/14/2023]
Abstract
The desensitization of G protein-coupled receptors (GPCRs), which involves rapid loss of responsiveness due to repeated or chronic exposure to agonists, can occur through various mechanisms at different levels of signaling pathways. In this review, the mechanisms of GPCR desensitization are classified according to their occurrence at the receptor level and downstream to the receptor. The desensitization at the receptor level occurs in a phosphorylation-dependent manner, wherein the activated receptors are phosphorylated by GPCR kinases (GRKs), thereby increasing their affinities for arrestins. Arrestins bind to receptors through the cavity on the cytoplasmic region of heptahelical domains and interfere with the binding and activation of G-protein. Diverse mechanisms are involved in the desensitization that occurs downstream of the receptor. Some of these include the sequestration of G proteins, such as Gq and Gi/o by GRK2/3 and deubiquitinated arrestins, respectively. Mechanistically, GRK2/3 attenuates GPCR signaling by sequestering the Gα subunits of the Gq family and Gβγ via regulators of G protein signaling and pleckstrin homology domains, respectively. Moreover, studies on Gi/o-coupled D2-like receptors have reported that arrestins are deubiquitinated under desensitization condition and form a stable complex with Gβγ, thereby preventing them from coupling with Gα and the receptor, eventually leading to receptor signaling inhibition. Notably, the desensitization mechanism that involves arrestin deubiquitination is interesting; however, this is a new mechanism and needs to be explored further.
Collapse
|
75
|
Sulon SM, Benovic JL. Targeting G protein-coupled receptor kinases (GRKs) to G protein-coupled receptors. ACTA ACUST UNITED AC 2021; 16:56-65. [PMID: 33718657 DOI: 10.1016/j.coemr.2020.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
G protein-coupled receptors (GPCRs) interact with three protein families following agonist binding: heterotrimeric G proteins, G protein-coupled receptor kinases (GRKs) and arrestins. GRK-mediated phosphorylation of GPCRs promotes arrestin binding to uncouple the receptor from G protein, a process called desensitization, and for many GPCRs, arrestin binding also promotes receptor endocytosis and intracellular signaling. Thus, GRKs play a central role in modulating GPCR signaling and localization. Here we review recent advances in this field which include additional insight into how GRKs target GPCRs and bias signaling, and the development of specific inhibitors to dissect GRK function in model systems.
Collapse
Affiliation(s)
- Sarah M Sulon
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
76
|
Benovic JL. Historical Perspective of the G Protein-Coupled Receptor Kinase Family. Cells 2021; 10:555. [PMID: 33806476 PMCID: PMC7999923 DOI: 10.3390/cells10030555] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 01/14/2023] Open
Abstract
Agonist activation of G protein-coupled receptors promotes sequential interaction of the receptor with heterotrimeric G proteins, G protein-coupled receptor kinases (GRKs), and arrestins. GRKs play a central role in mediating the switch from G protein to arrestin interaction and thereby control processes such as receptor desensitization and trafficking and arrestin-mediated signaling. In this review, I provide a historical perspective on some of the early studies that identified the family of GRKs with a primary focus on the non-visual GRKs. These studies included identification, purification, and cloning of the β-adrenergic receptor kinase in the mid- to late-1980s and subsequent cloning and characterization of additional members of the GRK family. This helped to lay the groundwork for ensuing work focused on understanding the structure and function of these important enzymes.
Collapse
Affiliation(s)
- Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
77
|
Involvement of the Catecholamine Pathway in Glioblastoma Development. Cells 2021; 10:cells10030549. [PMID: 33806345 PMCID: PMC7998903 DOI: 10.3390/cells10030549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive tumor of the central nervous system (CNS). The standard of care improves the overall survival of patients only by a few months. Explorations of new therapeutic targets related to molecular properties of the tumor are under way. Even though neurotransmitters and their receptors normally function as mediators of interneuronal communication, growing data suggest that these molecules are also involved in modulating the development and growth of GBM by acting on neuronal and glioblastoma stem cells. In our previous DNA CpG methylation studies, gene ontology analyses revealed the involvement of the monoamine pathway in sequential GBM. In this follow-up study, we quantitated the expression levels of four selected catecholamine pathway markers (alpha 1D adrenergic receptor-ADRA1D; adrenergic beta receptor kinase 1 or G protein-coupled receptor kinase 2-ADRBK1/GRK2; dopamine receptor D2-DRD2; and synaptic vesicle monoamine transporter-SLC18A2) by immunohistochemistry, and compared the histological scores with the methylation levels within the promoters + genes of these markers in 21 pairs of sequential GBM and in controls. Subsequently, we also determined the promoter and gene methylation levels of the same markers in an independent database cohort of sequential GBM pairs. These analyses revealed partial inverse correlations between the catecholamine protein expression and promoter + gene methylation levels, when the tumor and control samples were compared. However, we found no differences in the promoter + gene methylation levels of these markers in either our own or in the database primary-recurrent GBM pairs, despite the higher protein expression of all markers in the primary samples. This observation suggests that regulation of catecholamine expression is only partially related to CpG methylation within the promoter + gene regions, and additional mechanisms may also influence the expression of these markers in progressive GBM. These analyses underscore the involvement of certain catecholamine pathway markers in GBM development and suggest that these molecules mediating or modulating tumor growth merit further exploration.
Collapse
|
78
|
Smith JS, Pack TF. Noncanonical interactions of G proteins and β‐arrestins: from competitors to companions. FEBS J 2021; 288:2550-2561. [DOI: 10.1111/febs.15749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 02/02/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Jeffrey S. Smith
- Department of Dermatology Massachusetts General Hospital Boston MA USA
- Department of Dermatology Brigham and Women's Hospital Boston MA USA
- Department of Dermatology Beth Israel Deaconess Medical Center Boston MA USA
- Dermatology Program Boston Children's Hospital Boston MA USA
- Harvard Medical School Boston MA USA
| | | |
Collapse
|
79
|
Ehrlich AT, Darcq E. Recent advances in basic science methodology to evaluate opioid safety profiles and to understand opioid activities. Fac Rev 2021; 10:15. [PMID: 33718932 PMCID: PMC7946392 DOI: 10.12703/r/10-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Opioids are powerful drugs used by humans for centuries to relieve pain and are still frequently used as pain treatment in current clinical practice. Medicinal opioids primarily target the mu opioid receptor (MOR), and MOR activation produces unmatched pain-alleviating properties, as well as side effects such as strong rewarding effects, and thus abuse potential, and respiratory depression contributing to death during overdose. Therefore, the ultimate goal is to create opioid pain-relievers with reduced respiratory depression and thus fewer chances of lethality. Efforts are also underway to reduce the euphoric effects of opioids and avoid abuse liability. In this review, recent advances in basic science methodology used to understand MOR pharmacology and activities will be summarized. The focus of the review will be to describe current technological advances that enable the study of opioid analgesics from subcellular mechanisms to mesoscale network responses. These advances in understanding MOR physiological responses will help to improve knowledge and future design of opioid analgesics.
