51
|
Henderson MJ, Trychta KA, Yang SM, Bäck S, Yasgar A, Wires ES, Danchik C, Yan X, Yano H, Shi L, Wu KJ, Wang AQ, Tao D, Zahoránszky-Kőhalmi G, Hu X, Xu X, Maloney D, Zakharov AV, Rai G, Urano F, Airavaara M, Gavrilova O, Jadhav A, Wang Y, Simeonov A, Harvey BK. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell Rep 2021; 35:109040. [PMID: 33910017 DOI: 10.1016/j.celrep.2021.109040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/12/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Endoplasmic reticulum (ER) dysregulation is associated with pathologies including neurodegenerative, muscular, and diabetic conditions. Depletion of ER calcium can lead to the loss of resident proteins in a process termed exodosis. To identify compounds that attenuate the redistribution of ER proteins under pathological conditions, we performed a quantitative high-throughput screen using the Gaussia luciferase (GLuc)-secreted ER calcium modulated protein (SERCaMP) assay, which monitors secretion of ER-resident proteins triggered by calcium depletion. We identify several clinically used drugs, including bromocriptine, and further characterize them using assays to measure effects on ER calcium, ER stress, and ER exodosis. Bromocriptine elicits protective effects in cell-based models of exodosis as well as in vivo models of stroke and diabetes. Bromocriptine analogs with reduced dopamine receptor activity retain similar efficacy in stabilizing the ER proteome, indicating a non-canonical mechanism of action. This study describes a strategic approach to identify small-molecule drugs capable of improving ER proteostasis in human disease conditions.
Collapse
Affiliation(s)
- Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| | - Kathleen A Trychta
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Shyh-Ming Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Susanne Bäck
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Emily S Wires
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Carina Danchik
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Xiaokang Yan
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hideaki Yano
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Lei Shi
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kuo-Jen Wu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Amy Q Wang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Gergely Zahoránszky-Kőhalmi
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - David Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Alexey V Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Mikko Airavaara
- Neuroscience Center, HiLIFE & Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Oksana Gavrilova
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Brandon K Harvey
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
52
|
Maciel L, de Oliveira DF, Mesquita F, Souza HADS, Oliveira L, Christie MLA, Palhano FL, Campos de Carvalho AC, Nascimento JHM, Foguel D. New Cardiomyokine Reduces Myocardial Ischemia/Reperfusion Injury by PI3K-AKT Pathway Via a Putative KDEL-Receptor Binding. J Am Heart Assoc 2021; 10:e019685. [PMID: 33372525 PMCID: PMC7955482 DOI: 10.1161/jaha.120.019685] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background CDNF (cerebral dopamine neurotrophic factor) belongs to a new family of neurotrophic factors that exert systemic beneficial effects beyond the brain. Little is known about the role of CDNF in the cardiac context. Herein we investigated the effects of CDNF under endoplasmic reticulum-stress conditions using cardiomyocytes (humans and mice) and isolated rat hearts, as well as in rats subjected to ischemia/reperfusion (I/R). Methods and Results We showed that CDNF is secreted by cardiomyocytes stressed by thapsigargin and by isolated hearts subjected to I/R. Recombinant CDNF (exoCDNF) protected human and mouse cardiomyocytes against endoplasmic reticulum stress and restored the calcium transient. In isolated hearts subjected to I/R, exoCDNF avoided mitochondrial impairment and reduced the infarct area to 19% when administered before ischemia and to 25% when administered at the beginning of reperfusion, compared with an infarct area of 42% in the untreated I/R group. This protection was completely abrogated by AKT (protein kinase B) inhibitor. Heptapeptides containing the KDEL sequence, which binds to the KDEL-R (KDEL receptor), abolished exoCDNF beneficial effects, suggesting the participation of KDEL-R in this cardioprotection. CDNF administered intraperitoneally to rats decreased the infarct area in an in vivo model of I/R (from an infarct area of ≈44% in the I/R group to an infarct area of ≈27%). Moreover, a shorter version of CDNF, which lacks the last 4 residues (CDNF-ΔKTEL) and thus allows CDNF binding to KDEL-R, presented no cardioprotective activity in isolated hearts. Conclusions This is the first study to propose CDNF as a new cardiomyokine that induces cardioprotection via KDEL receptor binding and PI3K/AKT activation.
Collapse
Affiliation(s)
- Leonardo Maciel
- Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroBrazil
| | | | - Fernanda Mesquita
- Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroBrazil
| | | | - Leandro Oliveira
- Institute of Medical Biochemistry Leopoldo de MeisRio de Janeiro Federal, University of Rio de JaneiroBrazil
| | | | - Fernando L. Palhano
- Institute of Medical Biochemistry Leopoldo de MeisRio de Janeiro Federal, University of Rio de JaneiroBrazil
| | | | | | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de MeisRio de Janeiro Federal, University of Rio de JaneiroBrazil
| |
Collapse
|
53
|
Guo Y, Wu Y, Shi J, Zhuang H, Ci L, Huang Q, Wan Z, Yang H, Zhang M, Tan Y, Sun R, Xu L, Wang Z, Shen R, Fei J. miR-29a/b1 Regulates the Luteinizing Hormone Secretion and Affects Mouse Ovulation. Front Endocrinol (Lausanne) 2021; 12:636220. [PMID: 34135859 PMCID: PMC8202074 DOI: 10.3389/fendo.2021.636220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
miR-29a/b1 was reportedly involved in the regulation of the reproductive function in female mice, but the underlying molecular mechanisms are not clear. In this study, female mice lacking miR-29a/b1 showed a delay in vaginal opening, irregular estrous cycles, ovulation disorder and subfertility. The level of luteinizing hormone (LH) was significantly lower in plasma but higher in pituitary of mutant mice. However, egg development was normal in mutant mice and the ovulation disorder could be rescued by the superovulation treatment. These results suggested that the LH secretion was impaired in mutant mice. Further studies showed that deficiency of miR-29a/b1 in mice resulted in an abnormal expression of a number of proteins involved in vesicular transport and exocytosis in the pituitary, indicating the mutant mice had insufficient LH secretion. However, the detailed mechanism needs more research.
