51
|
Wang Z, Ding J, Razanajatovo RM, Huang J, Zheng L, Zou H, Wang Z, Liu J. Sorption of selected pharmaceutical compounds on polyethylene microplastics: Roles of pH, aging, and competitive sorption. CHEMOSPHERE 2022; 307:135561. [PMID: 35787887 DOI: 10.1016/j.chemosphere.2022.135561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) as the carrier of pharmaceuticals in aquatic environments have been concerned in recent years. However, the influences of environmental factors on the sorption of pharmaceuticals onto MPs, particularly the effect of the simultaneous sorption by MPs of different pharmaceuticals in multi-solute systems are still unclear. This study investigated the influences of pH, aging of MPs, and competition of pharmaceuticals on the sorptions of sulfamethoxazole (SMX), propranolol (PRP), and sertraline (SER) onto polyethylene MPs. In the 96 h pH-dependent experiments, the sorptions of the three pharmaceuticals were mainly driven by hydrophobic interaction. Besides, the ionization states of the three pharmaceuticals varied with the pH ranging from 2.00 to 12.00, and electrostatic interaction would affect the sorption affinities of the pharmaceuticals in different ionization states. In the aged MPs experiments, the MPs aged by UV irradiation showed a stronger sorption capacity than the pristine ones. Across the MPs under different UV irradiation durations, the 6 d aged MPs showed the highest sorption percentages of 23.0% and 17.6% for SER and PRP, respectively; for SMX, the highest sorption percentage of 5.4% was recorded with the 10 d aged MPs. In the multi-solute systems, the sorption kinetics of the three pharmaceuticals fit well with the pseudo-second-order model. The sorption quantities of the three pharmaceuticals onto MPs followed the order of SER cations (18.70 μg g-1) > SMX anions (7.83 μg g-1) > PRP cations (3.80 μg g-1) at pH 7.00. The good fitting of the Freundlich model suggested a multilayer sorption of the three pharmaceuticals onto MPs. The SER with higher hydrophobicity would preferentially be adsorbed onto MPs and influenced the subsequently sorption processes of the other pharmaceuticals via electrostatic interactions. This may change the environmental fate of the contaminants, which should be carefully considered in future work.
Collapse
Affiliation(s)
- Zhenguo Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jiannan Ding
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi, 214122, China.
| | | | - Jichao Huang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Lixing Zheng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi, 214122, China
| | - Zhenyu Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi, 214122, China
| | - Jianli Liu
- School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
52
|
Pilechi A, Mohammadian A, Murphy E. A numerical framework for modeling fate and transport of microplastics in inland and coastal waters. MARINE POLLUTION BULLETIN 2022; 184:114119. [PMID: 36162292 DOI: 10.1016/j.marpolbul.2022.114119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/10/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Proliferation of microplastics in rivers, lakes, estuaries, coastal waters and oceans is a major global challenge and threat to the environment, livelihoods and human health. Reliable predictive tools can play an essential role in developing an improved understanding of microplastics behaviour, exposure and risk in water bodies, and facilitate identification of sources and accumulation hot spots, thereby enabling informed decision-making for targeted prevention and clean-up activities. This study presents a new numerical framework (CaMPSim-3D) for predicting microplastics fate and transport in different aquatic settings, which consists of a Lagrangian, three-dimensional (3D) particle-tracking model (PTM) coupled with an Eulerian-based hydrodynamic modeling system (TELEMAC). The 3D PTM has several innovative features that enable accurate simulation and efficient coupling with TELEMAC, which utilizes an unstructured computational mesh. The PTM is capable of considering spatio-temporally varying diffusivity, and uses an innovative algorithm to locate particles within the Eulerian mesh. Model accuracy associated with different advection schemes was verified by comparing numerical predictions to known analytical solutions for several test cases. The implications of choosing different advection schemes for modeling microplastics transport was then investigated by applying the PTM to simulate particle transport in the lower Saint John River Estuary in eastern Canada. The sensitivity of the PTM predictions to the advection scheme was investigated using six numerical schemes with different levels of complexity. Predicted particle distributions and residence times based on the fourth-order Runge-Kutta (RK4) scheme differed significantly (residence times by up to 100 %) from those computed using the traditional first-order (Euler) method. The Third Order Total Variation Diminishing (TVD3) Runge-Kutta method was found to be optimal, providing the closest results to RK4 with approximately 27 % lower computational cost.
Collapse
Affiliation(s)
- Abolghasem Pilechi
- Ocean, Coastal & River Engineering Research Centre, National Research Council Canada, Ottawa, Canada; Department of Civil Engineering, University of Ottawa, Ottawa, Canada.
| | - Abdolmajid Mohammadian
- Ocean, Coastal & River Engineering Research Centre, National Research Council Canada, Ottawa, Canada; Department of Civil Engineering, University of Ottawa, Ottawa, Canada.
| | - Enda Murphy
- Ocean, Coastal & River Engineering Research Centre, National Research Council Canada, Ottawa, Canada; Department of Civil Engineering, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
53
|
Tian P, Muhmood A, Xie M, Cui X, Su Y, Gong B, Yu H, Li Y, Fan W, Wang X. New insights into the distribution and interaction mechanism of microplastics with humic acid in river sediments. CHEMOSPHERE 2022; 307:135943. [PMID: 35948100 DOI: 10.1016/j.chemosphere.2022.135943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Information on the distribution and interaction of microplastics (MPs) and humic acids (HAs) in river sediment has not been fully explored. This study assessed the distribution and interaction of MPs with HAs at different depths in river sediments. The results delineated that the average abundance of MPs in the 0-10 cm layer (190 ± 20 items/kg) was significantly lower than that in the 11-20 cm and 21-30 cm layers (211 ± 10 items/kg and 238 ± 18 items/kg, respectively). Likewise, the large MP particles mainly existed in the 0-10 cm layer (31.53%-37.87%), while small MP particles were found in the 21-30 cm layers (73.23%-100%). Moreover, HAs in MPs showed a transformation from low molecular weight to high molecular weight with an increase in depth from 0-10 cm to 21-30 cm, which may contribute to the distribution of MPs in the river sediments. These results provide new insight into the migration of MP pollution in river sediments, but further research needs to assess the interaction of MP with HA for mitigating MP pollution in river sediment.
Collapse
Affiliation(s)
- Pengjiao Tian
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, China
| | - Atif Muhmood
- Institute of Soil Chemistry & Environmental Science, AARI, Pakistan
| | - Minghong Xie
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, China
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, China
| | - Yingjie Su
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Binbin Gong
- College of Biological Science and Engineering, Xingtai University, Xingtai, Hebei, China
| | - Haizhong Yu
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, China
| | - Yuqi Li
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, China
| | - Wenying Fan
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, China
| | - Xiqing Wang
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, China.
| |
Collapse
|
54
|
Krasucka P, Bogusz A, Baranowska-Wójcik E, Czech B, Szwajgier D, Rek M, Ok YS, Oleszczuk P. Digestion of plastics using in vitro human gastrointestinal tract and their potential to adsorb emerging organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157108. [PMID: 35779726 DOI: 10.1016/j.scitotenv.2022.157108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Excessive plastic use has inevitably led to its consumption by organisms, including humans. It is estimated that humans consume 20 kg of plastic during their lifetime. The presence of microplastics in the human body can carry serious health risks, such as biological reactions e.g. inflammation, genotoxicity, oxidative stress, apoptosis, as well toxic compounds leaching of unbound chemicals/monomers, free radicals or adsorbed organic pollutants, which mainly depend on the properties of the ingested plastic. Plastics are exposed to different substances (e.g., enzymes and acids) in the digestive system, which potentially affects their properties and structure. By stimulating the human digestive system and applying a set of advanced analytical tools, we showed that the surface of polystyrene and high-density polyethylene plastics frequently in contact with food undergoes fundamental changes during digestion. This results in the appearance of additional functional groups, and consequent increase in the plastic adsorption capacity for hydrophobic ionic compounds (such as triclosan and diclofenac) while reducing its adsorption capacity for hydrophobic non-ionic compounds (such as phenanthrene). Micro- and nanostructures that formed on the flat surface of the plastics after digestion were identified using scanning electron microscopy. These structures became defragmented and detached due to mechanical action, increasing micro- and nanoplastics in the environment. Due to their size, the release of plastic nanostructures after digestion can become an "accidental food source" for a wider group of aquatic organisms and ultimately for humans as the last link in the food chain. This, combined with improved adsorption capacity of digested plastics to hydrophobic ionic pollutants, can pose a serious threat to the environment including human health and safety.
Collapse
Affiliation(s)
- Patrycja Krasucka
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Aleksandra Bogusz
- Department of Ecotoxicology, Institute of Environmental Protection - National Research Institute, ul. Krucza 5/11D, 00-548 Warszawa, Poland
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, ul. Skromna 8, 20-704 Lublin, Poland
| | - Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, ul. Skromna 8, 20-704 Lublin, Poland
| | - Monika Rek
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland.
| |
Collapse
|
55
|
Shi K, Zhang H, Xu H, Liu Z, Kan G, Yu K, Jiang J. Adsorption behaviors of triclosan by non-biodegradable and biodegradable microplastics: Kinetics and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156832. [PMID: 35760165 DOI: 10.1016/j.scitotenv.2022.156832] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) pollution has been becoming serious and widespread in the global environment. Although MPs have been identified as vectors for contaminants, adsorption and desorption behaviors of chemicals with non-biodegradable and biodegradable MPs during the aging process is limited. In this work, the adsorption behaviors of triclosan (TCS) by non-biodegradable polyethylene (PE) and polypropylene (PP), and biodegradable polylactic acid (PLA) were investigated. The differences in morphology, chemical structures, crystallization, and hydrophilicity were investigated after the ultraviolet aging process and compared with the virgin MPs. The results show that the water contact angles of the aged MPs were slightly reduced compared with the virgin MPs. The aged MPs exhibited a stronger adsorption capacity for TCS because of the physical and chemical changes in MPs. The virgin biodegradable PLA had a larger adsorption capacity than the non-biodegradable PE and PP. The adsorption capacity presented the opposite trend after aging. The main adsorption mechanism of MPs relied on hydrophobicity interaction, hydrogen bonding, and electrostatic interaction. The work provides new insights into TCS as hazardous environmental contaminants, which will enhance the vector potential of non-biodegradable and biodegradable MPs.
Collapse
Affiliation(s)
- Ke Shi
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China.
| | - HaoMing Xu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Zhe Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Jie Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| |
Collapse
|
56
|
He B, Liu A, Duan H, Wijesiri B, Goonetilleke A. Risk associated with microplastics in urban aquatic environments: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129587. [PMID: 35863231 DOI: 10.1016/j.jhazmat.2022.129587] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The presence of microplastics (MPs) has been recognized as a significant environmental threat due to adverse effects spanning from molecular level, organism health, ecosystem services to human health and well-being. MPs are complex environmental contaminants as they bind to a wide range of other contaminants. MPs associated contaminants include toxic chemical substances that are used as additives during the plastic manufacturing process and adsorbed contaminants that co-exist with MPs in aquatic environments. With the transfer between the water column and sediments, and the migration within aquatic systems, such contaminants associated MPs potentially pose high risk to aquatic systems. However, only limited research has been undertaken currently to link the environmental risk associated with MPs occurrence and movement behaviour in aquatic systems. Given the significant environmental risk and current knowledge gaps, this review focuses on the role played by the abundance of different MP species in water and sediment compartments as well as provides the context for assessing and quantifying the multiple risks associated with the occurrence and movement behaviour of different MP types. Based on the review of past literature, it is found that the physicochemical properties of MPs influence the release/sorption of other contaminants and current MPs transport modelling studies have primarily focused on virgin plastics rather than aged plastics. Additionally, risk assessment of contaminants-associated MPs needs significantly more research. This paper consolidates the current state-of-the art knowledge on the source to sink movement behaviour of MPs and methodologies for assessing the risk of different MP species. Moreover, knowledge gaps and emerging trends in the field are also identified for future research endeavours.
