51
|
Pham PD, Lu H, Han H, Zhou JJ, Madan A, Wang W, Murre C, Cho KWY. Transcriptional network governing extraembryonic endoderm cell fate choice. Dev Biol 2023; 502:20-37. [PMID: 37423592 PMCID: PMC10550205 DOI: 10.1016/j.ydbio.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
The mechanism by which transcription factor (TF) network instructs cell-type-specific transcriptional programs to drive primitive endoderm (PrE) progenitors to commit to parietal endoderm (PE) versus visceral endoderm (VE) cell fates remains poorly understood. To address the question, we analyzed the single-cell transcriptional signatures defining PrE, PE, and VE cell states during the onset of the PE-VE lineage bifurcation. By coupling with the epigenomic comparison of active enhancers unique to PE and VE cells, we identified GATA6, SOX17, and FOXA2 as central regulators for the lineage divergence. Transcriptomic analysis of cXEN cells, an in vitro model for PE cells, after the acute depletion of GATA6 or SOX17 demonstrated that these factors induce Mycn, imparting the self-renewal properties of PE cells. Concurrently, they suppress the VE gene program, including key genes like Hnf4a and Ttr, among others. We proceeded with RNA-seq analysis on cXEN cells with FOXA2 knockout, in conjunction with GATA6 or SOX17 depletion. We found FOXA2 acts as a potent suppressor of Mycn while simultaneously activating the VE gene program. The antagonistic gene regulatory activities of GATA6/SOX17 and FOXA2 in promoting alternative cell fates, and their physical co-bindings at the enhancers provide molecular insights to the plasticity of the PrE lineage. Finally, we show that the external cue, BMP signaling, promotes the VE cell fate by activation of VE TFs and repression of PE TFs including GATA6 and SOX17. These data reveal a putative core gene regulatory module that underpins PE and VE cell fate choice.
Collapse
Affiliation(s)
- Paula Duyen Pham
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Hanbin Lu
- School of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, 92039, USA
| | - Han Han
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Jeff Jiajing Zhou
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Aarushi Madan
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Cornelis Murre
- School of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, 92039, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
52
|
Ju LF, Xu HJ, Yang YG, Yang Y. Omics Views of Mechanisms for Cell Fate Determination in Early Mammalian Development. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:950-961. [PMID: 37075831 PMCID: PMC10928378 DOI: 10.1016/j.gpb.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023]
Abstract
During mammalian preimplantation development, a totipotent zygote undergoes several cell cleavages and two rounds of cell fate determination, ultimately forming a mature blastocyst. Along with compaction, the establishment of apicobasal cell polarity breaks the symmetry of an embryo and guides subsequent cell fate choice. Although the lineage segregation of the inner cell mass (ICM) and trophectoderm (TE) is the first symbol of cell differentiation, several molecules have been shown to bias the early cell fate through their inter-cellular variations at much earlier stages, including the 2- and 4-cell stages. The underlying mechanisms of early cell fate determination have long been an important research topic. In this review, we summarize the molecular events that occur during early embryogenesis, as well as the current understanding of their regulatory roles in cell fate decisions. Moreover, as powerful tools for early embryogenesis research, single-cell omics techniques have been applied to both mouse and human preimplantation embryos and have contributed to the discovery of cell fate regulators. Here, we summarize their applications in the research of preimplantation embryos, and provide new insights and perspectives on cell fate regulation.
Collapse
Affiliation(s)
- Lin-Fang Ju
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Heng-Ji Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Yun-Gui Yang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ying Yang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
53
|
Zhong J, Han C, Chen P, Liu R. SGAE: single-cell gene association entropy for revealing critical states of cell transitions during embryonic development. Brief Bioinform 2023; 24:bbad366. [PMID: 37833841 DOI: 10.1093/bib/bbad366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/15/2023] Open
Abstract
The critical point or pivotal threshold of cell transition occurs in early embryonic development when cell differentiation culminates in its transition to specific cell fates, at which the cell population undergoes an abrupt and qualitative shift. Revealing such critical points of cell transitions can track cellular heterogeneity and shed light on the molecular mechanisms of cell differentiation. However, precise detection of critical state transitions proves challenging when relying on single-cell RNA sequencing data due to their inherent sparsity, noise, and heterogeneity. In this study, diverging from conventional methods like differential gene analysis or static techniques that emphasize classification of cell types, an innovative computational approach, single-cell gene association entropy (SGAE), is designed for the analysis of single-cell RNA-seq data and utilizes gene association information to reveal critical states of cell transitions. More specifically, through the translation of gene expression data into local SGAE scores, the proposed SGAE can serve as an index to quantitatively assess the resilience and critical properties of genetic regulatory networks, consequently detecting the signal of cell transitions. Analyses of five single-cell datasets for embryonic development demonstrate that the SGAE method achieves better performance in facilitating the characterization of a critical phase transition compared with other existing methods. Moreover, the SGAE value can effectively discriminate cellular heterogeneity over time and performs well in the temporal clustering of cells. Besides, biological functional analysis also indicates the effectiveness of the proposed approach.
Collapse
Affiliation(s)
- Jiayuan Zhong
- School of Mathematics and Big Data, Foshan University, Foshan 528000, China
| | - Chongyin Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Pei Chen
- School of Mathematics, South China University of Technology, Guangzhou 510640, China
| | - Rui Liu
- School of Mathematics, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
54
|
Häfner SJ, Jansson MD, Altinel K, Andersen KL, Abay-Nørgaard Z, Ménard P, Fontenas M, Sørensen DM, Gay DM, Arendrup FS, Tehler D, Krogh N, Nielsen H, Kraushar ML, Kirkeby A, Lund AH. Ribosomal RNA 2'-O-methylation dynamics impact cell fate decisions. Dev Cell 2023; 58:1593-1609.e9. [PMID: 37473757 DOI: 10.1016/j.devcel.2023.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/16/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Translational regulation impacts both pluripotency maintenance and cell differentiation. To what degree the ribosome exerts control over this process remains unanswered. Accumulating evidence has demonstrated heterogeneity in ribosome composition in various organisms. 2'-O-methylation (2'-O-me) of rRNA represents an important source of heterogeneity, where site-specific alteration of methylation levels can modulate translation. Here, we examine changes in rRNA 2'-O-me during mouse brain development and tri-lineage differentiation of human embryonic stem cells (hESCs). We find distinct alterations between brain regions, as well as clear dynamics during cortex development and germ layer differentiation. We identify a methylation site impacting neuronal differentiation. Modulation of its methylation levels affects ribosome association of the fragile X mental retardation protein (FMRP) and is accompanied by an altered translation of WNT pathway-related mRNAs. Together, these data identify ribosome heterogeneity through rRNA 2'-O-me during early development and differentiation and suggest a direct role for ribosomes in regulating translation during cell fate acquisition.
Collapse
Affiliation(s)
- Sophia J Häfner
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Martin D Jansson
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kübra Altinel
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kasper L Andersen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Zehra Abay-Nørgaard
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Patrice Ménard
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Martin Fontenas
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Daniel M Sørensen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David M Gay
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Frederic S Arendrup
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Disa Tehler
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, 2200 Copenhagen, Denmark; Wallenberg Center for Molecular Medicine, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Anders H Lund
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
55
|
Li Y, Zheng C, Liu Y, He J, Zhang Q, Zhang Y, Kou X, Zhao Y, Liu K, Bai D, Jia Y, Han X, Sheng Y, Yin J, Wang H, Gao S, Liu W, Gao S. Inhibition of Wnt activity improves peri-implantation development of somatic cell nuclear transfer embryos. Natl Sci Rev 2023; 10:nwad173. [PMID: 37593113 PMCID: PMC10430793 DOI: 10.1093/nsr/nwad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 08/19/2023] Open
Abstract
Somatic cell nuclear transfer (SCNT) can reprogram differentiated somatic cells into totipotency. Although pre-implantation development of SCNT embryos has greatly improved, most SCNT blastocysts are still arrested at the peri-implantation stage, and the underlying mechanism remains elusive. Here, we develop a 3D in vitro culture system for SCNT peri-implantation embryos and discover that persistent Wnt signals block the naïve-to-primed pluripotency transition of epiblasts with aberrant H3K27me3 occupancy, which in turn leads to defects in epiblast transformation events and subsequent implantation failure. Strikingly, manipulating Wnt signals can attenuate the pluripotency transition and H3K27me3 deposition defects in epiblasts and achieve up to a 9-fold increase in cloning efficiency. Finally, single-cell RNA-seq analysis reveals that Wnt inhibition markedly enhances the lineage developmental trajectories of SCNT blastocysts during peri-implantation development. Overall, these findings reveal diminished potentials of SCNT blastocysts for lineage specification and validate a critical peri-implantation barrier for SCNT embryos.
Collapse
Affiliation(s)
- Yanhe Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Caihong Zheng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Yingdong Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jincan He
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qiang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yalin Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaochen Kou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhong Zhao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kuisheng Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Dandan Bai
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanping Jia
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoxiao Han
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yifan Sheng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiqing Yin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hong Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shuai Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenqiang Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
56
|
Repina NA, Johnson HJ, Bao X, Zimmermann JA, Joy DA, Bi SZ, Kane RS, Schaffer DV. Optogenetic control of Wnt signaling models cell-intrinsic embryogenic patterning using 2D human pluripotent stem cell culture. Development 2023; 150:dev201386. [PMID: 37401411 PMCID: PMC10399980 DOI: 10.1242/dev.201386] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
In embryonic stem cell (ESC) models for early development, spatially and temporally varying patterns of signaling and cell types emerge spontaneously. However, mechanistic insight into this dynamic self-organization is limited by a lack of methods for spatiotemporal control of signaling, and the relevance of signal dynamics and cell-to-cell variability to pattern emergence remains unknown. Here, we combine optogenetic stimulation, imaging and transcriptomic approaches to study self-organization of human ESCs (hESC) in two-dimensional (2D) culture. Morphogen dynamics were controlled via optogenetic activation of canonical Wnt/β-catenin signaling (optoWnt), which drove broad transcriptional changes and mesendoderm differentiation at high efficiency (>99% cells). When activated within cell subpopulations, optoWnt induced cell self-organization into distinct epithelial and mesenchymal domains, mediated by changes in cell migration, an epithelial to mesenchymal-like transition and TGFβ signaling. Furthermore, we demonstrate that such optogenetic control of cell subpopulations can be used to uncover signaling feedback mechanisms between neighboring cell types. These findings reveal that cell-to-cell variability in Wnt signaling is sufficient to generate tissue-scale patterning and establish a hESC model system for investigating feedback mechanisms relevant to early human embryogenesis.
Collapse
Affiliation(s)
- Nicole A. Repina
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA 94720, USA
| | - Hunter J. Johnson
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA 94720, USA
| | - Xiaoping Bao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Joshua A. Zimmermann
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - David A. Joy
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA 94720, USA
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Shirley Z. Bi
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Ravi S. Kane
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David V. Schaffer
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
57
|
Kohler TN, De Jonghe J, Ellermann AL, Yanagida A, Herger M, Slatery EM, Weberling A, Munger C, Fischer K, Mulas C, Winkel A, Ross C, Bergmann S, Franze K, Chalut K, Nichols J, Boroviak TE, Hollfelder F. Plakoglobin is a mechanoresponsive regulator of naive pluripotency. Nat Commun 2023; 14:4022. [PMID: 37419903 PMCID: PMC10329048 DOI: 10.1038/s41467-023-39515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/09/2023] [Indexed: 07/09/2023] Open
Abstract
Biomechanical cues are instrumental in guiding embryonic development and cell differentiation. Understanding how these physical stimuli translate into transcriptional programs will provide insight into mechanisms underlying mammalian pre-implantation development. Here, we explore this type of regulation by exerting microenvironmental control over mouse embryonic stem cells. Microfluidic encapsulation of mouse embryonic stem cells in agarose microgels stabilizes the naive pluripotency network and specifically induces expression of Plakoglobin (Jup), a vertebrate homolog of β-catenin. Overexpression of Plakoglobin is sufficient to fully re-establish the naive pluripotency gene regulatory network under metastable pluripotency conditions, as confirmed by single-cell transcriptome profiling. Finally, we find that, in the epiblast, Plakoglobin was exclusively expressed at the blastocyst stage in human and mouse embryos - further strengthening the link between Plakoglobin and naive pluripotency in vivo. Our work reveals Plakoglobin as a mechanosensitive regulator of naive pluripotency and provides a paradigm to interrogate the effects of volumetric confinement on cell-fate transitions.