Collapse
Affiliation(s)
- Yang Guo
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Lab, Animal Research Center, Shanghai, China
| | - Youbing Wu
- Shanghai Model Organisms, Shanghai, China
| | - Jiahao Shi
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Hua Zhuang
- Shanghai Model Organisms, Shanghai, China
| | - Lei Ci
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
| | - Qin Huang
- Shanghai Model Organisms, Shanghai, China
| | - Zhipeng Wan
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
| | - Hua Yang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Mengjie Zhang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yutong Tan
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Ruilin Sun
- Shanghai Model Organisms, Shanghai, China
| | - Leon Xu
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhugang Wang
- Department of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruling Shen
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Lab, Animal Research Center, Shanghai, China
- *Correspondence: Jian Fei, ; Ruling Shen,
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
- *Correspondence: Jian Fei, ; Ruling Shen,
| |
Collapse
|
54
|
Wu Z, Newstead S, Biggin PC. The KDEL trafficking receptor exploits pH to tune the strength of an unusual short hydrogen bond. Sci Rep 2020; 10:16903. [PMID: 33037300 PMCID: PMC7547670 DOI: 10.1038/s41598-020-73906-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
The endoplasmic reticulum (ER) is the main site of protein synthesis in eukaryotic cells and requires a high concentration of luminal chaperones to function. During protein synthesis, ER luminal chaperones are swept along the secretory pathway and must be retrieved to maintain cell viability. ER protein retrieval is achieved by the KDEL receptor, which recognises a C-terminal Lys-Asp-Glu-Leu (KDEL) sequence. Recognition of ER proteins by the KDEL receptor is pH dependent, with binding occurring under acidic conditions in the Golgi and release under conditions of higher pH in the ER. Recent crystal structures of the KDEL receptor in the apo and peptide bound state suggested that peptide binding drives the formation of a short-hydrogen bond that locks the KDEL sequence in the receptor and activates the receptor for COPI binding in the cytoplasm. Using quantum mechanical calculations we demonstrate that the strength of this short hydrogen bond is reinforced following protonation of a nearby histidine, providing a conceptual link between receptor protonation and KDEL peptide binding. Protonation also controls the water networks adjacent to the peptide binding site, leading to a conformational change that ultimately allows the receptor-complex to be recognized by the COPI system.
Collapse
Affiliation(s)
- Zhiyi Wu
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, UK
| | - Simon Newstead
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, UK.
| | - Philip C Biggin
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
55
|
Newstead S, Barr F. Molecular basis for KDEL-mediated retrieval of escaped ER-resident proteins - SWEET talking the COPs. J Cell Sci 2020; 133:133/19/jcs250100. [PMID: 33037041 PMCID: PMC7561476 DOI: 10.1242/jcs.250100] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Protein localisation in the cell is controlled through the function of trafficking receptors, which recognise specific signal sequences and direct cargo proteins to different locations. The KDEL receptor (KDELR) was one of the first intracellular trafficking receptors identified and plays an essential role in maintaining the integrity of the early secretory pathway. The receptor recognises variants of a canonical C-terminal Lys-Asp-Glu-Leu (KDEL) signal sequence on ER-resident proteins when these escape to the Golgi, and targets these proteins to COPI- coated vesicles for retrograde transport back to the ER. The empty receptor is then recycled from the ER back to the Golgi by COPII-coated vesicles. Crystal structures of the KDELR show that it is structurally related to the PQ-loop family of transporters that are found in both pro- and eukaryotes, and shuttle sugars, amino acids and vitamins across cellular membranes. Furthermore, analogous to PQ-loop transporters, the KDELR undergoes a pH-dependent and ligand-regulated conformational cycle. Here, we propose that the striking structural similarity between the KDELR and PQ-loop transporters reveals a connection between transport and trafficking in the cell, with important implications for understanding trafficking receptor evolution and function. Summary: The structure of the KDEL receptor gives new insights into the close connection between trafficking and transport in the cell.
Collapse
Affiliation(s)
- Simon Newstead
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| | - Francis Barr
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| |
Collapse
|
56
|
de Las Heras-Saldana S, Lopez BI, Moghaddar N, Park W, Park JE, Chung KY, Lim D, Lee SH, Shin D, van der Werf JHJ. Use of gene expression and whole-genome sequence information to improve the accuracy of genomic prediction for carcass traits in Hanwoo cattle. Genet Sel Evol 2020; 52:54. [PMID: 32993481 PMCID: PMC7525992 DOI: 10.1186/s12711-020-00574-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Background In this study, we assessed the accuracy of genomic prediction for carcass weight (CWT), marbling score (MS), eye muscle area (EMA) and back fat thickness (BFT) in Hanwoo cattle when using genomic best linear unbiased prediction (GBLUP), weighted GBLUP (wGBLUP), and a BayesR model. For these models, we investigated the potential gain from using pre-selected single nucleotide polymorphisms (SNPs) from a genome-wide association study (GWAS) on imputed sequence data and from gene expression information. We used data on 13,717 animals with carcass phenotypes and imputed sequence genotypes that were split in an independent GWAS discovery set of varying size and a remaining set for validation of prediction. Expression data were used from a Hanwoo gene expression experiment based on 45 animals. Results Using a larger number of animals in the reference set increased the accuracy of genomic prediction whereas a larger independent GWAS discovery dataset improved identification of predictive SNPs. Using pre-selected SNPs from GWAS in GBLUP improved accuracy of prediction by 0.02 for EMA and up to 0.05 for BFT, CWT, and MS, compared to a 50 k standard SNP array that gave accuracies of 0.50, 0.47, 0.58, and 0.47, respectively. Accuracy of prediction of BFT and CWT increased when BayesR was applied with the 50 k SNP array (0.02 and 0.03, respectively) and was further improved by combining the 50 k array with the top-SNPs (0.06 and 0.04, respectively). By contrast, using BayesR resulted in limited improvement for EMA and MS. wGBLUP did not improve accuracy but increased prediction bias. Based on the RNA-seq experiment, we identified informative expression quantitative trait loci, which, when used in GBLUP, improved the accuracy of prediction slightly, i.e. between 0.01 and 0.02. SNPs that were located in genes, the expression of which was associated with differences in trait phenotype, did not contribute to a higher prediction accuracy. Conclusions Our results show that, in Hanwoo beef cattle, when SNPs are pre-selected from GWAS on imputed sequence data, the accuracy of prediction improves only slightly whereas the contribution of SNPs that are selected based on gene expression is not significant. The benefit of statistical models to prioritize selected SNPs for estimating genomic breeding values is trait-specific and depends on the genetic architecture of each trait.