Collapse
Affiliation(s)
- Beibei He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - An Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Huabo Duan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Buddhi Wijesiri
- School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology (QUT), P.O. Box 2434, Brisbane, Qld 4001, Australia
| | - Ashantha Goonetilleke
- School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology (QUT), P.O. Box 2434, Brisbane, Qld 4001, Australia
| |
Collapse
|
57
|
Nobre CR, Moreno BB, Alves AV, de Lima Rosa J, Fontes MK, Campos BGD, Silva LFD, Almeida Duarte LFD, Abessa DMDS, Choueri RB, Gusso-Choueri PK, Pereira CDS. Combined effects of polyethylene spiked with the antimicrobial triclosan on the swamp ghost crab (Ucides cordatus; Linnaeus, 1763). CHEMOSPHERE 2022; 304:135169. [PMID: 35671813 DOI: 10.1016/j.chemosphere.2022.135169] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/02/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Domestic sewage is an important source of pollutants in aquatic ecosystems and includes both microplastics (MPs) and pharmaceuticals and personal care products (PPCPs). This study sought to assess the biological effects of the interaction between plastic particles and the antibacterial agent triclosan (TCS). The study relied on the swamp ghost crab Ucides cordatus as a model. Herein polyethylene particles were contaminated with triclosan solution. Triclosan concentrations in the particles were then chemically analyzed. Swamp ghost crab specimens were exposed to experimental compounds (a control, microplastics, and microplastics with triclosan) for 7 days. Samplings were performed on days 3 (T3) and 7 (T7). Gill, hepatopancreas, muscle and hemolymph tissue samples were collected from the animals to evaluate the biomarkers ethoxyresorufin O-deethylase (EROD), dibenzylfluorescein dealkylase (DBF), glutathione S-transferase (GST), glutathione peroxidase (GPx), reduced glutathione (GSH), lipid peroxidation (LPO), DNA strands break (DNA damage), cholinesterase (ChE) through protein levels and neutral red retention time (NRRT). Water, organism, and microplastic samples were collected at the end of the assay for post-exposure chemical analyses. Triclosan was detected in the water and crab tissue samples, results which indicate that microplastics serve as triclosan carriers. Effects on the gills of organisms exposed to triclosan-spiked microplastics were observed as altered biomarker results (EROD, GST, GPx, GSH, LPO, DNA damage and NRRT). The effects were more closely associated with microplastic contaminated with triclosan exposure than with microplastic exposure, since animals exposed only to microplastics did not experience significant effects. Our results show that microplastics may be important carriers of substances of emerging interest in marine environments in that they contaminate environmental matrices and have adverse effects on organisms exposed to these stressors.
Collapse
Affiliation(s)
- Caio Rodrigues Nobre
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, 11330-900, São Vicente, São Paulo, Brazil.
| | - Beatriz Barbosa Moreno
- Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Baixada Santista Campus, Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil
| | - Aline Vecchio Alves
- Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Baixada Santista Campus, Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil
| | - Jonas de Lima Rosa
- Department of Ecotoxicology, Santa Cecília University (UNISANTA), Rua Oswaldo Cruz, 266, 11045-907, Santos, São Paulo, Brazil
| | - Mayana Karoline Fontes
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, 11330-900, São Vicente, São Paulo, Brazil
| | - Bruno Galvão de Campos
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, 11330-900, São Vicente, São Paulo, Brazil
| | - Leticia Fernanda da Silva
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, 11330-900, São Vicente, São Paulo, Brazil
| | - Luís Felipe de Almeida Duarte
- Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Baixada Santista Campus, Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil; Department of Ecotoxicology, Santa Cecília University (UNISANTA), Rua Oswaldo Cruz, 266, 11045-907, Santos, São Paulo, Brazil
| | - Denis Moledo de Souza Abessa
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, 11330-900, São Vicente, São Paulo, Brazil
| | - Rodrigo Brasil Choueri
- Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Baixada Santista Campus, Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil
| | - Paloma Kachel Gusso-Choueri
- Department of Ecotoxicology, Santa Cecília University (UNISANTA), Rua Oswaldo Cruz, 266, 11045-907, Santos, São Paulo, Brazil
| | - Camilo Dias Seabra Pereira
- Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Baixada Santista Campus, Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil; Department of Ecotoxicology, Santa Cecília University (UNISANTA), Rua Oswaldo Cruz, 266, 11045-907, Santos, São Paulo, Brazil
| |
Collapse
|
58
|
Nguyen TB, Ho TBC, Huang CP, Chen CW, Chen WH, Hsieh S, Hsieh SL, Dong CD. Adsorption of lead(II) onto PE microplastics as a function of particle size: Influencing factors and adsorption mechanism. CHEMOSPHERE 2022; 304:135276. [PMID: 35690170 DOI: 10.1016/j.chemosphere.2022.135276] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 04/30/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The adsorption of Pb ions, on high-density polyethylene (PE) microplastics (MPs) with the diameter of 48-500 μm, was examined in this study. According to the Langmuir isotherm, MP of the smallest size, 48 μm, had the greatest adsorption capacity of 0.38 μmol g-1. The mechanism of Pb ions adsorption onto PE MPs was chemical adsorption, in particular, hydrogen bonding and surface complexation. Pb adsorption onto PE particles was proceeded at a rapid rate, as predicted by the pseudo-second-order rate model (R2 > 0.99). The PE 48 μm had the maximum adsorption capacity of 0.44 μmol g-1 (or 0.2 mol m-2) at pH 5. While humic acid can operate as a bridging agent, boosting heavy metal adsorption on the surface of PE MPs, fulvic acid has the reverse effect. The findings indicated that PE particles may serve as a carrier of heavy metals in the aquatic environment, posing perceived risks to the environment and public health.
Collapse
Affiliation(s)
- Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Thi-Bao-Chau Ho
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - C P Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, 19716, DE, USA
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan.
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung City, 80424, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan.
| |
Collapse
|
59
|
Upadhyay R, Singh S, Kaur G. Sorption of pharmaceuticals over microplastics' surfaces: interaction mechanisms and governing factors. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:803. [PMID: 36121501 DOI: 10.1007/s10661-022-10475-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Microplastics are one of the emerging and ubiquitous environmental pollutants. Recent studies have proven their co-existence with pharmaceuticals in the environment wherein microplastics act as a potential vector for the transportation of pharmaceuticals. Both microplastics and pharmaceuticals are charged moieties enriched with diverse functional groups resulting in the possibility of multiple interactions. Major interactions could be electrostatic, hydrogen bonding, and hydrophobic, while minor interactions may occur through π-π interaction, cationic bridging mechanism, van der Waals interaction, partition, and pore-filling mechanism. These interactions have both short- and long-term effects over pharmaceutical sorption on microplastics and possibly, ensuing toxicity. This review analyses and summarises the currently reported interactions between microplastic particles and pharmaceuticals as well as establishes the link to various factors affecting the process, viz. pH, salinity, dissolved organic matter, and physiochemical properties of microplastics.
Collapse
Affiliation(s)
- Rajshekher Upadhyay
- School of Pharmaceutical Sciences, Shoolini University, Solan, 173 229, India
| | - Surya Singh
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil), ICMR-National Institute for Research in Environmental Health, Bhopal, 462 030, India.
| | - Gurjot Kaur
- School of Pharmaceutical Sciences, Shoolini University, Solan, 173 229, India.
| |
Collapse
|
60
|
Song X, Zhuang W, Cui H, Liu M, Gao T, Li A, Gao Z. Interactions of microplastics with organic, inorganic and bio-pollutants and the ecotoxicological effects on terrestrial and aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156068. [PMID: 35598660 DOI: 10.1016/j.scitotenv.2022.156068] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
As emerging contaminants, microplastics (MPs) have attracted global attention. They are a potential risk to organisms, ecosystems and human health. MPs are characterized by small particle sizes, weak photodegradability, and are good environmental carriers. They can physically adsorb or chemically react with organic, inorganic and bio-pollutants to generate complex binary pollutants or change the environmental behaviors of these pollutants. We systematically reviewed the following aspects of MPs: (i) Adsorption of heavy metals and organic pollutants by MPs and the key environmental factors affecting adsorption behaviors; (ii) Enrichment and release of antibiotic resistance genes (ARGs) on MPs and the effects of MPs on ARG migration in the environment; (iii) Formation of "plastisphere" and interactions between MPs and microorganisms; (iv) Ecotoxicological effects of MPs and their co-exposures with other pollutants. Finally, scientific knowledge gaps and future research areas on MPs are summarized, including standardization of study methodologies, ecological effects and human health risks of MPs and their combination with other pollutants.
Collapse
Affiliation(s)
- Xiaocheng Song
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Wen Zhuang
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Qingdao Institute of Humanities and Social Sciences, Shandong University, Qingdao, Shandong 266237, China; Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.
| | - Huizhen Cui
- Public (Innovation) Center of Experimental Teaching, Shandong University, Qingdao, Shandong 266237, China
| | - Min Liu
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Teng Gao
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; Qingdao Institute of Humanities and Social Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Ao Li
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; Qingdao Institute of Humanities and Social Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Zhenhui Gao
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; Qingdao Institute of Humanities and Social Sciences, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
61
|
Arvaniti OS, Antonopoulou G, Gatidou G, Frontistis Z, Mantzavinos D, Stasinakis AS. Sorption of two common antihypertensive drugs onto polystyrene microplastics in water matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155786. [PMID: 35537511 DOI: 10.1016/j.scitotenv.2022.155786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Recent studies have shown the widespread occurrence of microplastics in multiple environmental compartments. When discharged into the aquatic environment, microplastics interact with other chemicals acting as vectors of organic and inorganic micropollutants. In the present study, we examined the sorption of two commonly used antihypertensive drugs, valsartan (VAL) and losartan (LOS), onto polystyrene (PS) microplastics and we studied the effects of water matrix, solution's pH, salinity, and microplastics' aging on their sorption. According to the results, the sorption of VAL and LOS onto PS is a slow process that reaches equilibrium after 12 days. The sorption of both target micropollutants was pH-dependent and significantly decreased under alkaline conditions. The removal of VAL was enhanced in the presence of 100 mM of Ca2+ while no statistical significant effects were observed when Na+ was added. The increase of salinity either did not affect or decreased the removal of LOS. Lower sorption of both drugs was observed when aged PS was used despite that the specific surface area for aged PS was 39% higher than pristine. Calculation of the sorption distribution coefficient (Kd) for different water matrices showed that the increase of matrix complexity inhibited target compounds' removal and the sorption rate decreased from bottled water > river water ≈ treated wastewater for the two compounds. For VAL, the Kd values ranged between 795 ± 63 L/kg (bottled water) and 384 ± 88 L/kg (river water), while for LOS between 4453 ± 417 L/kg (bottled water) and 3078 ± 716 L/kg (treated wastewater). Both VAL and LOS sorption onto PS microplastics can be described by hydrophobic and electrostatic interactions. The current results indicate that PS particles could affect the transportation of antihypertensive drugs in the aquatic environment causing potential adverse effects on the environment and public health.
Collapse
Affiliation(s)
- Olga S Arvaniti
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, Mytilene 81100, Greece; Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, Patras 26504, Greece; Department of Agricultural Development, Agrofood and Management of Natural Resources, National and Kapodistrian University of Athens, Psachna 34400, Greece
| | - Georgia Antonopoulou
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, Mytilene 81100, Greece; Institute of Chemical Engineering Sciences, 11 Stadiou St., Platani, Patras 26504, Greece
| | - Georgia Gatidou
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, Mytilene 81100, Greece
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, GR-50132 Kozani, Greece
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, Patras 26504, Greece
| | - Athanasios S Stasinakis
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, Mytilene 81100, Greece.
| |
Collapse
|
62
|
Chen X, Liang J, Bao L, Gu X, Zha S, Chen X. Competitive and cooperative sorption between triclosan and methyl triclosan on microplastics and soil. ENVIRONMENTAL RESEARCH 2022; 212:113548. [PMID: 35613630 DOI: 10.1016/j.envres.2022.113548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The sorption behavior of single contaminant on microplastics (MPs) has been extensively studied; however, little is known about that in the more actual scenario containing multiple contaminants. In this study, the interaction between triclosan (TCS) and its primary metabolite, methyl triclosan (MTCS) on polyethylene (PE), polystyrene (PS), and soil was investigated. Results indicate that the more hydrophobic MTCS had much higher sorption capacity and affinity than TCS. Competitive sorption between them occurred in most cases and appeared to be concentration-dependent (in the range of 0.1-5 mg TCS/L and 0.01-≤0.05 mg MTCS/L of primary solutes, respectively): more pronounced at low concentrations of primary solute, while progressively weaker with the increase of concentrations. Among the sorbents, MTCS exhibited strong antagonistic effect on TCS sorption for MPs, especially PS, while significant suppression of MTCS sorption by TCS took place for soil and PS rather than PE. Additionally, it is interesting to observe that the presence of TCS substantially facilitated the sorption of MTCS exclusively at high concentrations on both PS and soil, presumably attributed to the solute-multilayer formation. Furthermore, the magnitude of the two effects varied with solution pH: TCS sorption at alkaline pH was the most suppressed by MTCS because the less hydrophobic dissociated TCS tended to be displaced, and the highest cooperative sorption of MTCS with TCS occurred at acidic pH because neutral TCS preferentially adsorbed on sorbent surface could provide additional sorption sites for MTCS. Both competitive and cooperative effects between multiple contaminants may affect their fate and transport, thereby these findings are helpful for assessing the environmental risk of MPs and TCS in soil.