Collapse
Affiliation(s)
- Aliza T Ehrlich
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Emmanuel Darcq
- Department of Psychiatry, Douglas Research Center, McGill University, Montréal, Canada
- INSERM U1114, UNISTRA University of Strasbourg, Strasbourg, France
| |
Collapse
|
80
|
von Zastrow M, Sorkin A. Mechanisms for Regulating and Organizing Receptor Signaling by Endocytosis. Annu Rev Biochem 2021; 90:709-737. [PMID: 33606955 DOI: 10.1146/annurev-biochem-081820-092427] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intricate relationships between endocytosis and cellular signaling, first recognized nearly 40 years ago through the study of tyrosine kinase growth factor receptors, are now known to exist for multiple receptor classes and to affect myriad physiological and developmental processes. This review summarizes our present understanding of how endocytosis orchestrates cellular signaling networks, with an emphasis on mechanistic underpinnings and focusing on two receptor classes-tyrosine kinase and G protein-coupled receptors-that have been investigated in particular detail. Together, these examples provide a useful survey of the current consensus, uncertainties, and controversies in this rapidly advancing area of cell biology.
Collapse
Affiliation(s)
- Mark von Zastrow
- Department of Psychiatry, University of California, San Francisco, California 94143, USA;
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
| |
Collapse
|
81
|
Poulter JA, Gravett MSC, Taylor RL, Fujinami K, De Zaeytijd J, Bellingham J, Rehman AU, Hayashi T, Kondo M, Rehman A, Ansar M, Donnelly D, Toomes C, Ali M, De Baere E, Leroy BP, Davies NP, Henderson RH, Webster AR, Rivolta C, Zeitz C, Mahroo OA, Arno G, Black GCM, McKibbin M, Harris SA, Khan KN, Inglehearn CF. New variants and in silico analyses in GRK1 associated Oguchi disease. Hum Mutat 2021; 42:164-176. [PMID: 33252155 PMCID: PMC7898643 DOI: 10.1002/humu.24140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/15/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022]
Abstract
Biallelic mutations in G-Protein coupled receptor kinase 1 (GRK1) cause Oguchi disease, a rare subtype of congenital stationary night blindness (CSNB). The purpose of this study was to identify disease causing GRK1 variants and use in-depth bioinformatic analyses to evaluate how their impact on protein structure could lead to pathogenicity. Patients' genomic DNA was sequenced by whole genome, whole exome or focused exome sequencing. Disease associated variants, published and novel, were compared to nondisease associated missense variants. The impact of GRK1 missense variants at the protein level were then predicted using a series of computational tools. We identified twelve previously unpublished cases with biallelic disease associated GRK1 variants, including eight novel variants, and reviewed all GRK1 disease associated variants. Further structure-based scoring revealed a hotspot for missense variants in the kinase domain. In addition, to aid future clinical interpretation, we identified the bioinformatics tools best able to differentiate disease associated from nondisease associated variants. We identified GRK1 variants in Oguchi disease patients and investigated how disease-causing variants may impede protein function in-silico.
Collapse
Affiliation(s)
- James A. Poulter
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
| | | | - Rachel L. Taylor
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and HealthUniversity of ManchesterManchesterUK
| | - Kaoru Fujinami
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical CentreTokyoJapan
- Moorfields Eye HospitalLondonUK
- UCL Institute of OphthalmologyLondonUK
- Keio University School of MedicineTokyoJapan
| | | | | | - Atta Ur Rehman
- Division of Genetic Medicine, Centre Hospitalier Universitaire Vaudois (CHUV)University of LausanneLausanneSwitzerland
| | | | - Mineo Kondo
- Mie University Graduate School of MedicineMieJapan
| | - Abdur Rehman
- Department of Genetics, Faculty of ScienceHazara University MansehraDhodialPakistan
| | - Muhammad Ansar
- Clinical Research Center, Institute of Molecular and Clinical Ophthalmology Basel (IOB)BaselSwitzerland
| | - Dan Donnelly
- School of Biomedical Sciences, University of LeedsLeedsUK
| | - Carmel Toomes
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
| | - Manir Ali
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
| | | | | | - Bart P. Leroy
- Ghent UniversityGhentBelgium
- Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | | | | | - Andrew R. Webster
- Moorfields Eye HospitalLondonUK
- UCL Institute of OphthalmologyLondonUK
| | - Carlo Rivolta
- Department of Genetics and Genome BiologyUniversity of LeicesterLeicesterUK
- Clinical Research Center, Institute of Molecular and Clinical Ophthalmology Basel (IOB)BaselSwitzerland
- Department of OphthalmologyUniversity Hospital BaselBaselSwitzerland
| | - Christina Zeitz
- Sorbonne UniversitéINSERM, CNRS, Institut de la VisionParisFrance
| | - Omar A. Mahroo
- Moorfields Eye HospitalLondonUK
- UCL Institute of OphthalmologyLondonUK
| | - Gavin Arno
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical CentreTokyoJapan
- Moorfields Eye HospitalLondonUK
- UCL Institute of OphthalmologyLondonUK
| | - Graeme C. M. Black
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and HealthUniversity of ManchesterManchesterUK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation TrustManchesterUK
| | - Martin McKibbin
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
- Leeds Teaching Hospitals NHS Trust, St James’ University HospitalLeedsUK
| | | | - Kamron N. Khan
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation TrustManchesterUK
| | - Chris F. Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
| |
Collapse
|
82
|
Moo EV, van Senten JR, Bräuner-Osborne H, Møller TC. Arrestin-Dependent and -Independent Internalization of G Protein-Coupled Receptors: Methods, Mechanisms, and Implications on Cell Signaling. Mol Pharmacol 2021; 99:242-255. [PMID: 33472843 DOI: 10.1124/molpharm.120.000192] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/07/2021] [Indexed: 01/05/2023] Open
Abstract