Collapse
Affiliation(s)
| | - Bryan Irvine Lopez
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Nasir Moghaddar
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Woncheoul Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Ki Y Chung
- Department of Beef Science, Korea National College of Agriculture and Fisheries, Jeonju, Republic of Korea
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea.
| | - Seung H Lee
- Division of Animal and Dairy Science, Chungnam National University, Deajeon, 34148, Republic of Korea
| | - Donghyun Shin
- The Animal Molecular Genetics and Breeding Centre, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Julius H J van der Werf
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
57
|
Shergalis A, Xue D, Gharbia FZ, Driks H, Shrestha B, Tanweer A, Cromer K, Ljungman M, Neamati N. Characterization of Aminobenzylphenols as Protein Disulfide Isomerase Inhibitors in Glioblastoma Cell Lines. J Med Chem 2020; 63:10263-10286. [PMID: 32830969 PMCID: PMC8103808 DOI: 10.1021/acs.jmedchem.0c00728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Disulfide bond formation is a critical post-translational modification of newly synthesized polypeptides in the oxidizing environment of the endoplasmic reticulum and is mediated by protein disulfide isomerase (PDIA1). In this study, we report a series of α-aminobenzylphenol analogues as potent PDI inhibitors. The lead compound, AS15, is a covalent nanomolar inhibitor of PDI, and the combination of AS15 analogues with glutathione synthesis inhibitor buthionine sulfoximine (BSO) leads to synergistic cell growth inhibition. Using nascent RNA sequencing, we show that an AS15 analogue triggers the unfolded protein response in glioblastoma cells. A BODIPY-labeled analogue binds proteins including PDIA1, suggesting that the compounds are cell-permeable and reach the intended target. Taken together, these findings demonstrate an extensive biochemical characterization of a novel series of highly potent reactive small molecules that covalently bind to PDI.
Collapse
Affiliation(s)
- Andrea Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ding Xue
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fatma Z. Gharbia
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hannah Driks
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Binita Shrestha
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amina Tanweer
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kirin Cromer
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, School of Public Health, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
58
|
Guo XY, Liu YS, Gao XD, Kinoshita T, Fujita M. Calnexin mediates the maturation of GPI-anchors through ER retention. J Biol Chem 2020; 295:16393-16410. [PMID: 32967966 DOI: 10.1074/jbc.ra120.015577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/05/2020] [Indexed: 01/05/2023] Open
Abstract
The protein folding and lipid moiety status of glycosylphosphatidylinositol-anchored proteins (GPI-APs) are monitored in the endoplasmic reticulum (ER), with calnexin playing dual roles in the maturation of GPI-APs. In the present study, we investigated the functions of calnexin in the quality control and lipid remodeling of GPI-APs in the ER. By directly binding the N-glycan on proteins, calnexin was observed to efficiently retain GPI-APs in the ER until they were correctly folded. In addition, sufficient ER retention time was crucial for GPI-inositol deacylation, which is mediated by post-GPI attachment protein 1 (PGAP1). Once the calnexin/calreticulin cycle was disrupted, misfolded and inositol-acylated GPI-APs could not be retained in the ER and were exposed on the plasma membrane. In calnexin/calreticulin-deficient cells, endogenous GPI-anchored alkaline phosphatase was expressed on the cell surface, but its activity was significantly decreased. ER stress induced surface expression of misfolded GPI-APs, but proper GPI-inositol deacylation occurred due to the extended time that they were retained in the ER. Our results indicate that calnexin-mediated ER quality control systems for GPI-APs are necessary for both protein folding and GPI-inositol deacylation.
Collapse
Affiliation(s)
- Xin-Yu Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
59
|
Brecker M, Khakhina S, Schubert TJ, Thompson Z, Rubenstein RC. The Probable, Possible, and Novel Functions of ERp29. Front Physiol 2020; 11:574339. [PMID: 33013490 PMCID: PMC7506106 DOI: 10.3389/fphys.2020.574339] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022] Open
Abstract
The luminal endoplasmic reticulum (ER) protein of 29 kDa (ERp29) is a ubiquitously expressed cellular agent with multiple critical roles. ERp29 regulates the biosynthesis and trafficking of several transmembrane and secretory proteins, including the cystic fibrosis transmembrane conductance regulator (CFTR), the epithelial sodium channel (ENaC), thyroglobulin, connexin 43 hemichannels, and proinsulin. ERp29 is hypothesized to promote ER to cis-Golgi cargo protein transport via COP II machinery through its interactions with the KDEL receptor; this interaction may facilitate the loading of ERp29 clients into COP II vesicles. ERp29 also plays a role in ER stress (ERS) and the unfolded protein response (UPR) and is implicated in oncogenesis. Here, we review the vast array of ERp29’s clients, its role as an ER to Golgi escort protein, and further suggest ERp29 as a potential target for therapies related to diseases of protein misfolding and mistrafficking.
Collapse
Affiliation(s)
- Margaret Brecker
- Cystic Fibrosis Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Svetlana Khakhina
- Cystic Fibrosis Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Tyler J. Schubert
- Cystic Fibrosis Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Zachary Thompson
- Cystic Fibrosis Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ronald C. Rubenstein
- Cystic Fibrosis Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- *Correspondence: Ronald C. Rubenstein, ;
| |
Collapse
|
60
|
Chaplot K, Jarvela TS, Lindberg I. Secreted Chaperones in Neurodegeneration. Front Aging Neurosci 2020; 12:268. [PMID: 33192447 PMCID: PMC7481362 DOI: 10.3389/fnagi.2020.00268] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, is a combination of cellular processes that govern protein quality control, namely, protein translation, folding, processing, and degradation. Disruptions in these processes can lead to protein misfolding and aggregation. Proteostatic disruption can lead to cellular changes such as endoplasmic reticulum or oxidative stress; organelle dysfunction; and, if continued, to cell death. A majority of neurodegenerative diseases involve the pathologic aggregation of proteins that subverts normal neuronal function. While prior reviews of neuronal proteostasis in neurodegenerative processes have focused on cytoplasmic chaperones, there is increasing evidence that chaperones secreted both by neurons and other brain cells in the extracellular - including transsynaptic - space play important roles in neuronal proteostasis. In this review, we will introduce various secreted chaperones involved in neurodegeneration. We begin with clusterin and discuss its identification in various protein aggregates, and the use of increased cerebrospinal fluid (CSF) clusterin as a potential biomarker and as a potential therapeutic. Our next secreted chaperone is progranulin; polymorphisms in this gene represent a known genetic risk factor for frontotemporal lobar degeneration, and progranulin overexpression has been found to be effective in reducing Alzheimer's- and Parkinson's-like neurodegenerative phenotypes in mouse models. We move on to BRICHOS domain-containing proteins, a family of proteins containing highly potent anti-amyloidogenic activity; we summarize studies describing the biochemical mechanisms by which recombinant BRICHOS protein might serve as a therapeutic agent. The next section of the review is devoted to the secreted chaperones 7B2 and proSAAS, small neuronal proteins which are packaged together with neuropeptides and released during synaptic activity. Since proteins can be secreted by both classical secretory and non-classical mechanisms, we also review the small heat shock proteins (sHsps) that can be secreted from the cytoplasm to the extracellular environment and provide evidence for their involvement in extracellular proteostasis and neuroprotection. Our goal in this review focusing on extracellular chaperones in neurodegenerative disease is to summarize the most recent literature relating to neurodegeneration for each secreted chaperone; to identify any common mechanisms; and to point out areas of similarity as well as differences between the secreted chaperones identified to date.
