51
|
Sanz M, Weideman AMK, Ward AR, Clohosey ML, Garcia-Recio S, Selitsky SR, Mann BT, Iannone MA, Whitworth CP, Chitrakar A, Garrido C, Kirchherr J, Coffey AR, Tsai YH, Samir S, Xu Y, Copertino D, Bosque A, Jones BR, Parker JS, Hudgens MG, Goonetilleke N, Soriano-Sarabia N. Aminobisphosphonates reactivate the latent reservoir in people living with HIV-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527421. [PMID: 36798291 PMCID: PMC9934553 DOI: 10.1101/2023.02.07.527421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Antiretroviral therapy (ART) is not curative due to the existence of cellular reservoirs of latent HIV-1 that persist during therapy. Current research efforts to cure HIV-1 infection include "shock and kill" strategies to disrupt latency using small molecules or latency-reversing agents (LRAs) to induce expression of HIV-1 enabling cytotoxic immune cells to eliminate infected cells. The modest success of current LRAs urges the field to identify novel drugs with increased clinical efficacy. Aminobisphosphonates (N-BPs) that include pamidronate, zoledronate, or alendronate, are the first-line treatment of bone-related diseases including osteoporosis and bone malignancies. Here, we show the use of N-BPs as a novel class of LRA: we found in ex vivo assays using primary cells from ART-suppressed people living with HIV-1 that N-BPs induce HIV-1 from latency to levels that are comparable to the T cell activator phytohemagglutinin (PHA). RNA sequencing and mechanistic data suggested that reactivation may occur through activation of the activator protein 1 signaling pathway. Stored samples from a prior clinical trial aimed at analyzing the effect of alendronate on bone mineral density, provided further evidence of alendronate-mediated latency reversal and activation of immune effector cells. Decay of the reservoir measured by IPDA was however not detected. Our results demonstrate the novel use of N-BPs to reverse HIV-1 latency while inducing immune effector functions. This preliminary evidence merits further investigation in a controlled clinical setting possibly in combination with therapeutic vaccination.
Collapse
Affiliation(s)
- Marta Sanz
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington DC, USA
| | - Ann Marie K. Weideman
- Department of Biostatistics, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Adam R. Ward
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington DC, USA
- Department of Infectious Diseases, Weill Cornell Medicine, New York, USA
| | - Matthew L. Clohosey
- UNC HIV-1 Cure Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Susana Garcia-Recio
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Sara R. Selitsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Brendan T. Mann
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington DC, USA
| | - Marie Anne Iannone
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Chloe P. Whitworth
- UNC HIV-1 Cure Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Alisha Chitrakar
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington DC, USA
| | - Carolina Garrido
- UNC HIV-1 Cure Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Jennifer Kirchherr
- UNC HIV-1 Cure Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Alisha R. Coffey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Shahryar Samir
- Microbiology & Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Yinyan Xu
- Microbiology & Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Dennis Copertino
- Department of Infectious Diseases, Weill Cornell Medicine, New York, USA
| | - Alberto Bosque
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington DC, USA
| | - Brad R. Jones
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington DC, USA
- Department of Infectious Diseases, Weill Cornell Medicine, New York, USA
| | - Joel S. Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Michael G. Hudgens
- Department of Biostatistics, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Nilu Goonetilleke
- Microbiology & Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Natalia Soriano-Sarabia
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington DC, USA
| |
Collapse
|
52
|
Liu C, Zhao Z, Xu Q, Zhang H, Liu X, Yin C, Yan H, Liu Y. Comparative Genomic Analysis of Sphingomonas morindae sp. NBD5 and Sphingopyxis sp. USTB-05 for Producing Macular Pigment. Microorganisms 2023; 11:microorganisms11020266. [PMID: 36838230 PMCID: PMC9967899 DOI: 10.3390/microorganisms11020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
Sphingomonas morindae sp. NBD5, which we previously identified and tested, is a new bacterial strain for producing lutein. Here, based on the next-generation sequencing technology, we analyzed high throughput genomic sequences and compared related functional genes of Sphingomonas morindae sp. NBD5 and Sphingopyxis sp. USTB-05. The genome of Sphingomonas morindae sp. NBD5 has two sets of chromosomes, which is 4,239,716 bp and harbors 3882 protein coding genes. There are 59 protein-coding genes related to the macular pigment (MP) biosynthesis, of which four genes (ackA, pgm, gpmI and pckA) are unique. These genes, pckG, porB, meh, and fldA, are unique in Sphingopyxis sp. USTB-05. The analysis of Sphingomonas morindae sp. NBD5 and Sphingopyxis sp. USTB-05 genomes gives an insight into the new pathway for MP production. These genes for the transformation of glucose to MP were also found in Sphingomonas morindae sp. NBD5 and Sphingopyxis sp. USTB-05. This study expands the understanding of the pathway for complete biosynthesis of MP by Sphingomonas morindae sp. NBD5 and Sphingopyxis sp. USTB-05.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hai Yan
- Correspondence: (H.Y.); (Y.L.)
| | | |
Collapse
|
53
|
Dalhaimer P, Florey B, Isaac S. Interactions of Apolipoproteins with Lipid-Based Nanoparticles. ACS NANO 2023; 17:837-842. [PMID: 36622840 DOI: 10.1021/acsnano.2c10790] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Serum proteins bind and form a dynamic protein corona around nanoparticles (NPs) that have been injected into the mammalian vasculature. Several fundamental studies have shown that apolipoproteins are prominent components of the NP corona. Since apolipoproteins control the distribution of lipoproteins, they may also control the distribution of NPs. Indeed, apolipoprotein affinity for NPs has been recently taken advantage of to deliver CRISPR reagents encapsulated in NPs to cells that express particular lipoprotein receptors. In this scenario, an apolipoprotein binds an NP and the resulting apolipoprotein-NP complex binds a cell that expresses the (apo)lipoprotein receptor. But the NP will be diverted from the target cell if it does not express the (apo)lipoprotein receptor. This may hamper NP treatment of diseases. Therefore, we must understand the kinetics of apolipoprotein-NP affinity and how apolipoprotein-NP interactions affect NP biodistribution. In this Perspective, we discuss the evolving topic of apolipoprotein-NP interactions, which is of great interest for all NP-based disease treatments. Many properties of apolipoprotein-NP complexes are yet to be determined and will have a significant impact on NP efficacy for many NP-based treatments in animal models and in the clinic.
Collapse
Affiliation(s)
- Paul Dalhaimer
- Department of Chemical and Biomolecular EngineeringUniversity of Tennessee, Knoxville, Tennessee37996, United States
| | - Brice Florey
- Department of Chemical and Biomolecular EngineeringUniversity of Tennessee, Knoxville, Tennessee37996, United States
| | - Sami Isaac
- Department of Chemical and Biomolecular EngineeringUniversity of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
54
|
Zhang X, Sun C, Wan J, Zhang X, Jia Y, Zhou C. Compartmentalized activities of HMGCS1 control cervical cancer radiosensitivity. Cell Signal 2023; 101:110507. [PMID: 36328117 DOI: 10.1016/j.cellsig.2022.110507] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
Abstract
The underlying mechanisms by which cellular metabolism affects cervical cancer cell radiosensitivity remain poorly understood. Here, we found that loss of 3-hydroxy-3-methylglutaryl coenzyme A synthase 1 (HMGCS1), a key enzyme catalyzing the conversion of acetoacetyl-CoA to HMG-CoA in the cholesterol biosynthesis pathway, sensitizes the cervical cancer cells to radiation. We observed a compartmentalized cellular distribution of HMGCS1 in nuclei, cytosol, and mitochondria of cervical cancer cells and found that cytosolic HMGCS1 and mitochondrial HMGCS1 contribute together to the regulation of radiosensitivity. Mechanistically, we show that cytosolic HMGCS1 regulates radiosensitivity via manipulating the cholesterol metabolism, while mitochondrial HMGCS1 controls mitochondrial gene expression, thereby sustaining the mitochondrial function of cervical cancer cells. Together, our study identifies HMGCS1 as a novel regulator of radiosensitivty in cervical cancer cells, providing a molecular link between altered cholesterol metabolism, mitochondrial respiration, and radiosensitivity. Thus, targeting HMGCS1 may improve the therapeutic outcome of cervical cancer radiotherapy.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, PR China
| | - Congcong Sun
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, PR China
| | - Jinliang Wan
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, PR China
| | - Xiaoxue Zhang
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, PR China
| | - Yanhan Jia
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Chao Zhou
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, PR China.
| |
Collapse
|
55
|
Muacevic A, Adler JR, Ray SD. The Benefits Outweigh the Risks of Treating Hypercholesterolemia: The Statin Dilemma. Cureus 2023; 15:e33648. [PMID: 36788860 PMCID: PMC9912858 DOI: 10.7759/cureus.33648] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of death in the United States; therefore, primary and secondary prevention are of the utmost importance. In this regard, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMG-CoA) reductase inhibitors, also known as statins, have been anointed as the primary treatment method for lowering cholesterol to prevent cardiovascular diseases. Statins decrease the low-density lipoprotein (LDL) cholesterol and triglycerides in the body, thus lowering the total body cholesterol levels. Despite the benefits associated with statins, it is essential to understand the adverse effects of these drugs. Myotoxicity and statin-associated muscle symptoms are the most common adverse effects of statins. The impairment of mitochondrial function is another adverse effect that can lead to hepatic dysfunction, neurocognitive effects, and potentially the new onset of diabetes. The exact pathophysiology of these side effects is still not fully understood. However, several mechanisms have been proposed, although there is significant overlap among the hypothetical propositions. Understanding the overall outcomes of each of these adverse effects can allow a healthcare practitioner to carefully map out whether statin administration should be used to prevent hypercholesterolemia in the body. The adverse effect of statins is dependent on both the dose and the type of statin used. Lipophilic statins tend to possess a more remarkable ability to infiltrate membranes; they have been hypothesized to cause statin-induced myopathies as well as neurocognitive effects by significantly crossing the blood-brain barrier. In summary, this review has focused on the mechanistic and clinical aspects of this statin class of medication. Proposed mechanisms for different adverse effects associated with statins remain a focus of this communication.
Collapse
|
56
|
Mthembu SXH, Orlando P, Silvestri S, Ziqubu K, Mazibuko-Mbeje SE, Mabhida SE, Nyambuya TM, Nkambule BB, Muller CJF, Basson AK, Tiano L, Dludla PV. Impact of dyslipidemia in the development of cardiovascular complications: Delineating the potential therapeutic role of coenzyme Q 10. Biochimie 2023; 204:33-40. [PMID: 36067903 DOI: 10.1016/j.biochi.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 01/12/2023]
Abstract
Dyslipidemia is one of the major risk factors for the development of cardiovascular disease (CVD) in patients with type 2 diabetes (T2D). This metabolic anomality is implicated in the generation of oxidative stress, an inevitable process involved in destructive mechanisms leading to myocardial damage. Fortunately, commonly used drugs like statins can counteract the detrimental effects of dyslipidemia by lowering cholesterol to reduce CVD-risk in patients with T2D. Statins mainly function by blocking the production of cholesterol by targeting the mevalonate pathway. However, by blocking cholesterol synthesis, statins coincidently inhibit the synthesis of other essential isoprenoid intermediates of the mevalonate pathway like farnesyl pyrophosphate and coenzyme Q10 (CoQ10). The latter is by far the most important co-factor and co-enzyme required for efficient mitochondrial oxidative capacity, in addition to its robust antioxidant properties. In fact, supplementation with CoQ10 has been found to be beneficial in ameliorating oxidative stress and improving blood flow in subjects with mild dyslipidemia.. Beyond discussing the destructive effects of oxidative stress in dyslipidemia-induced CVD-related complications, the current review brings a unique perspective in exploring the mevalonate pathway to block cholesterol synthesis while enhancing or maintaining CoQ10 levels in conditions of dyslipidemia. Furthermore, this review disscusses the therapeutic potential of bioactive compounds in targeting the downstream of the mevalonate pathway, more importantly, their ability to block cholesterol while maintaining CoQ10 biosynthesis to protect against the destructive complications of dyslipidemia.