Agonist-induced endocytosis is a key regulatory mechanism for controlling the responsiveness of the cell by changing the density of cell surface receptors. In addition to the role of endocytosis in signal termination, endocytosed G protein-coupled receptors (GPCRs) have been found to signal from intracellular compartments of the cell. Arrestins are generally believed to be the master regulators of GPCR endocytosis by binding to both phosphorylated receptors and adaptor protein 2 (AP-2) or clathrin, thus recruiting receptors to clathrin-coated pits to facilitate the internalization process. However, many other functions have been described for arrestins that do not relate to their role in terminating signaling. Additionally, there are now more than 30 examples of GPCRs that internalize independently of arrestins. Here we review the methods, pharmacological tools, and cellular backgrounds used to determine the role of arrestins in receptor internalization, highlighting their advantages and caveats. We also summarize key examples of arrestin-independent GPCR endocytosis in the literature and their suggested alternative endocytosis pathway (e.g., the caveolae-dependent and fast endophilin-mediated endocytosis pathways). Finally, we consider the possible function of arrestins recruited to GPCRs that are endocytosed independently of arrestins, including the catalytic arrestin activation paradigm. Technological improvements in recent years have advanced the field further, and, combined with the important implications of endocytosis on drug responses, this makes endocytosis an obvious parameter to include in molecular pharmacological characterization of ligand-GPCR interactions. SIGNIFICANCE STATEMENT: G protein-coupled receptor (GPCR) endocytosis is an important means to terminate receptor signaling, and arrestins play a central role in the widely accepted classical paradigm of GPCR endocytosis. In contrast to the canonical arrestin-mediated internalization, an increasing number of GPCRs are found to be endocytosed via alternate pathways, and the process appears more diverse than the previously defined "one pathway fits all."
Collapse
Affiliation(s)
- Ee Von Moo
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jeffrey R van Senten
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Thor C Møller
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
83
|
von Zastrow M. Proteomic Approaches to Investigate Regulated Trafficking and Signaling of G Protein-Coupled Receptors. Mol Pharmacol 2020; 99:392-398. [PMID: 33361190 DOI: 10.1124/molpharm.120.000178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Advances in proteomic methodologies based on quantitative mass spectrometry are now transforming pharmacology and experimental biology more broadly. The present review will discuss several examples based on work in the author's laboratory, which focuses on delineating relationships between G protein-coupled receptor signaling and trafficking in the endocytic network. The examples highlighted correspond to those discussed in a talk presented at the 2019 EB/ASPET meeting, which was organized by Professor Joe Beavo to commemorate his receipt of the Julius Axelrod Award. SIGNIFICANCE STATEMENT: GPCRs are allosteric machines that signal by interacting with other cellular proteins, and this, in turn, is determined by a complex interplay between the biochemical, subcellular localization, and membrane trafficking properties of receptors relative to transducer and regulatory proteins. The present minireview highlights recent advances and challenges in elucidating this dynamic cell biology and toward delineating the cellular basis of drug action at the level of defined GPCR interaction networks using proteomic approaches enabled by quantitative mass spectrometry.
Collapse
Affiliation(s)
- Mark von Zastrow
- Departments of Cellular and Molecular Pharmacology, and Psychiatry and Behavioral Science, San Francisco School of Medicine, and Quantitative Biology Institute, University of California, San Francisco, California
| |
Collapse
|
84
|
Komolov KE, Sulon SM, Bhardwaj A, van Keulen SC, Duc NM, Laurinavichyute DK, Lou HJ, Turk BE, Chung KY, Dror RO, Benovic JL. Structure of a GRK5-Calmodulin Complex Reveals Molecular Mechanism of GRK Activation and Substrate Targeting. Mol Cell 2020; 81:323-339.e11. [PMID: 33321095 DOI: 10.1016/j.molcel.2020.11.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/15/2020] [Accepted: 11/12/2020] [Indexed: 10/22/2022]
Abstract
The phosphorylation of G protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) facilitates arrestin binding and receptor desensitization. Although this process can be regulated by Ca2+-binding proteins such as calmodulin (CaM) and recoverin, the molecular mechanisms are poorly understood. Here, we report structural, computational, and biochemical analysis of a CaM complex with GRK5, revealing how CaM shapes GRK5 response to calcium. The CaM N and C domains bind independently to two helical regions at the GRK5 N and C termini to inhibit GPCR phosphorylation, though only the C domain interaction disrupts GRK5 membrane association, thereby facilitating cytoplasmic translocation. The CaM N domain strongly activates GRK5 via ordering of the amphipathic αN-helix of GRK5 and allosteric disruption of kinase-RH domain interaction for phosphorylation of cytoplasmic GRK5 substrates. These results provide a framework for understanding how two functional effects, GRK5 activation and localization, can cooperate under control of CaM for selective substrate targeting by GRK5.
Collapse
Affiliation(s)
- Konstantin E Komolov
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sarah M Sulon
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Siri C van Keulen
- Department of Computer Science, Department of Molecular and Cellular Physiology, Department of Structural Biology, and Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Nguyen Minh Duc
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea; Division of Precision Medicine, Research Institute, National Cancer Center, Goyang, South Korea
| | - Daniela K Laurinavichyute
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Ron O Dror
- Department of Computer Science, Department of Molecular and Cellular Physiology, Department of Structural Biology, and Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA; Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
85
|
Latorraca NR, Masureel M, Hollingsworth SA, Heydenreich FM, Suomivuori CM, Brinton C, Townshend RJL, Bouvier M, Kobilka BK, Dror RO. How GPCR Phosphorylation Patterns Orchestrate Arrestin-Mediated Signaling. Cell 2020; 183:1813-1825.e18. [PMID: 33296703 DOI: 10.1016/j.cell.2020.11.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/26/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
Binding of arrestin to phosphorylated G-protein-coupled receptors (GPCRs) controls many aspects of cell signaling. The number and arrangement of phosphates may vary substantially for a given GPCR, and different phosphorylation patterns trigger different arrestin-mediated effects. Here, we determine how GPCR phosphorylation influences arrestin behavior by using atomic-level simulations and site-directed spectroscopy to reveal the effects of phosphorylation patterns on arrestin binding and conformation. We find that patterns favoring binding differ from those favoring activation-associated conformational change. Both binding and conformation depend more on arrangement of phosphates than on their total number, with phosphorylation at different positions sometimes exerting opposite effects. Phosphorylation patterns selectively favor a wide variety of arrestin conformations, differently affecting arrestin sites implicated in scaffolding distinct signaling proteins. We also reveal molecular mechanisms of these phenomena. Our work reveals the structural basis for the long-standing "barcode" hypothesis and has important implications for design of functionally selective GPCR-targeted drugs.