Collapse
Affiliation(s)
- Xian Chen
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China.
| | - Jingcheng Liang
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China.
| | - Lijing Bao
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China.
| | - Xuanning Gu
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China.
| | - Simin Zha
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China.
| | - Xingming Chen
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China.
| |
Collapse
|
63
|
Gopinath PM, Parvathi VD, Yoghalakshmi N, Kumar SM, Athulya PA, Mukherjee A, Chandrasekaran N. Plastic particles in medicine: A systematic review of exposure and effects to human health. CHEMOSPHERE 2022; 303:135227. [PMID: 35671817 DOI: 10.1016/j.chemosphere.2022.135227] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/15/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Single-use plastics (SUPs) have become an essential constituent of our daily life. It is being exploited in numerous pharmaceutical and healthcare applications. Despite their advantages and widespread use in the pharma and medical sectors, the potential clinical problems of plastics, especially the release of micro-nanoplastics (MNPs) and additives from medical plastics (e.g. bags, containers, and administrative sets) and sorption of drugs remain understudied. Certainly, the MNPs are multifaceted stressors that cause detrimental effects to the ecosystem and human health. The origin and persistence of MNPs in pharmaceutical products, their administration to humans, endurance and possible health implication, translocation, and excretion have not been reviewed in detail. The prime focus of this article is to conduct a systematic review on the leaching of MNPs and additives from pharmaceutical containers/administrative sets and their interaction with the pharmaceutical constituents. This review also explores the primary and secondary routes of MNPs entry from healthcare plastic products and their potential health hazards to humans. Furthermore, the fate of plastic waste generated in hospitals, their disposal, and associated MNPs release to the environment, along with preventive, and alternative measures are discussed herein.
Collapse
Affiliation(s)
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, SRIHER: Sri Ramachandra Institute of Higher Education and Research, Sri Ramachandra University, Chennai 600116, Tamil Nadu, India
| | - Nagarajan Yoghalakshmi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, SRIHER: Sri Ramachandra Institute of Higher Education and Research, Sri Ramachandra University, Chennai 600116, Tamil Nadu, India
| | - Srinivasan Madhan Kumar
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, SRIHER: Sri Ramachandra Institute of Higher Education and Research, Sri Ramachandra University, Chennai 600116, Tamil Nadu, India
| | | | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632 014, India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632 014, India.
| |
Collapse
|
64
|
Liu X, Deng Q, Zheng Y, Wang D, Ni BJ. Microplastics aging in wastewater treatment plants: Focusing on physicochemical characteristics changes and corresponding environmental risks. WATER RESEARCH 2022; 221:118780. [PMID: 35759845 DOI: 10.1016/j.watres.2022.118780] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 05/21/2023]
Abstract
Microplastics (MPs) have been frequently detected in effluent wastewater and sludge in wastewater treatment plants (WWTPs), the discharge and agricultural application of which represent a primary source of environmental MPs contamination. As important as quantitative removal is, changes of physicochemical characteristics of MPs (e.g., shapes, sizes, density, crystallinity) in WWTPs are crucial to their environmental behaviors and risks and have not been put enough attention yet. This review is therefore to provide a current overview on the changes of physicochemical characteristics of MPs in WWTPs and their corresponding environmental risks. The changes of physicochemical characteristics as well as the underlying mechanisms of MPs in different successional wastewater and sludge treatment stages that mainly driven by mechanical (e.g., mixing, pumping, filtering), chemical (e.g., flocculation, advanced oxidation, ultraviolet radiation, thermal hydrolysis, incineration and lime stabilization), biological (e.g., activated sludge process, anaerobic digestion, composition) and their combination effects were first recapitulated. Then, the inevitable correlations between physicochemical characteristics of MPs and their environmental behaviors (e.g., migration, adsorption) and risks (e.g., animals, plants, microbes), are comprehensively discussed with particular emphasis on the leaching of additives and physicochemical characteristics that affect the co-exist pollutants behavior of MPs in WWTPs on environmental risks. Finally, knowing the summarized above, some relating unanswered questions and concerns that need to be unveiled in the future are prospected. The physicochemical properties of MPs change after passing through WWTP, leading to subsequent changes in co-contaminant adsorption, migration, and toxicity. This could threaten our ecosystems and human health and must be worth investigating.
Collapse
Affiliation(s)
- Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P R China
| | - Qian Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P R China
| | - Yuyang Zheng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P R China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P R China.
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
65
|
A Novel Analytical Approach to Assessing Sorption of Trace Organic Compounds into Micro- and Nanoplastic Particles. Biomolecules 2022; 12:biom12070953. [PMID: 35883509 PMCID: PMC9312822 DOI: 10.3390/biom12070953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Assessing the sorption of trace organic compounds (TOrCs) into micro- and nanoplastic particles has traditionally been performed using an aqueous phase analysis or solvent extractions from the particle. Using thermal extraction/desorption–gas chromatography/mass spectrometry (TD-Pyr-GC/MS) offers a possibility to analyze the TOrCs directly from the particle without a long sample preparation. In this study, a combination of two analytical methods is demonstrated. First, the aqueous phase is quantified for TOrC concentrations using Gerstel Twister® and TD-GC/MS. Subsequently, the TOrCs on the particles are analyzed. Different polymer types and sizes (polymethyl methacrylate (PMMA), 48 µm; polyethylene (PE), 48 µm; polystyrene (PS), 41 µm; and PS, 78 nm) were analyzed for three selected TOrCs (phenanthrene, triclosan, and α-cypermethrin). The results revealed that, over a period of 48 h, the highest and fastest sorption occurred for PS 78 nm particles. This was confirmed with a theoretical calculation of the particle surface area. It was also shown for the first time that direct quantification of TOrCs from PS 78 nm nanoparticles is possible. Furthermore, in a mixed solute solution, the three selected TOrCs were sorbed onto the particles simultaneously.
Collapse
|
66
|
Budhiraja V, Urh A, Horvat P, Krzan A. Synergistic Adsorption of Organic Pollutants on Weathered Polyethylene Microplastics. Polymers (Basel) 2022; 14:2674. [PMID: 35808719 PMCID: PMC9269090 DOI: 10.3390/polym14132674] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 12/10/2022] Open
Abstract
Microplastics (MPs) are persistent tiny pieces of plastic material in the environment that are capable of adsorbing environmental organic pollutants from their surroundings. The interaction of MPs with organic pollutants alters their environmental behavior, i.e., their adsorption, degradation and toxicity, etc. Polyethylene (PE) is the most widely used plastic material. The environmental weathering of PE results in changes to its surface chemistry, making the polymer a much better vector for organic pollutants than virgin PE. In this study, a laboratory-accelerated weathering experiment was carried out with a virgin PE film and an oxidatively degradable PE (OXO-PE) film, i.e., PE modified by the addition of a pro-oxidant catalyst. The degradation of PE and OXO-PE was assessed through Fourier transform infra-red (FTIR) spectroscopy and their wettability was measured by contact angle (CA) measurements. Their thermal properties and morphology were studied using thermogravimetric analyses (TGA) and scanning electron microscopy (SEM), respectively. Further, the adsorption of two model organic pollutants onto weathered and virgin PE was analyzed. Triclosan (TCS) and methylparaben (MeP) were chosen as model organic pollutants for the adsorption experiment due to their frequent use in the cosmetics industry, their uncontrolled release into the environment and their toxicity. The adsorption of both model pollutants onto PE and OXO-PE MP was analyzed by using gas chromatography with a flame ionization detector (GC-FID). The adsorption of MeP onto OXO-PE was higher than onto PE MPs. However, TCS showed insignificant adsorption onto PE and OXO-PE. When both pollutants were present simultaneously, the adsorption of TCS onto both PE and OXO-PE was significantly influenced by the presence of MeP. This result demonstrates that the adsorption behavior of one pollutant can be significantly altered by the presence of another pollutant. Both the effect of weathering on the adsorption of organic pollutants as well as the interaction between organic pollutants adsorbing onto MPs is highly relevant to actual MP pollution in the environment, where MPs are exposed to weathering conditions and mixtures of organic pollutants.
Collapse
Affiliation(s)
| | | | | | - Andrej Krzan
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (V.B.); (A.U.); (P.H.)
| |
Collapse
|
67
|
Zhang Q, He Y, Cheng R, Li Q, Qian Z, Lin X. Recent advances in toxicological research and potential health impact of microplastics and nanoplastics in vivo. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40415-40448. [PMID: 35347608 DOI: 10.1007/s11356-022-19745-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
As emerging pollutants, direct and indirect adverse impacts of micro(nano)plastics (MPs/NPs) are raising an increasing environmental concern in recent years due to their poor biodegradability and difficulty in recycling. MPs/NPs can act as carriers of bacteria, viruses, or pollutants (such as heavy metals and toxic organic compounds), and may potentially change the toxicity and bioavailability of pollutants. Ingested or attached MPs/NPs can also be transferred from low-trophic level organisms to high-nutrient organisms or even the human body through the food chain transfer process. This article reviews the emerging field of micro- and nanoplastics on organisms, including the separate toxicity and toxicity of compound after the adsorption of organic pollutants or heavy metals, as well as possible mechanism of toxicological effects and evaluate the nano- and microplastics potential adverse effects on human health. The inherent toxic effects MPs/NPs mainly include the following: physical injury, growth performance decrease and behavioral alteration, lipid metabolic disorder, induced gut microbiota dysbiosis and disruption of the gut's epithelial permeability, neurotoxicity, damage of reproductive system and offspring, oxidative stress, immunotoxicity, etc. Additionally, MPs/NPs may release harmful plastic additives and toxic monomers such as bisphenol A, phthalates, and toluene diisocyanate. The vectors' effect also points out the potential interaction of MPs/NPs with pollutants such as heavy metals, polycyclic aromatic hydrocarbons, organochlorine pesticides, polychlorinated biphenyls, perfluorinated compounds, pharmaceuticals, and polybrominated diphenyl ethers. Nevertheless, these potential consequences of MPs/NPs being vectors for contaminants are controversial.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, No. 6, Huayue Road, Hedong District, Tianjin, 300011, People's Republic of China.
| | - Yuan He
- Microorganism Inspection Institute, Chongqing Center for Disease Control and Prevention, No. 8, Changjiang 2nd Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Runjing Cheng
- School of Public Health, Tianjin Medical University, No. 22, Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Qian Li
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, No. 6, Huayue Road, Hedong District, Tianjin, 300011, People's Republic of China
| | - Zhiyong Qian
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, No. 6, Huayue Road, Hedong District, Tianjin, 300011, People's Republic of China
| | - Xiaohui Lin
- Department of Physics and Chemistry, Tianjin Centers for Disease Control and Prevention, No. 6, Huayue Road, Hedong District, Tianjin, 300011, People's Republic of China
| |
Collapse
|
68
|
Yu Y, Li H, Chen J, Wang F, Chen X, Huang B, He Y, Cai Z. Exploring the adsorption behavior of benzotriazoles and benzothiazoles on polyvinyl chloride microplastics in the water environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153471. [PMID: 35101490 DOI: 10.1016/j.scitotenv.2022.153471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
As a kind of emerging pollutant, microplastics (MPs) play an important role as a carrier for pollutant migration in the water environment. Carried by the MPs, benzotriazoles, and benzothiazoles (collectively referred to as BTs)1 are ubiquitous water contaminants. In this paper, the adsorption behavior of BTs on polyvinyl chloride (PVC) MPs was first studied systematically to explain the adsorptive mechanisms and the consequential pollution caused by the absorption-desorption process. The studies on kinetics, isotherms, and thermodynamics revealed that the adsorption of BTs on PVC MPs was a multi-rate, heterogeneous multi-layer, and exothermic process, which was affected by external diffusion, intra-particle diffusion, and dynamic equilibrium. The factors including pH, salinity, and particle size also influenced the adsorption process. In the multi-solute system, competitive adsorption would occur between different BTs. The desorption of BTs from PVC MPs was positively associated with the increase of adsorption amount. Based on the results, the adsorption mechanisms of PVC MPs were clarified, involving hydrophobic interaction, electrostatic force, and non-covalent bonds. It was demonstrated that BTs in the water environment could most probably be accumulated and migrated through MPs, and eventually carried into organisms, posing an increased risk to the ecological environment.