Collapse
Affiliation(s)
- Sinenhlanhla X H Mthembu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa; Department of Biochemistry, Mafikeng Campus, Northwest University, Mmabatho, 2735, South Africa
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Khanyisani Ziqubu
- Department of Biochemistry, Mafikeng Campus, Northwest University, Mmabatho, 2735, South Africa
| | | | - Sihle E Mabhida
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Tawanda M Nyambuya
- Department of Health Sciences, Namibia University of Science and Technology, Windhoek, 9000, Namibia
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa; Centre for Cardiometabolic Research Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Tygerberg, 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa.
| |
Collapse
|
57
|
Xia W, Wang H, Zhou X, Wang Y, Xue L, Cao B, Song J. The role of cholesterol metabolism in tumor therapy, from bench to bed. Front Pharmacol 2023; 14:928821. [PMID: 37089950 PMCID: PMC10117684 DOI: 10.3389/fphar.2023.928821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Cholesterol and its metabolites have important biological functions. Cholesterol is able to maintain the physical properties of cell membrane, play an important role in cellular signaling, and cellular cholesterol levels reflect the dynamic balance between biosynthesis, uptake, efflux and esterification. Cholesterol metabolism participates in bile acid production and steroid hormone biosynthesis. Increasing evidence suggests a strict link between cholesterol homeostasis and tumors. Cholesterol metabolism in tumor cells is reprogrammed to differ significantly from normal cells, and disturbances of cholesterol balance also induce tumorigenesis and progression. Preclinical and clinical studies have shown that controlling cholesterol metabolism suppresses tumor growth, suggesting that targeting cholesterol metabolism may provide new possibilities for tumor therapy. In this review, we summarized the metabolic pathways of cholesterol in normal and tumor cells and reviewed the pre-clinical and clinical progression of novel tumor therapeutic strategy with the drugs targeting different stages of cholesterol metabolism from bench to bedside.
Collapse
Affiliation(s)
- Wenhao Xia
- Cancer Center of Peking University Third Hospital, Beijing, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hao Wang
- Cancer Center of Peking University Third Hospital, Beijing, China
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Xiaozhu Zhou
- Department of Clinical Pharmacy, School of Pharmacy, Capital Medical University, Beijing, China
| | - Yan Wang
- Cancer Center of Peking University Third Hospital, Beijing, China
- Third Hospital Institute of Medical Innovation and Research, Beijing, China
| | - Lixiang Xue
- Cancer Center of Peking University Third Hospital, Beijing, China
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
- Third Hospital Institute of Medical Innovation and Research, Beijing, China
- *Correspondence: Lixiang Xue, ; Baoshan Cao, ; Jiagui Song,
| | - Baoshan Cao
- Cancer Center of Peking University Third Hospital, Beijing, China
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, China
- *Correspondence: Lixiang Xue, ; Baoshan Cao, ; Jiagui Song,
| | - Jiagui Song
- Cancer Center of Peking University Third Hospital, Beijing, China
- Third Hospital Institute of Medical Innovation and Research, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University as the Third Responsibility Unit of Song Jiagui, Beijing, China
- *Correspondence: Lixiang Xue, ; Baoshan Cao, ; Jiagui Song,
| |
Collapse
|
58
|
Subedi L, Pandey P, Khadka B, Shim JH, Cho SS, Kweon S, Byun Y, Kim KT, Park JW. Enhancement of the anticancer effect of atorvastatin-loaded nanoemulsions by improving oral absorption via multivalent intestinal transporter-targeting lipids. Drug Deliv 2022; 29:3397-3413. [DOI: 10.1080/10717544.2022.2149896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Laxman Subedi
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Prashant Pandey
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Bikram Khadka
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Seho Kweon
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Youngro Byun
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| |
Collapse
|
59
|
Mokgalaboni K, Dludla PV, Nkambule BB. Pharmacological effects of statins in adult patients with type 2 diabetes mellitus: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e32313. [PMID: 36595825 PMCID: PMC9794268 DOI: 10.1097/md.0000000000032313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Due to contradicting findings on impact of statins on endothelial function in type 2 diabetes mellitus especially across the randomized controlled trials (RCTs). With this systematic review, we aim to evaluate whether the use of statins improves endothelial function in adults with type 2 diabetes. We will further highlight if these biomarkers are ideal therapeutic targets for risk for atherosclerosis and cardiovascular disease. METHODS This protocol was carried out according to the preferred reporting items for systematic review and meta-analysis protocols-2015 guideline. The online databases, such as MEDLINE, Scopus, and Web of Sciences, will be targeted using the medical subject heading terms (MeSH) and text words. The review will include clinical studies on the effect of statins on markers of endothelial function in type 2 diabetes. The Cochrane risk of bias guideline will be used to assess the quality and risk of bias. We are planning to use the grading of recommendation assessment, development, and evaluation approach to evaluate the strength and quality of evidence. RESULTS This study will not involve human samples and patient data; hence ethics approval will not be required. The findings will be presented in journal clubs and conferences and published in peer-reviewed journals.
Collapse
Affiliation(s)
- Kabelo Mokgalaboni
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, FL, South Africa
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
60
|
Proteomic Analysis of a Hypervirulent Mutant of the Insect-Pathogenic Fungus Metarhizium anisopliae Reveals Changes in Pathogenicity and Terpenoid Pathways. Microbiol Spectr 2022; 10:e0076022. [PMID: 36314906 PMCID: PMC9769655 DOI: 10.1128/spectrum.00760-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Metarhizium anisopliae is a commercialized entomopathogenic fungus widely used for the control of insect pests. Significant efforts have been expended to screen and/or select for isolates that display increased virulence toward target insect hosts. UV-induced mutagenesis has resulted in the isolation of a number of hypervirulent M. anisopliae mutants; however, the underlying mechanisms that have led to the desired phenotype have yet to be characterized. Here, we performed a comparative proteomic analysis of an M. anisopliae UV-induced hypervirulent mutant (MaUV-HV) and its wild-type parent using tandem mass tag (TMT)-based quantitative proteomics. A total of 842 differentially abundant proteins were identified, with 360 being more abundant in the hypervirulent mutant and 482 in the wild-type parent. In terms of differential abundance, the critical pathways affected included those involved in secondary metabolite production, virulence, and stress response. In addition, a number of genes involved in terpenoid biosynthesis pathways were identified as significantly mutated in the MaUV-HV strain. In particular, mutations in the farnesyl pyrophosphate synthase (FPPS1) and geranylgeranyl diphosphate synthase (GGPPS5) genes were seen. The effects of the FPPS1 mutation were confirmed via the construction and characterization of a targeted gene knockout strain (ΔMaFPPS1). The overall effects of the mutations were increased resistance to UV stress, faster growth, and increased virulence. These results provide mechanistic insights and new avenues for modulating fungal virulence in efforts to increase the biological control potential of insect-pathogenic fungi. IMPORTANCE The mechanisms that underlie and contribute to microbial (fungal) virulence are known to be varied; however, the identification of contributing pathways beyond known virulence factors remains difficult. Using TMT-based proteomic analyses, changes in the proteomes of an M. anisopliae hypervirulent mutant and its wild-type parent were determined. These data revealed alterations in pathogenicity, stress, and growth/developmental pathways, as well as pathways not previously known to affect virulence. These include terpenoid pathways that can be manipulated to increase the efficacy of fungal insect biological control agents for increased sustainable pest control.
Collapse
|
61
|
Oike A, Iwata S, Hirayama A, Ono Y, Nagasato Y, Kawabata Y, Takai S, Sanematsu K, Wada N, Shigemura N. Bisphosphonate affects the behavioral responses to HCl by disrupting farnesyl diphosphate synthase in mouse taste bud and tongue epithelial cells. Sci Rep 2022; 12:21246. [PMID: 36481783 PMCID: PMC9732047 DOI: 10.1038/s41598-022-25755-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Little is known about the molecular mechanisms underlying drug-induced taste disorders, which can cause malnutrition and reduce quality of life. One of taste disorders is known adverse effects of bisphosphonates, which are administered as anti-osteoporotic drugs. Therefore, the present study evaluated the effects of risedronate (a bisphosphonate) on taste bud cells. Expression analyses revealed that farnesyl diphosphate synthase (FDPS, a key enzyme in the mevalonate pathway) was present in a subset of mouse taste bud and tongue epithelial cells, especially type III sour-sensitive taste cells. Other mevalonate pathway-associated molecules were also detected in mouse taste buds. Behavioral analyses revealed that mice administered risedronate exhibited a significantly enhanced aversion to HCl but not for other basic taste solutions, whereas the taste nerve responses were not affected by risedronate. Additionally, the taste buds of mice administered risedronate exhibited significantly lower mRNA expression of desmoglein-2, an integral component of desmosomes. Taken together, these findings suggest that risedronate may interact directly with FDPS to inhibit the mevalonate pathway in taste bud and tongue epithelial cells, thereby affecting the expression of desmoglein-2 related with epithelial barrier function, which may lead to alterations in behavioral responses to HCl via somatosensory nerves.
Collapse
Affiliation(s)
- Asami Oike
- grid.177174.30000 0001 2242 4849Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan ,grid.177174.30000 0001 2242 4849Section of Interdisciplinary Dentistry, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shusuke Iwata
- grid.177174.30000 0001 2242 4849Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan ,grid.177174.30000 0001 2242 4849Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
| | - Ayaka Hirayama
- grid.177174.30000 0001 2242 4849Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yurika Ono
- grid.177174.30000 0001 2242 4849Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuki Nagasato
- grid.177174.30000 0001 2242 4849Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuko Kawabata
- grid.177174.30000 0001 2242 4849Department of Cell Biology, Aging Science, and Pharmacology, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shingo Takai
- grid.177174.30000 0001 2242 4849Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Keisuke Sanematsu
- grid.177174.30000 0001 2242 4849Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan ,grid.177174.30000 0001 2242 4849Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan ,grid.177174.30000 0001 2242 4849Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Naohisa Wada
- grid.177174.30000 0001 2242 4849Section of Interdisciplinary Dentistry, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Noriatsu Shigemura
- grid.177174.30000 0001 2242 4849Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan ,grid.177174.30000 0001 2242 4849Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
| |
Collapse
|
62
|
Sun SJ, Ai YJ, Duan KL, Zhang JY, Zhang C, Sun YP, Xiong Y, Guan KL, Yuan HX. TET2 deficiency sensitizes tumor cells to statins by reducing HMGCS1 expression. Oncogene 2022; 41:5385-5396. [PMID: 36348011 DOI: 10.1038/s41388-022-02531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
TET2 (ten-eleven-translocation) protein is a Fe(II)- and α-ketoglutarate-dependent dioxygenase that catalyzes DNA demethylation to regulate gene expression. While TET2 gene is frequently mutated in hematological cancer, its enzymatic activity is also compromised in various solid tumors. Whether TET2 deficiency creates vulnerability for cancer cells has not been studied. Here we reported that TET2 deficiency is associated with the change of lipid metabolism processes in acute myeloid leukemia (AML) patient. We demonstrate that statins, the inhibitors of β-Hydroxy β-methylglutaryl-CoA (HMG-CoA) reductase and commonly used cholesterol-lowering medicines, significantly sensitize TET2 deficient tumor cells to apoptosis. TET2 directly regulates the expression of HMG-CoA synthase (HMGCS1) by catalyzing demethylation on its promoter region, and conversely TET2 deficiency leads to significant down-regulation of HMGCS1 expression and the mevalonate pathway. Consistently, overexpression of HMGCS1 in TET2-deficient cells rescues statin-induced apoptosis. We further reveal that decrease of geranylgeranyl diphosphate (GGPP), an intermediate metabolite in the mevalonate pathway, is responsible for statin-induced apoptosis. GGPP shortage abolishes normal membrane localization and function of multiple small GTPases, leading to cell dysfunction. Collectively, our study reveals a vulnerability in TET2 deficient tumor and a potential therapeutic strategy using an already approved safe medicine.