Collapse
Affiliation(s)
- Naomi R Latorraca
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Matthieu Masureel
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Scott A Hollingsworth
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Franziska M Heydenreich
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montreal, Montreal, QC, Canada
| | - Carl-Mikael Suomivuori
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Connor Brinton
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Raphael J L Townshend
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michel Bouvier
- Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montreal, Montreal, QC, Canada
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Biophysics Program, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
86
|
Tian JY, Chi CL, Bian G, Guo FJ, Wang XQ, Yu B. A novel GPCR target in correlation with androgen deprivation therapy for prostate cancer drug discovery. Basic Clin Pharmacol Toxicol 2020; 128:195-203. [PMID: 32991779 DOI: 10.1111/bcpt.13499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022]
Abstract
Most prostate carcinomas require androgen stimulation to grow, and for nearly 70 years, androgen ablation therapy has been one of the central therapeutic strategies against advanced prostate cancer. Although most tumours initially respond to this therapy, some will be acquired resistant and progress to metastatic castration-resistant (mCRPC) disease which clinically tends to progress more rapidly than earlier disease manifestations. The underlying molecular biology of mCRPC is highly complex, and numerous mechanisms have been proposed that promote and retain androgen independence. In various clinical and preclinical data explored, the nature of intracellular signalling pathways mediating mitogenic acquired resistant effects of GPCRs in prostate cancer is poorly defined. G-protein-coupled receptor kinase 2 (GRK2) contributes to the modulation of basic cellular functions-such as cell proliferation, survival or motility-and is involved in metabolic homeostasis, inflammation or angiogenic processes. Moreover, altered GRK2 levels are starting to be reported in different tumoural contexts and shown to promote breast tumourigenesis or to trigger the tumoural angiogenic switch. Thus, we are exploring recent findings that present unexpected opportunities to interfere with major tumourigenic signals by manipulating GPCR-mediated pathways.
Collapse
Affiliation(s)
- Jing-Yan Tian
- Department of Urology, Second Division of The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Chang-Liang Chi
- Department of Urology, Second Division of The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Ge Bian
- Department of Urology, Second Division of The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Feng-Jun Guo
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiao-Qing Wang
- Department of Urology, Second Division of The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Bing Yu
- Department of Urology, Second Division of The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
87
|
Eiger DS, Boldizsar N, Honeycutt CC, Gardner J, Rajagopal S. Biased agonism at chemokine receptors. Cell Signal 2020; 78:109862. [PMID: 33249087 DOI: 10.1016/j.cellsig.2020.109862] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/07/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
In the human chemokine system, interactions between the approximately 50 known endogenous chemokine ligands and 20 known chemokine receptors (CKRs) regulate a wide range of cellular functions and biological processes including immune cell activation and homeostasis, development, angiogenesis, and neuromodulation. CKRs are a family of G protein-coupled receptors (GPCR), which represent the most common and versatile class of receptors in the human genome and the targets of approximately one third of all Food and Drug Administration-approved drugs. Chemokines and CKRs bind with significant promiscuity, as most CKRs can be activated by multiple chemokines and most chemokines can activate multiple CKRs. While these ligand-receptor interactions were previously regarded as redundant, it is now appreciated that many chemokine:CKR interactions display biased agonism, the phenomenon in which different ligands binding to the same receptor signal through different pathways with different efficacies, leading to distinct biological effects. Notably, these biased responses can be modulated through changes in ligand, receptor, and or the specific cellular context (system). In this review, we explore the biochemical mechanisms, functional consequences, and therapeutic potential of biased agonism in the chemokine system. An enhanced understanding of biased agonism in the chemokine system may prove transformative in the understanding of the mechanisms and consequences of biased signaling across all GPCR subtypes and aid in the development of biased pharmaceuticals with increased therapeutic efficacy and safer side effect profiles.
Collapse
Affiliation(s)
| | - Noelia Boldizsar
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | | | - Julia Gardner
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
88
|
Thibeault PE, Ramachandran R. Role of the Helix-8 and C-Terminal Tail in Regulating Proteinase Activated Receptor 2 Signaling. ACS Pharmacol Transl Sci 2020; 3:868-882. [PMID: 33073187 DOI: 10.1021/acsptsci.0c00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Indexed: 12/11/2022]
Abstract
The C-terminal tail of G-protein-coupled receptors (GPCR) contain important regulatory sites that enable interaction with intracellular signaling effectors. Here we examine the relative contribution of the C-tail serine/threonine phosphorylation sites (Ser383-385, Ser387-Thr392) and the helix-8 palmitoylation site (Cys361) in signaling regulation downstream of the proteolytically activated GPCR, PAR2. We examined Gαq/11-coupled calcium signaling, β-arrestin-1/-2 recruitment, and MAPK activation (p44/42 phosphorylation) by wild-type and mutant receptors expressed in a CRISPR/Cas9 PAR2-knockout HEK-293 cell background with both peptide stimulation of the receptor (SLIGRL-NH2) as well as activation with its endogenous trypsin revealed a tethered ligand. We find that alanine substitution of the membrane proximal serine residues (Ser383-385Ala) had no effect on SLIGRL-NH2- or trypsin-stimulated β-arrestin recruitment. In contrast, alanine substitutions in the Ser387-Thr392 cluster resulted in a large (∼50%) decrease in β-arrestin-1/-2 recruitment triggered by the activating peptide, SLIGRL-NH2, but was without an effect on trypsin-activated β-arrestin-1/-2 recruitment. Additionally, we find that alanine substitution of the helix-8 cysteine residue (Cys361Ala) led to a large decrease in both Gαq/11 coupling and β-arrestin-1/-2 recruitment to PAR2. Furthermore, we show that Gαq/11 inhibition with YM254890, inhibited ERK phosphorylation by PAR2 agonists, while genetic deletion of β-arrestin-1/-2 by CRISPR/Cas9 enhanced MAPK activation. Knockout of β-arrestins also enhanced Gαq/11-mediated calcium signaling. In line with these findings, a C-tail serine/threonine mutant that has decreased β-arrestin recruitment also showed enhanced ERK activation. Thus, our studies point to multiple mechanisms that regulate β-arrestin interaction with PAR2 and highlight differences in regulation of tethered-ligand- and peptide-mediated activation of this receptor.
