51
|
Levine M. Fluorescence-Based Sensing of Pesticides Using Supramolecular Chemistry. Front Chem 2021; 9:616815. [PMID: 33937184 PMCID: PMC8085505 DOI: 10.3389/fchem.2021.616815] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/11/2021] [Indexed: 01/02/2023] Open
Abstract
The detection of pesticides in real-world environments is a high priority for a broad range of applications, including in areas of public health, environmental remediation, and agricultural sustainability. While many methods for pesticide detection currently exist, the use of supramolecular fluorescence-based methods has significant practical advantages. Herein, we will review the use of fluorescence-based pesticide detection methods, with a particular focus on supramolecular chemistry-based methods. Illustrative examples that show how such methods have achieved success in real-world environments are also included, as are areas highlighted for future research and development.
Collapse
Affiliation(s)
- Mindy Levine
- Ariel University, Department of Chemical Sciences, Ariel, Israel
| |
Collapse
|
52
|
Abstract
The present study demonstrates a simple approach to enhancing thermal stability of butyrylcholinesterase (BChE) by using natural polymers. Analysis of thermal inactivation of the tetrameric BChE in starch and gelatin gels at 50–64 °C showed that thermal inactivation followed second-order kinetics and involved two alternating processes of BChE inactivation, which occurred at different rates (fast and slow processes). The activation enthalpy ΔH# and the activation entropy ΔS# for BChE in starch and gelatin gels were evaluated. The values of ΔH# for the fast and the slow thermal inactivation of BChE in starch gel were 61 ± 3, and 22 ± 2 kcal/mol, respectively, and the values of ΔS# were 136 ± 12 and −2.03 ± 0.05 cal∙K−1∙mol−1, respectively. Likewise, the values of ΔH# for BChE in gelatin gel were 58 ± 6 and 109 ± 11 kcal/mol, and the values of ΔS# were 149 ± 16 and 262 ± 21 cal∙K−1∙mol−1, respectively. The values of the activation parameters obtained in this study suggest that starch gel produced a stronger stabilizing effect on BChE exposed to elevated temperatures over long periods compared with gelatin gel.
Collapse
|
53
|
Zhao H, Wang Y, Guo M, Liu Y, Yu H, Xing M. Environmentally relevant concentration of cypermethrin or/and sulfamethoxazole induce neurotoxicity of grass carp: Involvement of blood-brain barrier, oxidative stress and apoptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143054. [PMID: 33127128 DOI: 10.1016/j.scitotenv.2020.143054] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
In water environment, the interaction between environmental pollutants is very complex, among which pesticides and antibiotics are dominant. However, most studies only focus on individual toxic effects, rather combined. In this study, the sub-chronic exposure effect of cypermethrin (CMN, 0.65 μg/L), sulfamethoxazole (SMZ, 0.30 μg/L) and their mixture on grass crap (Ctenopharyngodon idellus) was investigated. The brain tight junction, oxidative stress and apoptosis-related indices were determined after 42 days of exposure. In terms of brain function, acetyl cholinesterase (AChE) activity was significantly inhibited by CMN, SMZ and their mixtures during exposure periods. Obvious histological damage from cellular and subcellular levels were also observed, which were further confirmed by a decrease in tight junction protein levels. Malondialdehyde (MDA) and 8-hydroxy-2-deoxyguanosine (8-OHdG) contents were significantly increased by individual compounds and mixtures, in which the content of glutathione (GSH) displayed the opposite trend. In mechanism, nuclear factor (erythrocyte derived 2) like 2(Nrf2) pathway was activated, which may trigger cellular protection to cope with CMN and SMZ exposure. However, apoptosis was also detected from the level of mRNA and histochemistry. In general, these two exogenous induced similar biological responses. The neurotoxicity of CMN was strengthened by SMZ with regard to these indices in most cases and vice versa. This study will reveal the potential co-ecological risks of pesticide and antibiotic in the aquatic organism, and provide basic data for their safety and risk assessment.
Collapse
Affiliation(s)
- Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongxian Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
54
|
Luo D, Huang X, Liu B, Zou W, Wu Y. Facile Colorimetric Nanozyme Sheet for the Rapid Detection of Glyphosate in Agricultural Products Based on Inhibiting Peroxidase-Like Catalytic Activity of Porous Co 3O 4 Nanoplates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3537-3547. [PMID: 33721998 DOI: 10.1021/acs.jafc.0c08208] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rapid and onsite detection of glyphosate herbicides in agricultural products is still a challenge. Herein, a novel colorimetric nanozyme sheet for the rapid detection of glyphosate has been successfully prepared through the physical adsorption of porous Co3O4 nanoplates on a polyester fiber membrane. Glyphosate can specifically inhibit the peroxidase-mimicking catalytic activity of porous Co3O4 nanoplates, thereby the visual detection of glyphosate can be realized by distinguishing the change in the color intensity of the established nanozyme sheet. The prepared nanozyme sheet has good sensitivity and selectivity, with a detection limit of 0.175 mg·kg-1 for glyphosate detection just by the naked eyes. It can effectively detect glyphosate within 10 min, and the color spots can maintain more than 20 min. The nanozyme sheet is not easily affected by the external environment in detection and storage. The merits of the nanozyme sheet facilitate its practical application in the large-scale preliminary screening of glyphosate residues in agricultural products.
Collapse
Affiliation(s)
- Danqiu Luo
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiaohuan Huang
- Comprehensive Technology Center of Guiyang Customs District, Qianlingshan Road 268, Guanshanhu District, Guiyang 550081, China
| | - Bangyan Liu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Wenying Zou
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yuangen Wu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
55
|
Shi L, Yang F, Xu Y, Wang S. Expression of Drosophila melanogaster acetylcholinesterase ( DmAChE) gene splice variants in Pichia pastoris and evaluation of its sensitivity to organophosphorus pesticides. J Zhejiang Univ Sci B 2021; 22:204-213. [PMID: 33719225 DOI: 10.1631/jzus.b2000525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acetylcholinesterase (AChE) is a key enzyme used to detect organophosphorus pesticide residues by the enzyme inhibition method. An accidental discovery of a mutant strain with AChE activity was made in our laboratory during the process of AChE expression by Pichia pastoris. The pPIC9K-Drosophilamelanogaster acetylcholinesterase (DmAChE)-like expression vector was constructed by codon optimization of this mutant strain, which was transformed into P. pastoris GS115, and positive clones were selected on yeast peptone dextrose (YPD) plate with G418 at 4.0 mg/mL. The GS115-pPIC9K-DmAChE-like strain was subjected to 0.5% methanol induction expression for 120 h, with a protein band at 4.3 kDa found by the tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) pattern of the fermentation supernatant. After preliminary purification by ammonium sulfate precipitation, the enzyme activity was detected to be 76.9 U/(mL⋅min). In addition, the pesticide sensitivity test proved that DmAChE-like is selective and sensitive to organophosphorus pesticides.
Collapse
Affiliation(s)
- Liujia Shi
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Fangfang Yang
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yanyan Xu
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Shoufeng Wang
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China. .,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China.
| |
Collapse
|
56
|
A multi-residue electrochemical biosensor based on graphene/chitosan/parathion for sensitive organophosphorus pesticides detection. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138355] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
57
|
Zhao S, Xu W, Zhang W, Wu H, Guang C, Mu W. In-depth biochemical identification of a novel methyl parathion hydrolase from Azohydromonas australica and its high effectiveness in the degradation of various organophosphorus pesticides. BIORESOURCE TECHNOLOGY 2021; 323:124641. [PMID: 33429316 DOI: 10.1016/j.biortech.2020.124641] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Organophosphorus pesticides are highly toxic phosphate compounds with the general structure of O = P(OR)3 and threaten human health seriously. Methyl parathion hydrolase from microbial is an important enzyme to degrade organophosphorus pesticides (OPs) into less toxic or nontoxic compounds like. p-nitrophenol and diethyl phosphate. Here, a gene encoding methyl parathion hydrolase from Azohydromonas australica was firstly cloned and expressed in Escherichia coli. The recombinant hydrolase showed its optimal pH and temperature at pH 9.5 and 50 °C. Leveraging 1 mM Mn2+, the enzyme activity was significantly enhanced by 29.3-fold, and the thermostability at 40 and 50 °C was also improved. The recombinant MPH showed the specific activity of 4.94 and 16.0 U/mg towards methyl parathion and paraoxon, respectively. Moreover, A. australica MPH could effectively degrade various of OPs pesticides including methyl parathion, paraoxon, dichlorvos and chlorpyrifos in a few minutes, suggesting a great potential in the bioremediation of OPs pesticides.