Collapse
Affiliation(s)
- Si-Jia Sun
- The Fifth People's Hospital of Shanghai, Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Shanghai College of Medicine, Fudan University, Shanghai, China
| | - Ying-Jie Ai
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai College of Medicine, Fudan University, Shanghai, China
| | - Kun-Long Duan
- The Fifth People's Hospital of Shanghai, Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Shanghai College of Medicine, Fudan University, Shanghai, China
| | - Jin-Ye Zhang
- The Fifth People's Hospital of Shanghai, Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Shanghai College of Medicine, Fudan University, Shanghai, China
| | - Cheng Zhang
- The Fifth People's Hospital of Shanghai, Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Shanghai College of Medicine, Fudan University, Shanghai, China
| | - Yi-Ping Sun
- The Fifth People's Hospital of Shanghai, Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Shanghai College of Medicine, Fudan University, Shanghai, China
| | - Yue Xiong
- Cullgen Inc. 12730 High Bluff Drive, San Diego, CA92130, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, San Diego, 92093, CA, USA
| | - Hai-Xin Yuan
- The Fifth People's Hospital of Shanghai, Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Shanghai College of Medicine, Fudan University, Shanghai, China. .,Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
63
|
Boczar KE, Faller E, Zeng W, Wang J, Small GR, Corrales-Medina VF, deKemp RA, Ward NC, Beanlands RSB, MacPherson P, Dwivedi G. Anti-inflammatory effect of rosuvastatin in patients with HIV infection: An FDG-PET pilot study. J Nucl Cardiol 2022; 29:3057-3068. [PMID: 34820771 DOI: 10.1007/s12350-021-02830-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/22/2021] [Indexed: 01/29/2023]
Abstract
AIMS This study aimed to evaluate markers of systemic as well as imaging markers of inflammation in the ascending aorta, bone marrow, and spleen measured by 18F-FDG PET/CT, in HIV+ patients at baseline and following therapy with rosuvastatin. METHODS AND RESULTS Of the 35 HIV+ patients enrolled, 17 were randomized to treatment with 10 mg/day rosuvastatin and 18 to usual care for 6 months. An HIV- control cohort was selected for baseline comparison of serum inflammatory markers and monocyte markers of inflammation. 18F-FDG-PET/CT imaging of bone marrow, spleen, and thoracic aorta was performed in the HIV+ cohort at baseline and 6 months. While CD14++CD16- and CCR2 expressions were reduced, serum levels of IL-7, IL-8, and MCP-1 were elevated in the HIV+ population compared to the controls. There was a significant drop in FDG uptake in the bone marrow (TBRmax), spleen (SUVmax) and thoracic aortic (TBRmax) in the statin-treated group compared to the control group (bone marrow: - 10.3 ± 16.9% versus 5.0 ± 18.9%, p = .0262; spleen: - 9.8 ± 20.3% versus 11.3 ± 28.8%, p = .0497; thoracic aorta: - 19.1 ± 24.2% versus 4.3 ± 15.4%, p = .003). CONCLUSIONS HIV+ patients had significantly markers of systemic inflammation including monocyte activation. Treatment with low-dose rosuvastatin in the HIV+ cohort significantly reduced bone marrow, spleen and thoracic aortic FDG uptake.
Collapse
Affiliation(s)
- Kevin E Boczar
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Elliot Faller
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Wanzhen Zeng
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jerry Wang
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Gary R Small
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Vicente F Corrales-Medina
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Robert A deKemp
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Natalie C Ward
- School of Public Health, Curtin University, Perth, Australia
- School of Medicine, University of Western Australia, Perth, Australia
| | - Rob S B Beanlands
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Paul MacPherson
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Girish Dwivedi
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada.
- School of Medicine, University of Western Australia, Perth, Australia.
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, The University of Western Australia, Murdoch, Australia.
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, WA, 6009, Australia.
- School of Biomedical Sciences at Curtin University, Perth, WA, Australia.
| |
Collapse
|
64
|
Niu Z, Ye S, Liu J, Lyu M, Xue L, Li M, Lyu C, Zhao J, Shen B. Two apicoplast dwelling glycolytic enzymes provide key substrates for metabolic pathways in the apicoplast and are critical for Toxoplasma growth. PLoS Pathog 2022; 18:e1011009. [PMID: 36449552 PMCID: PMC9744290 DOI: 10.1371/journal.ppat.1011009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/12/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022] Open
Abstract
Many apicomplexan parasites harbor a non-photosynthetic plastid called the apicoplast, which hosts important metabolic pathways like the methylerythritol 4-phosphate (MEP) pathway that synthesizes isoprenoid precursors. Yet many details in apicoplast metabolism are not well understood. In this study, we examined the physiological roles of four glycolytic enzymes in the apicoplast of Toxoplasma gondii. Many glycolytic enzymes in T. gondii have two or more isoforms. Endogenous tagging each of these enzymes found that four of them were localized to the apicoplast, including pyruvate kinase2 (PYK2), phosphoglycerate kinase 2 (PGK2), triosephosphate isomerase 2 (TPI2) and phosphoglyceraldehyde dehydrogenase 2 (GAPDH2). The ATP generating enzymes PYK2 and PGK2 were thought to be the main energy source of the apicoplast. Surprisingly, deleting PYK2 and PGK2 individually or simultaneously did not cause major defects on parasite growth or virulence. In contrast, TPI2 and GAPDH2 are critical for tachyzoite proliferation. Conditional depletion of TPI2 caused significant reduction in the levels of MEP pathway intermediates and led to parasite growth arrest. Reconstitution of another isoprenoid precursor synthesis pathway called the mevalonate pathway in the TPI2 depletion mutant partially rescued its growth defects. Similarly, knocking down the GAPDH2 enzyme that produces NADPH also reduced isoprenoid precursor synthesis through the MEP pathway and inhibited parasite proliferation. In addition, it reduced de novo fatty acid synthesis in the apicoplast. Together, these data suggest a model that the apicoplast dwelling TPI2 provides carbon source for the synthesis of isoprenoid precursor, whereas GAPDH2 supplies reducing power for pathways like MEP, fatty acid synthesis and ferredoxin redox system in T. gondii. As such, both enzymes are critical for parasite growth and serve as potential targets for anti-toxoplasmic intervention designs. On the other hand, the dispensability of PYK2 and PGK2 suggest additional sources for energy in the apicoplast, which deserves further investigation.
Collapse
Affiliation(s)
- Zhipeng Niu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Shu Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Jiaojiao Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Mengyu Lyu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Lilan Xue
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Muxiao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Congcong Lyu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province, PR China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province, PR China
- Hubei Hongshan Laboratory, Wuhan, Hubei Province, PR China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong Province, PR China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, PR China
- * E-mail:
| |
Collapse
|
65
|
Warita T, Irie N, Zhou Y, Tashiro J, Sugiura A, Oltvai ZN, Warita K. Alterations in the omics profiles in mevalonate pathway-inhibited cancer cells. Life Sci 2022; 312:121249. [PMID: 36455649 DOI: 10.1016/j.lfs.2022.121249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
AIMS Statins, cholesterol-lowering drugs, are potential therapeutic agents for inhibiting cancer proliferation. However, the mechanisms that mediate the effects of statins, the homeostatic responses of tumor cells to statin therapy, and the modes underlying the antitumor effects of statins remain unclear. MAIN METHODS To uncover the effects of statins on cancer cells in vitro, we performed transcriptome and metabolome analyses on atorvastatin-treated statin-resistant and statin-sensitive lung cancer cells. KEY FINDINGS The results of Gene Ontology terms and pathway enrichment analyses showed that after 24 h of atorvastatin treatment, the expression of cell cycle- and DNA replication-related genes was significantly decreased in the statin-sensitive cancer cells. The results of metabolome analysis showed that the components of polyamine metabolism and purine metabolism, glycolysis, and pentose phosphate pathway were decreased in the statin-sensitive cancer cells. SIGNIFICANCE Differences in cellular properties between statin-sensitive and statin-resistant cancer cells revealed additional candidates for therapeutic targets in statin-treated cancer cells and suggested that inhibiting these metabolic pathways could improve efficacy. In conclusion, combining statins with inhibitors of polyamine metabolism (cell proliferation and protein translation), purine metabolism (DNA synthesis), glycolytic system (energy production), and pentose phosphate pathway (antioxidant stress) might enhance the anticancer effects of statins.
Collapse
Affiliation(s)
- Tomoko Warita
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Nanami Irie
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Yaxuan Zhou
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Jiro Tashiro
- Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, 4-101 Koyama Minami, Tottori, Tottori 680-8553, Japan
| | - Akihiro Sugiura
- Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, 4-101 Koyama Minami, Tottori, Tottori 680-8553, Japan
| | - Zoltán N Oltvai
- Department of Pathology and Laboratory Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Katsuhiko Warita
- Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, 4-101 Koyama Minami, Tottori, Tottori 680-8553, Japan.
| |
Collapse
|
66
|
Ward NC, Reid CM, Watts GF. Low-density lipoprotein-cholesterol lowering effect of a nutraceutical regimen with or without ezetimibe in hypercholesterolaemic patients with statin intolerance. Front Cardiovasc Med 2022; 9:1060252. [PMID: 36505352 PMCID: PMC9732015 DOI: 10.3389/fcvm.2022.1060252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Background Statins are the most widely prescribed medication to lower low-density lipoprotein cholesterol (LDL-c). However, a significant portion of patients are unable to tolerate them due to side effects, most commonly muscle related. Nutraceuticals, natural plant derivatives with lipid-lowering properties, may provide an alternative to lower LDL-c in these patients. Aims To investigate whether a nutraceutical regimen, either alone or in combination with ezetimibe, can lower LDL-c in patients with hypercholesterolemia who are intolerant to statins. Methods Participants were recruited into a double-blind, randomized, placebo-controlled intervention study. Treatments were (i) placebo, (ii) nutraceutical (500 mg berberine, 200 mg red yeast rice (RYR), 2 g plant sterols)/daily, (iii) ezetimibe (10 mg)/daily, or (iv) the combination of nutraceutical and ezetimibe/daily. At baseline and week 8, all participants provide a fasting blood sample for assessment of lipid profile and safety bloods. Results Fifty participants were randomized, with 44 completing the treatment period. Following adjustment for baseline levels and compared with placebo, LDL-c was significantly reduced (all p < 0.0001) with ezetimibe (-1.02 mmol/L), nutraceutical (-1.15 mmol/L) and the nutraceutical and ezetimibe combination (-1.92 mmol/L). Non-HDL cholesterol was significantly reduced (all p < 0.0001) with ezetimibe (-1.29 mmol/L), nutraceutical (-1.37 mmol/L) and the nutraceutical and ezetimibe combination (-2.18 mmol/L). Remnant cholesterol and triglycerides was significantly reduced with the nutraceutical and ezetimibe combination (p = 0.018). Conclusion A nutraceutical regimen (berberine, RYR and plant sterols) and ezetimibe independently and additively lower LDL-c in patients with hypercholesterolemia who are intolerant to statins.
Collapse
Affiliation(s)
- Natalie C. Ward
- Dobney Hypertension Centre, Medical School, University of Western Australia, Perth, WA, Australia,*Correspondence: Natalie C. Ward,
| | | | - Gerald F. Watts
- Medical School, University of Western Australia, Perth, WA, Australia,Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, WA, Australia
| |
Collapse
|
67
|
Human Vδ2 T Cells and Their Versatility for Immunotherapeutic Approaches. Cells 2022; 11:cells11223572. [PMID: 36429001 PMCID: PMC9688761 DOI: 10.3390/cells11223572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Gamma/delta (γδ) T cells are innate-like immune effectors that are a critical component linking innate and adaptive immune responses. They are recognized for their contribution to tumor surveillance and fight against infectious diseases. γδ T cells are excellent candidates for cellular immunotherapy due to their unique properties to recognize and destroy tumors or infected cells. They do not depend on the recognition of a single antigen but rather a broad-spectrum of diverse ligands through expression of various cytotoxic receptors. In this manuscript, we review major characteristics of the most abundant circulating γδ subpopulation, Vδ2 T cells, their immunotherapeutic potential, recent advances in expansion protocols, their preclinical and clinical applications for several infectious diseases and malignancies, and how additional modulation could enhance their therapeutic potential.
Collapse
|
68
|
Niu L, Liu J, Wang X, Wu Z, Xiang Q, Bai Y. Effect of Combined Treatment with Cinnamon Oil and petit-High Pressure CO 2 against Saccharomyces cerevisiae. Foods 2022; 11:foods11213474. [PMID: 36360087 PMCID: PMC9658994 DOI: 10.3390/foods11213474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
This study investigated the effects of the combined treatment with cinnamon oil (CIN) and petit-high pressure CO2 (p-HPCO2) against Saccharomyces cerevisiae. The results showed that CIN and p-HPCO2 exhibited a synergistic antifungal effect against S. cerevisiae. After being treated by CIN at a final concentration of 0.02% and p-HPCO2 under 1.3 MPa at 25 °C for 2 h, the S. cerevisiae population decreased by 3.35 log10 CFU/mL, which was significantly (p < 0.05) higher than that of CIN (1.11 log10 CFU/mL) or p-HPCO2 (0.31 log10 CFU/mL). Through scanning electron microscopy, fluorescence staining, and other approaches, a disorder of the structure and function of the cell membrane was observed after the CIN + p-HPCO2 treatment, such as severe morphological changes, increased membrane permeability, decreased cell membrane potential, and loss of membrane integrity. CIN + p-HPCO2 also induced mitochondrial membrane depolarization in S. cerevisiae cells, which could be associated with the decrease in intracellular ATP observed in this study. Moreover, the expression of genes involved in ergosterol synthesis in S. cerevisiae was up-regulated after exposure to CIN + p-HPCO2, which might be an adaptive response to membrane damage. This work demonstrates the potential of CIN and p-HPCO2 in combination as an alternative pasteurization technique for use in the food industry.