Collapse
Affiliation(s)
- Yanbin Yu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China; College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Huichen Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Jinfeng Chen
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Fangjie Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Xiaoning Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Bowen Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Yu He
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China.
| | - Zongwei Cai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
69
|
Lin L, Yuan B, Hong H, Li H, He L, Lu H, Liu J, Yan C. Post COVID-19 pandemic: Disposable face masks as a potential vector of antibiotics in freshwater and seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153049. [PMID: 35032530 PMCID: PMC8755449 DOI: 10.1016/j.scitotenv.2022.153049] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 05/06/2023]
Abstract
With the outbreak and widespread of the COVID-19 pandemic, large numbers of disposable face masks (DFMs) were abandoned in the environment. This study first investigated the sorption and desorption behaviors of four antibiotics (tetracycline (TC), ciprofloxacin (CIP), sulfamethoxazole (SMX), and triclosan (TCS)) on DFMs in the freshwater and seawater. It was found that the antibiotics in the freshwater exhibited relatively higher sorption and desorption capacities on the DFMs than those in the seawater. Here the antibiotics sorption processes were greatly related to their zwitterion species while the effect of salinity on the sorption processes was negligible. However, the desorption processes were jointly dominated by solution pH and salinity, with greater desorption capacities at lower pH values and salinity. Interestingly, we found that the distribution coefficient (Kd) of TCS (0.3947 L/g) and SMX (0.0399 L/g) on DFMs was higher than those on some microplastics in freshwater systems. The sorption affinity of the antibiotics onto the DFMs followed the order of TCS > SMX > CIP > TC, which was positively correlated with octanol-water partition coefficient (log Kow) of the antibiotics. Besides, the sorption processes of the antibiotics onto the DFMs were mainly predominated by film diffusion and partitioning mechanism. Overall, hydrophobic interaction regulated the antibiotics sorption processes. These findings would help to evaluate the environmental behavior of DFMs and to provide the analytical framework of their role in the transport of other pollutants.
Collapse
Affiliation(s)
- Lujian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Bo Yuan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hanyi Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Le He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
70
|
Martinho SD, Fernandes VC, Figueiredo SA, Delerue-Matos C. Microplastic Pollution Focused on Sources, Distribution, Contaminant Interactions, Analytical Methods, and Wastewater Removal Strategies: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5610. [PMID: 35565001 PMCID: PMC9104288 DOI: 10.3390/ijerph19095610] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023]
Abstract
Plastics have been one of the most useful materials in the world, due to their distinguishing characteristics: light weight, strength, flexibility, and good durability. In recent years, the growing consumption of plastics in industries and domestic applications has revealed a serious problem in plastic waste treatments. Pollution by microplastics has been recognized as a serious threat since it may contaminate all ecosystems, including oceans, terrestrial compartments, and the atmosphere. This micropollutant is spread in all types of environments and is serving as a "minor but efficient" vector for carrier contaminants such as pesticides, pharmaceuticals, metals, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). The need to deeply study and update the evolution of microplastic sources, toxicology, extraction and analysis, and behavior is imperative. This review presents an actual state of microplastics, addressing their presence in the environment, the toxicological effects and the need to understand their extent, their interactions with toxic pollutants, the problems that arise in the definition of analytical methods, and the possible alternatives of treatments.
Collapse
Affiliation(s)
| | - Virgínia Cruz Fernandes
- REQUIMTE/LAVQ—Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Instituto Superior de Engenharia do Porto—Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (S.D.M.); (C.D.-M.)
| | - Sónia A. Figueiredo
- REQUIMTE/LAVQ—Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Instituto Superior de Engenharia do Porto—Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (S.D.M.); (C.D.-M.)
| | | |
Collapse
|
71
|
Verdú I, Amariei G, Plaza-Bolaños P, Agüera A, Leganés F, Rosal R, Fernández-Piñas F. Polystyrene nanoplastics and wastewater displayed antagonistic toxic effects due to the sorption of wastewater micropollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153063. [PMID: 35031361 DOI: 10.1016/j.scitotenv.2022.153063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The knowledge about the interaction of nanoplastics with other aquatic pollutants and their combined effects on biota is very scarce. In this work, we studied the interaction between polystyrene nanoplastics (PS NPs) (30 nm) and the micropollutants in a biologically treated wastewater effluent (WW). The capacity of PS NPs to sorb micropollutants was studied as well as their single and combined toxicity towards three freshwater organisms: the recombinant bioluminescent cyanobacterium, Anabaena sp. PCC 7120 CPB4337; the duckweed, Spirodela polyrhiza and the cladoceran, Daphnia magna. The endpoints were the inhibition of bioluminescence, the growth inhibition of the aquatic plant and the immobilization of D. magna after 24, 72 and 48 h of exposure, respectively. Combination Index (CI)-isobologram method was used to quantify mixture toxicity and the nature of interactions. PS NPs sorbed a variety of chemicals present in WW as micropollutants in a range of tens of ng/L to μg/L. It was found that those pollutants with positive charge were the main ones retained onto PS NPs, which was attributed to the electrostatic interaction with the negatively charged PS NPs. Regarding the toxicological effects, single exposure to PS NPs affected the three tested organisms. However, single exposure to WW only had a negative impact on the cyanobacterium and S. polyrhiza with no observed toxicity to D. magna. Regarding PS NPs-WW combined exposure, a reduction of toxicity in comparison with single exposure was observed probably due to the sorption of micropollutants onto PS NPs, which resulted in lower bioavailability of the micropollutants. In addition, the formation of PS NPs-WW heteroaggregates was observed which could result in lower bioavailability of PS NPs and sorbed micropollutants, thus lowering toxicity. This study represents a near-realistic scenario approach to the potential sorption of wastewater pollutants onto nanoplastics that could alter the toxicological effect on the biota.
Collapse
Affiliation(s)
- Irene Verdú
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Georgiana Amariei
- Department of Chemical Engineering, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Patricia Plaza-Bolaños
- CIESOL, Joint Centre of the University of Almería-CIEMAT, La Cañada de San Urbano, 04120 Almería, Spain
| | - Ana Agüera
- CIESOL, Joint Centre of the University of Almería-CIEMAT, La Cañada de San Urbano, 04120 Almería, Spain
| | - Francisco Leganés
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | | |
Collapse
|
72
|
Rai PK, Sonne C, Brown RJC, Younis SA, Kim KH. Adsorption of environmental contaminants on micro- and nano-scale plastic polymers and the influence of weathering processes on their adsorptive attributes. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127903. [PMID: 34895806 PMCID: PMC9758927 DOI: 10.1016/j.jhazmat.2021.127903] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 05/09/2023]
Abstract
Increases in plastic-related pollution and their weathering can be a serious threat to environmental sustainability and human health, especially during the present COVID-19 (SARS-CoV-2 coronavirus) pandemic. Planetary risks of plastic waste disposed from diverse sources are exacerbated by the weathering-driven alterations in their physical-chemical attributes and presence of hazardous pollutants mediated through adsorption. Besides, plastic polymers act as vectors of toxic chemical contaminants and pathogenic microbes through sorption onto the 'plastisphere' (i.e., plastic-microbe/biofilm-environment interface). In this review, the effects of weathering-driven alterations on the plastisphere are addressed in relation to the fate/cycling of environmental contaminants along with the sorption/desorption dynamics of micro-/nano-scale plastic (MPs/NPs) polymers for emerging contaminants (e.g., endocrine-disrupting chemicals (EDCs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pharmaceuticals and personal care products (PPCPs), and certain heavy metals). The weathering processes, pathways, and mechanisms governing the adsorption of specific environmental pollutants on MPs/NPs surface are thus evaluated in relation to the physicochemical alterations based on several kinetic and isotherm studies. Consequently, the detailed evaluation on the role of the complex associations between weathering and physicochemical properties of plastics should help us gain a better knowledge with respect to the transport, behavior, fate, and toxicological chemistry of plastics along with the proper tactics for their sustainable remediation.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Phyto-Technologies and Plant Invasion Lab, Department of Environmental Science, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, Mizoram, India
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Richard J C Brown
- Atmospheric Environmental Science Department, National Physical Laboratory, Teddington TW11 0LW, UK
| | - Sherif A Younis
- Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt; Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, PO 12588, Giza, Egypt; Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| |
Collapse
|
73
|
da Silva LF, Nobre CR, Moreno BB, Pereira CDS, de Souza Abessa DM, Choueri RB, Gusso-Choueri PK, Cesar A. Non-destructive biomarkers can reveal effects of the association of microplastics and pharmaceuticals or personal care products. MARINE POLLUTION BULLETIN 2022; 177:113469. [PMID: 35248887 DOI: 10.1016/j.marpolbul.2022.113469] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/17/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Methods to assess the effects of contaminants on marine organisms typically involve euthanasia to obtain samples, but less invasive techniques may be more appropriate for working with threatened species. In this study, were assessed the biological responses of crabs exposed to microplastics and contaminants of emerging concern. Biochemical and cellular effects (lipid peroxidation, DNA damage, cholinesterase activity, and lysosomal membrane stability) in hemolymph were analyzed in a kinetic study, at 3 and 7 days, in U. cordatus exposed to microplastics spiked with Triclosan (TCS) or 17α-Ethynylestradiol (EE2). The results showed that the contaminants were produced toxic effects in the crabs exposed either to the microplastics alone (oxidative stress, genotoxicity, and neurotoxicity), or to microplastics with TCS or EE2 adsorbed (neurotoxic and cytotoxic). The present study showed the responsiveness of non-lethal analyzes to understanding the biological effects of combined exposure to microplastics and chemical pollution.
Collapse
Affiliation(s)
- Letícia Fernanda da Silva
- Department of Ocean Sciences, Sea Institute, Federal University of São Paulo (CBS-Unifesp), Rua Carvalho de Mendonça, 144, 11070-102, Santos, São Paulo, Brazil
| | - Caio Rodrigues Nobre
- Biosciences Institute, São Paulo State University (CLP-Unesp), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, São Paulo, Brazil.
| | - Beatriz Barbosa Moreno
- Department of Ocean Sciences, Sea Institute, Federal University of São Paulo (CBS-Unifesp), Rua Carvalho de Mendonça, 144, 11070-102, Santos, São Paulo, Brazil
| | - Camilo Dias Seabra Pereira
- Department of Ocean Sciences, Sea Institute, Federal University of São Paulo (CBS-Unifesp), Rua Carvalho de Mendonça, 144, 11070-102, Santos, São Paulo, Brazil; Ecotoxicology Laboratory, Santa Cecília University (Unisanta), Rua Oswaldo Cruz, 266, 11045-907, Santos, São Paulo, Brazil
| | - Denis Moledo de Souza Abessa
- Biosciences Institute, São Paulo State University (CLP-Unesp), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, São Paulo, Brazil
| | - Rodrigo Brasil Choueri
- Department of Ocean Sciences, Sea Institute, Federal University of São Paulo (CBS-Unifesp), Rua Carvalho de Mendonça, 144, 11070-102, Santos, São Paulo, Brazil
| | - Paloma Kachel Gusso-Choueri
- Biosciences Institute, São Paulo State University (CLP-Unesp), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, São Paulo, Brazil; Ecotoxicology Laboratory, Santa Cecília University (Unisanta), Rua Oswaldo Cruz, 266, 11045-907, Santos, São Paulo, Brazil
| | - Augusto Cesar
- Department of Ocean Sciences, Sea Institute, Federal University of São Paulo (CBS-Unifesp), Rua Carvalho de Mendonça, 144, 11070-102, Santos, São Paulo, Brazil
| |
Collapse
|
74
|
Wang X, Zhang R, Li Z, Yan B. Adsorption properties and influencing factors of Cu(II) on polystyrene and polyethylene terephthalate microplastics in seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152573. [PMID: 34954173 DOI: 10.1016/j.scitotenv.2021.152573] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
As an emerging contamination in the ocean, microplastics can act as effective vectors of pollutants, the ecological risks caused by the combined pollution of microplastics and other pollutants have attracted growing attention. In this work, Copper (Cu(II)) was chosen as the classic pollutant, polystyrene (PS) and polyethylene terephthalate (PET) pellets were used as the typical marine microplastics, the adsorption performance of Cu(II) on PS and PET beads was investigated by adsorption kinetics and isotherm experiments, and other influencing conditions, such as pH, salinity, coexisting heavy metals ions and aging treatment, were evaluated. The results indicated that the adsorption behavior of Cu(II) on PS and PET was spontaneous and endothermic in the simulated seawater environment, and the batch experimental data can be effectively described by pseudo-second-order model and Freundlich isothermal model. Besides, the adsorption capacity of microplastics for Cu(II) was the best at pH 7, the change of salinity had no obvious effect on the adsorption in the natural marine environment. Moreover, co-existence of lead (Pb(II)) exhibited evident impacts on Cu(II) sorption onto PS and PET, which confirmed the adsorption competition effect between them. Additionally, high temperature aging treatment of microplastics in different environments for different duration time could obviously affect the properties of microplastics. It was found that the microplastics after being exposed to high temperature environment in the air for 168 h showed relatively stronger adsorption amount for Cu(II). In summary, these findings suggested that electrostatic interaction and distributed diffusion mechanisms may be the main mechanisms of adsorption, while no new functional groups were generated after the adsorption, indicating that physisorption may dominate the adsorption performance of PS and PET pellets for Cu(II). This study provides supplementary insights into the role of microplastics as carriers of heavy metals in the marine environment.