Collapse
Affiliation(s)
- Sumao Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
58
|
Rani L, Thapa K, Kanojia N, Sharma N, Singh S, Grewal AS, Srivastav AL, Kaushal J. An extensive review on the consequences of chemical pesticides on human health and environment. JOURNAL OF CLEANER PRODUCTION 2021. [PMID: 0 DOI: 10.1016/j.jclepro.2020.124657] [Citation(s) in RCA: 314] [Impact Index Per Article: 104.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
|
59
|
Li J, Cai J, Ma M, Li L, Lu L, Wang Y, Wang C, Yang J, Xu Z, Yao M, Shen X, Wang H. Preparation of a Bombyx mori acetylcholinesterase enzyme reagent through chaperone protein disulfide isomerase co-expression strategy in Pichia pastoris for detection of pesticides. Enzyme Microb Technol 2020; 144:109741. [PMID: 33541576 DOI: 10.1016/j.enzmictec.2020.109741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 01/15/2023]
Abstract
The cholinesterase-based spectrophotometric methods for detection of organophosphate pesticides (OPs) and carbamate pesticides (CPs) have been proposed as a good choice for their high efficiency, simplicity and low cost. The enzyme, as a core reagent, is of great importance for the developed method. In this study, a protein disulfide isomerase (PDI) co-expression strategy in Pichia pastoris was employed to enhance the yield of recombinant Bombyx mori acetylcholinesterase 2 (rBmAChE2). Subsequently, the prepared enzyme reagent was used to detect the pesticides in real samples. The results showed that the co-expression of rBmAChE2 with PDI increased the enzyme activity of the supernatant and the yield of purified rBmAChE2 up to 60 U/mL and 6 mg/L respectively, both almost 5-fold higher than those of original recombinant strain. In addition, 5 g/L gelatin reagent could help to preserve nearly 90% of the rBmAChE2 activity for 90 days in 4°C and the limits of detections (LODs) of the rBmAChE2-based assay for 20 kinds of OPs or CPs ranged from 0.010 to 2.725 mg/kg, which were lower than most of indexes present in current Chinese National Standard (GB/T 5009.199-2003) or the maximum residue limits (GB 2763-2019). Furthermore, the detection results of 23 vegetable samples were verified by the ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method, which indicated that the rBmAChE2-based assay in this work is suitable for pesticide residues rapid detection.
Collapse
Affiliation(s)
- Jiadong Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Jun Cai
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Minting Ma
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Liping Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Linping Lu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Yu Wang
- Guangzhou Institute for Food Inspection, Guangzhou, 510080, PR China.
| | - Chenglong Wang
- Guangzhou Institute for Food Inspection, Guangzhou, 510080, PR China.
| | - Jinyi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Min Yao
- Faculty of Advanced Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo, 060-0810, Japan.
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
60
|
Advances in the Detection of Dithiocarbamate Fungicides: Opportunities for Biosensors. BIOSENSORS-BASEL 2020; 11:bios11010012. [PMID: 33396914 PMCID: PMC7824625 DOI: 10.3390/bios11010012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 12/21/2022]
Abstract
Dithiocarbamate fungicides (DTFs) are widely used to control various fungal diseases in crops and ornamental plants. Maximum residual limits in the order of ppb-ppm are currently imposed by legislation to prevent toxicity problems associated with excessive use of DTFs. The specific analytical determination of DTFs is complicated by their low solubility in water and organic solvents. This review summarizes the current analytical procedures used for the analysis of DTF, including chromatography, spectroscopy, and sensor-based methods and discusses the challenges related to selectivity, sensitivity, and sample preparation. Biosensors based on enzymatic inhibition demonstrated potential as analytical tools for DTFs and warrant further research, considering novel enzymes from extremophilic sources. Meanwhile, Raman spectroscopy and various sensors appear very promising, provided the selectivity issues are solved.
Collapse
|
61
|
Nagabooshanam S, Roy S, Deshmukh S, Wadhwa S, Sulania I, Mathur A, Krishnamurthy S, Bharadwaj LM, Roy SS. Microfluidic Affinity Sensor Based on a Molecularly Imprinted Polymer for Ultrasensitive Detection of Chlorpyrifos. ACS OMEGA 2020; 5:31765-31773. [PMID: 33344830 PMCID: PMC7745425 DOI: 10.1021/acsomega.0c04436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/04/2020] [Indexed: 05/04/2023]
Abstract
The persistent use of pesticides in the agriculture field remains a serious issue related to public health. In the present work, molecularly imprinted polymer thin films were developed using electropolymerization of pyrrole (py) onto gold microelectrodes followed by electrodeposition for the selective detection of chlorpyrifos (CPF). The molecularly imprinted polymer (MIP) was synthesized by the electrochemical deposition method, which allowed in-line transfer of MIP on gold microelectrodes without using any additional adhering agents. Various parameters such as pH, monomer ratio, scan rate, and deposition cycle were optimized for sensor fabrication. The sensor was characterized at every stage of fabrication using various spectroscopic, microscopic, and electrochemical techniques. The sensor requires only 2 μL of the analyte and its linear detection range was found to be 1 μM to 1 fM. The developed sensor's limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.93 and 2.82 fM, respectively, with a sensitivity of 3.98 (μA/(μM)/ mm2. The sensor's shelf life was tested for 70 days. The applicability of the sensor in detecting CPF in fruit and vegetable samples was also assessed out with recovery % between 91 and 97% (RSD < 5%). The developed sensor possesses a huge commercial potential for on-field monitoring of pesticides.
Collapse
Affiliation(s)
- Shalini Nagabooshanam
- Amity
Institute of Nanotechnology, Amity University
Uttar Pradesh, Sector-125, Noida 201301, Uttar Pradesh, India
| | - Souradeep Roy
- Amity
Institute of Nanotechnology, Amity University
Uttar Pradesh, Sector-125, Noida 201301, Uttar Pradesh, India
| | - Sujit Deshmukh
- Department
of Physics, School of Natural Sciences, Shiv Nadar University, Gautam
Budh Nagar 201314, Uttar
Pradesh, India
| | - Shikha Wadhwa
- Amity
Institute of Nanotechnology, Amity University
Uttar Pradesh, Sector-125, Noida 201301, Uttar Pradesh, India
| | - Indra Sulania
- Inter
University Accelerator Centre, Aruna Asaf Ali Marg, New
Delhi 110067, India
| | - Ashish Mathur
- Amity
Institute of Nanotechnology, Amity University
Uttar Pradesh, Sector-125, Noida 201301, Uttar Pradesh, India
- ,
| | - Satheesh Krishnamurthy
- Nanoscale
Energy and Surface Engineering, School of Engineering and Innovation, The Open University, Milton Keynes MK 76AA, United Kingdom
| | - Lalit M. Bharadwaj
- Amity
Institute of Nanotechnology, Amity University
Uttar Pradesh, Sector-125, Noida 201301, Uttar Pradesh, India
| | - Susanta S. Roy
- Department
of Physics, School of Natural Sciences, Shiv Nadar University, Gautam
Budh Nagar 201314, Uttar
Pradesh, India
| |
Collapse
|
62
|
Badawy SM. Optimization of reaction time for detection of organophosphorus pesticides by enzymatic inhibition assay and mathematical modeling of enzyme inhibition. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 56:142-149. [PMID: 33287632 DOI: 10.1080/03601234.2020.1853455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Enzyme inhibition assay was used as a biomarker for detection of organophosphates pesticides in food and environmental samples. The aim of the present study was to optimize the time of enzyme-inhibitor reaction for quantitative determination of fenitrothion organophosphate based on cholinesterase inhibition. The results showed that this method provides a time-efficient, best linearity and simple assay. The effect of reaction time on the linearity relationship of the noncompetitive inhibition equation was studied. The best linearity of the assay was found at an optimum reaction time of 3.0 min, with coefficient of determination r 2 of 0.9972, in the range of inhibitor concentrations from 0.016 to 2.0 μg mL-1. The enzyme inhibition reached a plateau at 5 min by addition of pesticide in vitro and then the inhibited enzyme reactivate spontaneously and approached steady state at 20 min. A theoretical kinetic model to explain the effect of reaction time on the enzyme inhibition by addition of pesticide in vitro was derived. The higher values of coefficient of determination r 2 for the predicted model and error functions of the minimum deviations suggest that this model can be used to represent the experimental data and explain the plasma cholinesterase inhibition by fenitrothion pesticide.