Collapse
Affiliation(s)
- Liyuan Niu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, Zhengzhou 450001, China
| | - Jingfei Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Xinpei Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Zihao Wu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, Zhengzhou 450001, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, Zhengzhou 450001, China
- Correspondence:
| |
Collapse
|
69
|
Dicken W, Mehta A, Karagiannis A, Jain V, Vavuranakis M, Sperling L, Cassimatis D. Statin associated muscle symptoms: An update and review. Prog Cardiovasc Dis 2022; 75:40-48. [PMID: 36400232 DOI: 10.1016/j.pcad.2022.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
Abstract
Statin therapy has been shown to have a significant effect on lowering of low-density lipoprotien cholesterol (LDL-C) levels. This subsequently results in cardiovascular (CV) benefit through reduction in major adverse CV disease (CVD) events and overall mortality. Although there is well proven clinical benefit, statin therapy may be discontinued in some patients, and the most common cause for discontinuation is concern for statin-associated muscle symptoms. However, the data on the true prevalence of these symptoms is mixed and continued studies are showing that the symptoms may be less prevalent than previously believed. With statin-associated muscle symptoms being the most common reason for a patient to not be on statin therapy, it is important for physicians to understand how to evaluate for and manage these symptoms. This manuscript provides an overview of statin associated muscle symptoms so that physicians may be able to better manage patients on statin therapy and continue to use these medications when indicated to best reduce future risk of CVD for patients.
Collapse
Affiliation(s)
- Weston Dicken
- Emory University, Atlanta, GA, United States of America
| | - Anurag Mehta
- Virginia Commonwealth University, Richmond, VA, United States of America
| | | | | | | | | | | |
Collapse
|
70
|
Watson R, Tulk A, Erdrich J. The Link Between Statins and Breast Cancer in Mouse Models: A Systematic Review. Cureus 2022; 14:e31893. [PMID: 36579200 PMCID: PMC9790759 DOI: 10.7759/cureus.31893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 11/27/2022] Open
Abstract
Statins, a class of cholesterol-lowering drugs, have consistently demonstrated pleiotropic effects in both preclinical and clinical studies. Outside of inhibiting the production of cholesterol in cells, statins have shown antineoplastic properties most commonly in breast cancer. Clinical and epidemiological studies, however, are less definitive than preclinical studies regarding statins as potential adjuvant oncologic therapy. Our objective is to summarize mouse model studies that investigate the link between statins and breast cancer using a cancer care continuum framework to provide a clinically relevant picture of the potential use of statins in breast cancer. A systematic review of the PubMed database was performed to identify studies published between January 2007 and July 2022 that investigated the effects of statins on breast cancer prevention, treatment, and survivorship in mouse models. Overall, 58 studies were identified using our search strategy. Based on our inclusion and exclusion criteria, 26 mouse model studies were eligible to be included in our systematic review. In breast cancer mouse models, statins alone and in combination with anti-cancer therapies demonstrate proven antineoplastic effects across the cancer care continuum. The antineoplastic benefit of statins as single agents in mouse model studies helps inform their synergistic benefit that future clinical studies can test. Parameters such as statin timing, dose, and breast cancer subtype are key stepping stones in defining how statins could be used in the treatment of breast cancer.
Collapse
Affiliation(s)
- Raj Watson
- Department of Surgery, University of Arizona College of Medicine - Tucson, Tucson, USA
| | - Angela Tulk
- Department of Surgery, University of Arizona College of Medicine - Tucson, Tucson, USA
| | - Jennifer Erdrich
- Department of Surgery, University of Arizona College of Medicine - Tucson, Tucson, USA
| |
Collapse
|
71
|
Lee S, Jo SH, Hong CE, Lee J, Cha B, Park JM. Plastid methylerythritol phosphate pathway participates in the hypersensitive response-related cell death in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2022; 13:1032682. [PMID: 36388595 PMCID: PMC9645581 DOI: 10.3389/fpls.2022.1032682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Programmed cell death (PCD), a characteristic feature of hypersensitive response (HR) in plants, is an important cellular process often associated with the defense response against pathogens. Here, the involvement of LytB, a gene encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase that participates in the final step of the plastid methylerythritol phosphate (MEP) pathway, in plant HR cell death was studied. In Nicotiana benthmiana plants, silencing of the NbLytB gene using virus-induced gene silencing (VIGS) caused plant growth retardation and albino leaves with severely malformed chloroplasts. In NbLytB-silenced plants, HR-related cell death mediated by the expression of either the human proapoptotic protein gene Bax or an R gene with its cognate Avr effector gene was inhibited, whereas that induced by the nonhost pathogen Pseudomonas syringae pv. syringae 61 was enhanced. To dissect the isoprenoid pathway and avoid the pleiotropic effects of VIGS, chemical inhibitors that specifically inhibit isoprenoid biosynthesis in plants were employed. Treatment of N. benthamiana plants with fosmidomycin, a specific inhibitor of the plastid MEP pathway, effectively inhibited HR-related PCD, whereas treatment with mevinolin (a cytoplasmic mevalonate pathway inhibitor) and fluridone (a carotenoid biosynthesis inhibitor) did not. Together, these results suggest that the MEP pathway as well as reactive oxygen species (ROS) generation in the chloroplast play an important role in HR-related PCD, which is not displaced by the cytosolic isoprenoid biosynthesis pathway.
Collapse
Affiliation(s)
- Sanghun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
- Department of Plant Medicine, Chungbuk National University, Cheongju, South Korea
| | - Sung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
| | - Chi Eun Hong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
| | - Jiyoung Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
- Biological Resource Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Jeongeup, South Korea
| | - Byeongjin Cha
- Department of Plant Medicine, Chungbuk National University, Cheongju, South Korea
| | - Jeong Mee Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
| |
Collapse
|
72
|
Zivich PN, Hudgens MG, Brookhart MA, Moody J, Weber DJ, Aiello AE. Targeted maximum likelihood estimation of causal effects with interference: A simulation study. Stat Med 2022; 41:4554-4577. [PMID: 35852017 PMCID: PMC9489667 DOI: 10.1002/sim.9525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 11/08/2022]
Abstract
Interference, the dependency of an individual's potential outcome on the exposure of other individuals, is a common occurrence in medicine and public health. Recently, targeted maximum likelihood estimation (TMLE) has been extended to settings of interference, including in the context of estimation of the mean of an outcome under a specified distribution of exposure, referred to as a policy. This paper summarizes how TMLE for independent data is extended to general interference (network-TMLE). An extensive simulation study is presented of network-TMLE, consisting of four data generating mechanisms (unit-treatment effect only, spillover effects only, unit-treatment and spillover effects, infection transmission) in networks of varying structures. Simulations show that network-TMLE performs well across scenarios with interference, but issues manifest when policies are not well-supported by the observed data, potentially leading to poor confidence interval coverage. Guidance for practical application, freely available software, and areas of future work are provided.
Collapse
Affiliation(s)
- Paul N Zivich
- Department of Epidemiology, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Population Center, UNC Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael G Hudgens
- Department of Biostatistics, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, North Carolina, USA
| | - Maurice A Brookhart
- NoviSci, Durham, North Carolina, USA
- Department of Population Health Sciences, Duke University, Durham, North Carolina, USA
| | - James Moody
- Department of Sociology, Duke University, Durham, North Carolina, USA
| | - David J Weber
- Division of Infectious Diseases, Department of Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, USA
| | - Allison E Aiello
- Department of Epidemiology, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Population Center, UNC Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
73
|
Li Y, Li X, Wu Y, Zhang W. Effects of fecal microbiota transplantation from yaks on weaning diarrhea, fecal microbiota composition, microbial network structure and functional pathways in Chinese Holstein calves. Front Microbiol 2022; 13:898505. [PMID: 36212876 PMCID: PMC9537452 DOI: 10.3389/fmicb.2022.898505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
This study was conducted to investigate the effect of fecal microbiota transplantation (FMT) from yaks on weaning diarrhea, fecal microbiota composition, microbial network structure and functional pathways in Chinese Holstein Calves. In this study, 50 calves were randomly divided into five groups of 10 each: NC group (no supplementation), Control group (normal saline), low concentration FMT group (LFMT, 1 × 108 CFU/ml), high concentration FMT group (HMFT, 1 × 109 CFU/ml), and sterilized FMT group (SMFT, sterilized bacterial solution). The test lasted for 30 days. We found that FMT reduced the incidence of diarrhea in weaned calves, and the anti-diarrhea effect of LFMT was stronger than those of HFMT and SFMT. Calf feces were collected by rectal palpation on days 5, 10, 15, and 20 post-weaning, and high-throughput sequencing of bacterial 16S rRNA and fungal internal transcribed spacer region of fecal microbiota was performed. We observed that the richness and diversity of bacterial microbiota in the LFMT, HFMT, and SFMT groups were higher than those in the NC and Control groups at day 20 after weaning. The treatment had a significant effect on bacterial richness (p < 0.05), but not on fungal diversity or richness. The analysis of gut microbiome showed that Firmicutes and Bacteroides were the main bacterial phyla in the feces of weaned calves, and norank_ f Muribaculaceae, UCG-005, Rikenellaceae_RC9_gut_group, Bacteroides, and Blautia were the main genera. Ascomycota and Basidiomycota were the main fungal phyla. Compared to abundance parameters in the Control and NC groups, relative abundances of Firmicutes in the FMT groups increased at different time points after weaning. The relative abundance of Blautia and Lactobacillus in the LFMT group increased significantly after weaning. In addition, abundances of Ruminococcus and Romboutsia, which produce short-chain fatty acids, were also increased in different FMT groups. FMT significantly increased the relative abundance of beneficial bacteria, enhanced the complexity of the fecal microbial network, and promoted important metabolic and cellular processes in weaned calves. In conclusion, our study provides a reference and theoretical basis for FMT to prevent calf weaning diarrhea and other intestinal diseases in ruminants.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xin Li
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Yanyan Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
74
|
Jiang J, Wang Y. Quantitative Assessment of Arsenite-Induced Perturbation of Ubiquitinated Proteome. Chem Res Toxicol 2022; 35:1589-1597. [PMID: 35994080 PMCID: PMC9869663 DOI: 10.1021/acs.chemrestox.2c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Arsenic contamination in food and groundwater constitutes a public health concern for more than 200 million people worldwide. Individuals chronically exposed to arsenic through drinking and ingestion exhibit a higher risk of developing cancers and cardiovascular diseases. Nevertheless, the underlying mechanisms of arsenic toxicity are not fully understood. Arsenite is known to bind to and deactivate RING finger E3 ubiquitin ligases; thus, we reason that a systematic interrogation about how arsenite exposure modulates global protein ubiquitination may reveal novel molecular targets for arsenic toxicity. By employing liquid chromatography-tandem mass spectrometry, in combination with stable isotope labeling by amino acids in cell culture (SILAC) and immunoprecipitation of di-glycine-conjugated lysine-containing tryptic peptides, we assessed the alterations in protein ubiquitination in GM00637 human skin fibroblast cells upon arsenite exposure at the entire proteome level. We observed that arsenite exposure led to altered ubiquitination of many proteins, where the alterations in a large majority of ubiquitination events are negatively correlated with changes in expression of the corresponding proteins, suggesting their modulation by the ubiquitin-proteasomal pathway. Moreover, we observed that arsenite exposure confers diminished ubiquitination of a rate-limiting enzyme in cholesterol biosynthesis, HMGCR, at Lys248. We also revealed that TRC8 is the major E3 ubiquitin ligase for HMGCR ubiquitination in HEK293T cells, and the arsenite-induced diminution of HMGCR ubiquitination is abrogated upon genetic depletion of TRC8. In summary, we systematically characterized arsenite-induced perturbations in a ubiquitinated proteome in human cells and found that the arsenite-elicited attenuation of HMGCR ubiquitination in HEK293T cells involves TRC8.
Collapse
|
75
|
Ilut S, Pirlog BO, Pirlog R, Nutu A, Vacaras V, Armean SM. Recent Advances on the Roles of PCSK-9 Inhibitors in the Management of Acute Ischemic Stroke Patients. Int J Mol Sci 2022; 23:10221. [PMID: 36142135 PMCID: PMC9499538 DOI: 10.3390/ijms231810221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Acute ischemic stroke (AIS) represents an important cause of disability and death. Since only a minor percentage of patients with AIS are eligible for acute therapy, the management of risk factors is mandatory. An important risk factor of AIS is hyperlipemia. The current guidelines recommend a strict correction of it. Statins are recommended as the first-line treatment, while proprotein convertase subtilin/kexin type 9 (PCSK-9) inhibitors are administered as a second or even third option when the goal for a low-density lipoprotein cholesterol (LDL-C) level is not achieved. PCSK-9 inhibitors effectively decrease the LDL-C levels through the inhibition of PCSK-9-LDL-receptor complex formation. The in-depth understanding of the PCSK-9 protein mechanism in the metabolism of LDL-C led to the development of effective targeted approaches. Furthermore, a better understanding of the LDL-C metabolic pathway led to the development of newer approaches, which increased the therapeutic options. This article aims to offer an overview of the PCSK-9 inhibitors and their mechanism in reducing the LDL-C levels. Moreover, we will present the main indications of the current guidelines for patients with hyperlipemia and for those who have suffered an acute ischemic stroke, as well as the importance of LDL-C reduction in decreasing the rate of a recurrence.