Collapse
Affiliation(s)
- Xingxing Wang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ruixin Zhang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhaoying Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Bo Yan
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin 300457, PR China; Tianjin Marine Environmental Protection and Restoration Technology Engineering Center, Tianjin 300457, PR China; Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin 300457, PR China.
| |
Collapse
|
75
|
Long Y, Zhou Z, Yin L, Wen X, Xiao R, Du L, Zhu L, Liu R, Xu Q, Li H, Nan R, Yan S. Microplastics removal and characteristics of constructed wetlands WWTPs in rural area of Changsha, China: A different situation from urban WWTPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152352. [PMID: 34915001 DOI: 10.1016/j.scitotenv.2021.152352] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Wastewater treatment plants (WWTPs) are important pathways that discharged microplastics into the natural environment, but few relevant research has been conducted in rural areas, especially with horizontal subsurface flow constructed wetlands (HSSFCWs). This study systematically investigates the removal efficiency and characteristics of microplastics in two rural WWTPs with HSSFCW in Changsha city of China and compared the microplastic pollution data of urban and rural WWTPs, to provide some advice for improving the microplastics removal efficiencies in rural WWTPs. 3 L wastewater were collected at each sampling point. Then microplastics in wastewater were extracted by density separation. The size, shape, color, and type of microplastics were analyzed and identified using the integrated microscope and FTIR. The whole experiment was carried out about a month. The results showed that the microplastics removal efficiency of rural WWTP1 was 72.38%, and that of rural WWTP2 was 68.10%, which were lower than that of most urban WWTPs. The microplastics removal efficiency of constructed wetlands in rural WWTP1 was 26.59%, and that in rural WWTP2 was 10.61%. Based on the daily discharge volume and the abundance of microplastics in the effluent of WWTPs, approximately 1.45 ∗ 107 items and 1.73 ∗ 107 items of microplastics were released each day from two rural WWTPs, separately. Fiber was the primary microplastic in both influent and effluent. The polyethylene (PE) and polystyrene (PS) were the main ingredients. The primary source of microplastics in rural WWTPs was inferred as domestic sewage. Microplastics removal efficiencies of rural WWTPs can be improved by regular maintenance, reducing the grid spacing, increasing the hydraulic stay time of biochemical pool, and increasing plant density, changing plant species, or adjusting the size and fill order of matrix in HSSFCWs, which can effectively help to prevent secondary pollution of microplastics from rural WWTPs.
Collapse
Affiliation(s)
- Yuannan Long
- School of Hydraulic Engineering, Changsha University of Science &Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China
| | - Zhenyu Zhou
- School of Hydraulic Engineering, Changsha University of Science &Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China
| | - Lingshi Yin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xiaofeng Wen
- School of Hydraulic Engineering, Changsha University of Science &Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China.
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Lingwei Zhu
- School of Hydraulic Engineering, Changsha University of Science &Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China
| | - Rongxuan Liu
- School of Hydraulic Engineering, Changsha University of Science &Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China
| | - Qianhui Xu
- School of Hydraulic Engineering, Changsha University of Science &Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China
| | - Huiling Li
- School of Hydraulic Engineering, Changsha University of Science &Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China
| | - Ruichuan Nan
- School of Hydraulic Engineering, Changsha University of Science &Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China
| | - Shixiong Yan
- School of Hydraulic Engineering, Changsha University of Science &Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China
| |
Collapse
|
76
|
Li J, Huang X, Hou Z, Ding T. Sorption of diclofenac by polystyrene microplastics: Kinetics, isotherms and particle size effects. CHEMOSPHERE 2022; 290:133311. [PMID: 34919912 DOI: 10.1016/j.chemosphere.2021.133311] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Diclofenac (DCF) is a common pharmaceutical that widely distributed in natural waters, and has been received an increasing attention because of its potential toxicity. Additionally, microplastics are also ubiquitous pollutants in natural waters, but little information is available on their interactions. In this study, the sorption of DCF on polystyrene microplastics (PS MPs) with different particle sizes was investigated, and the influence of environmental factors was also explored. Results indicated that the pseudo-second-order kinetic model was suitable to describe the sorption process. The sorption capacity increased with the increase in particle size. The isotherms data for the sorption of DCF on 0.5 and 1 μm PS MPs were best fitted with the Dubinine-Radushkevich model, but the Freundlich and Langmuir models could best describe the sorption of DCF 5 and 20 μm PS MPs, respectively. It is suggested that the sorption was a chemisorption, which is also verified by Fourier transform infrared spectroscopy (FTIR) results. Furthermore, the sorption capacity decreased as pH increased, and increased as ionic strength increased. These findings give a new perspective that the microplastics with larger sizes hold promise for the treatment of DCF-contaminated water.
Collapse
Affiliation(s)
- Juying Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, Shenzhen University, Shenzhen, 518060, China
| | - Xiaotong Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhangming Hou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tengda Ding
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
77
|
Gao L, Su Y, Yang L, Li J, Bao R, Peng L. Sorption behaviors of petroleum on micro-sized polyethylene aging for different time in seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152070. [PMID: 34863766 DOI: 10.1016/j.scitotenv.2021.152070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs; <5 mm) and oil pollution have been receiving global attention. To date, the adsorption mechanism of petroleum by MPs is largely unknown. This study investigated the adsorption of petroleum on micro-sized polyethylene (mPE) undergoing aging (days 0, 15, 30, 90 and 180). The petroleum adsorption capacity of mPE was further assessed at varying pH (2, 5, 7.32, 10 and 12), temperature (4, 15, 25, 45 and 65 °C) and in presence of coexisting pollutants (Cu, bisphenol A (BPA) and petroleum). The results indicated that the adsorption capacity of mPE increased with the prolonged aging time and smaller-sized particles, while the adsorption capacity of the 550 and 165 μm mPE undergoing aging increased by 12.7%-50.9% and 22.1%-63.9%, respectively. The adsorption kinetics and isotherm model of mPE on petroleum were well fitted by pseudo-second order, intraparticle diffusion, Freundlich and Langmuir models, showing the sorption behavior was controlled by the diffusion of pores, liquid film diffusion, and surface adsorption. The petroleum adsorption capacity of mPE was predominant affected by surface roughness, specific surface area, hydrophobicity, oxidation functional groups, adsorption sites, hydrogen bonds, while zeta potential and crystallinity may not be the crucial factors. Likewise, temperature and pH may influence the characteristics of petroleum, and further result in a decreasing adsorption capacity of mPE to petroleum. The highest adsorption capacity of mPE to petroleum was reached at pH 7.32 and 25 °C. The coexisting Cu, BPA and petroleum competed for adsorption sites on the surface of mPE. These findings could fundamentally provide new insights for environmental risk assessment of MPs, particularly for the specific location like harbor which is commonly rich in MPs and petroleum simultaneously.
Collapse
Affiliation(s)
- Liu Gao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, PR China; College of Ecology and Environment, Hainan University, PR China
| | - Yuanyuan Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, PR China; College of Ecology and Environment, Hainan University, PR China
| | - Liang Yang
- College of Ecology and Environment, Hainan University, PR China
| | - Jie Li
- College of Ecology and Environment, Hainan University, PR China
| | - Ruiqi Bao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, PR China; College of Ecology and Environment, Hainan University, PR China
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, PR China; College of Ecology and Environment, Hainan University, PR China.
| |
Collapse
|
78
|
Rozman U, Kalčíková G. Seeking for a perfect (non-spherical) microplastic particle - The most comprehensive review on microplastic laboratory research. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127529. [PMID: 34736190 DOI: 10.1016/j.jhazmat.2021.127529] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
In recent decades, much attention has been paid to microplastic pollution, and research on microplastics has begun to grow exponentially. However, microplastics research still suffers from the lack of standardized protocols and methods for investigation of microplastics under laboratory conditions. Therefore, in this review, we summarize and critically discuss the results of 715 laboratory studies published on microplastics in the last five years to provide recommendations for future laboratory research. Analysis of the data revealed that the majority of microplastic particles used in laboratory studies are manufactured spheres of polystyrene ranging in size from 1 to 50 µm, that half of the studies did not characterize the particles used, and that a minority of studies used aged particles, investigated leaching of chemicals from microplastics, or used natural particles as a control. There is a large discrepancy between microplastics used in laboratory research and those found in the environment, and many laboratory studies suffer from a lack of environmental relevance and provide incomplete information on the microplastics used. We have summarized and discussed these issues and provided recommendations for future laboratory research on microplastics focusing on (i) microplastic selection, (ii) microplastic characterization, and (iii) test design of laboratory research on microplastics.
Collapse
Affiliation(s)
- Ula Rozman
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 113 Večna pot, SI-1000 Ljubljana, Slovenia
| | - Gabriela Kalčíková
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 113 Večna pot, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
79
|
Wan H, Wang J, Sheng X, Yan J, Zhang W, Xu Y. Removal of Polystyrene Microplastics from Aqueous Solution Using the Metal-Organic Framework Material of ZIF-67. TOXICS 2022; 10:70. [PMID: 35202256 PMCID: PMC8878825 DOI: 10.3390/toxics10020070] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022]
Abstract
Due to the continuous and adverse effects of microplastics on the environment, an increasing number of studies have begun to focus on their migration patterns and removal from aquatic environments. Herein, our study innovatively evaluated the ability of the capacity of ZIF-67, a novel metal-organic framework (MOF) material, to adsorb polystyrene (PS) microplastics (MPs) from aqueous solutions, aiming to explore the potential of MOF materials to remove MPs from wastewater. The adsorption ratio of PSMPs (5 mg/L, 30 mL) by ZIF-67 reached up to 92.1%, and the PSMP adsorption equilibrium was achieved within 20 min at 298 K. The adsorption of PSMPs would be favored at a pH of 8, a PSMPs solution concentration of 5 mg/L, and a temperature of 298 K. Further analyses demonstrated that hydrogen bond interactions, π-π stacking, and electrostatic interactions played a crucial role in the adsorption of PSMPs by ZIF-67 in aqueous solutions. Our findings thus provide insight into novel methods to remove MPs from acidic and weakly alkaline aquatic environments and wastewater.
Collapse
Affiliation(s)
- Hongyou Wan
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (H.W.); (J.W.); (X.S.); (J.Y.)
- Research Centre of Engineering and Technology for Synergetic Control of Environmental Pollution and Carbon Emissions of Henan Province, Zhengzhou 450001, China
| | - Junkai Wang
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (H.W.); (J.W.); (X.S.); (J.Y.)
| | - Xiaoyu Sheng
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (H.W.); (J.W.); (X.S.); (J.Y.)
| | - Jingwei Yan
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (H.W.); (J.W.); (X.S.); (J.Y.)
| | - Wei Zhang
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (H.W.); (J.W.); (X.S.); (J.Y.)
- Research Centre of Engineering and Technology for Synergetic Control of Environmental Pollution and Carbon Emissions of Henan Province, Zhengzhou 450001, China
- Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou 450001, China
- Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou 450001, China
- Yellow River Institute for Ecological Protection and Regional Coordination Development, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan 467036, China
- Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin, Zhengzhou 450001, China
| | - Ying Xu
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (H.W.); (J.W.); (X.S.); (J.Y.)
| |
Collapse
|
80
|
Xu L, Liang Y, Liao C, Xie T, Zhang H, Liu X, Lu Z, Wang D. Cotransport of micro- and nano-plastics with chlortetracycline hydrochloride in saturated porous media: Effects of physicochemical heterogeneities and ionic strength. WATER RESEARCH 2022; 209:117886. [PMID: 34861437 DOI: 10.1016/j.watres.2021.117886] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Global production and use of plastics have resulted in the wide dissemination of micro- and nano-plastics (MNPs) to the natural environment. Potentially acting as a vector, the role of MNPs on the fate and transport of environmental pollutants (e.g., antibiotics such as chlortetracycline hydrochloride; CTC) has garnered global concern recently. Herein, the cotransport of MNPs and CTC in columns packed with uncoated sand or soil colloid-coated sand (SCCS) under different degrees of physicochemical heterogeneity and ionic strength was systematically explored. Our results show that MNPs and CTC inhibit the transport of each other when they coexist. The adsorption of CTC onto sand grains, soil colloids, and MNPs, as well as the aggregation of MNPs in the presence of CTC could be the major contributors to the enhanced retention of CTC and MNPs. In SCCS with different degrees of soil colloid coating, the adsorption of CTC on soil colloids is critical to influence the transport of CTC, and the nonlinear retention of MNPs to soil colloids is mainly attributed to the alteration of collector surface roughness by soil colloids. High ionic strength slightly facilitates CTC transport due to the competition for adsorption sites and the formation of CTC macromolecules, but significantly inhibits MNPs transport by suppressing the electrostatic double layers based on colloid stability theory. Consequently, the cotransport of MNPs and CTC is governed by the coupled interplay of collector surface roughness and chemical heterogeneity, due to the soil colloid coatings and the adsorbed CTC on the surfaces associated with solution chemistries such as ionic strength. Increased cotransport of MNPs and CTC occurred under a higher concentration of MNPs due to a larger number of adsorption sites for CTC. Our findings advance the current understanding of the complex cotransport of MNPs and antibiotics in the environment. This information is valuable for understanding contaminant fate and formulating strategies for environmental remediation due to the contamination of MNPs and co-occurring contaminants.