Collapse
Affiliation(s)
- Sayed M Badawy
- National Center for Clinical and Environmental Toxicology, NECTR, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
63
|
Xie HQ, Ma Y, Fu H, Xu T, Luo Y, Liu Y, Chen Y, Xu L, Xia Y, Zhao B. New perspective on the regulation of acetylcholinesterase via the aryl hydrocarbon receptor. J Neurochem 2020; 158:1254-1262. [PMID: 33278027 DOI: 10.1111/jnc.15261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 11/30/2022]
Abstract
Acetylcholinesterase (AChE, EC 3.1.1.7) plays important roles in cholinergic neurotransmission and has been widely recognized as a biomarker for monitoring pollution by organophosphate (OP) and carbamate pesticides. Dioxin is an emerging environmental AChE disruptor and is a typical persistent organic pollutant with multiple toxic effects on the nervous system. Growing evidence has shown that there is a significant link between dioxin exposure and neurodegenerative diseases and neurodevelopmental disorders, most of which involve AChE and cholinergic dysfunctions. Therefore, an in-depth understanding of the effects of dioxin on AChE and the related mechanisms of action might help to shed light on the molecular bases of dioxin impacts on the nervous system. In the past decade, the effects of dioxins on AChE have been revealed in cultured cells of different origins and in rodent animal models. Unlike OP and carbamate pesticides, dioxin-induced AChE disturbance is not due to direct inhibition of enzymatic activity; instead, dioxin causes alterations of AChE expression in certain models. As a widely accepted mechanism for most dioxin effects, the aryl hydrocarbon receptor (AhR)-dependent pathway has become a research focus in studies on the mechanism of action of dioxin-induced AChE dysregulation. In this mini-review, the effects of dioxin on AChE and the diverse roles of the AhR pathway in AChE regulation are summarized. Additionally, the involvement of AhR in AChE regulation during different neurodevelopmental processes is discussed. These AhR-related findings might also provide new insight into AChE regulation triggered by diverse xenobiotics capable of interacting with AhR.
Collapse
Affiliation(s)
- Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yongchao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hualing Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yali Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yiyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yingjie Xia
- Division of Life Science and Center for Chinese Medicine, the Hong Kong University of Science and Technology, Hong Kong, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
64
|
Jain M, Yadav P, Joshi B, Joshi A, Kodgire P. A novel biosensor for the detection of organophosphorus (OP)-based pesticides using organophosphorus acid anhydrolase (OPAA)-FL variant. Appl Microbiol Biotechnol 2020; 105:389-400. [PMID: 33191461 DOI: 10.1007/s00253-020-11008-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/28/2020] [Accepted: 11/08/2020] [Indexed: 11/25/2022]
Abstract
Indiscriminate use of organophosphorus (OP)-based insecticides is a great concern to human health because of bioaccumulation-induced health hazards. Potentially fatal consequences and limited treatment methods of OP poisoning necessitate the need for the development of reliable, selective, cost-effective, and sensitive methods of OP detection. To tackle this issue, the development of effective devices and methods is required to sensitively detect as well as degrade OPs. Enzymatic sensor systems have gained popularity due to high catalytic activity, enhanced detection limits, and high sensitivity with the environmentally benign operation. Organophosphorus acid anhydrolase (OPAA) from Alteromonas sp. JD6.5 is capable of hydrolyzing the P-F, P-O, P-S, and P-CN bonds, in OPs, including nerve agents of the G/V-series. Several mutants of OPAA are reported which have greater activity against various OPs. In this study, recombinant expression of the OPAA-FL variant in Escherichia coli was performed, purified, and subsequently tested for activity against ethyl paraoxon. OPAA-FL variant showed its optimum activity at pH 8.5 and 50 °C. Colorimetric and fluorometric assays were used for estimation of ethyl paraoxon based on p-nitrophenol and fluorescein isothiocyanate (FITC) fluorescence intensity, respectively. Colorimetric and fluorometric assay estimation indicates that ethyl paraoxon can be estimated in the linear range of 0.01 to 1 mM and 0.1 to 0.5 mM, with LOD values 0.04 mM and 0.056 mM, respectively. Furthermore, the OPAA-FL variant was immobilized into alginate microspheres for colorimetric detection of ethyl paraoxon and displayed a linear range of 0.025 to 1 mM with a LOD value of 0.06 mM. KEY POINTS: • Biosensing of paraoxon with purified and encapsulated OPAA-FL variant. • Colorimetric and fluorometric biosensing assay developed using OPAA-FL variant for paraoxon. • First report on alginate encapsulation of OPAA-FL variant for biosensing of paraoxon. Graphical abstract.
Collapse
Affiliation(s)
- Monika Jain
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, India
| | - Priyanka Yadav
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, India
| | - Bhavana Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, India.
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, India.
| |
Collapse
|
65
|
Meftaul IM, Venkateswarlu K, Dharmarajan R, Annamalai P, Megharaj M. Sorption-desorption of dimethoate in urban soils and potential environmental impacts. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:2256-2265. [PMID: 33052991 DOI: 10.1039/d0em00337a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The environmental fate and impact of dimethoate application in the urban environment were assessed in nine selected soils. The pseudo-second-order kinetics model described the kinetics of dimethoate sorption very well in the urban soils exhibiting two distinct phases, an initial partitioning into clay surfaces and soil organic matter, and eventual diffusion into soil micropores. Dimethoate sorption in the urban soils followed the Freundlich model with an R2 value of 0.94-0.99, suggesting a multi-layered sorption on the heterogeneous surfaces. Sorption of dimethoate in the soils was influenced by clay, silt, organic matter, carboxyl and alkyl groups, and Al and Fe oxides. The undecomposed or incompletely decomposed organic matter present in the soils greatly reduced the sorption and enhanced desorption. The calculated lower values for Freundlich constant (KF) indicate the high mobility of dimethoate in the selected soils. Also, the values of groundwater ubiquity score (GUS), leachability index (LIX), hysteresis index (HI), and coefficient of distribution (Kd) for dimethoate in the soils clearly suggest that the insecticide is prone to leaching out significantly from the soil surface to groundwater. Moreover, the surface runoff from impervious places in the urban environment can be considered as a direct source of groundwater contamination, thereby affecting the quality of potable water besides posing a threat to non-target organisms of ecological importance and food safety. Thus, the present novel study suggests that the application of dimethoate in the urban environment having impervious surfaces must be judicious in order to minimize the potential human and ecological health risks.
Collapse
Affiliation(s)
- Islam Md Meftaul
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW 2308, Australia.
| | | | | | | | | |
Collapse
|
66
|
Wang Y, Wang SL, Xie T, Cao J. Activated carbon derived from waste tangerine seed for the high-performance adsorption of carbamate pesticides from water and plant. BIORESOURCE TECHNOLOGY 2020; 316:123929. [PMID: 32763805 DOI: 10.1016/j.biortech.2020.123929] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
This research presents the tangerine seed activated carbon (TSAC), obtained from food waste (tangerine seed) by one-step pyrolysis method and applied to remove carbamate pesticides (CMs) from complex solutions. The effects of carbonization temperature and time on adsorption performance were studied. Structural properties of TSAC were determined by Fourier Transform Infrared Spectrometer, X-ray diffraction analysis, Raman spectroscopy, scanning electron microscope and nitrogen adsorption/desorption methods and compared with that of tangerine seed. The TSAC exhibited a specific surface area of 659.62 m2/g, a total pore volume of 0.6203 cc/g and a pore diameter of 1.410 nm. The influences of initial pesticide concentration, adsorption temperature and contact time were investigated through batch experiments. Pseudo-second-order kinetic model and Langmuir isotherm model were more suitable for CMs adsorption process onto TSAC. Furthermore, the thermodynamic research indicated that this adsorption process was spontaneous and exothermic.