Collapse
Affiliation(s)
- Timo N Kohler
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Joachim De Jonghe
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Anna L Ellermann
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Ayaka Yanagida
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Veterinary Anatomy, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Michael Herger
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Erin M Slatery
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Antonia Weberling
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Clara Munger
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Katrin Fischer
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Carla Mulas
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Alex Winkel
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Connor Ross
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Sophie Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 91, 91052, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91054, Erlangen, Germany
| | - Kevin Chalut
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Thorsten E Boroviak
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
58
|
Ping W, Sheng Y, Hu G, Zhong H, Li Y, Liu Y, Luo W, Yan C, Wen Y, Wang X, Li Q, Guo R, Zhang J, Liu A, Pan G, Yao H. RBBP4 is an epigenetic barrier for the induced transition of pluripotent stem cells into totipotent 2C-like cells. Nucleic Acids Res 2023; 51:5414-5431. [PMID: 37021556 PMCID: PMC10287929 DOI: 10.1093/nar/gkad219] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/07/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Cellular totipotency is critical for whole-organism generation, yet how totipotency is established remains poorly illustrated. Abundant transposable elements (TEs) are activated in totipotent cells, which is critical for embryonic totipotency. Here, we show that the histone chaperone RBBP4, but not its homolog RBBP7, is indispensable for maintaining the identity of mouse embryonic stem cells (mESCs). Auxin-induced degradation of RBBP4, but not RBBP7, reprograms mESCs to the totipotent 2C-like cells. Also, loss of RBBP4 enhances transition from mESCs to trophoblast cells. Mechanistically, RBBP4 binds to the endogenous retroviruses (ERVs) and functions as an upstream regulator by recruiting G9a to deposit H3K9me2 on ERVL elements, and recruiting KAP1 to deposit H3K9me3 on ERV1/ERVK elements, respectively. Moreover, RBBP4 facilitates the maintenance of nucleosome occupancy at the ERVK and ERVL sites within heterochromatin regions through the chromatin remodeler CHD4. RBBP4 depletion leads to the loss of the heterochromatin marks and activation of TEs and 2C genes. Together, our findings illustrate that RBBP4 is required for heterochromatin assembly and is a critical barrier for inducing cell fate transition from pluripotency to totipotency.
Collapse
Affiliation(s)
- Wangfang Ping
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yingliang Sheng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Gongcheng Hu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hongxin Zhong
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yaoyi Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - YanJiang Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Wei Luo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Chenghong Yan
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yulin Wen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xinxiu Wang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Qing Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Rong Guo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Hongjie Yao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
59
|
Resztak JA, Wei J, Zilioli S, Sendler E, Alazizi A, Mair-Meijers HE, Wu P, Wen X, Slatcher RB, Zhou X, Luca F, Pique-Regi R. Genetic control of the dynamic transcriptional response to immune stimuli and glucocorticoids at single-cell resolution. Genome Res 2023; 33:839-856. [PMID: 37442575 PMCID: PMC10519413 DOI: 10.1101/gr.276765.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/08/2023] [Indexed: 07/15/2023]
Abstract
Synthetic glucocorticoids, such as dexamethasone, have been used as a treatment for many immune conditions, such as asthma and, more recently, severe COVID-19. Single-cell data can capture more fine-grained details on transcriptional variability and dynamics to gain a better understanding of the molecular underpinnings of inter-individual variation in drug response. Here, we used single-cell RNA-seq to study the dynamics of the transcriptional response to glucocorticoids in activated peripheral blood mononuclear cells from 96 African American children. We used novel statistical approaches to calculate a mean-independent measure of gene expression variability and a measure of transcriptional response pseudotime. Using these approaches, we showed that glucocorticoids reverse the effects of immune stimulation on both gene expression mean and variability. Our novel measure of gene expression response dynamics, based on the diagonal linear discriminant analysis, separated individual cells by response status on the basis of their transcriptional profiles and allowed us to identify different dynamic patterns of gene expression along the response pseudotime. We identified genetic variants regulating gene expression mean and variability, including treatment-specific effects, and showed widespread genetic regulation of the transcriptional dynamics of the gene expression response.
Collapse
Affiliation(s)
- Justyna A Resztak
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA
| | - Julong Wei
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA
| | - Samuele Zilioli
- Department of Psychology, Wayne State University, Detroit, Michigan 48201, USA
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan 48201, USA
| | - Edward Sendler
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA
| | - Adnan Alazizi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA
| | - Henriette E Mair-Meijers
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA
| | - Peijun Wu
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiaoquan Wen
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Richard B Slatcher
- Department of Psychology, University of Georgia, Athens, Georgia 30602, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA;
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan 48201, USA
- Department of Biology, University of Rome "Tor Vergata," 00133 Rome, Italy
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA;
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan 48201, USA
| |
Collapse
|
60
|
Ruden X, Singh A, Marben T, Tang W, Awonuga A, Ruden DM, Puscheck E, Feng H, Rappolee D. A single cell transcriptomic fingerprint of stressed premature, imbalanced differentiation of embryonic stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541952. [PMID: 37292812 PMCID: PMC10245821 DOI: 10.1101/2023.05.23.541952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cultured naïve pluripotent ESC differentiate into first lineage, XEN or second lineage, formative pluripotency. Hyperosmotic stress (sorbitol), like retinoic acid, decreases naive pluripotency and increases XEN in two ESC lines, as reported by bulk and scRNAseq, analyzed by UMAP. Sorbitol overrides pluripotency in two ESC lines as reported by bulk and scRNAseq, analyzed by UMAP. UMAP analyzed the effects of 5 stimuli - three stressed (200-300mM sorbitol with leukemia inhibitory factor +LIF) and two unstressed (+LIF, normal stemness-NS and -LIF, normal differentiation-ND). Sorbitol and RA decrease naive pluripotency and increase subpopulations of 2-cell embryo-like and XEN sub-lineages; primitive, parietal, and visceral endoderm (VE). Between the naïve pluripotency and primitive endoderm clusters is a stress-induced cluster with transient intermediate cells with higher LIF receptor signaling, with increased Stat3, Klf4, and Tbx3 expression. Sorbitol, like RA, also suppresses formative pluripotency, increasing lineage imbalance. Although bulk RNAseq and gene ontology group analyses suggest that stress induces head organizer and placental markers, scRNAseq reveals few cells. But VE and placental markers/cells were in adjacent clusters, like recent reports. UMAPs show that dose-dependent stress overrides stemness to force premature lineage imbalance. Hyperosmotic stress induces lineage imbalance, and other toxicological stresses, like drugs with RA, may cause lineage imbalance, resulting in miscarriages or birth defects.
Collapse
|
61
|
Carbognin E, Carlini V, Panariello F, Chieregato M, Guerzoni E, Benvegnù D, Perrera V, Malucelli C, Cesana M, Grimaldi A, Mutarelli M, Carissimo A, Tannenbaum E, Kugler H, Hackett JA, Cacchiarelli D, Martello G. Esrrb guides naive pluripotent cells through the formative transcriptional programme. Nat Cell Biol 2023; 25:643-657. [PMID: 37106060 PMCID: PMC7614557 DOI: 10.1038/s41556-023-01131-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/15/2023] [Indexed: 04/29/2023]
Abstract
During embryonic development, naive pluripotent epiblast cells transit to a formative state. The formative epiblast cells form a polarized epithelium, exhibit distinct transcriptional and epigenetic profiles and acquire competence to differentiate into all somatic and germline lineages. However, we have limited understanding of how the transition to a formative state is molecularly controlled. Here we used murine embryonic stem cell models to show that ESRRB is both required and sufficient to activate formative genes. Genetic inactivation of Esrrb leads to illegitimate expression of mesendoderm and extra-embryonic markers, impaired formative expression and failure to self-organize in 3D. Functionally, this results in impaired ability to generate formative stem cells and primordial germ cells in the absence of Esrrb. Computational modelling and genomic analyses revealed that ESRRB occupies key formative genes in naive cells and throughout the formative state. In so doing, ESRRB kickstarts the formative transition, leading to timely and unbiased capacity for multi-lineage differentiation.
Collapse
Affiliation(s)
- Elena Carbognin
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
| | - Valentina Carlini
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL)-Rome, Adriano Buzzati-Traverso Campus, Rome, Italy
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Francesco Panariello
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | | | - Elena Guerzoni
- Department of Biology, University of Padua, Padua, Italy
| | | | - Valentina Perrera
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Cristina Malucelli
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Marcella Cesana
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Antonio Grimaldi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Margherita Mutarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Istituto di Scienze Applicate e Sistemi Intelligenti 'Eduardo Caianiello', Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Annamaria Carissimo
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Istituto per le Applicazioni del Calcolo 'Mauro Picone,' Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Eitan Tannenbaum
- The Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Hillel Kugler
- The Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Jamie A Hackett
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL)-Rome, Adriano Buzzati-Traverso Campus, Rome, Italy.
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy.
- Department of Translational Medicine, University of Naples 'Federico II', Naples, Italy.
- School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples 'Federico II', Naples, Italy.
| | | |
Collapse
|
62
|
Meharwade T, Joumier L, Parisotto M, Huynh V, Lummertz da Rocha E, Malleshaiah M. Cross-activation of FGF, NODAL, and WNT pathways constrains BMP-signaling-mediated induction of the totipotent state in mouse embryonic stem cells. Cell Rep 2023; 42:112438. [PMID: 37126449 DOI: 10.1016/j.celrep.2023.112438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/11/2022] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
Embryonic stem cells (ESCs) are an attractive model to study the relationship between signaling and cell fates. Cultured mouse ESCs can exist in multiple states resembling distinct stages of early embryogenesis, such as totipotent, pluripotent, primed, and primitive endoderm. The signaling mechanisms regulating the totipotent state and coexistence of these states are poorly understood. Here we identify bone morphogenetic protein (BMP) signaling as an inducer of the totipotent state. However, we discover that BMP's role is constrained by the cross-activation of FGF, NODAL, and WNT pathways. We exploit this finding to enhance the proportion of totipotent cells by rationally inhibiting the cross-activated pathways. Single-cell mRNA sequencing reveals that induction of the totipotent state is accompanied by suppression of primed and primitive endoderm states. Furthermore, reprogrammed totipotent cells we generate in culture resemble totipotent cells of preimplantation embryo. Our findings reveal a BMP signaling mechanism regulating both the totipotent state and heterogeneity of ESCs.
Collapse
Affiliation(s)
- Thulaj Meharwade
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Loïck Joumier
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Maxime Parisotto
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Vivian Huynh
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Molecular Biology Program, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Mohan Malleshaiah
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada; Molecular Biology Program, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada; The Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; McGill Regenerative Medicine Network, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
63
|
Álvarez-Campos P, García-Castro H, Emili E, Pérez-Posada A, Salamanca-Díaz DA, Mason V, Metzger B, Bely AE, Kenny N, Özpolat BD, Solana J. Annelid adult cell type diversity and their pluripotent cellular origins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.537979. [PMID: 37163014 PMCID: PMC10168269 DOI: 10.1101/2023.04.25.537979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Annelids are a broadly distributed, highly diverse, economically and environmentally important group of animals. Most species can regenerate missing body parts, and many are able to reproduce asexually. Therefore, many annelids can generate all adult cell types in adult stages. However, the putative adult stem cell populations involved in these processes, as well as the diversity of adult cell types generated by them, are still unknown. Here, we recover 75,218 single cell transcriptomes of Pristina leidyi, a highly regenerative and asexually-reproducing freshwater annelid. We characterise all major annelid adult cell types, and validate many of our observations by HCR in situ hybridisation. Our results uncover complex patterns of regionally expressed genes in the annelid gut, as well as neuronal, muscle and epidermal specific genes. We also characterise annelid-specific cell types such as the chaetal sacs and globin+ cells, and novel cell types of enigmatic affinity, including a vigilin+ cell type, a lumbrokinase+ cell type, and a diverse set of metabolic cells. Moreover, we characterise transcription factors and gene networks that are expressed specifically in these populations. Finally, we uncover a broadly abundant cluster of putative stem cells with a pluripotent signature. This population expresses well-known stem cell markers such as vasa, piwi and nanos homologues, but also shows heterogeneous expression of differentiated cell markers and their transcription factors. In these piwi+ cells, we also find conserved expression of pluripotency regulators, including multiple chromatin remodelling and epigenetic factors. Finally, lineage reconstruction analyses reveal the existence of differentiation trajectories from piwi+ cells to diverse adult types. Our data reveal the cell type diversity of adult annelids for the first time and serve as a resource for studying annelid cell types and their evolution. On the other hand, our characterisation of a piwi+ cell population with a pluripotent stem cell signature will serve as a platform for the study of annelid stem cells and their role in regeneration.