Collapse
Affiliation(s)
- Pierre E Thibeault
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A5C1, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A5C1, Canada
| |
Collapse
|
89
|
Chen X, Zhao X, Cooper M, Ma P. The Roles of GRKs in Hemostasis and Thrombosis. Int J Mol Sci 2020; 21:ijms21155345. [PMID: 32731360 PMCID: PMC7432802 DOI: 10.3390/ijms21155345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Along with cancer, cardiovascular and cerebrovascular diseases remain by far the most common causes of death. Heart attacks and strokes are diseases in which platelets play a role, through activation on ruptured plaques and subsequent thrombus formation. Most platelet agonists activate platelets via G protein-coupled receptors (GPCRs), which make these receptors ideal targets for many antiplatelet drugs. However, little is known about the mechanisms that provide feedback regulation on GPCRs to limit platelet activation. Emerging evidence from our group and others strongly suggests that GPCR kinases (GRKs) are critical negative regulators during platelet activation and thrombus formation. In this review, we will summarize recent findings on the role of GRKs in platelet biology and how one specific GRK, GRK6, regulates the hemostatic response to vascular injury. Furthermore, we will discuss the potential role of GRKs in thrombotic disorders, such as thrombotic events in COVID-19 patients. Studies on the function of GRKs during platelet activation and thrombus formation have just recently begun, and a better understanding of the role of GRKs in hemostasis and thrombosis will provide a fruitful avenue for understanding the hemostatic response to injury. It may also lead to new therapeutic options for the treatment of thrombotic and cardiovascular disorders.
Collapse
Affiliation(s)
- Xi Chen
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
| | - Xuefei Zhao
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
- Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China
| | - Matthew Cooper
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
| | - Peisong Ma
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
- Correspondence: ; Tel.: +1-215-955-3966
| |
Collapse
|
90
|
Endosomal signaling of delta opioid receptors is an endogenous mechanism and therapeutic target for relief from inflammatory pain. Proc Natl Acad Sci U S A 2020; 117:15281-15292. [PMID: 32546520 DOI: 10.1073/pnas.2000500117] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Whether G protein-coupled receptors signal from endosomes to control important pathophysiological processes and are therapeutic targets is uncertain. We report that opioids from the inflamed colon activate δ-opioid receptors (DOPr) in endosomes of nociceptors. Biopsy samples of inflamed colonic mucosa from patients and mice with colitis released opioids that activated DOPr on nociceptors to cause a sustained decrease in excitability. DOPr agonists inhibited mechanically sensitive colonic nociceptors. DOPr endocytosis and endosomal signaling by protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) pathways mediated the sustained inhibitory actions of endogenous opioids and DOPr agonists. DOPr agonists stimulated the recruitment of Gαi/o and β-arrestin1/2 to endosomes. Analysis of compartmentalized signaling revealed a requirement of DOPr endocytosis for activation of PKC at the plasma membrane and in the cytosol and ERK in the nucleus. We explored a nanoparticle delivery strategy to evaluate whether endosomal DOPr might be a therapeutic target for pain. The DOPr agonist DADLE was coupled to a liposome shell for targeting DOPr-positive nociceptors and incorporated into a mesoporous silica core for release in the acidic and reducing endosomal environment. Nanoparticles activated DOPr at the plasma membrane, were preferentially endocytosed by DOPr-expressing cells, and were delivered to DOPr-positive early endosomes. Nanoparticles caused a long-lasting activation of DOPr in endosomes, which provided sustained inhibition of nociceptor excitability and relief from inflammatory pain. Conversely, nanoparticles containing a DOPr antagonist abolished the sustained inhibitory effects of DADLE. Thus, DOPr in endosomes is an endogenous mechanism and a therapeutic target for relief from chronic inflammatory pain.
Collapse
|
91
|
Matti C, Salnikov A, Artinger M, D'Agostino G, Kindinger I, Uguccioni M, Thelen M, Legler DF. ACKR4 Recruits GRK3 Prior to β-Arrestins but Can Scavenge Chemokines in the Absence of β-Arrestins. Front Immunol 2020; 11:720. [PMID: 32391018 PMCID: PMC7188906 DOI: 10.3389/fimmu.2020.00720] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/30/2020] [Indexed: 01/14/2023] Open
Abstract
Chemokines are essential for guiding cell migration. Atypical chemokine receptors (ACKRs) contribute to the cell migration process by binding, internalizing and degrading local chemokines, which enables the formation of confined gradients. ACKRs are heptahelical membrane spanning molecules structurally related to G-protein coupled receptors (GPCRs), but seem to be unable to signal through G-proteins upon ligand binding. ACKR4 internalizes the chemokines CCL19, CCL21, and CCL25 and is best known for shaping functional CCL21 gradients. Ligand binding to ACKR4 has been shown to recruit β-arrestins that has led to the assumption that chemokine scavenging relies on β-arrestin-mediated ACKR4 trafficking, a common internalization route taken by class A GPCRs. Here, we show that CCL19, CCL21, and CCL25 readily recruited β-arrestin1 and β-arrestin2 to human ACKR4, but found no evidence for β-arrestin-dependent or independent ACKR4-mediated activation of the kinases Erk1/2, Akt, or Src. However, we demonstrate that β-arrestins interacted with ACKR4 in the steady-state and contributed to the spontaneous trafficking of the receptor in the absence of chemokines. Deleting the C-terminus of ACKR4 not only interfered with the interaction of β-arrestins, but also with the uptake of fluorescently labeled cognate chemokines. We identify the GPCR kinase GRK3, and to a lesser extent GRK2, but not GRK4, GRK5, and GRK6, to be recruited to chemokine-stimulated ACKR4. We show that GRK3 recruitment proceded the recruitment of β-arrestins upon ACKR4 engagement and that GRK2/3 inhibition partially interfered with steady-state interaction and chemokine-driven recruitment of β-arrestins to ACKR4. Overexpressing β-arrestin2 accelerated the uptake of fluorescently labeled CCL19, indicating that β-arrestins contribute to the chemokine scavenging activity of ACKR4. By contrast, cells lacking β-arrestins were still capable to take up fluorescently labeled CCL19 demonstrating that β-arrestins are dispensable for chemokine scavenging by ACKR4.