Collapse
Affiliation(s)
- Yue Wang
- College of Pharmaceutical Sciences, Medical College, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Shu-Ling Wang
- College of Pharmaceutical Sciences, Medical College, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Tian Xie
- College of Pharmaceutical Sciences, Medical College, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jun Cao
- College of Pharmaceutical Sciences, Medical College, Hangzhou Normal University, Hangzhou 311121, PR China; College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
67
|
Ahn S, Lee JY, Kim B. Accurate Determination of Carbaryl, Carbofuran and Carbendazim in Vegetables by Isotope Dilution Liquid Chromatography/Tandem Mass Spectrometry. Chromatographia 2020. [DOI: 10.1007/s10337-020-03976-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
68
|
Bordbar MM, Nguyen TA, Arduini F, Bagheri H. A paper-based colorimetric sensor array for discrimination and simultaneous determination of organophosphate and carbamate pesticides in tap water, apple juice, and rice. Mikrochim Acta 2020; 187:621. [PMID: 33084996 DOI: 10.1007/s00604-020-04596-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
A colorimetric paper-based sensor is proposed for the rapid monitoring of six major organophosphate and carbamate pesticides. The assay was constructed by dropping gold and silver nanoparticles on the hydrophilic zones of a paper substrate. The nanoparticles were modified by L-arginine, quercetin, and polyglutamic acid. The mechanism of sensing is based on the interaction between the pesticide and the nanoparticles. The color of nanoparticles changed during the interactions. A digital camera recorded these changes. The assay provided a unique response for each studied pesticide. This method can determine six individual pesticides including carbaryl, paraoxon, parathion, malathion, diazinon, and chlorpyrifos. The limit of detection for these pesticides were 29.0, 22.0, 32.0, 17.0, 45.0, and 36.0 ng mL-1, respectively. The assay was applied to simultaneously determine the six studied pesticides in a mixture using the partial least square method (PLS). The root mean square errors of prediction were 11, 8.7, 9.2, 10, 12, and 11 for carbaryl, paraoxon, parathion, malathion, diazinon, and chlorpyrifos, respectively. The paper-based device can differentiate two types of studied pesticide (organophosphate and carbamate) as well as two types of organophosphate structures (oxon and thion). Furthermore, this sensor showed high selectivity to the pesticides in the presence of other potential species (e.g., metal ions, anions, amino acids, sugar, and vitamins). This assay is capable of determining the pesticide compounds in tap water, apple juice, and rice samples.Graphical abstract.
Collapse
Affiliation(s)
- Mohammad Mahdi Bordbar
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Tien Anh Nguyen
- Department of Physics, Le Quy Don Technical University, Hanoi, Vietnam
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
69
|
Wu Y, Cui S, Li Q, Zhang R, Song Z, Gao Y, Chen W, Xing D. Recent advances in duplex-specific nuclease-based signal amplification strategies for microRNA detection. Biosens Bioelectron 2020; 165:112449. [DOI: 10.1016/j.bios.2020.112449] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023]
|
70
|
Cao J, Wang M, Yu H, She Y, Cao Z, Ye J, Abd El-Aty AM, Hacımüftüoğlu A, Wang J, Lao S. An Overview on the Mechanisms and Applications of Enzyme Inhibition-Based Methods for Determination of Organophosphate and Carbamate Pesticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7298-7315. [PMID: 32551623 DOI: 10.1021/acs.jafc.0c01962] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Acetylcholinesterase inactivating compounds, such as organophosphate (OP) and carbamate (CM) pesticides, are widely used in agriculture to ensure sustainable production of food and feed. As a consequence of their applications, they would result in neurotoxicity, even death. In this essence, the development of enzyme inhibition methods still shows great significance as rapid detection techniques for on-site large-scale screening of OPs and CMs. Initially, mechanisms and applications of various enzyme-inhibition-based methods and devices, including optical colorimetric assay, fluorometric assays, electrochemical biosensors, rapid test card, and microfluidic device, are highlighted in the present overview. Further, to enhance the enzyme sensitivity for detection; alternative enzyme sources or high yield enrichment methods (such as abzyme, artificial enzyme, and recombinant enzyme), as well as enzyme reactivation and identification, are also addressed in this comprehensive overview.
Collapse
Affiliation(s)
- Jing Cao
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - Miao Wang
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - He Yu
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - Yongxin She
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - Zhen Cao
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - Jiaming Ye
- Yangtze Delta Region Institute of Tsinghua University, 314006, Jiaxing, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Jing Wang
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, 53003, Nanning, China
| | - Shuibing Lao
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, 53003, Nanning, China
| |
Collapse
|
71
|
Moshou H, Karakitsou A, Yfanti F, Hela D, Vlastos D, Paschalidou AK, Kassomenos P, Petrou I. Assessment of genetic effects and pesticide exposure of farmers in NW Greece. ENVIRONMENTAL RESEARCH 2020; 186:109558. [PMID: 32361259 DOI: 10.1016/j.envres.2020.109558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 04/10/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
The present study aims at evaluating potential genotoxic and cytotoxic effects caused by the occupational exposure of farmers to pesticide mixtures in the Aitoloakarnania Prefecture (Greece). The aforementioned assessment was conducted through in vivo Cytokinesis Block Micronucleus assay (CBMN assay) in peripheral blood lymphocytes, in relation to chemical analysis of pesticide residues in blood samples. The exposure of the farmers' population studied to different combinations of pesticides induced significant differences in the frequencies of micronuclei (MN) compared to those of the control group. Furthermore, our results indicated a possible clastogenic and aneugenic effect of pesticides on the genetic material of the farmers exposed. Five pesticides (trifluralin, chlorpyriphos methyl, metolachlor, fenthion and dimethoate) and three metabolites (fenthion sulfone, fenthion sulfoxide and 4,4' DDE) were detected in the 62.5% of blood samples, with mean concentrations ranging from 0.4 ng/ml to 48 ng/ml. Since the farmers studied probably exhibit detectable levels of systematic exposure to the pesticides applied, continuous educational programs focused on the rational and safe use of pesticides, together with implementation of risk communication strategies among farmers are highly recommended.
Collapse
Affiliation(s)
- H Moshou
- Department of Environmental and Natural Resources Management, University of Patras, GR-30100, Agrinion, Greece
| | - A Karakitsou
- Department of Business Administration of Agricultural and Food Enterprise, University of Patras, GR-30100, Agrinion, Greece
| | - F Yfanti
- Department of Business Administration of Agricultural and Food Enterprise, University of Patras, GR-30100, Agrinion, Greece
| | - D Hela
- Department of Chemistry, University of Ioannina, GR-45110, Ioannina, Greece.
| | - D Vlastos
- Department of Environmental Engineering, University of Patras, GR-30100, Agrinion, Greece.
| | - A K Paschalidou
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, GR-68200, Orestiada, Greece
| | - P Kassomenos
- Department of Physics, University of Ioannina, GR-45110, Ioannina, Greece
| | - I Petrou
- Department of Physics, University of Ioannina, GR-45110, Ioannina, Greece
| |
Collapse
|
72
|
Kumar V, Vaid K, Bansal SA, Kim KH. Nanomaterial-based immunosensors for ultrasensitive detection of pesticides/herbicides: Current status and perspectives. Biosens Bioelectron 2020; 165:112382. [PMID: 32729507 DOI: 10.1016/j.bios.2020.112382] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 01/22/2023]
Abstract
The increasing level of pesticides and herbicides in food and water sources is a growing threat to human health and the environment. The development of portable, sensitive, specific, simple, and cost-effective sensors is hence in high demand to avoid exposure or consumption of these chemicals through efficient monitoring of their levels in food as well as water samples. The use of nanomaterials (NMs) for the construction of an immunosensing system was demonstrated to be an efficient and effective option to realize selective sensing against pesticides/herbicides. The potential of such applications has hence been demonstrated for a variety of NMs including graphene, carbon nanotubes (CNTs), metal nanoparticles, and nano-polymers either in pristine or composite forms based on diverse sensing principles (e.g., electrochemical, optical, and quartz crystal microbalance (QCM)). This article evaluates the development, applicability, and performances of NM-based immunosensors for the measurement of pesticides and herbicides in water, food, and soil samples. The performance of all the surveyed sensors has been evaluated on the basis of key parameters, e.g., detection limit (DL), sensing range, and response time.
Collapse
Affiliation(s)
- Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India.
| | - Kalyan Vaid
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India; Centre for Nanoscience and Nanotechnology, Panjab University, Chandigarh, 160014, India
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul, 04763, South Korea.
| |
Collapse
|
73
|
Wang J, Lu Q, Weng C, Li X, Yan X, Yang W, Li B, Zhou X. Label-Free Colorimetric Detection of Acid Phosphatase and Screening of Its Inhibitors Based on Biomimetic Oxidase Activity of MnO2 Nanosheets. ACS Biomater Sci Eng 2020; 6:3132-3138. [DOI: 10.1021/acsbiomaterials.0c00217] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jing Wang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qiaoyun Lu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chenyuan Weng
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoyun Li
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoqiang Yan
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Xuemin Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
74
|
Xie J, Li L, Khan IM, Wang Z, Ma X. Flexible paper-based SERS substrate strategy for rapid detection of methyl parathion on the surface of fruit. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118104. [PMID: 32006913 DOI: 10.1016/j.saa.2020.118104] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Herein, we reported a simple, flexible and sensitive surface-enhanced Raman scattering (SERS) substrate to detect methyl parathion residues in real life. The substrate was fabricated by filter paper and gold nanoparticles (Au NPs) with excellent reproducibility and stability. First, Au NPs were synthesized by the seed mediated growth method and assembled to the filter paper through immersion. The Raman probe molecule 4-MBA was used to evaluate performance of the substrate for an optimized signal using a portable Raman spectrometer coupled with 785 nm laser. Then, the paper-based substrate was applied to detect methyl parathion standard solution whose detection limit was down to 0.011 μg/cm2, and the linear range was between 0.018 μg/cm2 and 0.354 μg/cm2. Afterwards, actual sample (apple) spiked with methyl parathion was taken to verify the practicality of the substrate by a simple way of "press-peel off". The recovery rate was ranged from 94.09% to 98.72%, indicating that this method is reliable in actual sample detection without complicated pretreatment steps. This work demonstrates that the flexible paper-based substrate combined with portable Raman instruments can be potentially applied to on-site detection of hazardous substances in the field of food safety.
