51
|
Clinical and Neurophysiological Effects of Botulinum Neurotoxin Type A in Chronic Migraine. Toxins (Basel) 2021; 13:toxins13060392. [PMID: 34072379 PMCID: PMC8229748 DOI: 10.3390/toxins13060392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic pain syndromes present a subversion of both functional and structural nociceptive networks. We used transcranial magnetic stimulation (TMS) to evaluate changes in cortical excitability and plasticity in patients with chronic migraine (CM) treated with botulinum neurotoxin type A (BoNT/A). We enrolled 11 patients with episodic migraine (EM) and 11 affected by CM. Baseline characteristics for both groups were recorded using single- and paired-pulse TMS protocols. The same TMS protocol was repeated in CM patients after four cycles of BoNT/A completed in one year. At baseline, compared with EM patients, patients with CM had a lower threshold in both hemispheres (right hemisphere: 46% ± 7.8 vs. 52% ± 4.28, p = 0.03; left hemisphere: 52% ± 4.28 vs. 53.54% ± 6.58, p = 0.02). In EM, paired-pulse stimulation elicited a physiologically shaped response, whereas in CM, physiological intracortical inhibition (ICI) between 1 and 3 ms intervals was absent at baseline. On the contrary, increasing intracortical facilitation (ICF) was observed for all interstimulus intervals (ISIs). In CM, cortical excitability was partially reduced after BoNT/A treatment, along with a significant decrease observed in MIDAS score (from 20.7 to 9.8; p = 0.008). The lower motor threshold in CM reflects a higher cortical hyperexcitability. The lack of physiological ICI in CM could indicate sensitisation of the trigeminovascular system. Although reduced, this type of response is still observable after treatment, despite a marked clinical improvement. Our study suggests a long-term alteration of cortical plasticity due to chronic pain.
Collapse
|
52
|
Nicolini C, Michalski B, Toepp SL, Turco CV, D'Hoine T, Harasym D, Gibala MJ, Fahnestock M, Nelson AJ. A Single Bout of High-intensity Interval Exercise Increases Corticospinal Excitability, Brain-derived Neurotrophic Factor, and Uncarboxylated Osteolcalcin in Sedentary, Healthy Males. Neuroscience 2021; 437:242-255. [PMID: 32482330 DOI: 10.1016/j.neuroscience.2020.03.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
Exercise induces neuroplasticity in descending motor pathways facilitating motor learning, and as such it could be utilized as an intervention in neurorehabilitation, for example when re-learning motor skills after stroke. To date, however, the neurophysiological and molecular mechanisms underlying exercise-induced neuroplasticity remain largely unknown impeding the potential utilization of exercise protocols as 'motor learning boosters' in clinical and non-clinical settings. Here, we assessed corticospinal excitability, intracortical facilitation (ICF) and short-interval intracortical inhibition (SICI) using transcranial magnetic stimulation (TMS) and serum biochemical markers including brain-derived neurotrophic factor (BDNF), total and precursor cathepsin B (tCTSB, proCTSB), uncarboxylated and carboxylated osteocalcin (unOCN, cOCN) and irisin using ELISA. Measurements were carried out in sedentary, healthy males before and after a single session of high-intensity interval exercise (HIIE) or in individuals who rested and did not perform exercise (No Exercise). We found that HIIE increased corticospinal excitability, BDNF and unOCN, and decreased cOCN. We also determined that greater increases in BDNF were associated with increases in unOCN and irisin and decreases in cOCN only in participants who underwent HIIE, suggesting that unOCN and irisin may contribute to exercise-induced BDNF increases. Conversely, no changes other than a decrease in serum unOCN/tOCN were found in No Exercise participants. The present findings show that a single session of HIIE is sufficient to modulate corticospinal excitability and to increase BDNF and unOCN in sedentary, healthy males.