Collapse
Affiliation(s)
- Christoph Matti
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Angela Salnikov
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Marc Artinger
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Gianluca D'Agostino
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Ilona Kindinger
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Faculty of Biology, University of Konstanz, Konstanz, Germany.,Theodor Kocher Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
92
|
Maning J, McCrink KA, Pollard CM, Desimine VL, Ghandour J, Perez A, Cora N, Ferraino KE, Parker BM, Brill AR, Aukszi B, Lymperopoulos A. Antagonistic Roles of GRK2 and GRK5 in Cardiac Aldosterone Signaling Reveal GRK5-Mediated Cardioprotection via Mineralocorticoid Receptor Inhibition. Int J Mol Sci 2020; 21:ijms21082868. [PMID: 32326036 PMCID: PMC7215681 DOI: 10.3390/ijms21082868] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Aldosterone (Aldo), when overproduced, is a cardiotoxic hormone underlying heart failure and hypertension. Aldo exerts damaging effects via the mineralocorticoid receptor (MR) but also activates the antiapoptotic G protein-coupled estrogen receptor (GPER) in the heart. G protein-coupled receptor (GPCR)-kinase (GRK)-2 and -5 are the most abundant cardiac GRKs and phosphorylate GPCRs as well as non-GPCR substrates. Herein, we investigated whether they phosphorylate and regulate cardiac MR and GPER. To this end, we used the cardiomyocyte cell line H9c2 and adult rat ventricular myocytes (ARVMs), in which we manipulated GRK5 protein levels via clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and GRK2 activity via pharmacological inhibition. We report that GRK5 phosphorylates and inhibits the cardiac MR whereas GRK2 phosphorylates and desensitizes GPER. In H9c2 cardiomyocytes, GRK5 interacts with and phosphorylates the MR upon β2-adrenergic receptor (AR) activation. In contrast, GRK2 opposes agonist-activated GPER signaling. Importantly, GRK5-dependent MR phosphorylation of the MR inhibits transcriptional activity, since aldosterone-induced gene transcription is markedly suppressed in GRK5-overexpressing cardiomyocytes. Conversely, GRK5 gene deletion augments cardiac MR transcriptional activity. β2AR-stimulated GRK5 phosphorylates and inhibits the MR also in ARVMs. Additionally, GRK5 is necessary for the protective effects of the MR antagonist drug eplerenone against Aldo-induced apoptosis and oxidative stress in ARVMs. In conclusion, GRK5 blocks the cardiotoxic MR-dependent effects of Aldo in the heart, whereas GRK2 may hinder beneficial effects of Aldo through GPER. Thus, cardiac GRK5 stimulation (e.g., via β2AR activation) might be of therapeutic value for heart disease treatment via boosting the efficacy of MR antagonists against Aldo-mediated cardiac injury.
Collapse
Affiliation(s)
- Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Katie A. McCrink
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Celina M. Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Victoria L. Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Jennifer Ghandour
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Arianna Perez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Krysten E. Ferraino
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Barbara M. Parker
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Ava R. Brill
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Beatrix Aukszi
- Department of Chemistry and Physics, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
- Correspondence: ; Tel.: +954-262-1338; Fax: +954-262-2278
| |
Collapse
|
93
|
Saaber F, Schütz D, Miess E, Abe P, Desikan S, Ashok Kumar P, Balk S, Huang K, Beaulieu JM, Schulz S, Stumm R. ACKR3 Regulation of Neuronal Migration Requires ACKR3 Phosphorylation, but Not β-Arrestin. Cell Rep 2020; 26:1473-1488.e9. [PMID: 30726732 DOI: 10.1016/j.celrep.2019.01.049] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/23/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphorylation of heptahelical receptors is thought to regulate G protein signaling, receptor endocytosis, and non-canonical signaling via recruitment of β-arrestins. We investigated chemokine receptor functionality under phosphorylation-deficient and β-arrestin-deficient conditions by studying interneuron migration in the embryonic cortex. This process depends on CXCL12, CXCR4, G protein signaling and on the atypical CXCL12 receptor ACKR3. We found that phosphorylation was crucial, whereas β-arrestins were dispensable for ACKR3-mediated control of CXCL12 levels in vivo. Cortices of mice expressing phosphorylation-deficient ACKR3 exhibited a major interneuron migration defect, which was accompanied by excessive activation and loss of CXCR4. Cxcl12-overexpressing mice mimicked this phenotype. Excess CXCL12 caused lysosomal CXCR4 degradation, loss of CXCR4 responsiveness, and, ultimately, similar motility defects as Cxcl12 deficiency. By contrast, β-arrestin deficiency caused only a subtle migration defect mimicked by CXCR4 gain of function. These findings demonstrate that phosphorylation regulates atypical chemokine receptor function without β-arrestin involvement in chemokine sequestration and non-canonical signaling.
Collapse
Affiliation(s)
- Friederike Saaber
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany
| | - Dagmar Schütz
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany
| | - Elke Miess
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany
| | - Philipp Abe
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany
| | - Srinidhi Desikan
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany
| | - Praveen Ashok Kumar
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany
| | - Sara Balk
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany
| | - Ke Huang
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany
| | - Jean Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S 1A8, ON, Canada
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany
| | - Ralf Stumm
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany.
| |
Collapse
|
94
|
Jullié D, Gondin AB, von Zastrow M, Canals M. Opioid Pharmacology under the Microscope. Mol Pharmacol 2020; 98:425-432. [PMID: 32198210 DOI: 10.1124/mol.119.119321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
The powerful analgesic effects of opioid drugs have captivated the interest of physicians and scientists for millennia, and the ability of opioid drugs to produce serious undesired effects has been recognized for a similar period of time (Kieffer and Evans, 2009). Many of these develop progressively with prolonged or repeated drug use and then persist, motivating particular interest in understanding how opioid drugs initiate adaptive or maladaptive modifications in neural function or regulation. Exciting advances have been made over the past several years in elucidating drug-induced changes at molecular, cellular, and physiologic scales of analysis. The present review will highlight some recent cellular studies that we believe bridge across scales and will focus on optical imaging approaches that put opioid drug action "under the microscope." SIGNIFICANCE STATEMENT: Opioid receptors are major pharmacological targets, but their signaling at the cellular level results from a complex interplay between pharmacology, regulation, subcellular localization, and membrane trafficking. This minireview discusses recent advances in understanding the cellular biology of opioid receptors, emphasizing particular topics discussed at the 50th anniversary of the International Narcotics Research Conference. Our goal is to highlight distinct signaling and regulatory properties emerging from the cellular biology of opioid receptors and discuss potential relevance to therapeutics.