Collapse
Affiliation(s)
- Jie Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, PR China
| | - Liangyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, PR China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, PR China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
75
|
Application of Microfluidic Chip Technology in Food Safety Sensing. SENSORS 2020; 20:s20061792. [PMID: 32213909 PMCID: PMC7146374 DOI: 10.3390/s20061792] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/14/2020] [Accepted: 03/23/2020] [Indexed: 01/22/2023]
Abstract
Food safety analysis is an important procedure to control food contamination and supervision. It is urgently needed to construct effective methods for on-site, fast, accurate and popular food safety sensing. Among them, microfluidic chip technology exhibits distinguish advantages in detection, including less sample consumption, fast detection, simple operation, multi-functional integration, small size, multiplex detection and portability. In this review, we introduce the classification, material, processing and application of the microfluidic chip in food safety sensing, in order to provide a good guide for food safety monitoring.
Collapse
|
76
|
Chu S, Huang W, Shen F, Li T, Li S, Xu W, Lv C, Luo Q, Liu J. Graphene oxide-based colorimetric detection of organophosphorus pesticides via a multi-enzyme cascade reaction. NANOSCALE 2020; 12:5829-5833. [PMID: 32129411 DOI: 10.1039/c9nr10862a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Size-tunable graphene oxides (GO) were synthesized as a horseradish peroxidase (HRP) mimic for colorimetric detection of organophosphorus pesticides (OPs) at nanomolar levels via a cascade reaction. A GO-based colorimetric method showed high sensitivity and stability toward OPs, which hold great potential in public health applications.
Collapse
Affiliation(s)
- Shengnan Chu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China.
| | - Wei Huang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Fangzhong Shen
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China.
| | - Tiezhu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Siyuan Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China.
| | - Wanjia Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China.
| | - Chengwei Lv
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China.
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China.
| |
Collapse
|
77
|
Yang S, Liu J, Zheng H, Zhong J, Zhou J. Simulated revelation of the adsorption behaviours of acetylcholinesterase on charged self-assembled monolayers. NANOSCALE 2020; 12:3701-3714. [PMID: 32022070 DOI: 10.1039/c9nr10123c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An acetylcholinesterase (AChE)-based electrochemical biosensor, as a promising alternative to detect organophosphates (OPs) and carbamate pesticides, has gained considerable attention in recent years, due to the advantages of simplicity, rapidity, reliability and low cost. The bio-activity of AChE immobilized on the surface and the direct electron transfer (DET) rate between an enzyme and an electrode directly determined the analytical performances of the AChE-based biosensor, and experimental studies have shown that the charged surfaces have a strong impact on the detectability of the AChE-based biosensor. Therefore, it is very important to reveal the behaviour of AChE in bulk solution and on charged surfaces at the molecular level. In this work, the adsorption orientation and conformation of AChE from Torpedo californica (TcAChE) on oppositely charged self-assembled monolayers (SAMs), COOH-SAM and NH2-SAM with different surface charge densities, were investigated by parallel tempering Monte Carlo (PTMC) and all-atom molecular dynamics simulations (AAMD). Simulation results show that TcAChE could spontaneously and stably adsorb on two oppositely charged surfaces by the synergy of an electric dipole and charged residue patch, and opposite orientations were observed. The active-site gorge of TcAChE is oriented toward the surface with the "end-on" orientation and the active sites are close to the surface when it is adsorbed on the positively charged surface and the tunnel cost for the substrate is lower than that on the negatively charged surface and in bulk solution, while for TcAChE adsorbed on the negatively charged surface, the active site of TcAChE is far away from the surface and the active-site gorge is oriented toward the solution with a "back-on" orientation. It suggests that the positively charged surface could provide a better microenvironment for the efficient bio-catalytic reaction and quick DET between TcAChE and the electrode surface. Moreover, the RMSD, RMSF, dipole moment, gyration radius, eccentricity and superimposed structures show that only a slight conformational change occurred on the relatively flexible structure of TcAChE during simulations, and the native conformation is well preserved after adsorption. This work helps us better comprehend the adsorption mechanism of TcAChE on charged surfaces and might provide some guidelines for the development of new TcAChE-based amperometric biosensors for the detection of organophosphorus pesticides.
Collapse
Affiliation(s)
- Shengjiang Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jie Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, P. R. China
| | - He Zheng
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, P. R. China
| | - Jinyi Zhong
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| |
Collapse
|
78
|
Adiguzel C, Kalender Y. Bendiocarb-induced nephrotoxicity in rats and the protective role of vitamins C and E. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6449-6458. [PMID: 31873894 DOI: 10.1007/s11356-019-07260-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Bendiocarb is a pesticide carbamate which is used to protect agricultural products and animals. In this study, rats were given orally with bendiocarb and also other chemicals via gavage. Male rats were randomly divided into eight groups (n = 6): group 1 served as controls; group 2 received vitamin C (100 mg/kg bw); group 3 received vitamin E (100 mg/kg bw); group 4 received vitamins C plus E; group 5 received bendiocarb (0.8 mg/kg 1/50 LD50); group 6 received both bendiocarb and vitamin C; group 7 received both bendiocarb and vitamin E; and group 8 received both bendiocarb and vitamin C and E via oral gavage. Degenerative changes and biochemical differences in rat kidney were investigated after 4 weeks of especially bendiocarb treatment. While biochemical values were normal in the control group, it was observed that CAT, SOD, GPx, and GST values decreased, while MDA, creatine, urea, and uric acid values increased in the pesticide-treated groups. It was also reported that bendiocarb caused cytopathological and histopathological changes in rat kidney. We have shown that the application of vitamins has a therapeutic effect on the evaluated parameters.
Collapse
Affiliation(s)
- Caglar Adiguzel
- Faculty of Science, Department of Biology, Gazi University, 06500, Teknikokullar, Ankara, Turkey
| | - Yusuf Kalender
- Faculty of Science, Department of Biology, Gazi University, 06500, Teknikokullar, Ankara, Turkey.
| |
Collapse
|
79
|
Kaewmaroeng T, Wunnapuk K, Chockjamsai M, Sringarm K, Hongsibsong S. Simple Colorimetric Method for Cholinesterase-inhibitor Screening in Gastric Content by Using Phytoesterase Enzyme from Kidney Bean. Pak J Biol Sci 2020; 23:904-910. [PMID: 32700837 DOI: 10.3923/pjbs.2020.904.910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Diagnosis of cholinesterase inhibitor insecticide ingestion is based on clinical suspicious and should be confirmed by cholinesterase essay. However, serum cholinesterase activity test requires specific instruments and procedure. This study aimed to develop simple colorimetric test to detect cholinesterase inhibitors in the gastric content, using phytoesterase and alpha naphthyl acetate as a chromogenic substrate. MATERIALS AND METHODS Methomyl and chlorpyrifos were selected for the phytoesterase enzyme inhibition assay. The experiment was conducted using pooled insecticide-free gastric content sample from ten cadavers. The gastric content samples were prepared by simple filtration procedure or liquid-liquid extraction procedure with dichloromethane or ethyl acetate. The inhibitor concentrations measured by the developed phytoesterase enzyme inhibition assay were compared with those analyzed by the LC-MS/MS and the GC-FPD. RESULTS Different sample preparation procedures, sensitivity and specificity and specificity of the test were investigated. Sample extracted with dichloromethane reduced the effect of matrix in gastric content as same as ethyl acetate. The developed color test method of detection showed 56.52% sensitivity and 100% specificity for methomyl, 100% sensitivity and 96.30% specificity for chlorpyrifos. The limit of detection of the assay was 422.6 ng mL-1 for methomyl and was 339.8 ng mL-1 for chlorpyrifos. CONCLUSION This developed method could be used an alternative diagnostic test for methomyl and chlorpyrifos self-ingestion.