Collapse
Affiliation(s)
| | | | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
61
|
Jӓntti M, Harvey BK. Trophic activities of endoplasmic reticulum proteins CDNF and MANF. Cell Tissue Res 2020; 382:83-100. [PMID: 32845431 DOI: 10.1007/s00441-020-03263-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) and cerebral dopamine neurotrophic factor (CDNF) are endoplasmic reticulum (ER) luminal proteins that confer trophic activities in a wide range of tissues under diverse pathological conditions. Despite initially being classified as neurotrophic factors, neither protein structurally nor functionally resembles bona fide neurotrophic factors. Their highly homologous structures comprise a unique globular, saposin-like domain within the N-terminus joined by a flexible linker to a C-terminus containing a SAP-like domain, CXXC motif and an ER retention sequence. Neurotrophic factors exert effects by binding to cognate receptors in the plasma membrane; however, no cell surface receptors have been identified for MANF and CDNF. Both can act as unfolded protein response (UPR) genes that modulate the UPR and inflammatory processes. The trophic activity of MANF and CDNF extends beyond the central nervous system with MANF being crucial for the development of pancreatic β cells and both have trophic effects in a variety of diseases related to the liver, heart, skeletal tissue, kidney and peripheral nervous system. In this article, the unique features of MANF and CDNF, such as their structure and mechanisms of action related to ER stress and inflammation, will be reviewed. Recently identified interactions with lipids and membrane trafficking will also be described. Lastly, their function and therapeutic potential in different diseases including a recent clinical trial using CDNF to treat Parkinson's disease will be discussed. Collectively, this review will highlight MANF and CDNF as broad-acting trophic factors that regulate functions of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Maria Jӓntti
- Molecular Mechanisms of Cellular Stress and Inflammation Lab, Intramural Research Program, National Institute on Drug Abuse, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Brandon K Harvey
- Molecular Mechanisms of Cellular Stress and Inflammation Lab, Intramural Research Program, National Institute on Drug Abuse, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| |
Collapse
|
62
|
Wang DD, Zou LW, Jin Q, Guan XQ, Yu Y, Zhu YD, Huang J, Gao P, Wang P, Ge GB, Yang L. Bioluminescent Sensor Reveals that Carboxylesterase 1A is a Novel Endoplasmic Reticulum-Derived Serologic Indicator for Hepatocyte Injury. ACS Sens 2020; 5:1987-1995. [PMID: 32529833 DOI: 10.1021/acssensors.0c00384] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Discovery of novel liver injury indicators and development of practical assays to detect target indicator(s) would strongly facilitate the diagnosis of liver disorders. Herein, an alternative biomarker discovery strategy was applied to find suitable endoplasmic reticulum-resident protein(s) as serologic indicator(s) for hepatocyte injury via analysis of the human proteome database among plasma and various organs. Both database searching and preliminary experiments suggested that human carboxylesterase 1A (CES1A), one of the most abundant and hepatic-restricted proteins, could serve as a good serologic indicator for hepatocyte injury. Then, a highly selective and practical bioluminescent sensor was developed for real-time sensing of CES1A in various biological systems including plasma. With the help of this bioluminescent sensor, the release of hepatic CES1A into the extracellular medium or the circulation system could be directly monitored. Further investigations demonstrated that serum activity levels of CES1A were elevated dramatically in mice with liver injury or patients with liver diseases. Collectively, this study provided solid evidence to support that CES1A was a novel serological indicator for hepatocyte injury. Furthermore, the strategy used in this study paved a new way for the rational discovery of practical indicators to monitor the dynamic progression of injury in a given tissue or organ.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiang Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao-Qing Guan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yang Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ya-Di Zhu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian Huang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Institute of Food and Drug Control, Shanghai 201203, China
| | - Peng Gao
- Dalian Sixth Peoples Hospital Affiliated of Dalian Medical University, Dalian 116001, China
| | - Ping Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
63
|
Cell-type-specific differences in KDEL receptor clustering in mammalian cells. PLoS One 2020; 15:e0235864. [PMID: 32645101 PMCID: PMC7347126 DOI: 10.1371/journal.pone.0235864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022] Open
Abstract
In eukaryotic cells, KDEL receptors (KDELRs) facilitate the retrieval of endoplasmic reticulum (ER) luminal proteins from the Golgi compartment back to the ER. Apart from the well-documented retention function, recent findings reveal that the cellular KDELRs have more complex roles, e.g. in cell signalling, protein secretion, cell adhesion and tumorigenesis. Furthermore, several studies suggest that a sub-population of KDELRs is located at the cell surface, where they could form and internalize KDELR/cargo clusters after K/HDEL-ligand binding. However, so far it has been unclear whether there are species- or cell-type-specific differences in KDELR clustering. By comparing ligand-induced KDELR clustering in different mouse and human cell lines via live cell imaging, we show that macrophage cell lines from both species do not develop any clusters. Using RT-qPCR experiments and numerical analysis, we address the role of KDELR expression as well as endocytosis and exocytosis rates on the receptor clustering at the plasma membrane and discuss how the efficiency of directed transport to preferred docking sites on the membrane influences the exponent of the power-law distribution of the cluster size.
Collapse
|
64
|
Stalder D, Gershlick DC. Direct trafficking pathways from the Golgi apparatus to the plasma membrane. Semin Cell Dev Biol 2020; 107:112-125. [PMID: 32317144 PMCID: PMC7152905 DOI: 10.1016/j.semcdb.2020.04.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
In eukaryotic cells, protein sorting is a highly regulated mechanism important for many physiological events. After synthesis in the endoplasmic reticulum and trafficking to the Golgi apparatus, proteins sort to many different cellular destinations including the endolysosomal system and the extracellular space. Secreted proteins need to be delivered directly to the cell surface. Sorting of secreted proteins from the Golgi apparatus has been a topic of interest for over thirty years, yet there is still no clear understanding of the machinery that forms the post-Golgi carriers. Most evidence points to these post-Golgi carriers being tubular pleomorphic structures that bud from the trans-face of the Golgi. In this review, we present the background studies and highlight the key components of this pathway, we then discuss the machinery implicated in the formation of these carriers, their translocation across the cytosol, and their fusion at the plasma membrane.