Collapse
Affiliation(s)
- Patricia Álvarez-Campos
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM) & Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Helena García-Castro
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Elena Emili
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Alberto Pérez-Posada
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | | | - Vincent Mason
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Bria Metzger
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, USA, 05432
- Department of Biology, Washington University in St. Louis. 1 Brookings Dr. Saint Louis, MO, USA, 63130
| | | | - Nathan Kenny
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, Aotearoa New Zealand
| | - B Duygu Özpolat
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, USA, 05432
- Department of Biology, Washington University in St. Louis. 1 Brookings Dr. Saint Louis, MO, USA, 63130
| | - Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
64
|
Mattimoe T, Payer B. The compleX balancing act of controlling X-chromosome dosage and how it impacts mammalian germline development. Biochem J 2023; 480:521-537. [PMID: 37096944 PMCID: PMC10212525 DOI: 10.1042/bcj20220450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 04/26/2023]
Abstract
In female mammals, the two X chromosomes are subject to epigenetic gene regulation in order to balance X-linked gene dosage with autosomes and in relation to males, which have one X and one Y chromosome. This is achieved by an intricate interplay of several processes; X-chromosome inactivation and reactivation elicit global epigenetic regulation of expression from one X chromosome in a stage-specific manner, whilst the process of X-chromosome upregulation responds to this by fine-tuning transcription levels of the second X. The germline is unique in its function of transmitting both the genetic and epigenetic information from one generation to the next, and remodelling of the X chromosome is one of the key steps in setting the stage for successful development. Here, we provide an overview of the complex dynamics of X-chromosome dosage control during embryonic and germ cell development, and aim to decipher its potential role for normal germline competency.
Collapse
Affiliation(s)
- Tom Mattimoe
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
65
|
Cossec JC, Traboulsi T, Sart S, Loe-Mie Y, Guthmann M, Hendriks IA, Theurillat I, Nielsen ML, Torres-Padilla ME, Baroud CN, Dejean A. Transient suppression of SUMOylation in embryonic stem cells generates embryo-like structures. Cell Rep 2023; 42:112380. [PMID: 37061916 PMCID: PMC10157296 DOI: 10.1016/j.celrep.2023.112380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/08/2023] [Accepted: 03/26/2023] [Indexed: 04/17/2023] Open
Abstract
Recent advances in synthetic embryology have opened new avenues for understanding the complex events controlling mammalian peri-implantation development. Here, we show that mouse embryonic stem cells (ESCs) solely exposed to chemical inhibition of SUMOylation generate embryo-like structures comprising anterior neural and trunk-associated regions. HypoSUMOylation-instructed ESCs give rise to spheroids that self-organize into gastrulating structures containing cell types spatially and functionally related to embryonic and extraembryonic compartments. Alternatively, spheroids cultured in a droplet microfluidic device form elongated structures that undergo axial organization reminiscent of natural embryo morphogenesis. Single-cell transcriptomics reveals various cellular lineages, including properly positioned anterior neuronal cell types and paraxial mesoderm segmented into somite-like structures. Transient SUMOylation suppression gradually increases DNA methylation genome wide and repressive mark deposition at Nanog. Interestingly, cell-to-cell variations in SUMOylation levels occur during early embryogenesis. Our approach provides a proof of principle for potentially powerful strategies to explore early embryogenesis by targeting chromatin roadblocks of cell fate change.
Collapse
Affiliation(s)
- Jack-Christophe Cossec
- Nuclear Organization and Oncogenesis Unit, Department of Cell Biology and Infection, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, Université Paris Cité, 75015 Paris, France; INSERM, U993, 75015 Paris, France.
| | - Tatiana Traboulsi
- Nuclear Organization and Oncogenesis Unit, Department of Cell Biology and Infection, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, Université Paris Cité, 75015 Paris, France; INSERM, U993, 75015 Paris, France
| | - Sébastien Sart
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France; Physical Microfluidics and Bioengineering Unit, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Yann Loe-Mie
- Nuclear Organization and Oncogenesis Unit, Department of Cell Biology and Infection, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, Université Paris Cité, 75015 Paris, France; INSERM, U993, 75015 Paris, France; Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics HUB, 75015 Paris, France
| | - Manuel Guthmann
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 München, Germany
| | - Ivo A Hendriks
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ilan Theurillat
- Nuclear Organization and Oncogenesis Unit, Department of Cell Biology and Infection, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, Université Paris Cité, 75015 Paris, France; INSERM, U993, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 München, Germany; Faculty of Biology, Ludwig-Maximilians-Universität, 81377 München, Germany
| | - Charles N Baroud
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France; Physical Microfluidics and Bioengineering Unit, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Anne Dejean
- Nuclear Organization and Oncogenesis Unit, Department of Cell Biology and Infection, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, Université Paris Cité, 75015 Paris, France; INSERM, U993, 75015 Paris, France.
| |
Collapse
|
66
|
Qiu C, Martin BK, Welsh IC, Daza RM, Le TM, Huang X, Nichols EK, Taylor ML, Fulton O, O’Day DR, Gomes AR, Ilcisin S, Srivatsan S, Deng X, Disteche CM, Noble WS, Hamazaki N, Moens CB, Kimelman D, Cao J, Schier AF, Spielmann M, Murray SA, Trapnell C, Shendure J. A single-cell transcriptional timelapse of mouse embryonic development, from gastrula to pup. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535726. [PMID: 37066300 PMCID: PMC10104014 DOI: 10.1101/2023.04.05.535726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The house mouse, Mus musculus, is an exceptional model system, combining genetic tractability with close homology to human biology. Gestation in mouse development lasts just under three weeks, a period during which its genome orchestrates the astonishing transformation of a single cell zygote into a free-living pup composed of >500 million cells. Towards a global framework for exploring mammalian development, we applied single cell combinatorial indexing (sci-*) to profile the transcriptional states of 12.4 million nuclei from 83 precisely staged embryos spanning late gastrulation (embryonic day 8 or E8) to birth (postnatal day 0 or P0), with 2-hr temporal resolution during somitogenesis, 6-hr resolution through to birth, and 20-min resolution during the immediate postpartum period. From these data (E8 to P0), we annotate dozens of trajectories and hundreds of cell types and perform deeper analyses of the unfolding of the posterior embryo during somitogenesis as well as the ontogenesis of the kidney, mesenchyme, retina, and early neurons. Finally, we leverage the depth and temporal resolution of these whole embryo snapshots, together with other published data, to construct and curate a rooted tree of cell type relationships that spans mouse development from zygote to pup. Throughout this tree, we systematically nominate sets of transcription factors (TFs) and other genes as candidate drivers of the in vivo differentiation of hundreds of mammalian cell types. Remarkably, the most dramatic shifts in transcriptional state are observed in a restricted set of cell types in the hours immediately following birth, and presumably underlie the massive changes in physiology that must accompany the successful transition of a placental mammal to extrauterine life.
Collapse
Affiliation(s)
- Chengxiang Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Beth K. Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Riza M. Daza
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Truc-Mai Le
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Xingfan Huang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Eva K. Nichols
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Megan L. Taylor
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Olivia Fulton
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Diana R. O’Day
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | | | - Saskia Ilcisin
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Xinxian Deng
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Christine M. Disteche
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Nobuhiko Hamazaki
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Cecilia B. Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David Kimelman
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Junyue Cao
- Laboratory of Single-cell genomics and Population dynamics, The Rockefeller University, New York, NY, USA
| | - Alexander F. Schier
- Biozentrum, University of Basel, Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Malte Spielmann
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Human Genetics, University Hospitals Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg, Lübeck, Kiel, Lübeck, Germany
| | | | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
67
|
Wei Y, Zhang E, Yu L, Ci B, Guo L, Sakurai M, Takii S, Liu J, Schmitz DA, Ding Y, Zhan L, Zheng C, Sun HX, Xu L, Okamura D, Ji W, Tan T, Wu J. Dissecting embryonic and extra-embryonic lineage crosstalk with stem cell co-culture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531525. [PMID: 36945498 PMCID: PMC10028955 DOI: 10.1101/2023.03.07.531525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Faithful embryogenesis requires precise coordination between embryonic and extraembryonic tissues. Although stem cells from embryonic and extraembryonic origins have been generated for several mammalian species(Bogliotti et al., 2018; Choi et al., 2019; Cui et al., 2019; Evans and Kaufman, 1981; Kunath et al., 2005; Li et al., 2008; Martin, 1981; Okae et al., 2018; Tanaka et al., 1998; Thomson et al., 1998; Vandevoort et al., 2007; Vilarino et al., 2020; Yu et al., 2021b; Zhong et al., 2018), they are grown in different culture conditions with diverse media composition, which makes it difficult to study cross-lineage communication. Here, by using the same culture condition that activates FGF, TGF-β and WNT signaling pathways, we derived stable embryonic stem cells (ESCs), extraembryonic endoderm stem cells (XENs) and trophoblast stem cells (TSCs) from all three founding tissues of mouse and cynomolgus monkey blastocysts. This allowed us to establish embryonic and extraembryonic stem cell co-cultures to dissect lineage crosstalk during early mammalian development. Co-cultures of ESCs and XENs uncovered a conserved and previously unrecognized growth inhibition of pluripotent cells by extraembryonic endoderm cells, which is in part mediated through extracellular matrix signaling. Our study unveils a more universal state of stem cell self-renewal stabilized by activation, as opposed to inhibition, of developmental signaling pathways. The embryonic and extraembryonic stem cell co-culture strategy developed here will open new avenues for creating more faithful embryo models and developing more developmentally relevant differentiation protocols.
Collapse
Affiliation(s)
- Yulei Wei
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - E Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Leqian Yu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baiquan Ci
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lei Guo
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shino Takii
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Jian Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Daniel A. Schmitz
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Ding
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Linfeng Zhan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Canbin Zheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Daiji Okamura
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Tao Tan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
68
|
Athanasouli P, Balli M, De Jaime-Soguero A, Boel A, Papanikolaou S, van der Veer BK, Janiszewski A, Vanhessche T, Francis A, El Laithy Y, Nigro AL, Aulicino F, Koh KP, Pasque V, Cosma MP, Verfaillie C, Zwijsen A, Heindryckx B, Nikolaou C, Lluis F. The Wnt/TCF7L1 transcriptional repressor axis drives primitive endoderm formation by antagonizing naive and formative pluripotency. Nat Commun 2023; 14:1210. [PMID: 36869101 PMCID: PMC9984534 DOI: 10.1038/s41467-023-36914-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Early during preimplantation development and in heterogeneous mouse embryonic stem cells (mESC) culture, pluripotent cells are specified towards either the primed epiblast or the primitive endoderm (PE) lineage. Canonical Wnt signaling is crucial for safeguarding naive pluripotency and embryo implantation, yet the role and relevance of canonical Wnt inhibition during early mammalian development remains unknown. Here, we demonstrate that transcriptional repression exerted by Wnt/TCF7L1 promotes PE differentiation of mESCs and in preimplantation inner cell mass. Time-series RNA sequencing and promoter occupancy data reveal that TCF7L1 binds and represses genes encoding essential naive pluripotency factors and indispensable regulators of the formative pluripotency program, including Otx2 and Lef1. Consequently, TCF7L1 promotes pluripotency exit and suppresses epiblast lineage formation, thereby driving cells into PE specification. Conversely, TCF7L1 is required for PE specification as deletion of Tcf7l1 abrogates PE differentiation without restraining epiblast priming. Taken together, our study underscores the importance of transcriptional Wnt inhibition in regulating lineage specification in ESCs and preimplantation embryo development as well as identifies TCF7L1 as key regulator of this process.