Collapse
|
80
|
Yang L, Wang J, Qu L, Liu Z, Jiang L. An enzyme inhibition-based lab-in-a-syringe device for point-of-need determination of pesticides. Analyst 2020; 145:3958-3966. [DOI: 10.1039/d0an00382d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An enzyme inhibition-based lab-in-a-syringe (EI-LIS) device was developed by integrating a 1-naphthol-linked bi-enzymatic reaction (sensor core) into the LIS (sensor device) for point-of-need monitoring of pesticide residues.
Collapse
Affiliation(s)
- Limin Yang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Jinxin Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Linjiao Qu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Zhen Liu
- Department of Nuclear Medicine
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Lei Jiang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao 266580
- China
| |
Collapse
|
81
|
Attia TMS, Elsheery NI. Nanomaterials: Scope, Applications, and Challenges in Agriculture and Soil Reclamation. SUSTAINABLE AGRICULTURE REVIEWS 41 2020. [DOI: 10.1007/978-3-030-33996-8_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
82
|
Haque N, Biswas S, Basu P, Haque Biswas I, Khatun R, Khan A, Islam SM. Triazinetriamine-derived porous organic polymer-supported copper nanoparticles (Cu-NPs@TzTa-POP): an efficient catalyst for the synthesis of N-methylated products via CO 2 fixation and primary carbamates from alcohols and urea. NEW J CHEM 2020. [DOI: 10.1039/d0nj02798g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Copper nanoparticles incorporated triazinetriamine derived porous organic polymer based catalyst was synthesized for catalytic production N-methylated amines and primary carbamates.
Collapse
Affiliation(s)
- Najirul Haque
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
| | - Surajit Biswas
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
| | - Priyanka Basu
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
| | | | - Resmin Khatun
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
| | - Aslam Khan
- King Abdullah Institute for Nanotechnology
- King Saud University
- Riyadh
- Saudi Arabia
| | | |
Collapse
|
83
|
Zhai X, Zhang M, Chen P, Siriphithakyothin T, Liu J, Zhao H, Yang X, Abd El‐Aty A, Baranenko DA, Hacimüftüoğlu A, Wang J. Oligochitosan‐modified three‐dimensional graphene free‐standing electrode for electrochemical detection of imidacloprid insecticide. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xingchen Zhai
- Department of Food Sciences and Engineering, School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin P.R. China
- Key Laboratory of Agro‐Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro‐ProductChinese Academy of Agricultural Sciences Beijing P.R. China
| | - Min Zhang
- Department of Food Sciences and Engineering, School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin P.R. China
| | - Pan Chen
- Department of Food Sciences and Engineering, School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin P.R. China
| | - Thanawat Siriphithakyothin
- Department of Food Sciences and Engineering, School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin P.R. China
| | - Jingyi Liu
- Department of Food Sciences and Engineering, School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin P.R. China
| | - Haitian Zhao
- Department of Food Sciences and Engineering, School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin P.R. China
| | - Xin Yang
- Department of Food Sciences and Engineering, School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin P.R. China
| | - A.M. Abd El‐Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Shandong Academy of ScienceQilu University of Technology Jinan P.R. China
- Department of Pharmacology, Faculty of Veterinary MedicineCairo University Giza Egypt
- Department of Medical Pharmacology, Medical FacultyAtaturk University Erzurum Turkey
| | - Denis A. Baranenko
- International Research Centre "Biotechnologies of the Third Millennium"ITMO University St. Petersburg Russia
| | - Ahmet Hacimüftüoğlu
- Department of Medical Pharmacology, Medical FacultyAtaturk University Erzurum Turkey
| | - Jing Wang
- Key Laboratory of Agro‐Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro‐ProductChinese Academy of Agricultural Sciences Beijing P.R. China
| |
Collapse
|
84
|
Chen J, Gao H, Wang P, Wang C, Sun S, Wang X. Effects of decabromodiphenyl ether on activity, abundance, and community composition of phosphorus mineralizing bacteria in eutrophic lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133785. [PMID: 31421332 DOI: 10.1016/j.scitotenv.2019.133785] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/03/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are typical persistent organic pollutants (POPs) in the environment. However, little is known about their effects on phosphorus mineralizing bacteria (PMB) in eutrophic lake sediments, despite the critical role of PMB in phosphorus (P) biogeochemical cycling. In this study, we carried out a 60-day microcosm experiment to understand the effects of 2 and 20 mg kg-1 dry weight decabromodiphenyl ether (BDE-209) on the activity, abundance, diversity, and community composition of PMB in the sediment of Taihu Lake, a typical eutrophic lake in China. The results showed that BDE-209 contamination, regardless of the contamination levels, significantly increased the orthophosphate concentration in overlying water and available phosphorus concentration in sediments on day 60. Such increases may be explained by the stimulatory effects of BDE-209 on alkaline phosphatase (ALP) activity and PMB abundance. Moreover, based on Miseq sequencing of the phoD gene encoding ALP, Actinobacteria was the dominant PMB phylum in all treatments, and BDE-209 significantly increased the diversity of PMB and altered their community composition. In particular, the relative abundances of some PMB genera such as Bradyrhizobium were increased significantly after 60 days of the High treatment. A co-occurrence network analysis further revealed that the high level of BDE-209 contamination strengthened the connectivity and interspecific co-operative relationships in the PMB community. These results will help us to understand the effects of POPs on P biogeochemical cycling in eutrophic lakes and the associated microbial mechanisms.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Shenghao Sun
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
85
|
Rapid Biodegradation of the Organophosphorus Insecticide Chlorpyrifos by Cupriavidus nantongensis X1 T. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234593. [PMID: 31756950 PMCID: PMC6926599 DOI: 10.3390/ijerph16234593] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/05/2019] [Accepted: 11/19/2019] [Indexed: 11/28/2022]
Abstract
Chlorpyrifos was one of the most widely used organophosphorus insecticides and the neurotoxicity and genotoxicity of chlorpyrifos to mammals, aquatic organisms and other non-target organisms have caused much public concern. Cupriavidus nantongensis X1T, a type of strain of the genus Cupriavidus, is capable of efficiently degrading 200 mg/L of chlorpyrifos within 48 h. This is ~100 fold faster than Enterobacter B-14, a well-studied chlorpyrifos-degrading bacterial strain. Strain X1T can tolerate high concentrations (500 mg/L) of chlorpyrifos over a wide range of temperatures (30–42 °C) and pH values (5–9). RT-qPCR analysis showed that the organophosphorus hydrolase (OpdB) in strain X1T was an inducible enzyme, and the crude enzyme isolated in vitro could still maintain 75% degradation activity. Strain X1T can simultaneously degrade chlorpyrifos and its main hydrolysate 3,5,6-trichloro-2-pyridinol. TCP could be further metabolized through stepwise oxidative dechlorination and further opening of the benzene ring to be completely degraded by the tricarboxylic acid cycle. The results provide a potential means for the remediation of chlorpyrifos- contaminated soil and water.
Collapse
|
86
|
Cui J, Wang F, Gao J, Zhai W, Zhou Z, Liu D, Wang P. Bioaccumulation and Metabolism of Carbosulfan in Zebrafish ( Danio rerio) and the Toxic Effects of Its Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12348-12356. [PMID: 31638788 DOI: 10.1021/acs.jafc.9b03674] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbosulfan is a carbamate insecticide that has been widely used in agriculture. However, studies showed that carbosulfan could be highly toxic to aquatic organisms. The metabolism of carbosulfan in adult zebrafish is still largely unexplored, and the metabolites in individual or in combination may pose a potential threat to zebrafish. In the present study, the bioaccumulation and metabolism of carbosulfan in zebrafish (Danio rerio) were assessed, and the main metabolites, including carbofuran and 3-hydroxycarbofuran, were determined. The toxicity of carbosulfan and its metabolites individually or in combination to zebrafish was also investigated. The bioaccumulation and metabolism experiment indicated that carbosulfan was not highly accumulated in zebrafish, with a bioaccumulation factor of 18 after being exposed to carbosulfan for 15 days, and the metabolism was fast, with a half-life of 1.63 d. The two main metabolites were relatively persistent, with half-lives of 3.33 and 5.68 d for carbofuran and 3-hydroxycarbofuran, respectively. The acute toxicity assay showed that carbofuran and 3-hydroxycarbofuran had 96-h LC50 values of 0.15 and 0.36 mg/L, showing them to be more toxic than carbosulfan (96-h LC50 = 0.53 mg/L). Combinations of binary or ternary mixtures of carbosulfan and its metabolites displayed coincident synergistic effects on acute toxicity, with additive index (AI) values of 1.9-14.3. In the livers and gills of zebrafish exposed to carbosulfan, carbofuran, and 3-hydroxycarbofuran, activities of catalase, superoxide dismutase, and glutathione-S-transferase were significantly changed in most cases, and the content of malondialdehyde was greatly increased, indicating that carbosulfan and its metabolites induced varying degrees of oxidative stress. The metabolites were more persistent and toxic to zebrafish and exhibit coincident synergistic effects in combination. These results can provide evidence for the potential risk of pesticides and highlight the importance of a systematic assessment for the combination of the precursor and its metabolites.