Collapse
Key Words
- ATP, adenosine triphosphate
- BFA, Brefeldin A
- CARTS, CARriers of the TGN to the cell Surface
- CI-MPR, cation-independent mannose-6 phosphate receptor
- Constitutive Secretion
- CtBP3/BARS, C-terminus binding protein 3/BFA adenosine diphosphate–ribosylated substrate
- ER, endoplasmic reticulum
- GPI-anchored proteins, glycosylphosphatidylinositol-anchored proteins
- GlcCer, glucosylceramidetol
- Golgi to plasma membrane sorting
- PAUF, pancreatic adenocarcinoma up-regulated factor
- PKD, Protein Kinase D
- RUSH, retention using selective hooks
- SBP, streptavidin-binding peptide
- SM, sphingomyelin
- SNARE, soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor
- SPCA1, secretory pathway calcium ATPase 1
- Secretion
- TGN, trans-Golgi Network
- TIRF, total internal reflection fluorescence
- VSV, vesicular stomatitis virus
- pleomorphic tubular carriers
- post-Golgi carriers
- ts, temperature sensitive
Collapse
Affiliation(s)
- Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
65
|
Protein disulfide isomerase in cardiovascular disease. Exp Mol Med 2020; 52:390-399. [PMID: 32203104 PMCID: PMC7156431 DOI: 10.1038/s12276-020-0401-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 01/07/2023] Open
Abstract
Protein disulfide isomerase (PDI) participates in the pathogenesis of numerous diseases. Increasing evidence indicates that intravascular cell-derived PDI plays an important role in the initiation and progression of cardiovascular diseases, including thrombosis and vascular inflammation. Recent studies with PDI conditional knockout mice have advanced our understanding of the function of cell-specific PDI in disease processes. Furthermore, the identification and development of novel small-molecule PDI inhibitors has led into a new era of PDI research that transitioned from the bench to bedside. In this review, we will discuss recent findings on the regulatory role of PDI in cardiovascular disease. Efforts to untangle the functions of a large family of enzymes could lead researchers to new therapies for diverse cardiovascular diseases. Members of the protein disulfide isomerase (PDI) family chemically modify other proteins in ways that can alter both their structure and biological activity. Jaehyung Cho of the University of Illinois at Chicago, USA and coworkers have reviewed numerous studies linking PDI with cardiovascular diseases, including thrombosis, heart attack, vascular inflammation, and stroke. The authors also report progress in developing small-molecule PDI inhibitors that could yield the treatment for these conditions.
Collapse
|
66
|
Samy A, Kaneyoshi K, Omasa T. Improvement of Intracellular Traffic System by Overexpression of KDEL Receptor 1 in Antibody-Producing CHO Cells. Biotechnol J 2020; 15:e1900352. [PMID: 32073237 DOI: 10.1002/biot.201900352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/24/2020] [Indexed: 11/08/2022]
Abstract
The localization of soluble endoplasmic reticulum (ER) chaperones in the cell organelle is mediated by the C-terminal KDEL (lysine, aspartic acid, glutamic acid and leucine) motif. This motif is recognized by the KDEL receptor, a seven-transmembrane protein that cycles between the ER and cis-Golgi to capture missorted KDEL chaperones from post-ER compartments in a pH-dependent manner. The KDEL receptor's target chaperones have a substantial role in protein folding and assembly. In this study, the gene expression level of KDEL receptor 1 shows a moderate upregulation during either ER stress or growth of Chinese hamster ovary (CHO) cells in batch culture, while the ER chaperones show higher upregulation. This might indicate the possibility of saturation of the ER retention machinery or at least hindered retention during late stage batch culture in recombinant CHO cells. KDELR1 is overexpressed in a monoclonal antibody-producing CHO cell line to improve the intracellular chaperone retention rate in the ER. An increase in the specific productivity of IgG1 by 13.2% during the exponential phase, and 23.8% in the deceleration phase of batch culture is observed. This is the first study to focus on the ER retention system as a cell engineering target for enhancing recombinant protein production.
Collapse
Affiliation(s)
- Andrew Samy
- Graduate School of Engineering , Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kohei Kaneyoshi
- Graduate School of Engineering , Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takeshi Omasa
- Graduate School of Engineering , Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
67
|
Chen X, Ji B, Hao X, Li X, Eisele F, Nyström T, Petranovic D. FMN reduces Amyloid-β toxicity in yeast by regulating redox status and cellular metabolism. Nat Commun 2020; 11:867. [PMID: 32054832 PMCID: PMC7018843 DOI: 10.1038/s41467-020-14525-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 01/07/2020] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is defined by progressive neurodegeneration, with oligomerization and aggregation of amyloid-β peptides (Aβ) playing a pivotal role in its pathogenesis. In recent years, the yeast Saccharomyces cerevisiae has been successfully used to clarify the roles of different human proteins involved in neurodegeneration. Here, we report a genome-wide synthetic genetic interaction array to identify toxicity modifiers of Aβ42, using yeast as the model organism. We find that FMN1, the gene encoding riboflavin kinase, and its metabolic product flavin mononucleotide (FMN) reduce Aβ42 toxicity. Classic experimental analyses combined with RNAseq show the effects of FMN supplementation to include reducing misfolded protein load, altering cellular metabolism, increasing NADH/(NADH + NAD+) and NADPH/(NADPH + NADP+) ratios and increasing resistance to oxidative stress. Additionally, FMN supplementation modifies Htt103QP toxicity and α-synuclein toxicity in the humanized yeast. Our findings offer insights for reducing cytotoxicity of Aβ42, and potentially other misfolded proteins, via FMN-dependent cellular pathways.