Collapse
Affiliation(s)
- Paraskevi Athanasouli
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Martina Balli
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Anchel De Jaime-Soguero
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.
| | - Annekatrien Boel
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department for Human Structure and Repair, Ghent University Hospital, 9000, Ghent, Belgium
| | - Sofia Papanikolaou
- Department of Rheumatology, Clinical Immunology, Medical School, University of Crete, 70013, Heraklion, Greece.,Computational Genomics Group, Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Athens, Greece
| | - Bernard K van der Veer
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Adrian Janiszewski
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Tijs Vanhessche
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Annick Francis
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Youssef El Laithy
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Antonio Lo Nigro
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Francesco Aulicino
- Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003, Barcelona, Spain
| | - Kian Peng Koh
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Vincent Pasque
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.,KU Leuven Institute for Single-Cell Omics (LISCO), 3000, Leuven, Belgium
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003, Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, Barcelona, 08010, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Catherine Verfaillie
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - An Zwijsen
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Björn Heindryckx
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department for Human Structure and Repair, Ghent University Hospital, 9000, Ghent, Belgium
| | - Christoforos Nikolaou
- Computational Genomics Group, Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Athens, Greece
| | - Frederic Lluis
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.
| |
Collapse
|
69
|
Hernandez Mora JR, Buhigas C, Clark S, Del Gallego Bonilla R, Daskeviciute D, Monteagudo-Sánchez A, Poo-Llanillo ME, Medrano JV, Simón C, Meseguer M, Kelsey G, Monk D. Single-cell multi-omic analysis profiles defective genome activation and epigenetic reprogramming associated with human pre-implantation embryo arrest. Cell Rep 2023; 42:112100. [PMID: 36763500 DOI: 10.1016/j.celrep.2023.112100] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/14/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
During pre-implantation stages of mammalian development, maternally stored material promotes both the erasure of the sperm and oocyte epigenetic profiles and is responsible for concomitant genome activation. Here, we have utilized single-cell methylome and transcriptome sequencing (scM&T-seq) to quantify both mRNA expression and DNA methylation in oocytes and a developmental series of human embryos at single-cell resolution. We fully characterize embryonic genome activation and maternal transcript degradation and map key epigenetic reprogramming events in developmentally high-quality embryos. By comparing these signatures with early embryos that have undergone spontaneous cleavage-stage arrest, as determined by time-lapse imaging, we identify embryos that fail to appropriately activate their genomes or undergo epigenetic reprogramming. Our results indicate that a failure to successfully accomplish these essential milestones impedes the developmental potential of pre-implantation embryos and is likely to have important implications, similar to aneuploidy, for the success of assisted reproductive cycles.
Collapse
Affiliation(s)
| | - Claudia Buhigas
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7JT, UK
| | - Stephen Clark
- The Babraham Institute, Babraham, Cambridge CB22 3AT, UK
| | | | - Dagne Daskeviciute
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7JT, UK
| | | | | | - Jose Vicente Medrano
- IVI-RMA Global and Health Research Institute la Fe, 46026 Valencia, Spain; Department of Obstetrics and Gynecology, Valencia University and INCLIVA, 46010 Valencia, Spain
| | - Carlos Simón
- Department of Obstetrics and Gynecology, Valencia University and INCLIVA, 46010 Valencia, Spain; Department of Obstetrics and Gynecology, BIDMC, Harvard University, Boston, MA 02215, USA
| | - Marcos Meseguer
- IVI-RMA Global and Health Research Institute la Fe, 46026 Valencia, Spain
| | - Gavin Kelsey
- The Babraham Institute, Babraham, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EL, UK; Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge CB2 0QQ, UK
| | - David Monk
- Bellvitge Institute for Biomedical Research, 08908 Barcelona, Spain; Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7JT, UK.
| |
Collapse
|
70
|
Luo Q, Pui HP, Chen J, Yu L, Jannig PR, Pei Y, Zhao L, Chen X, Petropoulos S, Ruas JL, Wu J, Deng Q. Epiblast-like stem cells established by Wnt/β-catenin signaling manifest distinct features of formative pluripotency and germline competence. Cell Rep 2023; 42:112021. [PMID: 36848234 PMCID: PMC10026833 DOI: 10.1016/j.celrep.2023.112021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/05/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
Different formative pluripotent stem cells harboring similar functional properties have been recently established to be lineage neutral and germline competent yet have distinct molecular identities. Here, we show that WNT/β-catenin signaling activation sustains transient mouse epiblast-like cells as epiblast-like stem cells (EpiLSCs). EpiLSCs display metastable formative pluripotency with bivalent cellular energy metabolism and unique transcriptomic features and chromatin accessibility. We develop single-cell stage label transfer (scSTALT) to study the formative pluripotency continuum and reveal that EpiLSCs recapitulate a unique developmental period in vivo, filling the gap of the formative pluripotency continuum between other published formative stem cells. WNT/β-catenin signaling activation counteracts differentiation effects of activin A and bFGF by preventing complete dissolution of naive pluripotency regulatory network. Moreover, EpiLSCs have direct competence toward germline specification, which is further matured by an FGF receptor inhibitor. Our EpiLSCs can serve as an in vitro model for mimicking and studying early post-implantation development and pluripotency transition.
Collapse
Affiliation(s)
- Qing Luo
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Han-Pin Pui
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, 171 77 Stockholm, Sweden; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, 141 52 Huddinge, Sweden
| | - Jiayu Chen
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 20092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 20092, China
| | - Leqian Yu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Paulo R Jannig
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Yu Pei
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Linxuan Zhao
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Xingqi Chen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Sophie Petropoulos
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, 141 52 Huddinge, Sweden; Department of Medicine, Centre de recherche du CHUM, University of Montreal, Montreal, QC H2X 0A9, Canada
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, 171 77 Stockholm, Sweden.
| |
Collapse
|
71
|
Transforming growth factor beta (TGFβ) pathway is essential for hypoblast and epiblast development in ovine post-hatching embryos. Theriogenology 2023; 196:112-120. [PMID: 36413867 DOI: 10.1016/j.theriogenology.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
The developmental failures occurring between blastocyst hatching and implantation in farm ungulates are a major cause of pregnancy losses. At the expanded blastocyst stage, three cell lineages emerge in the embryo: trophoblast, hypoblast and epiblast, the latter being the most vulnerable during post-hatching development. Transforming growth factor beta (TGFβ) signaling pathway is involved in hypoblast and epiblast development; however, previous in vitro functional studies are limited to the expanded blastocyst stage. In this study, we have analyzed the effect of TGFβ inhibition with 10, 20 or 40 μM SB431542 during ovine post-hatching developmental period using a recently developed culture system able to recapitulate major developmental landmarks. We have found a negative effect of TGFβ inhibition on hypoblast and epiblast development that could be partially reverted by Rho-associated protein kinase (ROCK) inhibitor Y-27632. Our findings provide new insights into the molecular networks regulating embryo development beyond the expanded blastocyst and could help to elucidate the causes of early pregnancy losses in farm ungulates.
Collapse
|
72
|
Zhu Q, Ge J, Liu Y, Xu JW, Yan S, Zhou F. Decoding anterior-posterior axis emergence among mouse, monkey, and human embryos. Dev Cell 2023; 58:63-79.e4. [PMID: 36626872 DOI: 10.1016/j.devcel.2022.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/23/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Anterior-posterior axis formation regulated by the distal visceral endoderm (DVE) and anterior visceral endoderm (AVE) is essential for peri-implantation embryogenesis. However, the principles of the origin and specialization of DVE and AVE remain elusive. Here, with single-cell transcriptome analysis and pseudotime prediction, we show that DVE and AVE independently originate from the specialized primary endoderm in mouse blastocysts. Along distinct developmental paths, these two lineages, respectively, undergo four representative states with stage-specific transcriptional patterns around implantation. Further comparative analysis shows that AVE, but not DVE, is detected in human and non-human primate embryos, defining differences in polarity formation across species. Moreover, stem cell-assembled human blastoids lack DVE or AVE precursors, implying that additional induction of stem cells with DVE/AVE potential could promote the current embryo-like models and their post-implantation growth. Our work provides insight into understanding of embryonic polarity formation and early mammalian development.
Collapse
Affiliation(s)
- Qingyuan Zhu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jitao Ge
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Liu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jia-Wen Xu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shengyi Yan
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fan Zhou
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
73
|
Shetty A, Lim S, Strell P, Steer CJ, Rivera-Mulia JC, Low WC. In Silico Stage-Matching of Human, Marmoset, Mouse, and Pig Embryos to Enhance Organ Development Through Interspecies Chimerism. Cell Transplant 2023; 32:9636897231158728. [PMID: 36929807 PMCID: PMC10026093 DOI: 10.1177/09636897231158728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 03/18/2023] Open
Abstract
Currently, there is a significant shortage of transplantable organs for patients in need. Interspecies chimerism and blastocyst complementation are alternatives for generating transplantable human organs in host animals such as pigs to meet this shortage. While successful interspecies chimerism and organ generation have been observed between evolutionarily close species such as rat and mouse, barriers still exist for more distant species pairs such as human-mouse, marmoset-mouse, human-pig, and others. One of the proposed barriers to chimerism is the difference in developmental stages between the donor cells and the host embryo at the time the cells are introduced into the host embryo. Hence, there is a logical effort to stage-match the donor cells with the host embryos for enhancing interspecies chimerism. In this study, we used an in silico approach to simultaneously stage-match the early developing embryos of four species, including human, marmoset, mouse, and pig based on transcriptome similarities. We used an unsupervised clustering algorithm to simultaneously stage-match all four species as well as Spearman's correlation analyses to stage-match pairs of donor-host species. From our stage-matching analyses, we found that the four stages that best matched with each other are the human blastocyst (E6/E7), the gastrulating mouse embryo (E6-E6.75), the marmoset late inner cell mass, and the pig late blastocyst. We further demonstrated that human pluripotent stem cells best matched with the mouse post-implantation stages. We also performed ontology analysis of the genes upregulated and commonly expressed between donor-host species pairs at their best matched stages. The stage-matching results predicted by this study will inform in vivo and in vitro interspecies chimerism and blastocyst complementation studies and can be used to match donor cells with host embryos between multiple species pairs to enhance chimerism for organogenesis.
Collapse
Affiliation(s)
- Anala Shetty
- Molecular, Cellular, Developmental
Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN,
USA
| | - Seunghyun Lim
- Bioinformatics and Computational
Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA
| | - Phoebe Strell
- Comparative and Molecular Biosciences
Graduate Program, University of Minnesota, Minneapolis, MN, USA
| | - Clifford J. Steer
- Molecular, Cellular, Developmental
Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN,
USA
- Department of Medicine, University of
Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of
Minnesota, Minneapolis, MN, USA
| | - Juan Carlos Rivera-Mulia
- Molecular, Cellular, Developmental
Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN,
USA
- Stem Cell Institute, University of
Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular
Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Molecular, Cellular, Developmental
Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN,
USA
- Bioinformatics and Computational
Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of
Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, University
of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience,
University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
74
|
Chowdhary S, Hadjantonakis AK. Journey of the mouse primitive endoderm: from specification to maturation. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210252. [PMID: 36252215 PMCID: PMC9574636 DOI: 10.1098/rstb.2021.0252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
The blastocyst is a conserved stage and distinct milestone in the development of the mammalian embryo. Blastocyst stage embryos comprise three cell lineages which arise through two sequential binary cell fate specification steps. In the first, extra-embryonic trophectoderm (TE) cells segregate from inner cell mass (ICM) cells. Subsequently, ICM cells acquire a pluripotent epiblast (Epi) or extra-embryonic primitive endoderm (PrE, also referred to as hypoblast) identity. In the mouse, nascent Epi and PrE cells emerge in a salt-and-pepper distribution in the early blastocyst and are subsequently sorted into adjacent tissue layers by the late blastocyst stage. Epi cells cluster at the interior of the ICM, while PrE cells are positioned on its surface interfacing the blastocyst cavity, where they display apicobasal polarity. As the embryo implants into the maternal uterus, cells at the periphery of the PrE epithelium, at the intersection with the TE, break away and migrate along the TE as they mature into parietal endoderm (ParE). PrE cells remaining in association with the Epi mature into visceral endoderm. In this review, we discuss our current understanding of the PrE from its specification to its maturation. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Sayali Chowdhary
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
75
|
Gropp M, Waldhorn I, Gil Y, Steiner D, Turetsky TT, Smith Y, Sabag O, Falick-Michaeli T, Ram SE, Reubinoff BE. Laminin111-based defined culture promoting self-renewing human pluripotent stem cells with properties of the early post-implantation epiblast. Stem Cell Reports 2022; 17:2643-2660. [PMID: 36368331 PMCID: PMC9768580 DOI: 10.1016/j.stemcr.2022.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
In the mammalian embryo, a formative pluripotent phase is proposed to exist at the early post-implantation period, during the transition from the pre-implantation naive-to the post-implantation primed-epiblast. By recapitulating a laminin component of the extracellular matrix niche during embryonic formative transition, and defined culture conditions, we generated cultures highly enriched for self-renewing human pluripotent stem cells (hPSCs), exhibiting properties of early post-implantation epiblast cells. These hPSCs display post-implantation-epiblast gene expression profiles. FGF and TGF-β signaling maintain their self-renewal for multiple passages. They have inactive canonical Wnt signaling, do not express primitive streak markers, and are competent to initiate differentiation toward germline and somatic fates. hPSCs exhibiting early post-implantation epiblast properties may shed light on human embryonic PSCs development and may serve for initiating somatic and germ cell specification.