Collapse
Affiliation(s)
- Chiara Nicolini
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Bernadeta Michalski
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Stephen L Toepp
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Claudia V Turco
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Tarra D'Hoine
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Diana Harasym
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Margaret Fahnestock
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
53
|
Harris AD, Gilbert DL, Horn PS, Crocetti D, Cecil KM, Edden RAE, Huddleston DA, Mostofsky SH, Puts NAJ. Relationship between GABA levels and task-dependent cortical excitability in children with attention-deficit/hyperactivity disorder. Clin Neurophysiol 2021; 132:1163-1172. [PMID: 33780723 PMCID: PMC8106665 DOI: 10.1016/j.clinph.2021.01.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Compared to typically developing (TD) peers, children with attention deficit hyperactivity disorder (ADHD) manifest reduced short interval cortical inhibition (SICI) in the dominant motor cortex measured with transcranial magnetic stimulation (TMS). This multimodal study investigates the inhibitory neurophysiology and neurochemistry by evaluating the relationship between SICI and γ-amino butyric acid (GABA+) levels, measured with magnetic resonance spectroscopy (MRS). METHODS Across two sites, 37 children with ADHD and 45 TD children, ages 8-12 years, participated. Single and paired pulse TMS to left motor cortex quantified SICI during REST and at times of action selection (GO) and inhibition (STOP) during a modified Slater-Hammel stop signal reaction task. MRS quantified GABA+ levels in the left sensorimotor cortex. Relationships between SICI and GABA+, as well as stopping efficiency and clinical symptoms, were analyzed with correlations and repeated-measure, mixed-models. RESULTS In both groups, higher GABA+ levels correlated with less SICI. In TD children only, higher GABA+ levels correlated with larger TMS motor evoked potentials (MEPs) at REST. In GO and STOP trials, higher GABA+ was associated with smaller MEP amplitudes, for both groups. Overall, GABA+ levels did not differ between groups or correlate with ADHD clinical symptoms. CONCLUSIONS In children with higher motor cortex GABA+, motor cortex is less responsive to inhibitory TMS (SICI). Comparing the relationships between MRS-GABA+ levels and responses to TMS at REST vs. GO/STOP trials suggests differences in inhibitory neurophysiology and neurotransmitters in children with ADHD. These differences are more prominent at rest than during response inhibition task engagement. SIGNIFICANCE Evaluating relationships between GABA+ and SICI may provide a biomarker useful for understanding behavioral diagnoses.
Collapse
Affiliation(s)
- Ashley D Harris
- Radiology, University of Calgary, Calgary, AB, Canada; Child and Adolescent Imaging Research Program, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Donald L Gilbert
- Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Paul S Horn
- Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Deana Crocetti
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Kim M Cecil
- Department of Radiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati College of Medicine, OH, United States
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - David A Huddleston
- Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Behavioral Science and Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Nicolaas A J Puts
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States; Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| |
Collapse
|
54
|
Turco CV, Toepp SL, Foglia SD, Dans PW, Nelson AJ. Association of short- and long-latency afferent inhibition with human behavior. Clin Neurophysiol 2021; 132:1462-1480. [PMID: 34030051 DOI: 10.1016/j.clinph.2021.02.402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/26/2021] [Accepted: 02/12/2021] [Indexed: 01/04/2023]
Abstract
Transcranial magnetic stimulation (TMS) paired with nerve stimulation evokes short-latency afferent inhibition (SAI) and long-latency afferent inhibition (LAI), which are non-invasive assessments of the excitability of the sensorimotor system. SAI and LAI are abnormally reduced in various special populations in comparison to healthy controls. However, the relationship between afferent inhibition and human behavior remains unclear. The purpose of this review is to survey the current literature and synthesize observations and patterns that affect the interpretation of SAI and LAI in the context of human behavior. We discuss human behaviour across the motor and cognitive domains, and in special and control populations. Further, we discuss future considerations for research in this field and the potential for clinical applications. By understanding how human behavior is mediated by changes in SAI and LAI, this can allow us to better understand the neurophysiological underpinnings of human motor control.