Collapse
Affiliation(s)
- Lilin Xu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yan Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning 530007, China.
| | - Changjun Liao
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning 530007, China
| | - Tian Xie
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning 530007, China
| | - Hanbin Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xingyu Liu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Zhiwei Lu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States
| |
Collapse
|
81
|
Rubin AE, Zucker I. Interactions of microplastics and organic compounds in aquatic environments: A case study of augmented joint toxicity. CHEMOSPHERE 2022; 289:133212. [PMID: 34890605 DOI: 10.1016/j.chemosphere.2021.133212] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 06/13/2023]
Abstract
High levels of persistent contaminants such as microplastics (MPs) and trace organic compounds (TrOCs) in the aquatic environment have become a major threat on the ecosystem and human health. While MP's role as a vector of environmental TrOCs is widely discussed in the literature, the corresponding implications of the interaction between these two compounds on human health (i.e., their joint toxic effect) have not been illustrated. Using a TrOCs model (Triclosan, TCS) and primary MPs (polystyrene microbeads), this work evaluates the sorption and desorption potential of TCS and MPs in simulated environmental and cellular conditions, respectively, and estimates the single and joint toxicity of these interactions toward human cells (Caco-2). Surface functionality of the microbeads highly increased their adsorption capacity of TCS, from 2.3 mg TCS for non-functionalized microbeads to 4.6 mg and 6.1 mg TCS per gram of microbeads for amino- and carboxyl-functionalized MPs, respectively. Using non-functionalized MPs, non-specific "hydrophobic-like" interactions and π-π interactions dominated the sorption mechanism of TCS; however, the addition of hydrogen interactions between functionalized microbeads and TCS increased the microbeads' overall sorption capacity. TCS was desorbed from both functionalized and non-functionalized MPs when changing from environmental conditions to cellular conditions. Desorption was found to be dependent on the matrix complexity and protein content as well as microbead functionality. Finally, toxicity tests suggested that while low concentrations of TCS and MPs (separately) have minor toxic effect toward Caco-2 cells, TCS-sorbed MPs at similar concentrations have an order of magnitude higher toxicity than pristine MPs, potentially associated with the close interaction of both MP and TCS with the cells. Overall, this study not only elucidates the role of MPs as a TrOC vector, but also demonstrates a realistic scenario in which co-presence of these environmental contaminants poses risks to the environment and human health.
Collapse
Affiliation(s)
- Andrey Ethan Rubin
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ines Zucker
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel; School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
82
|
Cui R, Jong MC, You L, Mao F, Yao D, Gin KYH, He Y. Size-dependent adsorption of waterborne Benzophenone-3 on microplastics and its desorption under simulated gastrointestinal conditions. CHEMOSPHERE 2022; 286:131735. [PMID: 34385031 DOI: 10.1016/j.chemosphere.2021.131735] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/09/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are global pollutants with heightened environmental and health concerns in recent years because of their worldwide distribution across aquatic environments, ability to load chemical contaminants and the potential for ingestion by animals, including human. In this study, three commonly used and environmentally detected plastics, i.e. polystyrene, polyethylene, polypropylene with sizes of 550, 250 and 75 μm, plus two submicron-sized polystyrene microplastics (5 and 0.5 μm) were assessed as solid adsorbents for a prevalent UV filter, benzophenone-3 (BP-3). The affinity and process of adsorption exhibited differentials among different sizes and types of MPs. Apparent desorption of BP-3 from MPs under simulated gastrointestinal conditions was not significantly enhanced, which might be due to the presence of the enzyme proteins, indicating potential risk of the contaminants carried by MPs. The desorption of BP-3 from MPs was affected by the size, type of MPs and the components of the gastrointestinal fluid.
Collapse
Affiliation(s)
- Ruofan Cui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Mui-Choo Jong
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore
| | - Luhua You
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore
| | - Feijian Mao
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China
| | - Dingding Yao
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore
| | - Karina Yew-Hoong Gin
- National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore.
| |
Collapse
|
83
|
Wang J, Li X, Gao M, Li X, Zhao L, Ru S. Polystyrene microplastics increase estrogenic effects of 17α-ethynylestradiol on male marine medaka (Oryzias melastigma). CHEMOSPHERE 2022; 287:132312. [PMID: 34563785 DOI: 10.1016/j.chemosphere.2021.132312] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/06/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) and endocrine disrupting chemicals are ubiquitous pollutants in marine environments, but their combined ecological risk is unclear. This study exposed male marine medaka (Oryzias melastigma) to 10 ng/L 17α-ethynylestradiol (EE2) alone or EE2 plus 2, 20, and 200 μg/L polystyrene MPs for 28 days to investigate the impacts of MPs on the reproductive disruption of EE2. The results showed that 10 ng/L EE2 alone did not affect biometric parameters, while co-exposure to EE2 and 20, 200 μg/L MPs suppressed the growth and decreased gonadosomatic and hepatosomatic indices. Compared to EE2 alone, EE2 plus MPs exposure significantly increased plasma 17β-estradiol (E2) levels in a dose-dependent manner, and co-exposure to EE2 and 20, 200 μg/L MPs significantly increased the ratios of E2/testosterone (T). Moreover, EE2 plus MPs exposure elevated the transcription levels of estrogen biomarker genes vitellogenin and choriogenin, and estrogen receptor (ERα and ERβ). Morphological analysis also showed that co-exposure to EE2 and MPs induced more severe damage to the testes and livers, indicating that MPs increased the toxicity of EE2. The actual EE2 concentrations in the solution increased with the exposure concentrations of MPs, suggesting that MPs changed the fate and behavior of EE2 in the seawater. These findings demonstrate that MPs could increase the estrogenic effects of EE2 on marine fish, suggesting that the combined health risk of MPs and endocrine disrupting chemicals on marine organisms should be paid great attention.
Collapse
Affiliation(s)
- Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xuan Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ming Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China
| | - Xuefu Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Lingchao Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
84
|
Li X, Li M, Mei Q, Niu S, Wang X, Xu H, Dong B, Dai X, Zhou JL. Aging microplastics in wastewater pipeline networks and treatment processes: Physicochemical characteristics and Cd adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:148940. [PMID: 34293611 DOI: 10.1016/j.scitotenv.2021.148940] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/20/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Despite a wealth of information on removal of the microplastics (MPs) in wastewater treatment plants (WWTPs), little attention has been paid to how wastewater treatment process affect the MP physicochemical and adsorption characteristics. In this study, changes in physicochemical property of three MPs, i.e. polyamide (PA), polyethylene (PE) and polystyrene (PS) through the wastewater pipeline, grit and biological aeration tanks were investigated. The results show that compared with virgin MPs, the treated MPs have higher specific surface area and O content, and lower C and H contents, and glass transition temperature, implying that the three treatments cause the chain scission and oxidation of the MPs. Cd adsorption capacities of the MPs are higher than the corresponding virgin MPs after sulfidation in the pipeline (SWPN) and biological treatment in aeration tank (BTAT). Pearson correlation analysis shows that the increase is mainly resulted from the enhancement of the O-containing groups on the MPs. However, Cd adsorption capacities of the MPs decrease after mechanical abrasion in grit tank (MAGT), corresponding to the decrease in carbonyl index. Two dimensional FTIR correlation spectroscopy demonstrates that the NH bond in the PA plays a more important role than CH bond in the adsorption of Cd, but only change of the CH bond is found in the PE and PS. The findings provide new insights into the effect of WWTPs on the MP aging and physicochemical characteristics.
Collapse
Affiliation(s)
- Xiaowei Li
- School of Environmental and Chemical Engineering, Key Laboratory of Organic Compound Pollution Control, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Man Li
- School of Environmental and Chemical Engineering, Key Laboratory of Organic Compound Pollution Control, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Qingqing Mei
- School of Environmental and Chemical Engineering, Key Laboratory of Organic Compound Pollution Control, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Shiyu Niu
- School of Environmental and Chemical Engineering, Key Laboratory of Organic Compound Pollution Control, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Xuan Wang
- School of Environmental and Chemical Engineering, Key Laboratory of Organic Compound Pollution Control, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Huafang Xu
- School of Environmental and Chemical Engineering, Key Laboratory of Organic Compound Pollution Control, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - John L Zhou
- Centre for Green Technology, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
85
|
Yu Y, Mo WY, Luukkonen T. Adsorption behaviour and interaction of organic micropollutants with nano and microplastics - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149140. [PMID: 34303986 DOI: 10.1016/j.scitotenv.2021.149140] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Nano/microplastics (NPs/MPs) and organic micropollutants are contaminants exerting serious threats to aquatic ecosystems, which are further aggravated through their interactions. Organic micropollutants can adsorb on the surface of NPs/MPs, enter to the digestive systems of aquatic organisms with NPs/MPs, and desorb from the surface inside the organism. Consequently, the migration behaviour of organic micropollutants is significantly affected increasing their risk to accumulate in the food chain. Therefore, understanding the adsorption interactions between NPs/MPs and organic micropollutants is critical for evaluating the fate and impact of NPs/MPs in the environment. This review article provides an overview about the role of NPs/MPs as (temporary) sinks for organic micropollutants but also as primary sources of organic micropollutants through the leaching of plastic additives. Specifically, the following aspects are discussed: adsorption/desorption mechanisms (e.g., hydrophobic partitioning interaction, surface adsorption by van der Waals forces or hydrogen bonding, and pore filling), influencing environmental factors (e.g., pH, salinity, and dissolved organic matter), leaching of plastic additives from NPs/MPs, and potential ecotoxicological effects arising from the interactions of NPs/MPs and organic micropollutants.
Collapse
Affiliation(s)
- Yangmei Yu
- Fibre and Particle Engineering Research Unit, University of Oulu, Pentti Kaiteran katu 1, Oulu 90014, Finland; Department of Science, School of Science and Technology, The Open University of Hong Kong, Hong Kong, People's Republic of China
| | - Wing Yin Mo
- Department of Science, School of Science and Technology, The Open University of Hong Kong, Hong Kong, People's Republic of China
| | - Tero Luukkonen
- Fibre and Particle Engineering Research Unit, University of Oulu, Pentti Kaiteran katu 1, Oulu 90014, Finland.
| |
Collapse
|
86
|
Abstract
Microplastics are found in various environments with the increasing use of plastics worldwide. Several methods have been developed for the sampling, extraction, purification, identification, and quantification of microplastics in complex environmental matrices. This study intends to summarize recent research trends on the subject. Large microplastic particles can be sorted manually and identified through chemical analysis; however, sample preparation for small microplastic analysis is usually more difficult. Microplastics are identified by evaluating the physical and chemical properties of plastic particles separated through extraction and washing steps from a mixture of inorganic and organic particles. This identification has a high risk of producing false-positive and false-negative results in the analysis of small microplastics. Currently, a combination of physical (e.g., microscopy), chemical (e.g., spectroscopy), and thermal analyses is widely used. We aim to summarize the best strategies for microplastic analysis by comparing the strengths and limitations of each identification method.