Collapse
Affiliation(s)
- Jingna Cui
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P.R. China
| | - Fang Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P.R. China
| | - Jing Gao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P.R. China
| | - Wangjing Zhai
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P.R. China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P.R. China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P.R. China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P.R. China
| |
Collapse
|
87
|
Hussein MMA, Elsadaawy HA, El-Murr A, Ahmed MM, Bedawy AM, Tukur HA, Swelum AAA, Saadeldin IM. Endosulfan toxicity in Nile tilapia (Oreochromis niloticus) and the use of lycopene as an ameliorative agent. Comp Biochem Physiol C Toxicol Pharmacol 2019; 224:108573. [PMID: 31306802 DOI: 10.1016/j.cbpc.2019.108573] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Endosulfan is a broad-spectrum organochlorine insecticide that has been commercially in use for decades to control insect pests and has been found to pollute the aquatic environment. The current study was carried out to investigate the toxic effects of endosulfan, an organochlorine pesticide, on Nile tilapia (Oreochromis niloticus), a freshwater fish, and the alleviating effects of lycopene on the induced toxicity. METHODS Four treatment groups of fish were investigated (3 replicates of 15 fish for each group): (1) a control group, (2) a group exposed to endosulfan, (3) a group that was fed on a basal diet supplemented with lycopene, and (4) a group that was fed on a basal diet supplemented with lycopene and exposed to endosulfan. The experiment was carried out over a 4-week period. RESULTS Endosulfan negatively affected liver function, including liver enzymes and plasma proteins. Endosulfan affected blood parameters of fish and reduced the counts of red blood cells (RBCs) and white blood cells (WBCs), as well as affected immunological parameters. Endosulfan caused oxidative stress, as it decreased the values of antioxidants catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX), and glutathione (GSH), and increased the level of lipid peroxide malondialdehyde (MDA). Additionally, endosulfan increased cytochrome P450 (CYP450) levels, while it decreased glutathione S-transferase (GST) mRNA transcript levels and distorted the normal histological structure of the liver, gills, and spleen of affected fish. Conversely, lycopene partially restored the aforementioned parameters when administered concomitantly with endosulfan. CONCLUSION The results showed the beneficial effects of supplementing fish diets with lycopene as a natural antioxidant for ameliorating the toxicity caused by endosulfan.
Collapse
Affiliation(s)
- Mohamed M A Hussein
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt.
| | - Hamad A Elsadaawy
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Abdelhakeem El-Murr
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Mona M Ahmed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Aya M Bedawy
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Hammed A Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt.
| |
Collapse
|
88
|
Xu B, Guo J, Fu Y, Chen X, Guo J. A review on microfluidics in the detection of food pesticide residues. Electrophoresis 2019; 41:821-832. [PMID: 31525822 DOI: 10.1002/elps.201900209] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/29/2022]
Abstract
This paper briefly explains the food safety problems related to pesticide residues and introduces microfluidics technology as a pesticide residue detection method. Three mainstream microfluidic detection devices are detailed: one driven by liquid surface tension, one by motor siphon drive, and one by centrifugal force. The advantages and disadvantages of each are considered in an analysis of future trends in microfluidic technology for pesticide detection.
Collapse
Affiliation(s)
- Bangbang Xu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Jiuchuan Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Yusheng Fu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Xinyu Chen
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Jinhong Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| |
Collapse
|
89
|
The evolution of phosphotriesterase for decontamination and detoxification of organophosphorus chemical warfare agents. Chem Biol Interact 2019; 308:80-88. [PMID: 31100274 DOI: 10.1016/j.cbi.2019.05.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/22/2019] [Accepted: 05/13/2019] [Indexed: 11/23/2022]
Abstract
The organophosphorus chemical warfare agents were initially synthesized in the 1930's and are some of the most toxic compounds ever discovered. The standard means of decontamination are either harsh chemical hydrolysis or high temperature incineration. Given the continued use of chemical warfare agents there are ongoing efforts to develop gentle environmentally friendly means of decontamination and medical counter measures to chemical warfare agent intoxication. Enzymatic decontamination offers the benefits of extreme specificity and mild conditions, allowing their use for both environmental and medical applications. The most promising enzyme for decontamination of the organophosphorus chemical warfare agents is the enzyme phosphotriesterase from Pseudomonas diminuta. However, the catalytic activity of the wild-type enzyme with the chemical warfare agents falls far below that seen with its best substrates, and its stereochemical preference is for the less toxic enantiomer of the chiral phosphorus center found in most chemical warfare agents. Rational design efforts have succeeded in the dramatic improvement of the stereochemical preference of PTE for the more toxic enantiomers. Directed evolution experiments, including site-saturation mutagenesis, targeted error-prone PCR, computational design, and quantitative library analysis, have systematically improved the catalytic activity against the chemical warfare nerve agents. These efforts have resulted in greater than 4-orders of magnitude improvement in catalytic activity and have led to the identification of variants that are highly effective at detoxifying both G-type and V-type nerve agents. The best of these variants have the ability to prevent intoxication when delivered as a post-exposure treatment for VX and as a pre-exposure treatment for G-agent intoxication with observed protective factors up to 60-fold. Combining the best variant, H257Y/L303T, with a PCB polymer coating has enabled the development of a long lasting circulating prophylactic treatment that is highly effective against sarin.
Collapse
|
90
|
Biomarker Effects in Carassius auratus Exposure to Ofloxacin, Sulfamethoxazole and Ibuprofen. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091628. [PMID: 31075982 PMCID: PMC6540135 DOI: 10.3390/ijerph16091628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 11/27/2022]
Abstract
Ofloxacin, sulfamethoxazole and ibuprofen are three commonly used drugs which can be detected in aquatic environments. To assess their ecotoxicity, the effects of these three pharmaceuticals and their mixture on AChE (acetylcholinesterase) activity in the brain, and EROD (7-ethoxyresorufin-O-deethylase) and SOD (superoxide dismutase) activities in the liver of the freshwater crucian carp Carassius auratus were tested after exposure for 1, 2, 4 and 7 days. The results showed that treatments with 0.002–0.01 mg/L ofloxacin and 0.0008–0.004 mg/L sulfamethoxazole did not significantly change AChE, EROD and SOD activities. AChE activity was significantly inhibited in response to treatment with >0.05mg/L ofloxacin and >0.02 mg/L sulfamethoxazole. All three biomarkers were induced significantly in treatments with ibuprofen and the mixture of the three pharmaceuticals at all the tested concentrations. The combined effects of ofloxacin, sulfamethoxazole and ibuprofen were compared with their isolated effects on the three biomarkers, and the results indicated that exposure to ibuprofen and the mixture at environmentally relevant concentrations could trigger adverse impacts on Carassius auratus. The hazard quotient (HQ) index also demonstrated a high risk for ibuprofen. Moreover, the present study showed that the effects of ofloxacin, sulfamethoxazole and ibuprofen might be additive on the physiological indices of Carassius auratus.
Collapse
|
91
|
Castrejón-Godínez ML, Ortiz-Hernández ML, Salazar E, Encarnación S, Mussali-Galante P, Tovar-Sánchez E, Sánchez-Salinas E, Rodríguez A. Transcriptional analysis reveals the metabolic state of Burkholderia zhejiangensis CEIB S4-3 during methyl parathion degradation. PeerJ 2019; 7:e6822. [PMID: 31086743 PMCID: PMC6486813 DOI: 10.7717/peerj.6822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022] Open
Abstract
Burkholderia zhejiangensis CEIB S4-3 has the ability to degrade methyl parathion (MP) and its main hydrolysis byproduct p-nitrophenol (PNP). According to genomic data, several genes related with metabolism of MP and PNP were identified in this strain. However, the metabolic state of the strain during the MP degradation has not been evaluated. In the present study, we analyzed gene expression changes during MP hydrolysis and PNP degradation through a transcriptomic approach. The transcriptional analysis revealed differential changes in the expression of genes involved in important cellular processes, such as energy production and conversion, transcription, amino acid transport and metabolism, translation, ribosomal structure and biogenesis, among others. Transcriptomic data also exhibited the overexpression of both PNP-catabolic gene clusters (pnpABA′E1E2FDC and pnpE1E2FDC) present in the strain. We found and validated by quantitative reverse transcription polymerase chain reaction the expression of the methyl parathion degrading gene, as well as the genes responsible for PNP degradation contained in two clusters. This proves the MP degradation pathway by the strain tested in this work. The exposure to PNP activates, in the first instance, the expression of the transcriptional regulators multiple antibiotic resistance regulator and Isocitrate Lyase Regulator (IclR), which are important in the regulation of genes from aromatic compound catabolism, as well as the expression of genes that encode transporters, permeases, efflux pumps, and porins related to the resistance to multidrugs and other xenobiotics. In the presence of the pesticide, 997 differentially expressed genes grouped in 104 metabolic pathways were observed. This report is the first to describe the transcriptomic analysis of a strain of B. zhejiangensis during the biodegradation of PNP.