Collapse
Affiliation(s)
- Damien Jullié
- Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California (D.J., M.v.Z.); Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia (A.B.G.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (M.C.); and Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom (M.C.)
| | - Arisbel B Gondin
- Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California (D.J., M.v.Z.); Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia (A.B.G.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (M.C.); and Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom (M.C.)
| | - Mark von Zastrow
- Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California (D.J., M.v.Z.); Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia (A.B.G.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (M.C.); and Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom (M.C.)
| | - Meritxell Canals
- Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California (D.J., M.v.Z.); Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia (A.B.G.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (M.C.); and Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom (M.C.)
| |
Collapse
|
95
|
He X, Yan L, Wu Q, Zhang G, Zhou N. Ligand-dependent internalization of Bombyx mori tachykinin-related peptide receptor is regulated by PKC, GRK5 and β-arrestin2/BmKurtz. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118690. [PMID: 32112783 DOI: 10.1016/j.bbamcr.2020.118690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 02/18/2020] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
Abstract
Tachykinin signaling system is present in both vertebrates and invertebrates, and functions as neuromodulator responsible for the regulation of various physiological processes. In human, the internalization of G protein-coupled receptors has been extensively characterized; however, the insect GPCR internalization has been rarely investigated. Here, we constructed two expression vectors of Bombyx tachykinin-related peptide receptor (BmTKRPR) fused with Enhanced Green Fluorescent Protein (EGFP) at the C-terminal end for direct visualization of receptor expression, localization, and trafficking in cultured mammalian HEK293 and insect Sf21 cells. Our results demonstrated that agonist-activated BmTKRPR underwent rapid internalization in a dose-and time-dependent manner via a clathrin-dependent pathway in both HEK293 and Sf21 cells. Further investigation via RNAi or specific inhibitors, or co-immunoprecipitation demonstrated that agonist-induced BmTKRPR internalization was mediated by PKC, GRK5 and β-arrestin2/BmKurtz. In addition, we also observed that most of the internalized BmTKRP receptors were recycled to the cell surface via early endosomes upon peptide ligand removal. Our study provides the first in-depth information on mechanisms underlying insect TKRP receptor internalization and perhaps aids in the interpretation of the signaling in the regulation of physiological processes.
Collapse
Affiliation(s)
- Xiaobai He
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China.
| | - Lili Yan
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qi Wu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Guozheng Zhang
- Key Laboratory of Genetic Improvement of Sericulture, Ministry of Agriculture and Rural Affairs, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
96
|
Huang W, Masureel M, Qu Q, Janetzko J, Inoue A, Kato HE, Robertson MJ, Nguyen KC, Glenn JS, Skiniotis G, Kobilka BK. Structure of the neurotensin receptor 1 in complex with β-arrestin 1. Nature 2020; 579:303-308. [PMID: 31945771 PMCID: PMC7100716 DOI: 10.1038/s41586-020-1953-1] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/08/2020] [Indexed: 01/14/2023]
Abstract
Arrestin proteins bind to active, phosphorylated G-protein-coupled receptors (GPCRs), thereby preventing G-protein coupling, triggering receptor internalization and affecting various downstream signalling pathways1,2. Although there is a wealth of structural information detailing the interactions between GPCRs and G proteins, less is known about how arrestins engage GPCRs. Here we report a cryo-electron microscopy structure of full-length human neurotensin receptor 1 (NTSR1) in complex with truncated human β-arrestin 1 (βarr1(ΔCT)). We find that phosphorylation of NTSR1 is critical for the formation of a stable complex with βarr1(ΔCT), and identify phosphorylated sites in both the third intracellular loop and the C terminus that may promote this interaction. In addition, we observe a phosphatidylinositol-4,5-bisphosphate molecule forming a bridge between the membrane side of NTSR1 transmembrane segments 1 and 4 and the C-lobe of arrestin. Compared with a structure of a rhodopsin-arrestin-1 complex, in our structure arrestin is rotated by approximately 85° relative to the receptor. These findings highlight both conserved aspects and plasticity among arrestin-receptor interactions.
Collapse
Affiliation(s)
- Weijiao Huang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthieu Masureel
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Qianhui Qu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - John Janetzko
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hideaki E Kato
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Komaba Institute for Science, The University of Tokyo, Tokyo, Japan
| | - Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Khanh C Nguyen
- Departments of Medicine and Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Jeffrey S Glenn
- Departments of Medicine and Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Photon Science, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
97
|
Adler AJ, Mittal P, Hagymasi AT, Menoret A, Shen C, Agliano F, Wright KT, Grady JJ, Kuo CL, Ballesteros E, Claffey KP, Vella AT. GRK2 enforces androgen receptor dependence in the prostate and prostate tumors. Oncogene 2020; 39:2424-2436. [PMID: 31959897 PMCID: PMC7072002 DOI: 10.1038/s41388-020-1159-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/02/2019] [Accepted: 01/10/2020] [Indexed: 12/20/2022]
Abstract
Metastatic tumors that have become resistant to androgen deprivation therapy represent the major challenge in treating prostate cancer. Although these recurrent tumors typically remain dependent on the androgen receptor (AR), non-AR-driven tumors that also emerge are particularly deadly and becoming more prevalent. Here, we present a new genetically engineered mouse model for non-AR-driven prostate cancer that centers on a negative regulator of G protein-coupled receptors that is downregulated in aggressive human prostate tumors. Thus, prostate-specific expression of a dominant-negative G protein-coupled receptor kinase 2 (GRK2-DN) transgene diminishes AR and AR target gene expression in the prostate, and confers resistance to castration-induced involution. Further, the GRK2-DN transgene dramatically accelerates oncogene-initiated prostate tumorigenesis by increasing primary tumor size, potentiating visceral organ metastasis, suppressing AR, and inducing neuroendocrine marker mRNAs. In summary, GRK2 enforces AR-dependence in the prostate, and the loss of GRK2 function in prostate tumors accelerates disease progression toward the deadliest stage.