Collapse
|
87
|
Munoz M, Ortiz D, Nieto-Sandoval J, de Pedro ZM, Casas JA. Adsorption of micropollutants onto realistic microplastics: Role of microplastic nature, size, age, and NOM fouling. CHEMOSPHERE 2021; 283:131085. [PMID: 34146885 DOI: 10.1016/j.chemosphere.2021.131085] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 06/02/2021] [Indexed: 05/22/2023]
Abstract
This work aims at evaluating the role of nature, size, age, and natural organic matter (NOM) fouling of realistic microplastics (MPs) on the adsorption of two persistent micropollutants (diclofenac (DCF) and metronidazole (MNZ)). For such goal, four representative polymer types (polystyrene (PS), polyethylene terephthalate (PET), polypropylene (PP) and high-density polyethylene (HDPE)) were tested. MPs were obtained by cryogenic milling of different commercial materials (disposable bottles, containers, and trays), and fully characterized (optical microscopic and SEM images, FTIR, elemental analysis, water contact angle and pHslurry). The micropollutants hydrophobicity determined to a high extent their removal yield from water. Regardless of the MP's nature, the adsorption capacity for DCF was considerably higher than the achieved for MNZ, which can be related to its stronger hydrophobic properties and aromatic character. In fact, aromatic MPs (PS and PET) showed the highest adsorption capacity values with DCF (~100 μg g-1). The MP size also played a key role on its adsorption capacity, which was found to increase with decreasing the particle size (20-1000 μm). MPs aging (simulated by Fenton oxidation) led also to substantial changes on their sorption behavior. Oxidized MPs exhibited acidic surface properties which led to a strong decrease on the adsorption of the hydrophobic micropollutant (DCF) but to an increase with the hydrophilic one (MNZ). NOM fouling (WWTP effluent, river water, humic acid solution) led to a dramatic decrease on the MPs sorption capacity due to sorption sites blocking. Finally, the increase of pH or salinity of the aqueous medium increased the micropollutants desorption.
Collapse
Affiliation(s)
- Macarena Munoz
- Chemical Engineering Department, Universidad Autonoma de Madrid, Ctra. Colmenar Km 15, 28049 Madrid, Spain.
| | - David Ortiz
- Chemical Engineering Department, Universidad Autonoma de Madrid, Ctra. Colmenar Km 15, 28049 Madrid, Spain
| | - Julia Nieto-Sandoval
- Chemical Engineering Department, Universidad Autonoma de Madrid, Ctra. Colmenar Km 15, 28049 Madrid, Spain.
| | - Zahara M de Pedro
- Chemical Engineering Department, Universidad Autonoma de Madrid, Ctra. Colmenar Km 15, 28049 Madrid, Spain
| | - Jose A Casas
- Chemical Engineering Department, Universidad Autonoma de Madrid, Ctra. Colmenar Km 15, 28049 Madrid, Spain
| |
Collapse
|
88
|
Zhang C, Lei Y, Qian J, Qiao Y, Liu J, Li S, Dai L, Sun K, Guo H, Sui G, Jing W. Sorption of organochlorine pesticides on polyethylene microplastics in soil suspension. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112591. [PMID: 34364123 DOI: 10.1016/j.ecoenv.2021.112591] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
As a new type of environmental pollutant, microplastics (MPs) can adsorb residual organochlorine pesticides (OCPs) in the soil and pose a severe threat to the soil ecosystems. To understand the interaction between soil MPs and OCPs, the sorption of two kinds of OCPs, including hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs), on polyethylene (PE) microplastics in soil suspension was studied through sorption kinetics and isotherm models. The effects of solution/soil ratio and MPs diameter on sorption were examined. The kinetic experiment results show that the sorption equilibrium was 12 h, and the sorption process of OCPs on MPs can be well described by a pseudo-second-order model. The Freundlich model (R2 = 0.942-0.997) provides a better fit to the sorption isotherm data than the Langmuir model (R2 = 0.062-0.634), indicating that the sorption process takes place on the nonuniform surface of MPs. The MPs had a good sorption effect on OCPs when the solution/soil ratio was from 75:1 to 100:1. As the diameter of MPs increases, the sorption capacity decreases. These results provide support for further research on microplastic pollution in soil.
Collapse
Affiliation(s)
- Chengli Zhang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Yuchen Lei
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Jing Qian
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yixin Qiao
- College of Innovation and Experiment, Northwest A & F University, Yangling 712100, China
| | - Jingchao Liu
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Shuifeng Li
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Lingyu Dai
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Kexin Sun
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Huimin Guo
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Guodong Sui
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China.
| | - Wenwen Jing
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
89
|
Umamaheswari S, Priyadarshinee S, Bhattacharjee M, Kadirvelu K, Ramesh M. Exposure to polystyrene microplastics induced gene modulated biological responses in zebrafish (Danio rerio). CHEMOSPHERE 2021; 281:128592. [PMID: 33077188 DOI: 10.1016/j.chemosphere.2020.128592] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/20/2020] [Accepted: 10/07/2020] [Indexed: 05/12/2023]
Abstract
The substantial increase in the occurrence of microplastics (MPs) in the aquatic ecosystem has been recognized as an emerging concern today. Studies have revealed the toxicity of microplastics on behavior, physiology, and reproduction of fishes. Despite several reports, there are inadequate literature reports on the impact of microplastics on aquatic forms at the molecular level. The present study was aimed to investigate the adverse effects of polystyrene microplastics (PS-MPs) in adult zebrafish model system. Healthy fishes were exposed to different concentrations (10 and 100 μg L-1) of PS-MPs for 35 d. The results revealed that PS-MPs exposure induced ROS (Reactive oxygen species) generation disrupting the antioxidant defense system, hepatic enzymology, and neurotransmission. Correspondingly, the histological studies showed PS-MPs induced histopathological lesions, including inflammation, degeneration, necrosis, and hemorrhage, in the brain and liver tissues of zebrafish. Furthermore, PS-MPs exposure significantly upregulated the expressions of gstp1, hsp70l, and ptgs2a gene along with the downregulation of cat, sod1, gpx1a, and ache genes. Therefore, the present study illustrates the potential of PS-MPs to induce different grades of toxic impacts in fishes by altering its metabolic mechanism, histological architecture, and gene regulation pattern through ROS induced oxidative stress.
Collapse
Affiliation(s)
| | - Sheela Priyadarshinee
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641046, India
| | - Monojit Bhattacharjee
- DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, India
| | - Krishna Kadirvelu
- DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641046, India.
| |
Collapse
|
90
|
Rubin AE, Sarkar AK, Zucker I. Questioning the suitability of available microplastics models for risk assessment - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147670. [PMID: 34029818 DOI: 10.1016/j.scitotenv.2021.147670] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The rise of microplastic (MP) pollution in the environment has been bolstering concerns regarding MPs' unknown environmental fate, transport, and potential toxicity toward living forms. However, the use of real environmental plastics for risk assessment is often hindered due to technical and practical challenges such as plastics' heterogeneity and their wide size distribution in the environment. To overcome this issue, most available data in the field is generated using plastic models as surrogates for environmental samples. In this critical review, we describe the gaps in risk assessments drawn from these plastic models. Specifically, we compare physicochemical properties of real environmental plastic particles to synthesized polymeric micro-beads, one of the most commonly used plastic models in current literature. Several surface and bulk characteristics including size, surface chemistry, polymer type, and morphology are shown to not only be inherently different between environmental MP's and synthesized micro-beads, but also drive behavior in fate, transport, and toxicity assays. We highlight the importance of expressing real-world physicochemical characteristics in representative MP models and outline how current state-of-the-art models are limited in this regard. To address this issue, we suggest future areas of research such as combinations of mechanical, photochemical, and thermal degradation processes to simulate real-world weathering, all in an effort to increase realism of plastic modeling and allow more robust and reliable environmental MP risk assessment in the future.
Collapse
Affiliation(s)
- Andrey Ethan Rubin
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amit Kumar Sarkar
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel; School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ines Zucker
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel; School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
91
|
Nguyen TB, Ho TBC, Huang CP, Chen CW, Hsieh SL, Tsai WP, Dong CD. Adsorption characteristics of tetracycline onto particulate polyethylene in dilute aqueous solutions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117398. [PMID: 34082368 DOI: 10.1016/j.envpol.2021.117398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
The presence of ultrafine plastics particles and its potential to concentrate and transport organic contaminants in aquatic environments have become a major concern in recent years. Specifically, the uptake of hazardous chemicals by plastics particles may affect the distribution and bioavailability of the chemicals. In this study, the adsorption of tetracycline (TC), an antibiotic frequently found in aquatic environments, on high-density polyethylene (PE) particles with the average size of 45 μm, was investigated. The PE particles were characterized for surface acidity for the first time. Results showed that pH controls the surface charge of PE particles. TC adsorption onto PE particles was rapid as expected following the pseudo-second-order rate law (r2 > 0.99). Polar forces in addition to specific chemical interactions, such as hydrogen bonding and hydrophophilicity controlled TC adsorption onto PE particles. Parameters, including pH, dissolved organic matter, ionic strength, major cations and anions affected TC adsorption onto PE micro-particles. Results indicated that PE particles can function as a carrier of antibiotics in the aquatic environment, which potentially imposes ecosystem and human health risks.
Collapse
Affiliation(s)
- Thanh-Binh Nguyen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Thi-Bao-Chau Ho
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, 19716, DE, USA
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Wen-Pei Tsai
- Department of Fisheries Production and Management, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan.
| |
Collapse
|
92
|
Zhang Y, Ni F, He J, Shen F, Deng S, Tian D, Zhang Y, Liu Y, Chen C, Zou J. Mechanistic insight into different adsorption of norfloxacin on microplastics in simulated natural water and real surface water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117537. [PMID: 34261229 DOI: 10.1016/j.envpol.2021.117537] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) as carriers of various contaminants have attracted more attentions in water environments. However, the interactions between typical MPs and norfloxacin (NOR) in natural water environments were still not systematically studied. In this study, the adsorption of NOR onto four typical types of MPs (polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC)) was investigated in simulated natural water and real surface water, and the adsorption mechanisms were deeply explored to provide fundamental understandings of the MPs-NOR complicated pollution. The results showed that the kinetics of NOR onto all MPs obeyed pseudo-second-order model, and was greatly slowed down at lower temperature or higher salinity. The intrinsic structure and surface area of MPs played important roles in the adsorption behaviors of NOR on these four types of MPs. The adsorption isotherm of NOR onto all MPs could be well described by linear model, with the Kd values following the order of PVC > PS > PE > PP (i.e. 6.229-11.901 L/μg) in simulated natural water. However, in surface water the adsorption isotherms of NOR on all MPs could be well fitted by Freundlich model. For all MPs, the adsorption of NOR was quite pH-dependent due to the electrostatic interactions. Furthermore, the salinity and the presence of dissolved organic matter (DOM) had significantly hindered the NOR adsorption. More importantly, compared with adsorption behaviors in simulated natural water, the competition of coexisting substances such as cations and NOM for adsorption sites and higher water pH dramatically reduced the adsorption of NOR onto all types of MPs in Jiang'an River, with the reduction rate of 19.7-41.2%. Finally, the mechanism studies indicated that the electrostatic attractions played a key role in the adsorption of NOR onto MPs, and π-π, H-bonding, polar-polar, and Van Der Waals interactions were also involved in adsorption processes.
Collapse
Affiliation(s)
- Ye Zhang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Fan Ni
- Department of Chemical Engineering, Northwest University for Nationalities, Lanzhou, Gansu, 730030, China
| | - Jinsong He
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shihuai Deng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Dong Tian
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yanzong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yan Liu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Chao Chen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jianmei Zou
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
93
|
Fu L, Li J, Wang G, Luan Y, Dai W. Adsorption behavior of organic pollutants on microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112207. [PMID: 33866287 DOI: 10.1016/j.ecoenv.2021.112207] [Citation(s) in RCA: 310] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/26/2021] [Accepted: 03/28/2021] [Indexed: 05/19/2023]
Abstract
Microplastics (MPs) are emerging pollutants that act as a carrier of toxic pollutants, release toxic substances, and aggregate in biota. The adsorption behavior of MPs has recently become a research hot spot. The objective of this study was to summarize the main mechanisms by which MPs adsorb organic pollutants, introduce some mathematical models commonly used to study the adsorption behavior of MPs, and discuss the factors affecting the adsorption capacity from three perspectives, i.e., the properties of MPs and organic pollutants, and environmental factors. Adsorption kinetics and isothermal adsorption models are commonly used to study the adsorption of organic pollutants on MPs. We observed that hydrophobic interaction is the most common mechanism by which MPs adsorb organic pollutants, and also reportedly controls the portion of organic pollutants. Additionally, electrostatic interaction and other non-covalent forces, such as hydrogen bonds, halogen bonds, and π-π interactions, are also mechanisms of organic pollutant adsorption on MPs. The particle size, specific surface area, aging degree, crystallinity, and polarity of MPs, and organic pollutant properties (hydrophobicity and dissociated forms) are key factors affecting adsorption capacity. Changes in the pH, temperature, and ionic strength also affect the adsorption capacity. Current research on the adsorption behavior of MPs has mainly been conducted in laboratories, and in-depth studies on the adsorption mechanism and influencing factors are limited. Therefore, studies on the adsorption behavior of MPs in the environment are required, and this study will contribute to a better understanding of this topic.