Collapse
Affiliation(s)
- Silvina Ilut
- Department of Neuroscience, University of Medicine, and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania
| | - Bianca O. Pirlog
- Department of Neuroscience, University of Medicine, and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine, and Pharmacy “Iuliu Hațieganu”, 400337 Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine, and Pharmacy “Iuliu Hațieganu”, 400337 Cluj-Napoca, Romania
| | - Vitalie Vacaras
- Department of Neuroscience, University of Medicine, and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania
| | - Sebastian M. Armean
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Medicine, and Pharmacy “Iuliu Hațieganu”, 400337 Cluj-Napoca, Romania
| |
Collapse
|
76
|
Bhandari Y, Sajwan H, Pandita P, Koteswara Rao V. Chloroperoxidase applications in chemical synthesis of industrial relevance. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yogesh Bhandari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | - Hemlata Sajwan
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | - Parul Pandita
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | - Vamkudoth Koteswara Rao
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
77
|
Simvastatin Inhibits Brucella abortus Invasion into RAW 264.7 Cells through Suppression of the Mevalonate Pathway and Promotes Host Immunity during Infection in a Mouse Model. Int J Mol Sci 2022; 23:ijms23158337. [PMID: 35955474 PMCID: PMC9368445 DOI: 10.3390/ijms23158337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simvastatin is an inhibitor of 3-hydroxy-3-methylglutaryl CoA reductase and has been found to have protective effects against several bacterial infections. In this study, we investigate the effects of simvastatin treatment on RAW 264.7 macrophage cells and ICR mice against Brucella (B.) abortus infections. The invasion assay revealed that simvastatin inhibited the Brucella invasion into macrophage cells by blocking the mevalonic pathway. The treatment of simvastatin enhanced the trafficking of Toll-like receptor 4 in membrane lipid raft microdomains, accompanied by the increased phosphorylation of its downstream signaling pathways, including JAK2 and MAPKs, upon =Brucella infection. Notably, the suppressive effect of simvastatin treatment on Brucella invasion was not dependent on the reduction of cholesterol synthesis but probably on the decline of farnesyl pyrophosphate and geranylgeranyl pyrophosphate synthesis. In addition to a direct brucellacidal ability, simvastatin administration showed increased cytokine TNF-α and differentiation of CD8+ T cells, accompanied by reduced bacterial survival in spleens of ICR mice. These data suggested the involvement of the mevalonate pathway in the phagocytosis of B. abortus into RAW 264.7 macrophage cells and the regulation of simvastatin on the host immune system against Brucella infections. Therefore, simvastatin is a potential candidate for studying alternative therapy against animal brucellosis.
Collapse
|
78
|
Pisanti S, Rimondi E, Pozza E, Melloni E, Zauli E, Bifulco M, Martinelli R, Marcuzzi A. Prenylation Defects and Oxidative Stress Trigger the Main Consequences of Neuroinflammation Linked to Mevalonate Pathway Deregulation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159061. [PMID: 35897423 PMCID: PMC9332440 DOI: 10.3390/ijerph19159061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022]
Abstract
The cholesterol biosynthesis represents a crucial metabolic pathway for cellular homeostasis. The end products of this pathway are sterols, such as cholesterol, which are essential components of cell membranes, precursors of steroid hormones, bile acids, and other molecules such as ubiquinone. Furthermore, some intermediates of this metabolic system perform biological activity in specific cellular compartments, such as isoprenoid molecules that can modulate different signal proteins through the prenylation process. The defects of prenylation represent one of the main causes that promote the activation of inflammation. In particular, this mechanism, in association with oxidative stress, induces a dysfunction of the mitochondrial activity. The purpose of this review is to describe the pleiotropic role of prenylation in neuroinflammation and to highlight the consequence of the defects of prenylation.
Collapse
Affiliation(s)
- Simona Pisanti
- Department of Medicine, Surgery and Dentistry ′Scuola Medica Salernitana′, University of Salerno, 84081 Baronissi, Italy; (S.P.); (R.M.)
| | - Erika Rimondi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (E.Z.); (A.M.)
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (E.R.); (E.M.)
| | - Elena Pozza
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (E.Z.); (A.M.)
| | - Elisabetta Melloni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (E.Z.); (A.M.)
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (E.R.); (E.M.)
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (E.Z.); (A.M.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Rosanna Martinelli
- Department of Medicine, Surgery and Dentistry ′Scuola Medica Salernitana′, University of Salerno, 84081 Baronissi, Italy; (S.P.); (R.M.)
| | - Annalisa Marcuzzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (E.Z.); (A.M.)
| |
Collapse
|
79
|
Martin A, Lang S, Goeser T, Demir M, Steffen HM, Kasper P. Management of Dyslipidemia in Patients with Non-Alcoholic Fatty Liver Disease. Curr Atheroscler Rep 2022; 24:533-546. [PMID: 35507279 PMCID: PMC9236990 DOI: 10.1007/s11883-022-01028-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2022] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Patients with non-alcoholic fatty liver disease (NAFLD), often considered as the hepatic manifestation of the metabolic syndrome, represent a population at high cardiovascular risk and frequently suffer from atherogenic dyslipidemia. This article reviews the pathogenic interrelationship between NAFLD and dyslipidemia, elucidates underlying pathophysiological mechanisms and focuses on management approaches for dyslipidemic patients with NAFLD. RECENT FINDINGS Atherogenic dyslipidemia in patients with NAFLD results from hepatic and peripheral insulin resistance along with associated alterations of hepatic glucose and lipoprotein metabolism, gut dysbiosis, and genetic factors. Since atherogenic dyslipidemia and NAFLD share a bi-directional relationship and are both major driving forces of atherosclerotic cardiovascular disease (ASCVD) development, early detection and adequate treatment are warranted. Thus, integrative screening and management programs are urgently needed. A stepwise approach for dyslipidemic patients with NAFLD includes (i) characterization of dyslipidemia phenotype, (ii) individual risk stratification, (iii) definition of treatment targets, (iv) lifestyle modification, and (v) pharmacotherapy if indicated.
Collapse
Affiliation(s)
- Anna Martin
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine - University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Sonja Lang
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine - University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Tobias Goeser
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine - University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic, Charité University Medicine, Berlin, Germany
| | - Hans-Michael Steffen
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine - University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Hypertension Center, Faculty of Medicine - University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Kasper
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine - University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
80
|
Lo Presti E, D’Orsi L, De Gaetano A. A Mathematical Model of In Vitro Cellular Uptake of Zoledronic Acid and Isopentenyl Pyrophosphate Accumulation. Pharmaceutics 2022; 14:pharmaceutics14061262. [PMID: 35745834 PMCID: PMC9227399 DOI: 10.3390/pharmaceutics14061262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
The mevalonate pathway is an attractive target for many areas of research, such as autoimmune disorders, atherosclerosis, Alzheimer’s disease and cancer. Indeed, manipulating this pathway results in the alteration of malignant cell growth with promising therapeutic potential. There are several pharmacological options to block the mevalonate pathway in cancer cells, one of which is zoledronic acid (ZA) (an N-bisphosphonate (N-BP)), which inhibits the farnesyl pyrophosphate (FPP) synthase enzyme, inducing cell cycle arrest, apoptosis, inhibition of protein prenylation, and cholesterol reduction, as well as leading to the accumulation of isopentenyl pyrophosphate (IPP). We extrapolated the data based on two independently published papers that provide numerical data on the uptake of zoledronic acid (ZA) and the accumulation of IPP (Ag) and its isomer over time by using in vitro human cell line models. Two different mathematical models for IPP kinetics are proposed. The first model (Model 1) is a simpler ordinary differential equation (ODE) compartmental system composed of 3 equations with 10 parameters; the second model (Model 2) is a differential algebraic equation (DAE) system with 4 differential equations, 1 algebraic equation and 13 parameters incorporating the formation of the ZA+enzyme+Ag complex. Each of the two models aims to describe two different experimental situations (continuous and pulse experiments) with the same ZA kinetics. Both models fit the collected data very well. With Model 1, we obtained a prevision accumulation of IPP after 24 h of 169.6 pmol/mgprot/h with an IPP decreasing rate per (pmol/mgprot) of ZA (kXGZ) equal to 13.24/h. With Model 2, we have comprehensive kinetics of IPP upon ZA treatment. We calculate that the IPP concentration was equal to 141.6 pmol/mgprot/h with a decreasing rate/percentage of 0.051 (kXGU). The present study is the first to quantify the influence of ZA on the pharmacodynamics of IPP. While still incorporating a small number of parameters, Model 2 better represents the complexity of the biological behaviour for calculating the IPP produced in different situations, such as studies on γδ T cell-based immunotherapy. In the future, additional clinical studies are warranted to further evaluate and fine-tune dosing approaches.
Collapse
Affiliation(s)
- Elena Lo Presti
- CNR-IRIB (Institute for Biomedical Research and Innovation), National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy
- Correspondence: (E.L.P.); (A.D.G.)
| | - Laura D’Orsi
- CNR-IASI BioMatLab (Institute of Analysis, Systems and Computer Science), National Research Council, Via dei Taurini 19, 00185 Rome, Italy;
| | - Andrea De Gaetano
- CNR-IRIB (Institute for Biomedical Research and Innovation), National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy
- CNR-IASI BioMatLab (Institute of Analysis, Systems and Computer Science), National Research Council, Via dei Taurini 19, 00185 Rome, Italy;
- Correspondence: (E.L.P.); (A.D.G.)
| |
Collapse
|
81
|
Kang J, Lee D, Lee KJ, Yoon JE, Kwon JH, Seo Y, Kim J, Chang SY, Park J, Kang EA, Park SJ, Park JJ, Cheon JH, Kim TI. Tumor-Suppressive Effect of Metformin via the Regulation of M2 Macrophages and Myeloid-Derived Suppressor Cells in the Tumor Microenvironment of Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14122881. [PMID: 35740547 PMCID: PMC9220791 DOI: 10.3390/cancers14122881] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The tumor suppressing effect of metformin has been reported, and tumor microenvironment including immune cells contribute to tumor progression in colorectal cancer. However, the effects of metformin on tumor-promoting MDSCs and M2 macrophages and its mechanisms remain unclarified. Here, we demonstrated that metformin-induced activation of AMPK and subsequent mTOR inhibition decreased the MDSC and M2 macrophage fractions by downregulating the mevalonate pathway. Metformin may be a valuable drug for potential CRC prevention and treatment strategies by regulating the immune cells of the tumor microenvironment and tumor cells. Abstract Myeloid-derived suppressor cells (MDSCs) and M2 macrophages in the tumor microenvironment contribute to tumor progression by inducing immune tolerance to tumor antigens and cancer cells. Metformin, one of the most common diabetes drugs, has shown anti-inflammatory and anti-tumor effects. However, the effects of metformin on inflammatory cells of the tumor microenvironment and its underlying mechanisms remain unclarified. In this study, we investigated the effect of metformin on M2 macrophages and MDSCs using monocyte THP-1 cells and a dextran sodium sulfate (DSS)-treated ApcMin/+ mouse model of colon cancer. Metformin decreased the fractions of MDSCs expressing CD33 and arginase, as well as M2 macrophages expressing CD206 and CD163. The inhibitory effect of metformin and rapamycin on MDSCs and M2 macrophages was reversed by the co-treatment of Compound C (an AMP-activated protein kinase (AMPK) inhibitor) or mevalonate. To examine the effect of protein prenylation and cholesterol synthesis (the final steps of the mevalonate pathway) on the MDSC and M2 macrophage populations, we used respective inhibitors (YM53601; SQLE inhibitor, FTI-277; farnesyl transferase inhibitor, GGTI-298; geranylgeranyl transferase inhibitor) and found that the MDSC and M2 populations were suppressed by the protein prenylation inhibitors. In the DSS-treated ApcMin/+ mouse colon cancer model, metformin reduced the number and volume of colorectal tumors with decreased populations of MDSCs and M2 macrophages in the tumor microenvironment. In conclusion, the inhibitory effect of metformin on MDSCs and M2 macrophages in the tumor microenvironment of colon cancers is mediated by AMPK activation and subsequent mTOR inhibition, leading to the downregulation of the mevalonate pathway.