Collapse
Affiliation(s)
- Xin Chen
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Boyang Ji
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Xinxin Hao
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, SE40530, Gothenburg, Sweden
| | - Xiaowei Li
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Frederik Eisele
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, SE40530, Gothenburg, Sweden
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, SE40530, Gothenburg, Sweden
| | - Dina Petranovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296, Gothenburg, Sweden.
| |
Collapse
|
68
|
Deficiency of the ER-stress-regulator MANF triggers progressive outer hair cell death and hearing loss. Cell Death Dis 2020; 11:100. [PMID: 32029702 PMCID: PMC7005028 DOI: 10.1038/s41419-020-2286-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/28/2022]
Abstract
The non-conventional neurotrophic factor mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-resident protein that promotes ER homeostasis. MANF has a cytoprotective function, shown in the central nervous system neurons and pancreatic beta cells. Here, we report that MANF is expressed in the hair cells and neurons and in selected non-sensory cells of the cochlea and that Manf inactivation triggers upregulation of the ER chaperones in these cells. However, Manf inactivation resulted in the death of only outer hair cells (OHCs), the cells responsible for sound amplification in the cochlea. All OHCs were formed in Manf-inactivated mice, but progressive OHC death started soon after the onset of hearing function. The robust OHC loss was accompanied by strongly elevated hearing thresholds. Conditional Manf inactivation demonstrated that MANF has a local function in the cochlea. Immunostainings revealed the upregulation of CHOP, the pro-apoptotic component of the unfolded protein response (UPR), in Manf-inactivated OHCs, linking the UPR to the loss of these cells. The phenotype of Manf-inactivated OHCs was distinctly dependent on the mouse strain, such that the strains characterized by early-onset age-related hearing loss (C57BL/6J and CD-1) were affected. These results suggest that Manf deficiency becomes detrimental when accompanied by gene mutations that predispose to hearing loss, by intensifying ER dyshomeostasis. Together, MANF is the first growth factor shown to antagonize ER stress-mediated OHC death. MANF might serve as a therapeutic candidate for protection against hearing loss induced by the ER-machinery-targeting stressors.
Collapse
|
69
|
Yu SJ, Wu KJ, Bae E, Wang YS, Chiang CW, Kuo LW, Harvey BK, Greig NH, Wang Y. Post-treatment with Posiphen Reduces Endoplasmic Reticulum Stress and Neurodegeneration in Stroke Brain. iScience 2020; 23:100866. [PMID: 32058974 PMCID: PMC7013187 DOI: 10.1016/j.isci.2020.100866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/18/2019] [Accepted: 01/21/2020] [Indexed: 12/26/2022] Open
Abstract
Acetylcholinesterase (AChE) inhibitors have protective and anti-inflammatory actions against brain injury, mediated by nicotinic α7 cholinergic receptor activation. The use of AChE inhibitors in patients is limited by systemic cholinergic side effects. Posiphen, a stereoisomer of the AChE inhibitor Phenserine, lacks AChE inhibitor activity. The purpose of this study is to determine the protective effect of Posiphen in cellular and animal models of stroke. Both Posiphen and Phenserine reduced glutamate-mediated neuronal loss in co-cultures of primary cortical cells and microglia. Phenserine-, but not Posiphen-, mediated neuroprotection was diminished by the nicotinic α7 receptor antagonist methyllycaconitine. Posiphen antagonized NMDA-mediated Ca++ influx, thapsigargin-mediated neuronal loss and ER stress in cultured cells. Early post-treatment with Posiphen reduced ER stress signals, IBA1 immunoreactivity, TUNEL and infarction in the ischemic cortex, as well as neurological deficits in stroke rats. These findings indicate that Posiphen is neuroprotective against stroke through regulating Ca++i and ER stress. Posiphen induces protection in cell culture through noncholinergic mechanism Posiphen attenuates glutamate-mediated Ca++i and ER stress in neuronal culture Posiphen mitigates ER stress in stroke brain Posiphen reduces neurodegeneration in stroke rats
Collapse
Affiliation(s)
- Seong-Jin Yu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Kuo-Jen Wu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Eunkyung Bae
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Syuan Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Wen Chiang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | | | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute of Aging, NIH, Baltimore, MD, USA
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
70
|
Marie KL, Sassano A, Yang HH, Michalowski AM, Michael HT, Guo T, Tsai YC, Weissman AM, Lee MP, Jenkins LM, Zaidi MR, Pérez-Guijarro E, Day CP, Ylaya K, Hewitt SM, Patel NL, Arnheiter H, Davis S, Meltzer PS, Merlino G, Mishra PJ. Melanoblast transcriptome analysis reveals pathways promoting melanoma metastasis. Nat Commun 2020; 11:333. [PMID: 31949145 PMCID: PMC6965108 DOI: 10.1038/s41467-019-14085-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 12/11/2019] [Indexed: 01/21/2023] Open
Abstract
Cutaneous malignant melanoma is an aggressive cancer of melanocytes with a strong propensity to metastasize. We posit that melanoma cells acquire metastatic capability by adopting an embryonic-like phenotype, and that a lineage approach would uncover metastatic melanoma biology. Using a genetically engineered mouse model to generate a rich melanoblast transcriptome dataset, we identify melanoblast-specific genes whose expression contribute to metastatic competence and derive a 43-gene signature that predicts patient survival. We identify a melanoblast gene, KDELR3, whose loss impairs experimental metastasis. In contrast, KDELR1 deficiency enhances metastasis, providing the first example of different disease etiologies within the KDELR-family of retrograde transporters. We show that KDELR3 regulates the metastasis suppressor, KAI1, and report an interaction with the E3 ubiquitin-protein ligase gp78, a regulator of KAI1 degradation. Our work demonstrates that the melanoblast transcriptome can be mined to uncover targetable pathways for melanoma therapy.
Collapse
Affiliation(s)
- Kerrie L Marie
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Antonella Sassano
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Howard H Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Aleksandra M Michalowski
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Helen T Michael
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Theresa Guo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Otolaryngology-Head and Neck Surgery, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA
| | - Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Allan M Weissman
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Maxwell P Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - M Raza Zaidi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kris Ylaya
- Experimental Pathology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nimit L Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, 21702, USA
| | - Heinz Arnheiter
- Mammalian Development Section, National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, 20892, USA
| | - Sean Davis
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Pravin J Mishra
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- James Cancer Hospital and Solove Research Institute, Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| |
Collapse
|
71
|
Conflicting Actions of Inhalational Anesthetics, Neurotoxicity and Neuroprotection, Mediated by the Unfolded Protein Response. Int J Mol Sci 2020; 21:ijms21020450. [PMID: 31936788 PMCID: PMC7013687 DOI: 10.3390/ijms21020450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Preclinical studies have shown that exposure of the developing brain to inhalational anesthetics can cause neurotoxicity. However, other studies have claimed that anesthetics can exert neuroprotective effects. We investigated the mechanisms associated with the neurotoxic and neuroprotective effects exerted by inhalational anesthetics. Neuroblastoma cells were exposed to sevoflurane and then cultured in 1% oxygen. We evaluated the expression of proteins related to the unfolded protein response (UPR). Next, we exposed adult mice in which binding immunoglobulin protein (BiP) had been mutated, and wild-type mice, to sevoflurane, and evaluated their cognitive function. We compared our results to those from our previous study in which mice were exposed to sevoflurane at the fetal stage. Pre-exposure to sevoflurane reduced the expression of CHOP in neuroblastoma cells exposed to hypoxia. Anesthetic pre-exposure also significantly improved the cognitive function of adult wild-type mice, but not the mutant mice. In contrast, mice exposed to anesthetics during the fetal stage showed cognitive impairment. Our data indicate that exposure to inhalational anesthetics causes endoplasmic reticulum (ER) stress, and subsequently leads to an adaptive response, the UPR. This response may enhance the capacity of cells to adapt to injuries and improve neuronal function in adult mice, but not in developing mice.