Collapse
Affiliation(s)
- Michal Gropp
- The Hadassah Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Ithai Waldhorn
- The Hadassah Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Yaniv Gil
- The Hadassah Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Debora Steiner
- The Hadassah Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Tikva Tako Turetsky
- The Hadassah Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Yoav Smith
- The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ofra Sabag
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Tal Falick-Michaeli
- Rubin Chair in Medical Science, Department of Developmental Biology & Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sharona Even Ram
- The Hadassah Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Benjamin E. Reubinoff
- The Hadassah Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, 91120 Jerusalem, Israel,Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, 91120 Jerusalem, Israel,Corresponding author
| |
Collapse
|
76
|
Toh K, Saunders D, Verd B, Steventon B. Zebrafish neuromesodermal progenitors undergo a critical state transition in vivo. iScience 2022; 25:105216. [PMID: 36274939 PMCID: PMC9579027 DOI: 10.1016/j.isci.2022.105216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/05/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
The transition state model of cell differentiation proposes that a transient window of gene expression stochasticity precedes entry into a differentiated state. Here, we assess this theoretical model in zebrafish neuromesodermal progenitors (NMps) in vivo during late somitogenesis stages. We observed an increase in gene expression variability at the 24 somite stage (24ss) before their differentiation into spinal cord and paraxial mesoderm. Analysis of a published 18ss scRNA-seq dataset showed that the NMp population is noisier than its derivatives. By building in silico composite gene expression maps from image data, we assigned an 'NM index' to in silico NMps based on the expression of neural and mesodermal markers and demonstrated that cell population heterogeneity peaked at 24ss. Further examination revealed cells with gene expression profiles incongruent with their prospective fate. Taken together, our work supports the transition state model within an endogenous cell fate decision making event.
Collapse
Affiliation(s)
- Kane Toh
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Dillan Saunders
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Berta Verd
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | | |
Collapse
|
77
|
Vrij EJ, Scholte op Reimer YS, Fuentes LR, Guerreiro IM, Holzmann V, Aldeguer JF, Sestini G, Koo BK, Kind J, van Blitterswijk CA, Rivron NC. A pendulum of induction between the epiblast and extra-embryonic endoderm supports post-implantation progression. Development 2022; 149:dev192310. [PMID: 35993866 PMCID: PMC9534490 DOI: 10.1242/dev.192310] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/23/2022] [Indexed: 08/17/2023]
Abstract
Embryogenesis is supported by dynamic loops of cellular interactions. Here, we create a partial mouse embryo model to elucidate the principles of epiblast (Epi) and extra-embryonic endoderm co-development (XEn). We trigger naive mouse embryonic stem cells to form a blastocyst-stage niche of Epi-like cells and XEn-like cells (3D, hydrogel free and serum free). Once established, these two lineages autonomously progress in minimal medium to form an inner pro-amniotic-like cavity surrounded by polarized Epi-like cells covered with visceral endoderm (VE)-like cells. The progression occurs through reciprocal inductions by which the Epi supports the primitive endoderm (PrE) to produce a basal lamina that subsequently regulates Epi polarization and/or cavitation, which, in return, channels the transcriptomic progression to VE. This VE then contributes to Epi bifurcation into anterior- and posterior-like states. Similarly, boosting the formation of PrE-like cells within blastoids supports developmental progression. We argue that self-organization can arise from lineage bifurcation followed by a pendulum of induction that propagates over time.
Collapse
Affiliation(s)
- Erik J. Vrij
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Yvonne S. Scholte op Reimer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Laury Roa Fuentes
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
| | - Isabel Misteli Guerreiro
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, UtrechtUppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Viktoria Holzmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Javier Frias Aldeguer
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, UtrechtUppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Giovanni Sestini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Jop Kind
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, UtrechtUppsalalaan 8, 3584 CT Utrecht, Netherlands
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, Netherlands
| | - Clemens A. van Blitterswijk
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
| | - Nicolas C. Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
78
|
Watanabe M, Buth JE, Haney JR, Vishlaghi N, Turcios F, Elahi LS, Gu W, Pearson CA, Kurdian A, Baliaouri NV, Collier AJ, Miranda OA, Dunn N, Chen D, Sabri S, Torre-Ubieta LDL, Clark AT, Plath K, Christofk HR, Kornblum HI, Gandal MJ, Novitch BG. TGFβ superfamily signaling regulates the state of human stem cell pluripotency and capacity to create well-structured telencephalic organoids. Stem Cell Reports 2022; 17:2220-2238. [PMID: 36179695 PMCID: PMC9561534 DOI: 10.1016/j.stemcr.2022.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/25/2022] Open
Abstract
Telencephalic organoids generated from human pluripotent stem cells (hPSCs) are a promising system for studying the distinct features of the developing human brain and the underlying causes of many neurological disorders. While organoid technology is steadily advancing, many challenges remain, including potential batch-to-batch and cell-line-to-cell-line variability, and structural inconsistency. Here, we demonstrate that a major contributor to cortical organoid quality is the way hPSCs are maintained prior to differentiation. Optimal results were achieved using particular fibroblast-feeder-supported hPSCs rather than feeder-independent cells, differences that were reflected in their transcriptomic states at the outset. Feeder-supported hPSCs displayed activation of diverse transforming growth factor β (TGFβ) superfamily signaling pathways and increased expression of genes connected to naive pluripotency. We further identified combinations of TGFβ-related growth factors that are necessary and together sufficient to impart broad telencephalic organoid competency to feeder-free hPSCs and enhance the formation of well-structured brain tissues suitable for disease modeling.
Collapse
Affiliation(s)
- Momoko Watanabe
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Jessie E Buth
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jillian R Haney
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Neda Vishlaghi
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Felix Turcios
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lubayna S Elahi
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wen Gu
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Caroline A Pearson
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Arinnae Kurdian
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Natella V Baliaouri
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amanda J Collier
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Osvaldo A Miranda
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Natassia Dunn
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Di Chen
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shan Sabri
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Luis de la Torre-Ubieta
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amander T Clark
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Heather R Christofk
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Harley I Kornblum
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael J Gandal
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bennett G Novitch
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
79
|
Yang XH, Goldstein A, Sun Y, Wang Z, Wei M, Moskowitz I, Cunningham J. Detecting critical transition signals from single-cell transcriptomes to infer lineage-determining transcription factors. Nucleic Acids Res 2022; 50:e91. [PMID: 35640613 PMCID: PMC9458468 DOI: 10.1093/nar/gkac452] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/02/2022] [Accepted: 05/13/2022] [Indexed: 12/29/2022] Open
Abstract
Analyzing single-cell transcriptomes promises to decipher the plasticity, heterogeneity, and rapid switches in developmental cellular state transitions. Such analyses require the identification of gene markers for semi-stable transition states. However, there are nontrivial challenges such as unexplainable stochasticity, variable population sizes, and alternative trajectory constructions. By advancing current tipping-point theory-based models with feature selection, network decomposition, accurate estimation of correlations, and optimization, we developed BioTIP to overcome these challenges. BioTIP identifies a small group of genes, called critical transition signal (CTS), to characterize regulated stochasticity during semi-stable transitions. Although methods rooted in different theories converged at the same transition events in two benchmark datasets, BioTIP is unique in inferring lineage-determining transcription factors governing critical transition. Applying BioTIP to mouse gastrulation data, we identify multiple CTSs from one dataset and validated their significance in another independent dataset. We detect the established regulator Etv2 whose expression change drives the haemato-endothelial bifurcation, and its targets together in CTS across three datasets. After comparing to three current methods using six datasets, we show that BioTIP is accurate, user-friendly, independent of pseudo-temporal trajectory, and captures significantly interconnected and reproducible CTSs. We expect BioTIP to provide great insight into dynamic regulations of lineage-determining factors.
Collapse
Affiliation(s)
- Xinan H Yang
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Andrew Goldstein
- Department of Statistics, The University of Chicago, Chicago IL, USA
| | - Yuxi Sun
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Zhezhen Wang
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Megan Wei
- Johns Hopkins University, Baltimore, MD, USA
| | - Ivan P Moskowitz
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - John M Cunningham
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
80
|
Bouchereau W, Jouneau L, Archilla C, Aksoy I, Moulin A, Daniel N, Peynot N, Calderari S, Joly T, Godet M, Jaszczyszyn Y, Pratlong M, Severac D, Savatier P, Duranthon V, Afanassieff M, Beaujean N. Major transcriptomic, epigenetic and metabolic changes underlie the pluripotency continuum in rabbit preimplantation embryos. Development 2022; 149:276385. [DOI: 10.1242/dev.200538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Despite the growing interest in the rabbit model for developmental and stem cell biology, the characterization of embryos at the molecular level is still poorly documented. We conducted a transcriptome analysis of rabbit preimplantation embryos from E2.7 (morula stage) to E6.6 (early primitive streak stage) using bulk and single-cell RNA-sequencing. In parallel, we studied oxidative phosphorylation and glycolysis, and analysed active and repressive epigenetic modifications during blastocyst formation and expansion. We generated a transcriptomic, epigenetic and metabolic map of the pluripotency continuum in rabbit preimplantation embryos, and identified novel markers of naive pluripotency that might be instrumental for deriving naive pluripotent stem cell lines. Although the rabbit is evolutionarily closer to mice than to primates, we found that the transcriptome of rabbit epiblast cells shares common features with those of humans and non-human primates.
Collapse
Affiliation(s)
- Wilhelm Bouchereau
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Catherine Archilla
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Irène Aksoy
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Anais Moulin
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Nathalie Daniel
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Nathalie Peynot
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Sophie Calderari
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Thierry Joly
- ISARA-Lyon 4 , F-69007 Lyon , France
- VetAgroSup, UPSP ICE 5 , F-69280 Marcy l'Etoile , France
| | - Murielle Godet
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 6 , 91198 Gif-sur-Yvette , France
| | - Marine Pratlong
- MGX, Université Montpellier, CNRS, INSERM 7 , 34094 Montpellier , France
| | - Dany Severac
- MGX, Université Montpellier, CNRS, INSERM 7 , 34094 Montpellier , France
| | - Pierre Savatier
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Véronique Duranthon
- Université Paris-Saclay, UVSQ, INRAE, BREED 2 , 78350 Jouy-en-Josas , France
- Ecole Nationale Vétérinaire d'Alfort, BREED 3 , 94700 Maisons-Alfort , France
| | - Marielle Afanassieff
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| | - Nathalie Beaujean
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361 1 , F-69500 Bron , France
| |
Collapse
|
81
|
Gupta S, Dovey OM, Domingues AF, Cyran OW, Cash CM, Giotopoulos G, Rak J, Cooper J, Gozdecka M, Dijkhuis L, Asby RJ, Al-Jabery N, Hernandez-Hernandez V, Prabakaran S, Huntly BJ, Vassiliou GS, Pina C. Transcriptional variability accelerates preleukemia by cell diversification and perturbation of protein synthesis. SCIENCE ADVANCES 2022; 8:eabn4886. [PMID: 35921412 PMCID: PMC9348803 DOI: 10.1126/sciadv.abn4886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Transcriptional variability facilitates stochastic cell diversification and can in turn underpin adaptation to stress or injury. We hypothesize that it may analogously facilitate progression of premalignancy to cancer. To investigate this, we initiated preleukemia in mouse cells with enhanced transcriptional variability due to conditional disruption of the histone lysine acetyltransferase gene Kat2a. By combining single-cell RNA sequencing of preleukemia with functional analysis of transformation, we show that Kat2a loss results in global variegation of cell identity and accumulation of preleukemic cells. Leukemia progression is subsequently facilitated by destabilization of ribosome biogenesis and protein synthesis, which confer a transient transformation advantage. The contribution of transcriptional variability to early cancer evolution reflects a generic role in promoting cell fate transitions, which, in the case of well-adapted malignancies, contrastingly differentiates and depletes cancer stem cells. That is, transcriptional variability confers forward momentum to cell fate systems, with differential multistage impact throughout cancer evolution.