Collapse
Affiliation(s)
- Joyeon Kang
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Doyeon Lee
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
| | - Kyoung Jin Lee
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
| | - Jaepil Eric Yoon
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
| | - Ji-Hee Kwon
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
| | - Yoojeong Seo
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Janghyun Kim
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
| | - Shin Young Chang
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jihye Park
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Eun Ae Kang
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soo Jung Park
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae Jun Park
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae Hee Cheon
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tae Il Kim
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Cancer Prevention Center, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2228-1965; Fax: +82-2-393-6884
| |
Collapse
|
82
|
Wang M, Zheng Z, Tian Z, Zhang H, Zhu C, Yao X, Yang Y, Cai X. Molecular Cloning and Analysis of an Acetyl-CoA C-acetyltransferase Gene ( EkAACT) from Euphorbia kansui Liou. PLANTS (BASEL, SWITZERLAND) 2022; 11:1539. [PMID: 35736690 PMCID: PMC9229008 DOI: 10.3390/plants11121539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Terpenoids are the largest class of natural products and are essential for cell functions in plants and their interactions with the environment. Acetyl-CoA acetyltransferase (AACT, EC2.3.1.9) can catalyze a key initiation step of the mevalonate pathway (MVA) for terpenoid biosynthesis and is modulated by many endogenous and external stimuli. Here, the function and expression regulation activities of AACT in Euphorbia kansui Liou (EkAACT) were reported. Compared with wild-type Arabidopsis, the root length, whole seedling fresh weight and growth morphology of EkAACT-overexpressing plants were slightly improved. The transcription levels of AtAACT, AtMDC, AtMK, AtHMGR, and AtHMGS in the MVA pathway and total triterpenoid accumulation increased significantly in transgenic Arabidopsis. Under NaCl and PEG treatment, EkAACT-overexpressing Arabidopsis showed a higher accumulation of total triterpenoids, higher enzyme activity of peroxidase (POD) and superoxide dismutase (SOD), increased root length and whole seedling fresh weight, and a decrease in the proline content, which indicated that plant tolerance to abiotic stress was enhanced. Thus, AACT, as the first crucial enzyme, plays a major role in the overall regulation of the MVA pathway.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
| | - Zhe Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
| | - Zheni Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
| | - Hao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
| | - Chenyu Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
| | - Xiangyu Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
| | - Yixin Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xia Cai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
| |
Collapse
|
83
|
Ranganathan PR, Narayanan AK, Nawada N, Rao MJ, Reju KS, Priya SC, Gujarathi T, Manjithaya R, Venkata Rao DK. Diacylglycerol kinase alleviates autophagic degradation of the endoplasmic reticulum in SPT10-deficient yeast to enhance triterpene biosynthesis. FEBS Lett 2022; 596:1778-1794. [PMID: 35661158 DOI: 10.1002/1873-3468.14418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/08/2022]
Abstract
A recent study showed that deletion of the gene encoding the transcription regulator SuPpressor of Ty10 (SPT10) increases total phospholipids, and our previous study established a critical link between phospholipids and the mevalonate/ergosterol (MEV/ERG) pathway, which synthesizes triterpenes. This study aims to use spt10Δ yeast to improve triterpene production. Though MEV/ERG pathway was highly expressed in spt10Δ yeast, results showed insufficient accumulation of key metabolites and also revealed massive endoplasmic reticulum (ER) degradation. We found a stable, massive ER structure when we overexpressed diacylglycerol kinase1 (DGK1OE ) in spt10Δ yeast. Analyses of ER-stress and autophagy suggest that DGK1OE in the spt10Δ strain decreased autophagy, resulting in increased MEV/ERG pathway activity. Heterologous expression of β-amyrin synthase showed significant production of the triterpene β-amyrin in DGK1OE spt10Δ yeast. Overall, our study provides a strategic approach to improve triterpene production by increasing ER biogenesis while limiting ER degradation.
Collapse
Affiliation(s)
- Poornima Ramani Ranganathan
- Biochemistry laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, GKVK (post), Allalasandra, India.,Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Sector 19, Ghaziabad, Uttar Pradesh-201 002, India
| | - Ananth Krishna Narayanan
- Biochemistry laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, GKVK (post), Allalasandra, India.,Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Sector 19, Ghaziabad, Uttar Pradesh-201 002, India
| | - Niveditha Nawada
- Biochemistry laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, GKVK (post), Allalasandra, India.,Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Sector 19, Ghaziabad, Uttar Pradesh-201 002, India
| | - Monala Jayaprakash Rao
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore-560064, India
| | - Kalyani Sai Reju
- Biochemistry laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, GKVK (post), Allalasandra, India
| | - S Chaithra Priya
- Biochemistry laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, GKVK (post), Allalasandra, India
| | - Tejal Gujarathi
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore-560064, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore-560064, India
| | - D K Venkata Rao
- Biochemistry laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, GKVK (post), Allalasandra, India.,Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Sector 19, Ghaziabad, Uttar Pradesh-201 002, India
| |
Collapse
|
84
|
Matsuyama-Kato A, Boodhoo N, Iseki H, Abdul-Careem MF, Plattner BL, Behboudi S, Sharif S. Differential activation of chicken gamma delta T cells from different tissues by Toll-like receptor 3 or 21 ligands. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104391. [PMID: 35271861 DOI: 10.1016/j.dci.2022.104391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Gamma delta (γδ) T cells are highly enriched in mucosal barrier sites including intestinal tissues where microbial infections and tumors often originate in mammals. Human γδ T cells recognize stress antigens and microbial signals via their T cell receptor (TCR), natural killer (NK) receptors, and pattern recognition receptors. However, little is known about antigens or ligands capable of stimulating chicken γδ T cells. The results of the present study demonstrated that polyinosinic-polycytidylic acid (poly(I:C)), a Toll-like receptor (TLR)3 ligand, significantly induced upregulation of CD8α molecules on circulating and lung γδ T cells. Moreover, poly(I:C) stimulation induced interferon (IFN)-γ production from splenic and lung CD8α+ γδ T cells while Cytosine-phosphate-Guanine oligodeoxynucleotides (CpG-ODN) 2007, a TLR21 ligand, stimulation induced IFN-γ production by circulating γδ T cells. Neither poly(I:C) nor CpG-ODN 2007 stimulation elicited degranulation of γδ T cells. Additionally, the results revealed that CpG-ODN 2007 induced IFN-γ production from TCR-stimulated γδ T cells sorted from spleen. In our experiments, isopentenyl pyrophosphate (IPP), 4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), or zoledronate (Zol) stimulation did not induce IFN-γ production or degranulation in γδ T cells. Taken together, a combination of CpG-ODN 2007 and anti-CD3ε monoclonal antibodies (mAbs) can stimulate chicken γδ T cells and induce production of IFN-γ by these cells while IFN-γ production by γδ T cells induced by stimulation of poly(I:C) needs signals from other cells. These results suggest that chicken γδ T cells can sense invading pathogens via TLRs and produce IFN-γ as a first line of defense.
Collapse
Affiliation(s)
- Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Hiroshi Iseki
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 3050856, Japan
| | - Mohamed Faizal Abdul-Careem
- Department of Ecosystem and Public Health, University of CalgaryFaculty of Veterinary Medicine, Calgary, Alberta, T2N 1N4, Canada
| | - Brandon L Plattner
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506-5802, USA
| | - Shahriar Behboudi
- Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom; The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NE, United Kingdom
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
85
|
Al-Ashwal FY, Sulaiman SAS, Sheikh Ghadzi SM, Kubas MA, Halboup A. Prevalence and predictors of clinically significant statin-drug interactions among Yemeni patients taking statins for primary and secondary prevention of cardiovascular disease. Curr Med Res Opin 2022; 38:889-899. [PMID: 35481428 DOI: 10.1080/03007995.2022.2072088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Statins are extensively used in clinical practice for the primary and secondary prevention of cardiovascular diseases. Statins are usually taken in combination with other medications. This may increase the risk of statin-drug interactions. The study aimed to evaluate the prevalence, patterns, and predictors of clinically significant statin-drug interactions among patients on statin therapy. MATERIAL AND METHODS A cross-sectional study was conducted at the cardiology, endocrine, and internal medicine outpatient clinics in four tertiary care hospitals in Sana'a, Yemen. Lexicomp Drug Interaction database was used to analyze the prescriptions for potential statin-drug interactions. Binary and multivariable logistic regression were utilized for analysis. RESULTS Of the total number of patients (634), 114 individuals (18%) had a total of 122 statin-drug interactions. According to Lexicomp risk classification, 102 (83.6%) DDIs were class C (monitor therapy), 19 (15.6%) were class D (therapy modification), and only one (0.8%) class X (avoid combination). Simvastatin use was significantly associated with the presence of category D and X DDIs (15.9% vs. 1.6%, p < .001). Polypharmacy (OR = 2.571, p < .001) and having ≥3 comorbidities (OR = 2.512, p < .001) were the only variables associated with the presence of statin-drug interactions (C, D, and/or X). CONCLUSION Patients with polypharmacy and those with three or more comorbidities had a higher risk for statin-drug interactions. Therefore, routine screening by physicians and pharmacists for potential interactions should occur before prescribing or dispensing any medication to avoid clinically significant statin-drug interactions.
Collapse
Affiliation(s)
- Fahmi Y Al-Ashwal
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Clinical Pharmacy Department, University of Science and Technology Hospital (USTH), Sana'a, Yemen
| | - Syed Azhar Syed Sulaiman
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Mohammed Abdullah Kubas
- Clinical Pharmacy Department, University of Science and Technology Hospital (USTH), Sana'a, Yemen
| | - Abdulsalam Halboup
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, University of Science and Technology, Sana'a, Yemen
| |
Collapse
|
86
|
Borcik C, Eason IR, Vanderloop B, Wylie BJ. 2H, 13C-Cholesterol for Dynamics and Structural Studies of Biological Membranes. ACS OMEGA 2022; 7:17151-17160. [PMID: 35647452 PMCID: PMC9134247 DOI: 10.1021/acsomega.2c00796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/08/2022] [Indexed: 05/19/2023]
Abstract
We present a cost-effective means of 2H and 13C enrichment of cholesterol. This method exploits the metabolism of 2H,13C-acetate into acetyl-CoA, the first substrate in the mevalonate pathway. We show that growing the cholesterol producing strain RH6827 of Saccharomyces cerevisiae in 2H,13C-acetate-enriched minimal media produces a skip-labeled pattern of deuteration. We characterize this cholesterol labeling pattern by mass spectrometry and solid-state nuclear magnetic resonance spectroscopy. It is confirmed that most 2H nuclei retain their original 2H-13C bonds from acetate throughout the biosynthetic pathway. We then quantify the changes in 13C chemical shifts brought by deuteration and the impact upon 13C-13C spin diffusion. Finally, using adiabatic rotor echo short pulse irradiation cross-polarization (RESPIRATIONCP), we acquire the 2H-13C correlation spectra to site specifically quantify cholesterol dynamics in two model membranes as a function of temperature. These measurements show that cholesterol acyl chains at physiological temperatures in mixtures of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), sphingomyelin, and cholesterol are more dynamic than cholesterol in POPC. However, this overall change in motion is not uniform across the cholesterol molecule. This result establishes that this cholesterol labeling pattern will have great utility in reporting on cholesterol dynamics and orientation in a variety of environments and with different membrane bilayer components, as well as monitoring the mevalonate pathway product interactions within the bilayer. Finally, the flexibility and universality of acetate labeling will allow this technique to be widely applied to a large range of lipids and other natural products.
Collapse
|
87
|
Long DE, Kosmac K, Dungan CM, Bamman MM, Peterson CA, Kern PA. Potential Benefits of Combined Statin and Metformin Therapy on Resistance Training Response in Older Individuals. Front Physiol 2022; 13:872745. [PMID: 35492586 PMCID: PMC9047873 DOI: 10.3389/fphys.2022.872745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
Metformin and statins are currently the focus of large clinical trials testing their ability to counter age-associated declines in health, but recent reports suggest that both may negatively affect skeletal muscle response to exercise. However, it has also been suggested that metformin may act as a possible protectant of statin-related muscle symptoms. The potential impact of combined drug use on the hypertrophic response to resistance exercise in healthy older adults has not been described. We present secondary statin analyses of data from the MASTERS trial where metformin blunted the hypertrophy response in healthy participants (>65 years) following 14 weeks of progressive resistance training (PRT) when compared to identical placebo treatment (n = 94). Approximately one-third of MASTERS participants were taking prescribed statins. Combined metformin and statin resulted in rescue of the metformin-mediated impaired growth response to PRT but did not significantly affect strength. Improved muscle fiber growth may be associated with medication-induced increased abundance of CD11b+/CD206+ M2-like macrophages. Sarcopenia is a significant problem with aging and this study identifies a potential interaction between these commonly used drugs which may help prevent metformin-related blunting of the beneficial effects of PRT.Trial Registration: ClinicalTrials.gov, NCT02308228, Registered on 25 November 2014.