Collapse
Affiliation(s)
| | - Ma Laura Ortiz-Hernández
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Emmanuel Salazar
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Sergio Encarnación
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Enrique Sánchez-Salinas
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
92
|
Patel H, Rawtani D, Agrawal Y. A newly emerging trend of chitosan-based sensing platform for the organophosphate pesticide detection using Acetylcholinesterase- a review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
93
|
Meng D, Jiang W, Li J, Huang L, Zhai L, Zhang L, Guan Z, Cai Y, Liao X. An alkaline phosphatase from Bacillus amyloliquefaciens YP6 of new application in biodegradation of five broad-spectrum organophosphorus pesticides. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:336-343. [PMID: 30822193 DOI: 10.1080/03601234.2019.1571363] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In recent decades, biodegradation has been considered a promising and eco-friendly way to eliminate organophosphorus pesticides (OPs) from the environment. To enrich current biodegrading-enzyme resources, an alkaline phosphatase (AP3) from Bacillus amyloliquefaciens YP6 was characterized and utilized to test the potential for new applications in the biodegradation of five broad-spectrum OPs. Characterization of AP3 demonstrated that activity was optimal at 40 °C and pH 10.3. The activity of AP3 was enhanced by Mg2+, Ca2+, and Cu2+, and strongly inhibited by Mn2+, EDTA, and L-Cys. Compared to disodium phenyl phosphate, p-nitrophenyl phosphate (pNPP) was more suitable to AP3, and the Vm, Km, kcat, kcat/Km values of AP3 for pNPP were 4,033 U mg-1, 12.2 mmol L-1, 3.3 × 106 s-1, and 2.7 × 108 s-1mol-1L, respectively. Degradation of the five OPs, which included chlorpyrifos, dichlorvos, dipterex, phoxim, and triazophos, was 18.7%, 53.0%, 5.5%, 68.3%, and 96.3%, respectively, after treatment with AP3 for 1 h. After treatment of the OP for 8 h, AP3 activities remained more than 80%, with the exception of phoxim. It can be postulated that AP3 may have a broad OP-degradation ability and could possibly provide excellent potential for biodegradation and bioremediation in polluted ecosystems.
Collapse
Affiliation(s)
- Di Meng
- a Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Jiangsu , China
| | - Wei Jiang
- a Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Jiangsu , China
| | - Jing Li
- a Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Jiangsu , China
| | - Lin Huang
- a Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Jiangsu , China
| | - Lixin Zhai
- a Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Jiangsu , China
| | - Liyuan Zhang
- a Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Jiangsu , China
| | - Zhengbing Guan
- a Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Jiangsu , China
| | - Yujie Cai
- a Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Jiangsu , China
| | - Xiangru Liao
- a Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Jiangsu , China
| |
Collapse
|
94
|
The visible light-driven and self-powered photoelectrochemical biosensor for organophosphate pesticides detection based on nitrogen doped carbon quantum dots for the signal amplification. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.086] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
95
|
Iummato MM, Sabatini SE, Cacciatore LC, Cochón AC, Cataldo D, de Molina MDCR, Juárez ÁB. Biochemical responses of the golden mussel Limnoperna fortunei under dietary glyphosate exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:69-75. [PMID: 30041128 DOI: 10.1016/j.ecoenv.2018.07.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/20/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to analyze the biochemical alterations in the golden mussel Limnoperna fortunei under dietary glyphosate exposure. Mussels were fed during 4 weeks with the green algae Scenedesmus vacuolatus previously exposed to a commercial formulation of glyphosate (6 mg L-1 active principle) with the addition of alkyl aryl polyglycol ether surfactant. After 1, 7, 14, 21 and 28 days of dietary exposure, glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), acetylcholinesterase (AChE), carboxylesterases (CES) and alkaline phosphatase (ALP) activities, glutathione (GSH) content and damage to lipids and proteins levels were analyzed. A significant increase (72%) in the GST activity and a significant decrease (26%) in the CES activity in the mussels fed on glyphosate exposed algae for 28 days were observed. The ALP activity was significantly increased at 21 and 28 days of dietary exposure (48% and 72%, respectively). GSH content and CAT, SOD and AchE activities did not show any differences between the exposed and non exposed bivalves. No oxidative damage to lipids and proteins, measured as TBARS and carbonyl content respectively, was observed in response to glyphosate dietary exposure. The decrease in the CES activity and the increases in GST and ALP activities observed in L. fortunei indicate that dietary exposure to glyphosate provokes metabolic alterations, related with detoxification mechanisms.
Collapse
Affiliation(s)
- María Mercedes Iummato
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires - Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Sebastián Eduardo Sabatini
- CONICET, Universidad de Buenos Aires - Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
| | - Luis Claudio Cacciatore
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
| | - Adriana Cristina Cochón
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
| | - Daniel Cataldo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución. CONICET-UBA-Instituto de Ecología, Genética y Evolución (IEGE), Buenos Aires, Argentina
| | - María Del Carmen Ríos de Molina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires - Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Ángela Beatriz Juárez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Buenos Aires, Argentina.
| |
Collapse
|
96
|
|
97
|
Baruch Leshem A, Isaacs S, Srivastava SK, Abdulhalim I, Kushmaro A, Rapaport H. Quantitative assessment of paraoxon adsorption to amphiphilic β-sheet peptides presenting the catalytic triad of esterases. J Colloid Interface Sci 2018; 530:328-337. [DOI: 10.1016/j.jcis.2018.06.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 01/31/2023]
|
98
|
Liu Y, Vincent Edwards J, Prevost N, Huang Y, Chen JY. Physico- and bio-activities of nanoscale regenerated cellulose nonwoven immobilized with lysozyme. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:389-394. [DOI: 10.1016/j.msec.2018.05.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 04/25/2018] [Accepted: 05/17/2018] [Indexed: 01/13/2023]
|
99
|
Yang X, Dai J, Zhao S, Li R, Goulette T, Chen X, Xiao H. Identification and characterization of a novel carboxylesterase from Phaseolus vulgaris for detection of organophosphate and carbamates pesticides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5095-5104. [PMID: 29604085 DOI: 10.1002/jsfa.9048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/04/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Organophosphate and carbamate pesticide residues in food and the environment pose a great threat to human health and have made the easy and rapid detection of these pesticide residues an important task. Discovering new enzyme sources from plants can help reduce the cost of large-scale applications of rapid pesticide detection via enzyme inhibition. RESULTS Plant esterase from kidney beans was purified. Kidney bean esterase is identified as a carboxylesterase by substrate and inhibitor specificity tests and mass spectrometry identification. The kidney bean esterase demonstrates optimal catalytic activity at 40 °C, pH 6.5 and an enzyme concentration of 0.30 µg mL-1 . The kidney bean esterase can be inhibited by organophosphate and carbamate pesticides, which can be substituted for acetylcholinesterase. The limit of detection of the purified kidney bean esterase was two- to 20-fold higher than that of the crude one. The method detection limit meets the detection requirement for the maximum residue limits (MRL) in actual samples. CONCLUSION The findings of the present study provide a new source of enzymes for pesticides detection by enzyme inhibition. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao Yang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Juan Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Sujuan Zhao
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Rong Li
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Tim Goulette
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
100
|
Saratale RG, Karuppusamy I, Saratale GD, Pugazhendhi A, Kumar G, Park Y, Ghodake GS, Bharagava RN, Banu JR, Shin HS. A comprehensive review on green nanomaterials using biological systems: Recent perception and their future applications. Colloids Surf B Biointerfaces 2018; 170:20-35. [DOI: 10.1016/j.colsurfb.2018.05.045] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 01/18/2023]
|