Collapse
Affiliation(s)
- Shikha Gupta
- Department of Genetics, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Oliver M. Dovey
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Ana Filipa Domingues
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Oliwia W. Cyran
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Caitlin M. Cash
- College of Health, Medicine and Life Sciences - Division of Biosciences, Brunel University London, Uxbridge, UK
| | - George Giotopoulos
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Justyna Rak
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Jonathan Cooper
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Malgorzata Gozdecka
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Liza Dijkhuis
- College of Health, Medicine and Life Sciences - Division of Biosciences, Brunel University London, Uxbridge, UK
| | - Ryan J. Asby
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Noor Al-Jabery
- College of Health, Medicine and Life Sciences - Division of Biosciences, Brunel University London, Uxbridge, UK
| | - Victor Hernandez-Hernandez
- College of Health, Medicine and Life Sciences - Division of Biosciences, Brunel University London, Uxbridge, UK
- Centre for Genome Engineering and Maintenance, Brunel University London, Uxbridge, UB8 3PH, UK
| | | | - Brian J. Huntly
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - George S. Vassiliou
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Cristina Pina
- College of Health, Medicine and Life Sciences - Division of Biosciences, Brunel University London, Uxbridge, UK
- Centre for Genome Engineering and Maintenance, Brunel University London, Uxbridge, UB8 3PH, UK
| |
Collapse
|
82
|
Cheng S, Mittnenzweig M, Mayshar Y, Lifshitz A, Dunjić M, Rais Y, Ben-Yair R, Gehrs S, Chomsky E, Mukamel Z, Rubinstein H, Schlereth K, Reines N, Orenbuch AH, Tanay A, Stelzer Y. The intrinsic and extrinsic effects of TET proteins during gastrulation. Cell 2022; 185:3169-3185.e20. [PMID: 35908548 PMCID: PMC9432429 DOI: 10.1016/j.cell.2022.06.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/18/2022] [Accepted: 06/25/2022] [Indexed: 12/17/2022]
Abstract
Mice deficient for all ten-eleven translocation (TET) genes exhibit early gastrulation lethality. However, separating cause and effect in such embryonic failure is challenging. To isolate cell-autonomous effects of TET loss, we used temporal single-cell atlases from embryos with partial or complete mutant contributions. Strikingly, when developing within a wild-type embryo, Tet-mutant cells retain near-complete differentiation potential, whereas embryos solely comprising mutant cells are defective in epiblast to ectoderm transition with degenerated mesoderm potential. We map de-repressions of early epiblast factors (e.g., Dppa4 and Gdf3) and failure to activate multiple signaling from nascent mesoderm (Lefty, FGF, and Notch) as likely cell-intrinsic drivers of TET loss phenotypes. We further suggest loss of enhancer demethylation as the underlying mechanism. Collectively, our work demonstrates an unbiased approach for defining intrinsic and extrinsic embryonic gene function based on temporal differentiation atlases and disentangles the intracellular effects of the demethylation machinery from its broader tissue-level ramifications. Chimeras with full or partial Tet deficiency are mapped over the course of gastrulation Tet-TKO cells disrupt signaling, leading to skewed whole-embryo mutant gastrulation Tet-TKO cells retain near-complete differentiation potential in a chimera context Loss of TET leads to pervasive hypermethylation and mildly perturbed gene expression
Collapse
Affiliation(s)
- Saifeng Cheng
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Markus Mittnenzweig
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yoav Mayshar
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Aviezer Lifshitz
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Marko Dunjić
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yoach Rais
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Raz Ben-Yair
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Stephanie Gehrs
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Elad Chomsky
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Zohar Mukamel
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Hernan Rubinstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Katharina Schlereth
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Netta Reines
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | | | - Amos Tanay
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| | - Yonatan Stelzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
83
|
Thompson JJ, Lee DJ, Mitra A, Frail S, Dale RK, Rocha PP. Extensive co-binding and rapid redistribution of NANOG and GATA6 during emergence of divergent lineages. Nat Commun 2022; 13:4257. [PMID: 35871075 PMCID: PMC9308780 DOI: 10.1038/s41467-022-31938-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/11/2022] [Indexed: 11/26/2022] Open
Abstract
Fate-determining transcription factors (TFs) can promote lineage-restricted transcriptional programs from common progenitor states. The inner cell mass (ICM) of mouse blastocysts co-expresses the TFs NANOG and GATA6, which drive the bifurcation of the ICM into either the epiblast (Epi) or the primitive endoderm (PrE), respectively. Here, we induce GATA6 in embryonic stem cells-that also express NANOG-to characterize how a state of co-expression of opposing TFs resolves into divergent lineages. Surprisingly, we find that GATA6 and NANOG co-bind at the vast majority of Epi and PrE enhancers, a phenomenon we also observe in blastocysts. The co-bound state is followed by eviction and repression of Epi TFs, and quick remodeling of chromatin and enhancer-promoter contacts thus establishing the PrE lineage while repressing the Epi fate. We propose that co-binding of GATA6 and NANOG at shared enhancers maintains ICM plasticity and promotes the rapid establishment of Epi- and PrE-specific transcriptional programs.
Collapse
Affiliation(s)
- Joyce J Thompson
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel J Lee
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah Frail
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
- National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
84
|
Capp JP, Thomas F. From developmental to atavistic bet-hedging: How cancer cells pervert the exploitation of random single-cell phenotypic fluctuations. Bioessays 2022; 44:e2200048. [PMID: 35839471 DOI: 10.1002/bies.202200048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/08/2022]
Abstract
Stochastic gene expression plays a leading developmental role through its contribution to cell differentiation. It is also proposed to promote phenotypic diversification in malignant cells. However, it remains unclear if these two forms of cellular bet-hedging are identical or rather display distinct features. Here we argue that bet-hedging phenomena in cancer cells are more similar to those occurring in unicellular organisms than to those of normal metazoan cells. We further propose that the atavistic bet-hedging strategies in cancer originate from a hijacking of the normal developmental bet-hedging of metazoans. Finally, we discuss the constraints that may shape the atavistic bet-hedging strategies of cancer cells.
Collapse
Affiliation(s)
- Jean-Pascal Capp
- Toulouse Biotechnology Institute, INSA / University of Toulouse, CNRS, INRAE, Toulouse, France
| | - Frédéric Thomas
- CREEC, UMR IRD 224-CNRS 5290-University of Montpellier, Montpellier, France
| |
Collapse
|
85
|
Bolondi A, Kretzmer H, Meissner A. Single-cell technologies: a new lens into epigenetic regulation in development. Curr Opin Genet Dev 2022; 76:101947. [PMID: 35839561 DOI: 10.1016/j.gde.2022.101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
The totipotent zygote gives rise to diverse cell types through a series of well-orchestrated regulatory mechanisms. Epigenetic modifiers play an essential, though still poorly understood, role in the transition from pluripotency towards organogenesis. However, recent advances in single-cell technologies have enabled an unprecedented, high-resolution dissection of this crucial developmental window, highlighting more cell-type-specific functions of these ubiquitous regulators. In this review, we discuss and contextualize several recent studies that explore epigenetic regulation during mouse embryogenesis, emphasizing the opportunities presented by single-cell technologies, in vivo perturbation approaches as well as advanced in vitro models to characterize dynamic developmental transitions.
Collapse
Affiliation(s)
- Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany. https://twitter.com/@adrianobolondi
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. https://twitter.com/@helenekretzmer
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany; Broad Institute of MIT and Harvard, 02142 Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, 02138 Cambridge, MA, USA.
| |
Collapse
|
86
|
Zhao L, Song W, Chen YG. Mesenchymal-epithelial interaction regulates gastrointestinal tract development in mouse embryos. Cell Rep 2022; 40:111053. [PMID: 35830795 DOI: 10.1016/j.celrep.2022.111053] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/31/2022] [Accepted: 06/14/2022] [Indexed: 01/10/2023] Open
Abstract
After gut tube patterning in early embryos, the cellular and molecular changes of developing stomach and intestine remain largely unknown. Here, combining single-cell RNA sequencing and spatial RNA sequencing, we construct a spatiotemporal transcriptomic landscape of the mouse stomach and intestine during embryonic days E9.5-E15.5. Several subpopulations are identified, including Lox+ stomach mesenchyme, Aldh1a3+ small-intestinal mesenchyme, and Adamdec1+ large-intestinal mesenchyme. The regionalization and heterogeneity of both the epithelium and the mesenchyme can be traced back to E9.5. The spatiotemporal distributions of cell clusters and the mesenchymal-epithelial interaction analysis indicate that a coordinated development of the epithelium and mesenchyme contribute to the stomach regionalization, intestine segmentation, and villus formation. Using the gut tube-derived organoids, we find that the cell fate of the foregut and hindgut can be switched by the regional niche factors, including fibroblast growth factors (FGFs) and retinoic acid (RA). This work lays a foundation for further dissection of the mechanisms governing this process.
Collapse
Affiliation(s)
- Lianzheng Zhao
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wanlu Song
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Guangzhou Laboratory, Guangzhou, China.
| |
Collapse
|
87
|
Ho VW, Grainger DE, Chagraoui H, Porcher C. Specification of the haematopoietic stem cell lineage: From blood-fated mesodermal angioblasts to haemogenic endothelium. Semin Cell Dev Biol 2022; 127:59-67. [PMID: 35125239 DOI: 10.1016/j.semcdb.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/19/2022]
Abstract
Haematopoietic stem and progenitor cells emerge from specialized haemogenic endothelial cells in select vascular beds during embryonic development. Specification and commitment to the blood lineage, however, occur before endothelial cells are endowed with haemogenic competence, at the time of mesoderm patterning and production of endothelial cell progenitors (angioblasts). Whilst early blood cell fate specification has long been recognized, very little is known about the mechanisms that induce endothelial cell diversification and progressive acquisition of a blood identity by a subset of these cells. Here, we review the endothelial origin of the haematopoietic system and the complex developmental journey of blood-fated angioblasts. We discuss how recent technological advances will be instrumental to examine the diversity of the embryonic anatomical niches, signaling pathways and downstream epigenetic and transcriptional processes controlling endothelial cell heterogeneity and blood cell fate specification. Ultimately, this will give essential insights into the ontogeny of the cells giving rise to haematopoietic stem cells, that may aid in the development of novel strategies for their in vitro production for clinical purposes.
Collapse
Affiliation(s)
- Vivien W Ho
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - David E Grainger
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hedia Chagraoui
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Catherine Porcher
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
88
|
He J, Lin L, Chen J. Practical bioinformatics pipelines for single-cell RNA-seq data analysis. BIOPHYSICS REPORTS 2022; 8:158-169. [PMID: 37288243 PMCID: PMC10189648 DOI: 10.52601/bpr.2022.210041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/01/2022] [Indexed: 11/05/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a revolutionary tool to explore cells. With an increasing number of scRNA-seq data analysis tools that have been developed, it is challenging for users to choose and compare their performance. Here, we present an overview of the workflow for computational analysis of scRNA-seq data. We detail the steps of a typical scRNA-seq analysis, including experimental design, pre-processing and quality control, feature selection, dimensionality reduction, cell clustering and annotation, and downstream analysis including batch correction, trajectory inference and cell-cell communication. We provide guidelines according to our best practice. This review will be helpful for the experimentalists interested in analyzing their data, and will aid the users seeking to update their analysis pipelines.