Collapse
Affiliation(s)
- Douglas E. Long
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Kate Kosmac
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Cory M. Dungan
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Marcas M. Bamman
- Florida Institute for Human and Machine Cognition, Pensacola, FL, United States
- Center for Exercise Medicine and Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Charlotte A. Peterson
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Philip A. Kern
- Department of Internal Medicine, Division of Endocrinology, Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States
- *Correspondence: Philip A. Kern,
| |
Collapse
|
88
|
Doerfler AM, Han J, Jarrett KE, Tang L, Jain A, Saltzman A, De Giorgi M, Chuecos M, Hurley AE, Li A, Morand P, Ayala C, Goodlett DR, Malovannaya A, Martin JF, de Aguiar Vallim TQ, Shroyer N, Lagor WR. Intestinal Deletion of 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase Promotes Expansion of the Resident Stem Cell Compartment. Arterioscler Thromb Vasc Biol 2022; 42:381-394. [PMID: 35172604 PMCID: PMC8957608 DOI: 10.1161/atvbaha.122.317320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The intestine occupies the critical interface between cholesterol absorption and excretion. Surprisingly little is known about the role of de novo cholesterol synthesis in this organ, and its relationship to whole body cholesterol homeostasis. Here, we investigate the physiological importance of this pathway through genetic deletion of the rate-limiting enzyme. METHODS Mice lacking 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr) in intestinal villus and crypt epithelial cells were generated using a Villin-Cre transgene. Plasma lipids, intestinal morphology, mevalonate pathway metabolites, and gene expression were analyzed. RESULTS Mice with intestine-specific loss of Hmgcr were markedly smaller at birth, but gain weight at a rate similar to wild-type littermates, and are viable and fertile into adulthood. Intestine lengths and weights were greater relative to body weight in both male and female Hmgcr intestinal knockout mice. Male intestinal knockout had decreased plasma cholesterol levels, whereas fasting triglycerides were lower in both sexes. Lipidomics revealed substantial reductions in numerous nonsterol isoprenoids and sterol intermediates within the epithelial layer, but cholesterol levels were preserved. Hmgcr intestinal knockout mice also showed robust activation of SREBP-2 (sterol-regulatory element binding protein-2) target genes in the epithelium, including the LDLR (low-density lipoprotein receptor). At the cellular level, loss of Hmgcr is compensated for quickly after birth through a dramatic expansion of the stem cell compartment, which persists into adulthood. CONCLUSIONS Loss of Hmgcr in the intestine is compatible with life through compensatory increases in intestinal absorptive surface area, LDLR expression, and expansion of the resident stem cell compartment.
Collapse
Affiliation(s)
- Alexandria M. Doerfler
- Molecular Physiology and Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Jun Han
- University of Victoria - Genome British Columbia Proteomics Centre, Victoria, British Columbia, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Kelsey E. Jarrett
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Division of Cardiology, University of California Los Angeles, Los Angeles, USA
| | - Li Tang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
| | - Alexander Saltzman
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
| | - Marco De Giorgi
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Marcel Chuecos
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas, USA
| | - Ayrea E. Hurley
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Ang Li
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Pauline Morand
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, USA
| | - Claudia Ayala
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - David R. Goodlett
- University of Victoria - Genome British Columbia Proteomics Centre, Victoria, British Columbia, Canada
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Anna Malovannaya
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - James F. Martin
- Molecular Physiology and Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas USA
| | - Thomas Q. de Aguiar Vallim
- Department of Medicine, Division of Cardiology, University of California Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, USA
- Johnsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, USA
| | - Noah Shroyer
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
| | - William R. Lagor
- Molecular Physiology and Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas USA
| |
Collapse
|
89
|
Agur T, Wedel J, Bose S, Sahankumari AGP, Goodman D, Kong SW, Ghosh CC, Briscoe DM. Inhibition of mevalonate metabolism by statins augments the immunoregulatory phenotype of vascular endothelial cells and inhibits the costimulation of CD4 + T cells. Am J Transplant 2022; 22:947-954. [PMID: 34687147 DOI: 10.1111/ajt.16872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/22/2021] [Accepted: 10/15/2021] [Indexed: 01/25/2023]
Abstract
The statin family of therapeutics is widely used clinically as cholesterol lowering agents, and their effects to target intracellular mevalonate production is a key mechanism of action. In this study, we performed full transcriptomic RNA sequencing and qPCR to evaluate the effects of mevalonate on the immunoregulatory phenotype of endothelial cells (EC). We find that mevalonate-dependent gene regulation includes a reduction in the expression of multiple pro-inflammatory genes including TNFSF4 (OX40-L) and TNFSF18 (GITR-L) and a co-incident induction of immunoregulatory genes including LGALS3 (Galectin-3) and LGALS9 (Galectin-9). In functional assays, pretreatment of EC with simvastatin to inhibit mevalonate metabolism resulted in a dose-dependent reduction in the costimulation of CD45RO+ CD4+ T cell proliferation as well as IL-2, IFNγ and IL-6 production versus vehicle-treated EC. In contrast, pre-treatment of EC with L-mevalonate in combination with simvastatin reversed phenotypic and functional responses. Collectively, these results indicate that relative mevalonate metabolism by EC is critical to sustain EC-dependent mechanisms of immunity. Our findings have broad relevance for the repurposing of statins as therapeutics to augment immunoregulation and/or to inhibit local tissue pro-inflammatory cytokine production following transplantation.
Collapse
Affiliation(s)
- Timna Agur
- The Transplant Research Program and the Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Johannes Wedel
- The Transplant Research Program and the Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Sayantan Bose
- The Transplant Research Program and the Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - A G Pramoda Sahankumari
- The Transplant Research Program and the Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
| | - Daniel Goodman
- The Transplant Research Program and the Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Chandra C Ghosh
- The Transplant Research Program and the Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - David M Briscoe
- The Transplant Research Program and the Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
90
|
Heravi G, Yazdanpanah O, Podgorski I, Matherly LH, Liu W. Lipid metabolism reprogramming in renal cell carcinoma. Cancer Metastasis Rev 2022; 41:17-31. [PMID: 34741716 PMCID: PMC10045462 DOI: 10.1007/s10555-021-09996-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022]
Abstract
Metabolic reprogramming is recognized as a hallmark of cancer. Lipids are the essential biomolecules required for membrane biosynthesis, energy storage, and cell signaling. Altered lipid metabolism allows tumor cells to survive in the nutrient-deprived environment. However, lipid metabolism remodeling in renal cell carcinoma (RCC) has not received the same attention as in other cancers. RCC, the most common type of kidney cancer, is associated with almost 15,000 death in the USA annually. Being refractory to conventional chemotherapy agents and limited available targeted therapy options has made the treatment of metastatic RCC very challenging. In this article, we review recent findings that support the importance of synthesis and metabolism of cholesterol, free fatty acids (FFAs), and polyunsaturated fatty acids (PUFAs) in the carcinogenesis and biology of RCC. Delineating the detailed mechanisms underlying lipid reprogramming can help to better understand the pathophysiology of RCC and to design novel therapeutic strategies targeting this malignancy.
Collapse
Affiliation(s)
- Gioia Heravi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Omid Yazdanpanah
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| | - Larry H Matherly
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA. .,Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
91
|
Copy number amplification of ENSA promotes the progression of triple-negative breast cancer via cholesterol biosynthesis. Nat Commun 2022; 13:791. [PMID: 35145111 PMCID: PMC8831589 DOI: 10.1038/s41467-022-28452-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 01/26/2022] [Indexed: 12/26/2022] Open
Abstract
Copy number alterations (CNAs) are pivotal genetic events in triple-negative breast cancer (TNBC). Here, our integrated copy number and transcriptome analysis of 302 TNBC patients reveals that gene alpha-endosulfine (ENSA) exhibits recurrent amplification at the 1q21.3 region and is highly expressed in TNBC. ENSA promotes tumor growth and indicates poor patient survival in TNBC. Mechanistically, we identify ENSA as an essential regulator of cholesterol biosynthesis in TNBC that upregulates the expression of sterol regulatory element-binding transcription factor 2 (SREBP2), a pivotal transcription factor in cholesterol biosynthesis. We confirm that ENSA can increase the level of p-STAT3 (Tyr705) and activated STAT3 binds to the promoter of SREBP2 to promote its transcription. Furthermore, we reveal the efficacy of STAT3 inhibitor Stattic in TNBC with high ENSA expression. In conclusion, the amplification of ENSA at the 1q21.3 region promotes TNBC progression and indicates sensitivity to STAT3 inhibitors. Copy number alterations are pivotal genetic events in triple-negative breast cancer. Here the authors show the amplification of ENSA at the 1q21.3 region promotes the progression of TNBC via up-regulation of cholesterol biosynthesis.
Collapse
|
92
|
Kott KA, Bishop M, Yang CHJ, Plasto TM, Cheng DC, Kaplan AI, Cullen L, Celermajer DS, Meikle PJ, Vernon ST, Figtree GA. Biomarker Development in Cardiology: Reviewing the Past to Inform the Future. Cells 2022; 11:588. [PMID: 35159397 PMCID: PMC8834296 DOI: 10.3390/cells11030588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 02/05/2022] [Indexed: 12/29/2022] Open
Abstract
Cardiac biomarkers have become pivotal to the clinical practice of cardiology, but there remains much to discover that could benefit cardiology patients. We review the discovery of key protein biomarkers in the fields of acute coronary syndrome, heart failure, and atherosclerosis, giving an overview of the populations they were studied in and the statistics that were used to validate them. We review statistical approaches that are currently in use to assess new biomarkers and overview a framework for biomarker discovery and evaluation that could be incorporated into clinical trials to evaluate cardiovascular outcomes in the future.
Collapse
Affiliation(s)
- Katharine A. Kott
- Cardiovascular Discovery Group, Kolling Institute of Medical Research, University of Sydney, St Leonards 2065, Australia; (K.A.K.); (S.T.V.)
- Department of Cardiology, Royal North Shore Hospital, St Leonards 2065, Australia
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
| | - Michael Bishop
- School of Medicine and Public Health, University of Newcastle, Kensington 2033, Australia;
| | - Christina H. J. Yang
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
| | - Toby M. Plasto
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
| | - Daniel C. Cheng
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
| | - Adam I. Kaplan
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
| | - Louise Cullen
- Emergency and Trauma Centre, Royal Brisbane and Women’s Hospital, Herston 4029, Australia;
| | - David S. Celermajer
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown 2050, Australia
- The Heart Research Institute, Newtown 2042, Australia
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, Melbourne 3004, Australia;
| | - Stephen T. Vernon
- Cardiovascular Discovery Group, Kolling Institute of Medical Research, University of Sydney, St Leonards 2065, Australia; (K.A.K.); (S.T.V.)
- Department of Cardiology, Royal North Shore Hospital, St Leonards 2065, Australia
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
| | - Gemma A. Figtree
- Cardiovascular Discovery Group, Kolling Institute of Medical Research, University of Sydney, St Leonards 2065, Australia; (K.A.K.); (S.T.V.)
- Department of Cardiology, Royal North Shore Hospital, St Leonards 2065, Australia
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
| |
Collapse
|
93
|
Cho SH, Tóth K, Kim D, Vo PH, Lin CH, Handakumbura PP, Ubach AR, Evans S, Paša-Tolić L, Stacey G. Activation of the plant mevalonate pathway by extracellular ATP. Nat Commun 2022; 13:450. [PMID: 35064110 PMCID: PMC8783019 DOI: 10.1038/s41467-022-28150-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/10/2022] [Indexed: 12/28/2022] Open
Abstract
The mevalonate pathway plays a critical role in multiple cellular processes in both animals and plants. In plants, the products of this pathway impact growth and development, as well as the response to environmental stress. A forward genetic screen of Arabidopsis thaliana using Ca2+-imaging identified mevalonate kinase (MVK) as a critical component of plant purinergic signaling. MVK interacts directly with the plant extracellular ATP (eATP) receptor P2K1 and is phosphorylated by P2K1 in response to eATP. Mutation of P2K1-mediated phosphorylation sites in MVK eliminates the ATP-induced cytoplasmic calcium response, MVK enzymatic activity, and suppresses pathogen defense. The data demonstrate that the plasma membrane associated P2K1 directly impacts plant cellular metabolism by phosphorylation of MVK, a key enzyme in the mevalonate pathway. The results underline the importance of purinergic signaling in plants and the ability of eATP to influence the activity of a key metabolite pathway with global effects on plant metabolism. Products of the mevalonate pathway support plant development. Here the authors show that the extracellular ATP receptor P2K1 phosphorylates mevalonate kinase and this affects the mevalonate pathway.