Collapse
|
72
|
Bortnov V, Tonelli M, Lee W, Lin Z, Annis DS, Demerdash ON, Bateman A, Mitchell JC, Ge Y, Markley JL, Mosher DF. Solution structure of human myeloid-derived growth factor suggests a conserved function in the endoplasmic reticulum. Nat Commun 2019; 10:5612. [PMID: 31819058 PMCID: PMC6901522 DOI: 10.1038/s41467-019-13577-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Human myeloid-derived growth factor (hMYDGF) is a 142-residue protein with a C-terminal endoplasmic reticulum (ER) retention sequence (ERS). Extracellular MYDGF mediates cardiac repair in mice after anoxic injury. Although homologs of hMYDGF are found in eukaryotes as distant as protozoans, its structure and function are unknown. Here we present the NMR solution structure of hMYDGF, which consists of a short α-helix and ten β-strands distributed in three β-sheets. Conserved residues map to the unstructured ERS, loops on the face opposite the ERS, and the surface of a cavity underneath the conserved loops. The only protein or portion of a protein known to have a similar fold is the base domain of VNN1. We suggest, in analogy to the tethering of the VNN1 nitrilase domain to the plasma membrane via its base domain, that MYDGF complexed to the KDEL receptor binds cargo via its conserved residues for transport to the ER.
Collapse
Affiliation(s)
- Valeriu Bortnov
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Marco Tonelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Woonghee Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ziqing Lin
- Departments of Cell and Regenerative Biology and Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Douglas S Annis
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Omar N Demerdash
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Julie C Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Ying Ge
- Departments of Cell and Regenerative Biology and Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John L Markley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Deane F Mosher
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
73
|
Starck M, Fradgley JD, Di Vita S, Mosely JA, Pal R, Parker D. Targeted Luminescent Europium Peptide Conjugates: Comparative Analysis Using Maleimide and para-Nitropyridyl Linkages for Organelle Staining. Bioconjug Chem 2019; 31:229-240. [DOI: 10.1021/acs.bioconjchem.9b00735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Matthieu Starck
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Jack D. Fradgley
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Stefania Di Vita
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Jackie A. Mosely
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Robert Pal
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - David Parker
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
74
|
Kokubun H, Jin H, Aoe T. Pathogenic Effects of Impaired Retrieval between the Endoplasmic Reticulum and Golgi Complex. Int J Mol Sci 2019; 20:ijms20225614. [PMID: 31717602 PMCID: PMC6888596 DOI: 10.3390/ijms20225614] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022] Open
Abstract
Cellular activities, such as growth and secretion, are dependent on correct protein folding and intracellular protein transport. Injury, like ischemia, malnutrition, and invasion of toxic substances, affect the folding environment in the endoplasmic reticulum (ER). The ER senses this information, following which cells adapt their response to varied situations through the unfolded protein response. Activation of the KDEL receptor, resulting from the secretion from the ER of chaperones containing the KDEL sequence, plays an important role in this adaptation. The KDEL receptor was initially shown to be necessary for the retention of KDEL sequence-containing proteins in the ER. However, it has become clear that the activated KDEL receptor also regulates bidirectional transport between the ER and the Golgi complex, as well as from the Golgi to the secretory pathway. In addition, it has been suggested that the signal for KDEL receptor activation may also affect several other cellular activities. In this review, we discuss KDEL receptor-mediated bidirectional transport and signaling and describe disease models and human diseases related to KDEL receptor dysfunction.
Collapse
Affiliation(s)
- Hiroshi Kokubun
- Department of Anesthesiology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Hisayo Jin
- Department of Anesthesiology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Tomohiko Aoe
- Department of Medicine, Pain Center, Chiba Medical Center, Teikyo University, Ichihara 299-0111, Japan
- Correspondence: ; Tel.: +81-436-62-1211
| |
Collapse
|
75
|
Liao Z, She C, Ma L, Sun Z, Li P, Zhang X, Wang P, Li W. KDELR2 Promotes Glioblastoma Tumorigenesis Targeted by HIF1a via mTOR Signaling Pathway. Cell Mol Neurobiol 2019; 39:1207-1215. [PMID: 31342232 DOI: 10.1007/s10571-019-00715-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/18/2019] [Indexed: 01/07/2023]
Abstract
The KDEL (Lys-Asp-Glu-Leu) receptors (KDELRs), proteins with seven transmembrane domains, are primarily responsible for endoplasmic reticulum (ER) homeostasis. Recent studies have found additional function of KDELRs in growth, cellular secretory traffic, immune response, and autophagy; however, its role in tumorigenesis is still poorly understood. Here, we showed that KDELR2 is highly expressed in glioblastoma (GBM) tissues. Reviewing the expression of KDELR2 in TCGA and REMBRANDT database, we found that higher expression of KDELR2 is associated with shorter survival of GBM patients. We explored the effect of KDELR2 on tumorigenesis in GBM cells and animal model (nude mice), and identified KDELR2 as oncogene promoting cell proliferation. Additionally, KDELR2 expression in GBM cells correlated positively with HIF1alpha (HIF1α) expression, and we demonstrated by ChIP-qPCR and luciferase reporter assay that the upstream region of the KDELR2 gene is directly targeted by HIF1alpha. Taken together, our data suggest that KDELR2 is a target gene downstream of HIF1-alpha driving the malignancy of GBM and could eventually serve as a therapeutic target for the treatment of GBM patients.