Collapse
Affiliation(s)
- Jiangping He
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Lihui Lin
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiekai Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
89
|
Malkowska A, Penfold C, Bergmann S, Boroviak TE. A hexa-species transcriptome atlas of mammalian embryogenesis delineates metabolic regulation across three different implantation modes. Nat Commun 2022; 13:3407. [PMID: 35710749 PMCID: PMC9203550 DOI: 10.1038/s41467-022-30194-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/21/2022] [Indexed: 12/16/2022] Open
Abstract
Mammalian embryogenesis relies on glycolysis and oxidative phosphorylation to balance the generation of biomass with energy production. However, the dynamics of metabolic regulation in the postimplantation embryo in vivo have remained elusive due to the inaccessibility of the implanted conceptus for biochemical studies. To address this issue, we compiled single-cell embryo profiling data in six mammalian species and determined their metabolic dynamics through glycolysis and oxidative phosphorylation associated gene expression. Strikingly, we identify a conserved switch from bivalent respiration in the late blastocyst towards a glycolytic metabolism in early gastrulation stages across species, which is independent of embryo implantation. Extraembryonic lineages followed the dynamics of the embryonic lineage, except visceral endoderm. Finally, we demonstrate that in vitro primate embryo culture substantially impacts metabolic gene regulation by comparison to in vivo samples. Our work reveals a conserved metabolic programme despite different implantation modes and highlights the need to optimise postimplantation embryo culture protocols.
Collapse
Affiliation(s)
- Anna Malkowska
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
| | - Christopher Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Sophie Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK.
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK.
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.
| |
Collapse
|
90
|
Ma Z, Davis SW, Ho YY. Flexible copula model for integrating correlated multi-omics data from single-cell experiments. Biometrics 2022. [PMID: 35622236 DOI: 10.1111/biom.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/18/2022] [Indexed: 11/27/2022]
Abstract
With recent advances in technologies to profile multi-omics data at the single-cell level, integrative multi-omics data analysis has been increasingly popular. It is increasingly common that information such as methylation changes, chromatin accessibility, and gene expression are jointly collected in a single-cell experiment. In biomedical studies, it is often of interest to study the associations between various data types and to examine how these associations might change according to other factors such as cell types and gene regulatory components. However, since each data type usually has a distinct marginal distribution, joint analysis of these changes of associations using multi-omics data is statistically challenging. In this paper, we propose a flexible copula-based framework to model covariate-dependent correlation structures independent of their marginals. In addition, the proposed approach could jointly combine a wide variety of univariate marginal distributions, either discrete or continuous, including the class of zero-inflated distributions. The performance of the proposed framework is demonstrated through a series of simulation studies. Finally, it is applied to a set of experimental data to investigate the dynamic relationship between single-cell RNA-sequencing, chromatin accessibility, and DNA methylation at different germ layers during mouse gastrulation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zichen Ma
- Department of Public Health Sciences, Clemson University, Clemson, SC, USA
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Yen-Yi Ho
- Department of Statistics, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
91
|
Severino J, Bauer M, Mattimoe T, Arecco N, Cozzuto L, Lorden P, Hamada N, Nosaka Y, Nagaoka SI, Audergon P, Tarruell A, Heyn H, Hayashi K, Saitou M, Payer B. Controlled X-chromosome dynamics defines meiotic potential of female mouse in vitro germ cells. EMBO J 2022; 41:e109457. [PMID: 35603814 PMCID: PMC9194795 DOI: 10.15252/embj.2021109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022] Open
Abstract
The mammalian germline is characterized by extensive epigenetic reprogramming during its development into functional eggs and sperm. Specifically, the epigenome requires resetting before parental marks can be established and transmitted to the next generation. In the female germline, X‐chromosome inactivation and reactivation are among the most prominent epigenetic reprogramming events, yet very little is known about their kinetics and biological function. Here, we investigate X‐inactivation and reactivation dynamics using a tailor‐made in vitro system of primordial germ cell‐like cell (PGCLC) differentiation from mouse embryonic stem cells. We find that X‐inactivation in PGCLCs in vitro and in germ cell‐competent epiblast cells in vivo is moderate compared to somatic cells, and frequently characterized by escaping genes. X‐inactivation is followed by step‐wise X‐reactivation, which is mostly completed during meiotic prophase I. Furthermore, we find that PGCLCs which fail to undergo X‐inactivation or reactivate too rapidly display impaired meiotic potential. Thus, our data reveal fine‐tuned X‐chromosome remodelling as a critical feature of female germ cell development towards meiosis and oogenesis.
Collapse
Affiliation(s)
- Jacqueline Severino
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Moritz Bauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Tom Mattimoe
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Niccolò Arecco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luca Cozzuto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Patricia Lorden
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Norio Hamada
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiaki Nosaka
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - So I Nagaoka
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Pauline Audergon
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Antonio Tarruell
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
92
|
Quan Y, Wang M, Xu C, Wang X, Wu Y, Qin D, Lin Y, Lu X, Lu F, Li L. Cnot8 eliminates naïve regulation networks and is essential for naïve-to-formative pluripotency transition. Nucleic Acids Res 2022; 50:4414-4435. [PMID: 35390160 PMCID: PMC9071485 DOI: 10.1093/nar/gkac236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/11/2022] [Accepted: 03/26/2022] [Indexed: 11/14/2022] Open
Abstract
Mammalian early epiblasts at different phases are characterized by naïve, formative, and primed pluripotency states, involving extensive transcriptome changes. Here, we report that deadenylase Cnot8 of Ccr4-Not complex plays essential roles during the transition from naïve to formative state. Knock out (KO) Cnot8 resulted in early embryonic lethality in mice, but Cnot8 KO embryonic stem cells (ESCs) could be established. Compared with the cells differentiated from normal ESCs, Cnot8 KO cells highly expressed a great many genes during their differentiation into the formative state, including several hundred naïve-like genes enriched in lipid metabolic process and gene expression regulation that may form the naïve regulation networks. Knockdown expression of the selected genes of naïve regulation networks partially rescued the differentiation defects of Cnot8 KO ESCs. Cnot8 depletion led to the deadenylation defects of its targets, increasing their poly(A) tail lengths and half-life, eventually elevating their expression levels. We further found that Cnot8 was involved in the clearance of targets through its deadenylase activity and the binding of Ccr4-Not complex, as well as the interacting with Tob1 and Pabpc1. Our results suggest that Cnot8 eliminates naïve regulation networks through mRNA clearance, and is essential for naïve-to-formative pluripotency transition.
Collapse
Affiliation(s)
- Yujun Quan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meijiao Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengpeng Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuxuan Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xukun Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
93
|
Xu Y, Zhao J, Ren Y, Wang X, Lyu Y, Xie B, Sun Y, Yuan X, Liu H, Yang W, Fu Y, Yu Y, Liu Y, Mu R, Li C, Xu J, Deng H. Derivation of totipotent-like stem cells with blastocyst-like structure forming potential. Cell Res 2022; 32:513-529. [PMID: 35508506 PMCID: PMC9160264 DOI: 10.1038/s41422-022-00668-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/08/2022] [Indexed: 12/27/2022] Open
Abstract
It is challenging to derive totipotent stem cells in vitro that functionally and molecularly resemble cells from totipotent embryos. Here, we report that a chemical cocktail enables the derivation of totipotent-like stem cells, designated as totipotent potential stem (TPS) cells, from 2-cell mouse embryos and extended pluripotent stem cells, and that these TPS cells can be stably maintained long term in vitro. TPS cells shared features with 2-cell mouse embryos in terms of totipotency markers, transcriptome, chromatin accessibility and DNA methylation patterns. In vivo chimera formation assays show that these cells have embryonic and extraembryonic developmental potentials at the single-cell level. Moreover, TPS cells can be induced into blastocyst-like structures resembling preimplantation mouse blastocysts. Mechanistically, inhibition of HDAC1/2 and DOT1L activity and activation of RARγ signaling are important for inducing and maintaining totipotent features of TPS cells. Our study opens up a new path toward fully capturing totipotent stem cells in vitro.
Collapse
Affiliation(s)
- Yaxing Xu
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jingru Zhao
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yixuan Ren
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xuyang Wang
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yulin Lyu
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Bingqing Xie
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yiming Sun
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Xiandun Yuan
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Haiyin Liu
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Weifeng Yang
- Beijing Vitalstar Biotechnology Co., Ltd, Beijing, China
| | - Yenan Fu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, PKU International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Yu Yu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, PKU International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Yinan Liu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, China
| | - Rong Mu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China.
| | - Jun Xu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, China.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
94
|
Marikawa Y, Alarcon VB. Remdesivir impairs mouse preimplantation embryo development at therapeutic concentrations. Reprod Toxicol 2022; 111:135-147. [PMID: 35605700 PMCID: PMC9122741 DOI: 10.1016/j.reprotox.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 01/01/2023]
Abstract
Remdesivir (RDV) is the first antiviral drug to be approved by the US Food and Drug Administration for the treatment of COVID-19. While the general safety of RDV has been studied, its reproductive risk, including embryotoxicity, is largely unknown. Here, to gain insights into its embryotoxic potential, we investigated the effects of RDV on mouse preimplantation embryos cultured in vitro at the concentrations comparable to the therapeutic plasma levels. Exposure to RDV (2–8 µM) did not affect the initiation of blastocyst formation, although the maintenance of the cavity failed at 8 µM due to increased cell death. While exposure to 2–4 µM permitted the cavity maintenance, expressions of developmental regulator genes associated with the inner cell mass (ICM) lineage were significantly diminished. Adverse effects of RDV depended on the duration and timing of exposure, as treatment between the 8-cell to early blastocyst stage most sensitively affected cavity expansion, gene expressions, and cell proliferation, particularly of the ICM than the trophectoderm lineage. GS-441524, a major metabolite of RDV, did not impair blastocyst formation or cavity expansion, although it altered gene expressions in a manner differently from RDV. Additionally, RDV reduced the viability of human embryonic stem cells, which were used as a model for the human ICM lineage, more potently than GS-441524. These findings suggest that RDV is potentially embryotoxic to impair the pluripotent lineage, and will be useful for designing and interpreting further in vitro and in vivo studies on the reproductive toxicity of RDV.
Collapse
Affiliation(s)
- Yusuke Marikawa
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Vernadeth B Alarcon
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA.
| |
Collapse
|
95
|
Jiao F, Tang M. Quantification of transcription noise’s impact on cell fate commitment with digital resolutions. Bioinformatics 2022; 38:3062-3069. [DOI: 10.1093/bioinformatics/btac277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/18/2022] [Accepted: 04/12/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Motivation
Gene transcription is a random and noisy process. Tremendous efforts in single cell studies have been mapping transcription noises to phenotypic variabilities between isogenic cells. However, the exact role of the noise in cell fate commitment remains largely descriptive or even controversial.
Results
For a specified cell fate, we define the jumping digit I of a critical gene as a statistical threshold that a single cell has approximately an equal chance to commit the fate as to have at least I transcripts of the gene. When the transcription is perturbed by a noise enhancer without changing the basal transcription level E 0, we find a crossing digit k such that the noise catalyzes cell fate change when I > k while stabilizes the current state when I < k; k remains stable against enormous variations of kinetic rates. We further test the reactivation of latent HIV in 22 integration sites by noise enhancers paired with transcriptional activators. Strong synergistic actions are observed when the activators increase transcription burst frequency, whereas no synergism, but antagonism, is often observed if activators increase burst size. The synergistic efficiency can be predicted accurately by the ratio I / E0. When the noise enhancers double the noise, the activators double the burst frequency, and I / E0 ≥ 7, their combination is 10 times more effective than their additive effects across all 22 sites.