Collapse
Affiliation(s)
- Lina Fu
- College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Jing Li
- College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Guoyu Wang
- China Urban Construction Design & Research Institute CO. LTD., Beijing 100120, China
| | - Yaning Luan
- College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Wei Dai
- College of Forestry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
94
|
Micro and Nano Plastics Distribution in Fish as Model Organisms: Histopathology, Blood Response and Bioaccumulation in Different Organs. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135768] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Micro- and nano-plastic (MP/NP) pollution represents a threat not only to marine organisms and ecosystems, but also a danger for humans. The effects of these small particles resulting from the fragmentation of waste of various types have been well documented in mammals, although the consequences of acute and chronic exposure are not fully known yet. In this review, we summarize the recent results related to effects of MPs/NPs in different species of fish, both saltwater and freshwater, including zebrafish, used as model organisms for the evaluation of human health risk posed by MNPs. The expectation is that discoveries made in the model will provide insight regarding the risks of plastic particle toxicity to human health, with a focus on the effect of long-term exposure at different levels of biological complexity in various tissues and organs, including the brain. The current scientific evidence shows that plastic particle toxicity depends not only on factors such as particle size, concentration, exposure time, shape, and polymer type, but also on co-factors, which make the issue extremely complex. We describe and discuss the possible entry pathways of these particles into the fish body, as well as their uptake mechanisms and bioaccumulation in different organs and the role of blood response (hematochemical and hematological parameters) as biomarkers of micro- and nano-plastic water pollution.
Collapse
|
95
|
Song X, Wu X, Song X, Shi C, Zhang Z. Sorption and desorption of petroleum hydrocarbons on biodegradable and nondegradable microplastics. CHEMOSPHERE 2021; 273:128553. [PMID: 33069439 DOI: 10.1016/j.chemosphere.2020.128553] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/22/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Both biodegradable and nondegradable plastics are widely used. However, their interactions with petroleum hydrocarbons (PHs) have not been sufficiently studied. In this study, a type of biodegradable [polylactic acid (PLA)] and five types of nondegradable microplastics [polyamide (PA), polyethylene (PE), polyethylene terephthalate (PET), polystyrene (PS), and polyvinyl chloride (PVC)] were selected to investigate the sorption and desorption mechanisms of PHs. The sorption kinetics of the six types of microplastics followed a pseudo-second-order kinetics model (R2 ranged from 0.956 to 0.999) and indicated that chemical sorption dominated the sorption process. The key rate-controlling steps of the sorption of PHs on microplastics were intraparticle diffusion and liquid film diffusion. The sorption capacity of PHs on microplastics followed the order of PA > PE > PS > PET > PLA > PVC. The difference in sorption capacity might be due to the crystallinity, and rubber or glass state of the microplastics. In addition, all types of microplastics exhibited reversible sorption without noticeable desorption hysteresis. No obvious differences were observed in the sorption and desorption of PHs between biodegradable and nondegradable microplastics. Both biodegradable and nondegradable microplastics could sorb/desorb PHs and serve as transportation vectors.
Collapse
Affiliation(s)
- Xiaowei Song
- Center for Environmental Metrology, National Institute of Metrology, PR, China
| | - Xiaofeng Wu
- State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, China National Environmental Monitoring Center, China
| | - Xiaoping Song
- Center for Environmental Metrology, National Institute of Metrology, PR, China
| | - Cuijie Shi
- Center for Environmental Metrology, National Institute of Metrology, PR, China; College of Chemical Engineering and Environment, China University of Petroleum, China
| | - Zhengdong Zhang
- Center for Environmental Metrology, National Institute of Metrology, PR, China.
| |
Collapse
|
96
|
An Overview of the Sorption Studies of Contaminants on Poly(Ethylene Terephthalate) Microplastics in the Marine Environment. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9040445] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Marine pollution is one of the biggest environmental problems, mainly due to single-use or disposable plastic waste fragmenting into microplastics (MPs) and nanoplastics (NPs) and entering oceans from the coasts together with human-made MPs. A rapidly growing worry concerning environmental and human safety has stimulated research interest in the potential risks induced by the chemicals associated with MPs/NPs. In this framework, the present review analyzes the recent advances in adsorption and desorption studies of different contaminants species, both organic and metallic, on MPs made of Poly(Ethylene terephthalate). The choice of PET is motivated by its great diffusion among plastic items and, unfortunately, also in marine plastic pollution. Due to the ubiquitous presence of PET MPS/NPs, the interest in its role as a vector of contaminants has abruptly increased in the last three years, as demonstrated by the very high number of recent papers on sorption studies in different environments. The present review relies on a chemical engineering approach aimed at providing a deeper overview of both the sorption mechanisms of organic and metal contaminants to PET MPs/NPs and the most used adsorption kinetic models to predict the mass transfer process from the liquid phase to the solid adsorbent.
Collapse
|
97
|
Atugoda T, Vithanage M, Wijesekara H, Bolan N, Sarmah AK, Bank MS, You S, Ok YS. Interactions between microplastics, pharmaceuticals and personal care products: Implications for vector transport. ENVIRONMENT INTERNATIONAL 2021; 149:106367. [PMID: 33497857 DOI: 10.1016/j.envint.2020.106367] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 05/11/2023]
Abstract
Microplastics are well known for vector transport of hydrophobic organic contaminants, and there are growing concerns regarding their potential adverse effects on ecosystems and human health. However, recent studies focussing on hydrophilic compounds, such as pharmaceuticals and personal care products (PPCPs), have shown that the compounds ability to be adsorbed onto plastic surfaces. The extensive use of PPCPs has led to their ubiquitous presence in the environment resulting in their cooccurrence with microplastics. The partitioning between plastics and PPCPs and their fate through vector transport are determined by various physicochemical characteristics and environmental conditions of specific matrices. Although the sorption capacities of microplastics for different PPCP compounds have been investigated extensively, these findings have not yet been synthesized and analyzed critically. The specific objectives of this review were to synthesize and critically assess the various factors that affect the adsorption of hydrophilic compounds such as PPCPs on microplastic surfaces and their fate and transport in the environment. The review also focuses on environmental factors such as pH, salinity, and dissolved organics, and properties of polymers and PPCP compounds, and the relationships with sorption dynamics and mechanisms. Furthermore, the ecotoxicological effects of PPCP-sorbed microplastics on biota and human health are also discussed.
Collapse
Affiliation(s)
- Thilakshani Atugoda
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka.
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Nanthi Bolan
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Callaghan, NSW 2308, Australia
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | - Siming You
- James Watt School of Engineering, James Watt South Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
98
|
Leng Y, Xiao H, Li Z, Liu Y, Wang J. Transformation of sulfadiazine in humic acid and polystyrene microplastics solution by horseradish peroxidase coupled with 1-hydroxybenzotriazole. CHEMOSPHERE 2021; 269:128705. [PMID: 33109357 DOI: 10.1016/j.chemosphere.2020.128705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/11/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Enzyme catalyzed coupling with redox mediators are considered as great interesting and viable technologies to transform antibiotics. This work demonstrated the horseradish peroxidase (HRP) was effective in transforming sulfadiazine (SDZ) transformation coupled with 1-hydroxybenzotriazole (HBT) at varying conditions. The removal of SDZ was independent of Na+ and its ionic strength, but Ca2+ could enhance transformation efficiency by increasing the enzyme activity of HRP. The presence of humic acid (HA) and polystyrene (PS) microplastics showed inhibition on the transformation of SDZ, and the transformation rate constants (k) decreased with the concentration of HA and PS particles increased. These primarily attributed to covalent coupling and electrostatic interaction between SDZ and HA, SDZ and PS, respectively, which reduced the concentration of free SDZ in the reaction solution. The presence of cation recovered the inhibition of SDZ transformation by HA and PS particles, which ascribed to compete between cation and SDZ. The divalent cations (Ca2+) showed more substantial competitiveness than mono (Na+) due to more carried charge. Eight possible transformation products were identified, and potential SDZ transformation pathways were proposed, which include δ-cleavage, γ-cleavage, carbonylation, hydroxylation, SO2 extrusion and SO3 extrusion. In addition, HA and PS particles couldn't affect the transformation pathways of SDZ. These findings provide novel understandings of the transformation and the fate of antibiotics in the natural environment by HRP coupled with redox mediators.
Collapse
Affiliation(s)
- Yifei Leng
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, PR China
| | - Henglin Xiao
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, PR China
| | - Zhu Li
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, PR China
| | - Ying Liu
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, PR China
| | - Jun Wang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, PR China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
99
|
Verdú I, González-Pleiter M, Leganés F, Rosal R, Fernández-Piñas F. Microplastics can act as vector of the biocide triclosan exerting damage to freshwater microalgae. CHEMOSPHERE 2021; 266:129193. [PMID: 33310522 DOI: 10.1016/j.chemosphere.2020.129193] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Despite the large number of recent studies on microplastics (MPs) and their ability to act as carriers of pollutants, the knowledge about the biological effects of MPs loaded with chemicals is scarce. The aim of this study was to evaluate the potential of MPs as vectors for the antimicrobial triclosan (TCS). For it, we tested low-density polyethylene (LDPE), polyamide (PA), polyethylene terephthalate (PET), polyoxymethylene (POM), polypropylene (PP), polystyrene (PS) and the biodegradable polylactic acid (PLA). Thus, chemical analysis of sorption and desorption of TCS by these MPs was evaluated. The effect of TCS-loaded MPs to Anabaena sp. PCC7120, a cyanobacterium model of primary producers in freshwater ecosystems, was investigated. Chemical analyses showed different capacity of sorption depending on the MP type, which was related to some of their physicochemical properties. PA (104.7 μg/g), POM (57.4 μg/g) and LDPE (18.3 μg/g) were the polymers that sorbed the highest amounts of TCS. Glass transition temperature of polymers and their physicochemical interaction with TCS explained the extent of sorption. Significant decreases were found in growth, 22.3%, 94.6% and 81.0%, and chlorophyll a content, 58.4%, 95.0% and 89.6%, of Anabaena when exposed to TCS-loaded LDPE, PA and POM beads, respectively, which were the only MPs displaying significant sorption-desorption of TCS, implying that these MPs could act as vectors of TCS towards freshwater microalgae. This finding is of fundamental relevance as microalgae are at the base of the aquatic trophic chain and support growth of upper organisms.
Collapse
Affiliation(s)
- Irene Verdú
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Miguel González-Pleiter
- Department of Chemical Engineering, Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain
| | - Francisco Leganés
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain
| | | |
Collapse
|
100
|
Torres FG, Dioses-Salinas DC, Pizarro-Ortega CI, De-la-Torre GE. Sorption of chemical contaminants on degradable and non-degradable microplastics: Recent progress and research trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143875. [PMID: 33310573 DOI: 10.1016/j.scitotenv.2020.143875] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 05/19/2023]
Abstract
Microplastics (<5 mm) are ubiquitous contaminants of growing concern. These have been found in multiple environmental compartments, including remote sites where anthropogenic activity is null. Once released, microplastics interact with multiple chemicals in the environment, many of which are classified as organic contaminants or heavy metals. Some contaminants have an affinity for microplastics, attributed to certain sorption mechanisms, and thus become vectors of hazardous chemicals. Here, we focused on the sorption behavior of degradable and non-degradable microplastics, including field and laboratory experiments. We reviewed the sorption mechanisms, namely hydrophobic interactions, electrostatic interactions, pore-filling, Van der Waals forces, hydrogen bonding, and π-π interactions, and the factors strengthening or weakening these mechanisms. Then, we analyzed the literature investigating the sorption behavior of a wide range of chemicals contaminants on microplastics, and the current knowledge regarding the occurrence of organic contaminants and heavy metals on microplastics extracted from the environment. The future perspectives and research priorities were discussed. It is apparent that degradable microplastics, such as polylactic acid or polybutylene succinate, have a greater affinity for hydrophobic contaminants than conventional synthetic non-degradable microplastics according to recent studies. However, studies assessing degradable microplastics are scarce and much research is required to further prove this point. We stated several knowledge gaps in this new line of research and suggest the future studies to follow an integrative approach, allowing to comprehend the multiple factors involved, such as ecotoxicity, bioaccumulation, and fate of the chemical contaminants.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Catolica del Peru, Av. Universitaria 1801, 15088 Lima, Peru.
| | | | | | | |
Collapse
|