Collapse
Affiliation(s)
- Zhangyuan Liao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chunhua She
- Department of Neurosurgery and Neuro-Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Li Ma
- Department of Neurosurgery and Neuro-Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Zengfeng Sun
- Department of Neurosurgery and Neuro-Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Peng Li
- Department of Neurosurgery and Neuro-Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Xiaohui Zhang
- Department of Neurosurgery and Neuro-Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Peng Wang
- Department of Neurosurgery and Neuro-Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Wenliang Li
- Department of Neurosurgery and Neuro-Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| |
Collapse
|
76
|
Albert K, Airavaara M. Neuroprotective and reparative effects of endoplasmic reticulum luminal proteins - mesencephalic astrocyte-derived neurotrophic factor and cerebral dopamine neurotrophic factor. Croat Med J 2019. [PMID: 31044581 PMCID: PMC6509620 DOI: 10.3325/cmj.2019.60.99] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) are proteins that have received increasing attention in the last decades. Although they are called neurotrophic factors they are drastically different from neurotrophic factors in their expression and physiological actions. They are located in the lumen of the endoplasmic reticulum (ER) and their basal secretion from neurons is very low. However their secretion is stimulated upon ER calcium depletion by chemical probes such as thapsigargin, a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitor. Exogenous MANF and CDNF possess therapeutic properties in several neurological disease models, including Parkinson’s disease and stroke. Endogenous MANF expression has been shown to be neuroprotective, as well as administration of either CDNF or MANF into the extracellular space. In this review, we focus on their therapeutic effects, regulation of expression and secretion, comparison of their mechanisms of action, and their application to the brain parenchyma as recombinant proteins.
Collapse
Affiliation(s)
| | - Mikko Airavaara
- Mikko Airavaara, Neuroscience Center, HiLIFE, P.O. Box 63, 00014 University of Helsinki, Helsinki, Finland,
| |
Collapse
|
77
|
Sanyal A, Dutta S, Camara A, Chandran A, Koller A, Watson BG, Sengupta R, Ysselstein D, Montenegro P, Cannon J, Rochet JC, Mattoo S. Alpha-Synuclein Is a Target of Fic-Mediated Adenylylation/AMPylation: Possible Implications for Parkinson's Disease. J Mol Biol 2019; 431:2266-2282. [PMID: 31034889 PMCID: PMC6554060 DOI: 10.1016/j.jmb.2019.04.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 01/17/2023]
Abstract
During disease, cells experience various stresses that manifest as an accumulation of misfolded proteins and eventually lead to cell death. To combat this stress, cells activate a pathway called unfolded protein response that functions to maintain endoplasmic reticulum (ER) homeostasis and determines cell fate. We recently reported a hitherto unknown mechanism of regulating ER stress via a novel post-translational modification called Fic-mediatedadenylylation/AMPylation. Specifically, we showed that the human Fic (filamentation induced by cAMP) protein, HYPE/FicD, catalyzes the addition of an adenosine monophosphate (AMP) to the ER chaperone, BiP, to alter the cell's unfolded protein response-mediated response to misfolded proteins. Here, we report that we have now identified a second target for HYPE-alpha-synuclein (αSyn), a presynaptic protein involved in Parkinson's disease. Aggregated αSyn has been shown to induce ER stress and elicit neurotoxicity in Parkinson's disease models. We show that HYPE adenylylates αSyn and reduces phenotypes associated with αSyn aggregation invitro, suggesting a possible mechanism by which cells cope with αSyn toxicity.
Collapse
Affiliation(s)
- Anwesha Sanyal
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sayan Dutta
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Ali Camara
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Aswathy Chandran
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Antonius Koller
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Ben G Watson
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Ranjan Sengupta
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Daniel Ysselstein
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Paola Montenegro
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Jason Cannon
- School of Health Sciences, Purdue University, 915 W State St., LILYG-227, West Lafayette, IN 47907, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, 915 W State St., LILYG-227, West Lafayette, IN 47907, USA
| | - Seema Mattoo
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, 915 W State St., LILYG-227, West Lafayette, IN 47907, USA.
| |
Collapse
|
78
|
Pifithrin-Alpha Reduces Methamphetamine Neurotoxicity in Cultured Dopaminergic Neurons. Neurotox Res 2019; 36:347-356. [DOI: 10.1007/s12640-019-00050-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/26/2019] [Accepted: 04/16/2019] [Indexed: 12/28/2022]
|
79
|
Huang HM, Jiang X, Hao ML, Shan MJ, Qiu Y, Hu GF, Wang Q, Yu ZQ, Meng LB, Zou YY. Identification of biomarkers in macrophages of atherosclerosis by microarray analysis. Lipids Health Dis 2019; 18:107. [PMID: 31043156 PMCID: PMC6495566 DOI: 10.1186/s12944-019-1056-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/22/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Atherosclerotic cardiovascular disease (ASCVD) refers to a series of diseases caused by atherosclerosis (AS). It is one of the most important causes of death worldwide. According to the inflammatory response theory, macrophages play a critical role in AS. However, the potential targets associated with macrophages in the development of AS are still obscure. This study aimed to use bioinformatics tools for screening and identifying molecular targets in AS macrophages. METHODS Two expression profiling datasets (GSE7074 and GSE9874) were obtained from the Gene Expression Omnibus dataset, and differentially expressed genes (DEGs) between non-AS macrophages and AS macrophages were identified. Functional annotation of the DEGs was performed by analyzing the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. STRING and Cytoscape were employed for constructing a protein-protein interaction network and analyzing hub genes. RESULTS A total of 98 DEGs were distinguished between non-AS macrophages and AS macrophages. The functional variations in DEGs were mainly enriched in response to hypoxia, respiratory gaseous exchange, protein binding, and intracellular, ciliary tip, early endosome membrane, and Lys63-specific deubiquitinase activities. Three genes were identified as hub genes, including KDELR3, CD55, and DYNC2H1. CONCLUSION Hub genes and DEGs identified by using microarray techniques can be used as diagnostic and therapeutic biomarkers for AS.
Collapse
Affiliation(s)
- He-Ming Huang
- Geriatric Department, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, People's Republic of China
| | - Xin Jiang
- Geriatric Department, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, People's Republic of China
| | - Meng-Lei Hao
- Department of Geriatric Medicine, Qinghai University, Xining, Qinghai, 810016, People's Republic of China
| | - Meng-Jie Shan
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Yong Qiu
- Anesthesiology Department, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing, 100730, People's Republic of China
| | - Gai-Feng Hu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing, 100730, People's Republic of China
| | - Quan Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing, 100730, People's Republic of China
| | - Zi-Qing Yu
- Pneumology Department, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing, 100730, People's Republic of China
| | - Ling-Bing Meng
- Neurology Department, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing, 100730, People's Republic of China.
| | - Yun-Yun Zou
- The Fifth Ward of Ophthalmology Department, Shenzhen Eye Hospital, Shenzhen, 518040, People's Republic of China.
| |
Collapse
|