Collapse
Affiliation(s)
- Adam J Adler
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, USA.
| | - Payal Mittal
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, USA
- Merck Research Laboratories, Oncology Department, Boston, MA, 02115, USA
| | - Adam T Hagymasi
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, USA
- Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Antoine Menoret
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, USA
| | - Chen Shen
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, USA
| | - Federica Agliano
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, USA
| | - Kyle T Wright
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, USA
| | - James J Grady
- Department of Community Medicine and Health Care, School of Medicine, UConn Health, Farmington, CT, USA
| | - Chia-Ling Kuo
- Department of Community Medicine and Health Care, School of Medicine, UConn Health, Farmington, CT, USA
| | - Enrique Ballesteros
- Department of Pathology and Laboratory Medicine, School of Medicine, UConn Health, Farmington, CT, USA
| | - Kevin P Claffey
- Department of Cell Biology, School of Medicine, UConn Health, Farmington, CT, USA
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, USA.
| |
Collapse
|
98
|
Pietraszewska-Bogiel A, Joosen L, Chertkova AO, Goedhart J. Not So Dry After All: DRY Mutants of the AT1 A Receptor and H1 Receptor Can Induce G-Protein-Dependent Signaling. ACS OMEGA 2020; 5:2648-2659. [PMID: 32095688 PMCID: PMC7033670 DOI: 10.1021/acsomega.9b03146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
G-protein-coupled receptors (GPCRs) are seven transmembrane spanning receptors that regulate a wide array of intracellular signaling cascades in response to various stimuli. To do so, they couple to different heterotrimeric G proteins and adaptor proteins, including arrestins. Importantly, arrestins were shown to regulate GPCR signaling through G proteins, as well as promote G protein-independent signaling events. Several research groups have reported successful isolation of exclusively G protein-dependent and arrestin-dependent signaling downstream of GPCR activation using biased agonists or receptor mutants incapable of coupling to either arrestins or G proteins. In the latter category, the DRY mutant of the angiotensin II type 1 receptor was extensively used to characterize the functional selectivity downstream of AT1AR. In an attempt to understand histamine 1 receptor signaling, we characterized the signaling capacity of the H1R DRY mutant in a panel of dynamic, live cell biosensor assays, including arrestin recruitment, heterotrimeric G protein activation, Ca2+ signaling, protein kinase C activity, GTP binding of RhoA, and activation of ERK1/2. Here, we show that both H1R DRY mutant and the AT1AR DRY mutant are capable of efficient activation of G protein-mediated signaling. Therefore, contrary to the common belief, they do not constitute suitable tools for the dissection of the arrestin-mediated, G protein-independent signaling downstream of these receptors.
Collapse
|
99
|
Roles of the G protein-coupled receptor kinase 2 and Rab5 in α 1B-adrenergic receptor function and internalization. Eur J Pharmacol 2020; 867:172846. [PMID: 31811856 DOI: 10.1016/j.ejphar.2019.172846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 11/23/2022]
Abstract
Cells expressing eGFP-tagged Rab5 (wild-type or the GDP-Rab5 mutant) and the DsRed-tagged α1B-adrenergic receptors were employed and the roles of GRK2 were studied utilizing paroxetine and the dominant-negative mutant of GRK2 (DN-GRK2). The following parameters were studied: a) FRET (as an index of α1B-adrenergic receptor-Rab5 interaction): b) intracellular accumulation of DsRed fluorescence (receptor internalization); c) α1B-adrenergic receptor phosphorylation, and d) noradrenaline-induced increase in intracellular calcium concentration. Noradrenaline increased α1B-adrenergic receptor-Rab5 interaction, which was blocked by paroxetine and by expression of the dominant-negative GRK2 mutant. Similarly, paroxetine and expression of the DN-GRK2 or the GDP-Rab5 mutants markedly decreased receptor internalization, α1B-adrenergic receptor phosphorylation, and attenuated the ability of the adrenergic agonist to induce homologous desensitization (calcium signaling). The S406, 410,412A α1B-adrenergic receptor mutant did not reproduce the actions of GRK2 inhibition. The data indicate that GRK2 and Rab5 play key roles in α1B-adrenergic receptor phosphorylation, internalization, and desensitization. The possibility that Rab5 might form part of a signaling complex is suggested, as well as that GDP-Rab5 might interfere with the ability of GRK2 to catalyze α1B-adrenergic receptor phosphorylation.
Collapse
|
100
|
Combinatorial allosteric modulation of agonist response in a self-interacting G-protein coupled receptor. Commun Biol 2020; 3:27. [PMID: 31941999 PMCID: PMC6962373 DOI: 10.1038/s42003-020-0752-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 12/17/2019] [Indexed: 01/06/2023] Open
Abstract
The structural plasticity of G-protein coupled receptors (GPCRs) enables the long-range transmission of conformational changes induced by specific orthosteric site ligands and other pleiotropic factors. Here, we demonstrate that the ligand binding cavity in the sphingosine 1-phosphate receptor S1PR1, a class A GPCR, is in allosteric communication with both the β-arrestin-binding C-terminal tail, and a receptor surface involved in oligomerization. We show that S1PR1 oligomers are required for full response to different agonists and ligand-specific association with arrestins, dictating the downstream signalling kinetics. We reveal that the active form of the immunomodulatory drug fingolimod, FTY720-P, selectively harnesses both these intramolecular networks to efficiently recruit β-arrestins in a stable interaction with the receptor, promoting deep S1PR1 internalization and simultaneously abrogating ERK1/2 phosphorylation. Our results define a molecular basis for the efficacy of fingolimod for people with multiple sclerosis, and attest that GPCR signalling can be further fine-tuned by the oligomeric state. Patrone et al study the mechanism by which fingolimod, a drug used for multiple sclerosis, and agonist to G-coupled receptor S1PR1, compared to the endogenous ligand S1P. They find that whereas S1P binds a S1PR1 dimer, the action of fingolimod is dependent on receptor oligomerisation, which affects β-arrestin binding, internalisation and signaling.
Collapse
|