Collapse
|
94
|
Diaz-Lundahl S, Sundaram AYM, Gillund P, Gilfillan GD, Olsaker I, Krogenæs A. Gene Expression in Embryos From Norwegian Red Bulls With High or Low Non Return Rate: An RNA-Seq Study of in vivo-Produced Single Embryos. Front Genet 2022; 12:780113. [PMID: 35096004 PMCID: PMC8795813 DOI: 10.3389/fgene.2021.780113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022] Open
Abstract
During the last decade, paternal effects on embryo development have been found to have greater importance than previously believed. In domestic cattle, embryo mortality is an issue of concern, causing huge economical losses for the dairy cattle industry. In attempts to reveal the paternal influence on embryo death, recent approaches have used transcriptome profiling of the embryo to find genes and pathways affected by different phenotypes in the bull. For practical and economic reasons, most such studies have used in vitro produced embryos. The aim of the present study was to investigate the differences in the global transcriptome of in vivo produced embryos, derived from sires with either high or low field fertility measured as the non-return rate (NRR) on day 56 after first AI of the inseminated cows. Superovulated heifers (n = 14) in the age span of 12–15 months were artificially inseminated with semen from either high fertility (n = 6) or low fertility (n = 6) bulls. On day seven after insemination, embryos were retrieved through uterine flushing. Embryos with first grade quality and IETS stage 5 (early blastocyst), 6 (blastocyst) or 7 (expanded blastocyst) were selected for further processing. In total, RNA extracted from 24 embryos was sequenced using Illumina sequencing, followed by differential expression analysis and gene set enrichment analysis. We found 62 genes differentially expressed between the two groups (adj.p-value<0.05), of which several genes and their linked pathways could explain the different developmental capacity. Transcripts highly expressed in the embryos from low fertility bulls were related to sterol metabolism and terpenoid backbone synthesis, while transcripts highly expressed in the high fertility embryos were linked to anti-apoptosis and the regulation of cytokine signaling. The leukocyte transendothelial migration and insulin signaling pathways were associated with enrichments in both groups. We also found some highly expressed transcripts in both groups which can be considered as new candidates in the regulation of embryo development. The present study is an important step in defining the paternal influence in embryonic development. Our results suggest that the sire’s genetic contribution affects several important processes linked to pre-and peri implantation regulation in the developing embryo.
Collapse
Affiliation(s)
- Sofia Diaz-Lundahl
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Arvind Y M Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Per Gillund
- Geno Breeding and AI Association, Hamar, Norway
| | - Gregor Duncan Gilfillan
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ingrid Olsaker
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Anette Krogenæs
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
95
|
Lammers A, Lalk M, Garbeva P. Air Ambulance: Antimicrobial Power of Bacterial Volatiles. Antibiotics (Basel) 2022; 11:antibiotics11010109. [PMID: 35052986 PMCID: PMC8772769 DOI: 10.3390/antibiotics11010109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/19/2022] Open
Abstract
We are currently facing an antimicrobial resistance crisis, which means that a lot of bacterial pathogens have developed resistance to common antibiotics. Hence, novel and innovative solutions are urgently needed to combat resistant human pathogens. A new source of antimicrobial compounds could be bacterial volatiles. Volatiles are ubiquitous produced, chemically divers and playing essential roles in intra- and interspecies interactions like communication and antimicrobial defense. In the last years, an increasing number of studies showed bioactivities of bacterial volatiles, including antibacterial, antifungal and anti-oomycete activities, indicating bacterial volatiles as an exciting source for novel antimicrobial compounds. In this review we introduce the chemical diversity of bacterial volatiles, their antimicrobial activities and methods for testing this activity. Concluding, we discuss the possibility of using antimicrobial volatiles to antagonize the antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Alexander Lammers
- Department of Cellular Biochemistry and Metabolomics, University of Greifswald, 17487 Greifswald, Germany;
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
- Correspondence: or (A.L.); (P.G.)
| | - Michael Lalk
- Department of Cellular Biochemistry and Metabolomics, University of Greifswald, 17487 Greifswald, Germany;
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
- Correspondence: or (A.L.); (P.G.)
| |
Collapse
|
96
|
Colabardini AC, Wang F, Dong Z, Pardeshi L, Rocha MC, Costa JH, dos Reis TF, Brown A, Jaber QZ, Fridman M, Fill T, Rokas A, Malavazi I, Wong KH, Goldman GH. Heterogeneity in the transcriptional response of the human pathogen Aspergillus fumigatus to the antifungal agent caspofungin. Genetics 2022; 220:iyab183. [PMID: 34718550 PMCID: PMC8733440 DOI: 10.1093/genetics/iyab183] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/07/2021] [Indexed: 01/11/2023] Open
Abstract
Aspergillus fumigatus is the main causative agent of invasive pulmonary aspergillosis (IPA), a severe disease that affects immunosuppressed patients worldwide. The fungistatic drug caspofungin (CSP) is the second line of therapy against IPA but has increasingly been used against clinical strains that are resistant to azoles, the first line antifungal therapy. In high concentrations, CSP induces a tolerance phenotype with partial reestablishment of fungal growth called CSP paradoxical effect (CPE), resulting from a change in the composition of the cell wall. An increasing number of studies has shown that different isolates of A. fumigatus exhibit phenotypic heterogeneity, including heterogeneity in their CPE response. To gain insights into the underlying molecular mechanisms of CPE response heterogeneity, we analyzed the transcriptomes of two A. fumigatus reference strains, Af293 and CEA17, exposed to low and high CSP concentrations. We found that there is a core transcriptional response that involves genes related to cell wall remodeling processes, mitochondrial function, transmembrane transport, and amino acid and ergosterol metabolism, and a variable response related to secondary metabolite (SM) biosynthesis and iron homeostasis. Specifically, we show here that the overexpression of a SM pathway that works as an iron chelator extinguishes the CPE in both backgrounds, whereas iron depletion is detrimental for the CPE in Af293 but not in CEA17. We next investigated the function of the transcription factor CrzA, whose deletion was previously shown to result in heterogeneity in the CPE response of the Af293 and CEA17 strains. We found that CrzA constitutively binds to and modulates the expression of several genes related to processes involved in CSP tolerance and that crzA deletion differentially impacts the SM production and growth of Af293 and CEA17. As opposed to the ΔcrzACEA17 mutant, the ΔcrzAAf293 mutant fails to activate cell wall remodeling genes upon CSP exposure, which most likely severely affects its macrostructure and extinguishes its CPE. This study describes how heterogeneity in the response to an antifungal agent between A. fumigatus strains stems from heterogeneity in the function of a transcription factor and its downstream target genes.
Collapse
Affiliation(s)
- Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-903, Brazil
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Fang Wang
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Zhiqiang Dong
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Lakhansing Pardeshi
- Faculty of Health Sciences, University of Macau, Macau 999078, China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau, 999078, China
| | - Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos CEP 13565-905, Brazil
| | - Jonas Henrique Costa
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo CEP 13083-970, Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-903, Brazil
| | - Alec Brown
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Qais Z Jaber
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Taicia Fill
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo CEP 13083-970, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos CEP 13565-905, Brazil
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau 999078, China
- Faculty of Health Sciences, Institute of Translational Medicine, University of Macau, Macau 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-903, Brazil
| |
Collapse
|
97
|
King RJ, Singh PK, Mehla K. The cholesterol pathway: impact on immunity and cancer. Trends Immunol 2022; 43:78-92. [PMID: 34942082 PMCID: PMC8812650 DOI: 10.1016/j.it.2021.11.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/06/2021] [Accepted: 11/06/2021] [Indexed: 01/03/2023]
Abstract
Cholesterol is a multifaceted metabolite that is known to modulate processes in cancer, atherosclerosis, and autoimmunity. A common denominator between these diseases appears to be the immune system, in which many cholesterol-associated metabolites impact both adaptive and innate immunity. Many cancers display altered cholesterol metabolism, and recent studies demonstrate that manipulating systemic cholesterol metabolism may be useful in improving immunotherapy responses. However, cholesterol can have both proinflammatory and anti-inflammatory roles in mammals, acting via multiple immune cell types, and depending on context. Gaining mechanistic insights into various cholesterol-related metabolites can improve our understanding of their functions and extensive effects on the immune system, and ideally will inform the design of future therapeutic strategies against cancer and/or other pathologies.
Collapse
Affiliation(s)
- Ryan J. King
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Pankaj K. Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Correspondence: Pankaj K. Singh, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.559.2726, FAX: 402-559-2813 and Kamiya Mehla, Ph.D., Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.836.9117, FAX: 402-559-2813
| | - Kamiya Mehla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Correspondence: Pankaj K. Singh, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.559.2726, FAX: 402-559-2813 and Kamiya Mehla, Ph.D., Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.836.9117, FAX: 402-559-2813
| |
Collapse
|
98
|
Akinnusi PA, Olubode SO, Alade AA, Ahmed SA, Ayekolu SF, Ogunlade TM, Gbore DJ, Rotimi OD, Ayodele AO. A molecular modeling approach for structure-based virtual screening and identification of novel anti-hypercholesterolemic agents from Grape. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
99
|
Pikuleva IA. Targeting cytochrome P450 46A1 and brain cholesterol 24-hydroxylation to treat neurodegenerative diseases. EXPLORATION OF NEUROPROTECTIVE THERAPY 2021; 1:159-172. [PMID: 35156102 DOI: 10.37349/ent.2021.00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The brain cholesterol content is determined by the balance between the pathways of in situ biosynthesis and cholesterol elimination via 24-hydroxylation catalyzed by CYP46A1 (cytochrome P450 46A1). Both pathways are tightly coupled and determine the rate of brain cholesterol turnover. Evidence is accumulating that modulation of CYP46A1 activity by gene therapy or pharmacologic means could be beneficial in case neurodegenerative and other brain diseases and affect brain processes other than cholesterol biosynthesis and elimination. This minireview summarizes these other processes, most common of which include abnormal protein accumulation, memory and cognition, motor behavior, gene transcription, protein phosphorylation as well as autophagy and lysosomal processing. The unifying mechanisms, by which these processes could be affected by CYP46A targeting are also discussed.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
100
|
Menarim BC, El-Sheikh Ali H, Loux SC, Scoggin KE, Kalbfleisch TS, MacLeod JN, Dahlgren LA. Transcriptional and Histochemical Signatures of Bone Marrow Mononuclear Cell-Mediated Resolution of Synovitis. Front Immunol 2021; 12:734322. [PMID: 34956173 PMCID: PMC8692379 DOI: 10.3389/fimmu.2021.734322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/09/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) may result from impaired ability of synovial macrophages to resolve joint inflammation. Increasing macrophage counts in inflamed joints through injection with bone marrow mononuclear cells (BMNC) induces lasting resolution of synovial inflammation. To uncover mechanisms by which BMNC may affect resolution, in this study, differential transcriptional signatures of BMNC in response to normal (SF) and inflamed synovial fluid (ISF) were analyzed. We demonstrate the temporal behavior of co-expressed gene networks associated with traits from related in vivo and in vitro studies. We also identified activated and inhibited signaling pathways and upstream regulators, further determining their protein expression in the synovium of inflamed joints treated with BMNC or DPBS controls. BMNC responded to ISF with an early pro-inflammatory response characterized by a short spike in the expression of a NF-ƙB- and mitogen-related gene network. This response was associated with sustained increased expression of two gene networks comprising known drivers of resolution (IL-10, IGF-1, PPARG, isoprenoid biosynthesis). These networks were common to SF and ISF, but more highly expressed in ISF. Most highly activated pathways in ISF included the mevalonate pathway and PPAR-γ signaling, with pro-resolving functional annotations that improve mitochondrial metabolism and deactivate NF-ƙB signaling. Lower expression of mevalonate kinase and phospho-PPARγ in synovium from inflamed joints treated with BMNC, and equivalent IL-1β staining between BMNC- and DPBS-treated joints, associates with accomplished resolution in BMNC-treated joints and emphasize the intricate balance of pro- and anti-inflammatory mechanisms required for resolution. Combined, our data suggest that BMNC-mediated resolution is characterized by constitutively expressed homeostatic mechanisms, whose expression are enhanced following inflammatory stimulus. These mechanisms translate into macrophage proliferation optimizing their capacity to counteract inflammatory damage and improving their general and mitochondrial metabolism to endure oxidative stress while driving tissue repair. Such effect is largely achieved through the synthesis of several lipids that mediate recovery of homeostasis. Our study reveals candidate mechanisms by which BMNC provide lasting improvement in patients with OA and suggests further investigation on the effects of PPAR-γ signaling enhancement for the treatment of arthritic conditions.
Collapse
Affiliation(s)
- Bruno C Menarim
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Hossam El-Sheikh Ali
- Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States.,Theriogenology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Shavahn C Loux
- Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Kirsten E Scoggin
- Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Theodore S Kalbfleisch
- Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - James N MacLeod
- Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Linda A Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|