Availability and implementation
The jumping digit I may provide a novel probe to explore the phenotypic consequences of transcription noise in cell functions. Code is freely available at http://cam.gzhu.edu.cn/info/1014/1223.htm.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Feng Jiao
- Guangzhou Center for Applied Mathematics, Guangzhou University, Guangzhou, 510006, P. R. China
- College of Mathematics and Information Sciences, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Moxun Tang
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
96
|
Prummel KD, Crowell HL, Nieuwenhuize S, Brombacher EC, Daetwyler S, Soneson C, Kresoja-Rakic J, Kocere A, Ronner M, Ernst A, Labbaf Z, Clouthier DE, Firulli AB, Sánchez-Iranzo H, Naganathan SR, O'Rourke R, Raz E, Mercader N, Burger A, Felley-Bosco E, Huisken J, Robinson MD, Mosimann C. Hand2 delineates mesothelium progenitors and is reactivated in mesothelioma. Nat Commun 2022; 13:1677. [PMID: 35354817 PMCID: PMC8967825 DOI: 10.1038/s41467-022-29311-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
The mesothelium lines body cavities and surrounds internal organs, widely contributing to homeostasis and regeneration. Mesothelium disruptions cause visceral anomalies and mesothelioma tumors. Nonetheless, the embryonic emergence of mesothelia remains incompletely understood. Here, we track mesothelial origins in the lateral plate mesoderm (LPM) using zebrafish. Single-cell transcriptomics uncovers a post-gastrulation gene expression signature centered on hand2 in distinct LPM progenitor cells. We map mesothelial progenitors to lateral-most, hand2-expressing LPM and confirm conservation in mouse. Time-lapse imaging of zebrafish hand2 reporter embryos captures mesothelium formation including pericardium, visceral, and parietal peritoneum. We find primordial germ cells migrate with the forming mesothelium as ventral migration boundary. Functionally, hand2 loss disrupts mesothelium formation with reduced progenitor cells and perturbed migration. In mouse and human mesothelioma, we document expression of LPM-associated transcription factors including Hand2, suggesting re-initiation of a developmental program. Our data connects mesothelium development to Hand2, expanding our understanding of mesothelial pathologies.
Collapse
Affiliation(s)
- Karin D Prummel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Helena L Crowell
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Susan Nieuwenhuize
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Eline C Brombacher
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephan Daetwyler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Charlotte Soneson
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Jelena Kresoja-Rakic
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zurich, Zürich, Switzerland
| | - Agnese Kocere
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Manuel Ronner
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zurich, Zürich, Switzerland
| | | | - Zahra Labbaf
- Institute for Cell Biology, ZMBE, Muenster, Germany
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - Héctor Sánchez-Iranzo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
- Institute of Biological and Chemical System - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Sundar R Naganathan
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Rebecca O'Rourke
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Erez Raz
- Institute for Cell Biology, ZMBE, Muenster, Germany
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | - Alexa Burger
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zurich, Zürich, Switzerland
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Morgridge Institute for Research, Madison, WI, USA
| | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
97
|
Yanagida A, Corujo-Simon E, Revell CK, Sahu P, Stirparo GG, Aspalter IM, Winkel AK, Peters R, De Belly H, Cassani DAD, Achouri S, Blumenfeld R, Franze K, Hannezo E, Paluch EK, Nichols J, Chalut KJ. Cell surface fluctuations regulate early embryonic lineage sorting. Cell 2022; 185:777-793.e20. [PMID: 35196500 PMCID: PMC8896887 DOI: 10.1016/j.cell.2022.01.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 10/22/2021] [Accepted: 01/26/2022] [Indexed: 01/24/2023]
Abstract
In development, lineage segregation is coordinated in time and space. An important example is the mammalian inner cell mass, in which the primitive endoderm (PrE, founder of the yolk sac) physically segregates from the epiblast (EPI, founder of the fetus). While the molecular requirements have been well studied, the physical mechanisms determining spatial segregation between EPI and PrE remain elusive. Here, we investigate the mechanical basis of EPI and PrE sorting. We find that rather than the differences in static cell surface mechanical parameters as in classical sorting models, it is the differences in surface fluctuations that robustly ensure physical lineage sorting. These differential surface fluctuations systematically correlate with differential cellular fluidity, which we propose together constitute a non-equilibrium sorting mechanism for EPI and PrE lineages. By combining experiments and modeling, we identify cell surface dynamics as a key factor orchestrating the correct spatial segregation of the founder embryonic lineages.
Collapse
Affiliation(s)
- Ayaka Yanagida
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Elena Corujo-Simon
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Christopher K Revell
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, UK
| | - Preeti Sahu
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Giuliano G Stirparo
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Irene M Aspalter
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Alex K Winkel
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Ruby Peters
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Henry De Belly
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Davide A D Cassani
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Sarra Achouri
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Raphael Blumenfeld
- Gonville & Caius College, University of Cambridge, Trinity St., Cambridge CB2 1TA, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Edouard Hannezo
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| | - Jennifer Nichols
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| | - Kevin J Chalut
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
98
|
Qiu C, Cao J, Martin BK, Li T, Welsh IC, Srivatsan S, Huang X, Calderon D, Noble WS, Disteche CM, Murray SA, Spielmann M, Moens CB, Trapnell C, Shendure J. Systematic reconstruction of cellular trajectories across mouse embryogenesis. Nat Genet 2022; 54:328-341. [PMID: 35288709 PMCID: PMC8920898 DOI: 10.1038/s41588-022-01018-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
Mammalian embryogenesis is characterized by rapid cellular proliferation and diversification. Within a few weeks, a single-cell zygote gives rise to millions of cells expressing a panoply of molecular programs. Although intensively studied, a comprehensive delineation of the major cellular trajectories that comprise mammalian development in vivo remains elusive. Here, we set out to integrate several single-cell RNA-sequencing (scRNA-seq) datasets that collectively span mouse gastrulation and organogenesis, supplemented with new profiling of ~150,000 nuclei from approximately embryonic day 8.5 (E8.5) embryos staged in one-somite increments. Overall, we define cell states at each of 19 successive stages spanning E3.5 to E13.5 and heuristically connect them to their pseudoancestors and pseudodescendants. Although constructed through automated procedures, the resulting directed acyclic graph (TOME (trajectories of mammalian embryogenesis)) is largely consistent with our contemporary understanding of mammalian development. We leverage TOME to systematically nominate transcription factors (TFs) as candidate regulators of each cell type's specification, as well as 'cell-type homologs' across vertebrate evolution.
Collapse
Affiliation(s)
- Chengxiang Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Junyue Cao
- The Rockefeller University, New York, NY, USA
| | - Beth K Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tony Li
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Xingfan Huang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Diego Calderon
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Christine M Disteche
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Malte Spielmann
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
| |
Collapse
|
99
|
Huth M, Santini L, Galimberti E, Ramesmayer J, Titz-Teixeira F, Sehlke R, Oberhuemer M, Stummer S, Herzog V, Garmhausen M, Romeike M, Chugunova A, Leesch F, Holcik L, Weipoltshammer K, Lackner A, Schoefer C, von Haeseler A, Buecker C, Pauli A, Ameres SL, Smith A, Beyer A, Leeb M. NMD is required for timely cell fate transitions by fine-tuning gene expression and regulating translation. Genes Dev 2022; 36:348-367. [PMID: 35241478 PMCID: PMC8973849 DOI: 10.1101/gad.347690.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
Abstract
Cell fate transitions depend on balanced rewiring of transcription and translation programs to mediate ordered developmental progression. Components of the nonsense-mediated mRNA decay (NMD) pathway have been implicated in regulating embryonic stem cell (ESC) differentiation, but the exact mechanism is unclear. Here we show that NMD controls expression levels of the translation initiation factor Eif4a2 and its premature termination codon-encoding isoform (Eif4a2PTC ). NMD deficiency leads to translation of the truncated eIF4A2PTC protein. eIF4A2PTC elicits increased mTORC1 activity and translation rates and causes differentiation delays. This establishes a previously unknown feedback loop between NMD and translation initiation. Furthermore, our results show a clear hierarchy in the severity of target deregulation and differentiation phenotypes between NMD effector KOs (Smg5 KO > Smg6 KO > Smg7 KO), which highlights heterodimer-independent functions for SMG5 and SMG7. Together, our findings expose an intricate link between mRNA homeostasis and mTORC1 activity that must be maintained for normal dynamics of cell state transitions.
Collapse
Affiliation(s)
- Michelle Huth
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
| | - Laura Santini
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030 Vienna, Austria
| | - Elena Galimberti
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
| | - Julia Ramesmayer
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
| | - Fabian Titz-Teixeira
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Robert Sehlke
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Michael Oberhuemer
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
| | - Sarah Stummer
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
| | - Veronika Herzog
- Institute of Molecular Biotechnology, Vienna BioCenter, 1030 Vienna, Austria
| | - Marius Garmhausen
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Merrit Romeike
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030 Vienna, Austria
| | - Anastasia Chugunova
- Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria
| | - Friederike Leesch
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030 Vienna, Austria
- Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria
| | - Laurenz Holcik
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030 Vienna, Austria
- Center for Integrative Bioinformatics Vienna, Max Perutz Laboratories, University of Vienna, Medical University of Vienna, 1030 Vienna, Austria
| | - Klara Weipoltshammer
- Department for Cell and Developmental Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Lackner
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
| | - Christian Schoefer
- Department for Cell and Developmental Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Arndt von Haeseler
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
- Center for Integrative Bioinformatics Vienna, Max Perutz Laboratories, University of Vienna, Medical University of Vienna, 1030 Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, 1090 Vienna, Austria
| | - Christa Buecker
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria
| | - Stefan L Ameres
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
- Institute of Molecular Biotechnology, Vienna BioCenter, 1030 Vienna, Austria
| | - Austin Smith
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Andreas Beyer
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Faculty of Medicine, University Hospital of Cologne, Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, 50923 Cologne, Germany
| | - Martin Leeb
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
| |
Collapse
|
100
|
Ohinata Y, Endo TA, Sugishita H, Watanabe T, Iizuka Y, Kawamoto Y, Saraya A, Kumon M, Koseki Y, Kondo T, Ohara O, Koseki H. Establishment of mouse stem cells that can recapitulate the developmental potential of primitive endoderm. Science 2022; 375:574-578. [PMID: 35113719 DOI: 10.1126/science.aay3325] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The mammalian blastocyst consists of three distinct cell types: epiblast, trophoblast (TB), and primitive endoderm (PrE). Although embryonic stem cells (ESCs) and trophoblast stem cells (TSCs) retain the functional properties of epiblast and TB, respectively, stem cells that fully recapitulate the developmental potential of PrE have not been established. Here, we report derivation of primitive endoderm stem cells (PrESCs) in mice. PrESCs recapitulate properties of embryonic day 4.5 founder PrE, are efficiently incorporated into PrE upon blastocyst injection, generate functionally competent PrE-derived tissues, and support fetal development of PrE-depleted blastocysts in chimeras. Furthermore, PrESCs can establish interactions with ESCs and TSCs and generate descendants with yolk sac-like structures in utero. Establishment of PrESCs will enable the elucidation of the mechanisms for PrE specification and subsequent pre- and postimplantation development.
Collapse
Affiliation(s)
- Yasuhide Ohinata
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo ward, Chiba 260-8670, Japan.,Laboratory for Developmental Genetics, RIKEN Center for Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Takaho A Endo
- Laboratory for Integrative Genomics, RIKEN Center for Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Hiroki Sugishita
- Laboratory for Developmental Genetics, RIKEN Center for Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics, RIKEN Center for Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Yusuke Iizuka
- Laboratory for Developmental Genetics, RIKEN Center for Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Yurie Kawamoto
- Laboratory for Developmental Genetics, RIKEN Center for Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Atsunori Saraya
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo ward, Chiba 260-8670, Japan
| | - Mami Kumon
- Laboratory for Developmental Genetics, RIKEN Center for Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Yoko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Takashi Kondo
- Laboratory for Developmental Genetics, RIKEN Center for Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.,Facility for Clinical Omics Analysis, Kazusa DNA Research Institure, 2-6-7 Kazusakamatori, Kisarazu, Chiba 292-0818, Japan
| | - Haruhiko Koseki
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo ward, Chiba 260-8670, Japan.,Laboratory for Developmental Genetics, RIKEN Center for Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|