Collapse
Affiliation(s)
- Claudia V Turco
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Stephen L Toepp
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Stevie D Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Patrick W Dans
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
55
|
Sasaki R, Otsuru N, Miyaguchi S, Kojima S, Watanabe H, Ohno K, Sakurai N, Kodama N, Sato D, Onishi H. Influence of Brain-Derived Neurotrophic Factor Genotype on Short-Latency Afferent Inhibition and Motor Cortex Metabolites. Brain Sci 2021; 11:brainsci11030395. [PMID: 33804682 PMCID: PMC8003639 DOI: 10.3390/brainsci11030395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/01/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
The Met allele of the brain-derived neurotrophic factor (BDNF) gene confers reduced cortical BDNF expression and associated neurobehavioral changes. BDNF signaling influences the survival, development, and synaptic function of cortical networks. Here, we compared gamma-aminobutyric acid (GABA)ergic network activity in the human primary motor cortex (M1) between the Met (Val/Met and Met/Met) and non-Met (Val/Val) genotype groups. Short- and long-interval intracortical inhibition, short-latency afferent inhibition (SAI), and long-latency afferent inhibition were measured using transcranial magnetic stimulation (TMS) as indices of GABAergic activity. Furthermore, the considerable inter-individual variability in inhibitory network activity typically measured by TMS may be affected not only by GABA but also by other pathways, including glutamatergic and cholinergic activities; therefore, we used 3-T magnetic resonance spectroscopy (MRS) to measure the dynamics of glutamate plus glutamine (Glx) and choline concentrations in the left M1, left somatosensory cortex, and right cerebellum. All inhibitory TMS conditions produced significantly smaller motor-evoked potentials than single-pulses. SAI was significantly stronger in the Met group than in the Val/Val group. Only the M1 Glx concentration was significantly lower in the Met group, while the BDNF genotype did not affect choline concentration in any region. Further, a positive correlation was observed between SAI and Glx concentrations only in M1. Our findings provide evidence that the BDNF genotype regulates both the inhibitory and excitatory circuits in human M1. In addition, lower Glx concentration in the M1 of Met carriers may alter specific inhibitory network on M1, thereby influencing the cortical signal processing required for neurobehavioral functions.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia
- Correspondence: ; Tel.: +81-25-257-4445
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Hiraku Watanabe
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
| | - Ken Ohno
- Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (K.O.); (N.S.)
| | - Noriko Sakurai
- Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (K.O.); (N.S.)
| | - Naoki Kodama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (K.O.); (N.S.)
| | - Daisuke Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| |
Collapse
|
56
|
Versace V, Sebastianelli L, Ferrazzoli D, Romanello R, Ortelli P, Saltuari L, D'Acunto A, Porrazzini F, Ajello V, Oliviero A, Kofler M, Koch G. Intracortical GABAergic dysfunction in patients with fatigue and dysexecutive syndrome after COVID-19. Clin Neurophysiol 2021; 132:1138-1143. [PMID: 33774378 PMCID: PMC7954785 DOI: 10.1016/j.clinph.2021.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/27/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
Objective A high proportion of patients experience fatigue and impairment of cognitive functions after coronavirus disease 2019 (COVID-19). Here we applied transcranial magnetic stimulation (TMS) to explore the activity of the main inhibitory intracortical circuits within the primary motor cortex (M1) in a sample of patients complaining of fatigue and presenting executive dysfunction after resolution of COVID-19 with neurological manifestations. Methods Twelve patients who recovered from typical COVID-19 pneumonia with neurological complications and complained of profound physical and mental fatigue underwent, 9 to 13 weeks from disease onset, a psychometric evaluation including a self-reported fatigue numeric-rating scale (FRS, Fatigue Rating Scale) and the Frontal Assessment Battery (FAB). Intracortical activity was evaluated by means of well-established TMS protocols including short-interval intracortical inhibition (SICI), reflecting GABAA-mediated inhibition, long-interval intracortical inhibition (LICI), a marker of GABAB receptor activity, and short-latency afferent inhibition (SAI) that indexes central cholinergic transmission. TMS data were compared to those obtained in a control group of ten healthy subjects (HS) matched by age, sex and education level. Results Post-COVID-19 patients reported marked fatigue according to FRS score (8.1 ± 1.7) and presented pathological scores at the FAB based on Italian normative data (12.2 ± 0.7). TMS revealed marked reduction of SICI, and disruption of LICI as compared to HS. SAI was also slightly diminished. Conclusions The present study documents for the first time reduced GABAergic inhibition in the M1 in patients who recovered from COVID-19 with neurological complications and manifested fatigue and dysexecutive syndrome. Significance TMS may serve as diagnostic tool in cognitive disturbances and fatigue in post-COVID-19 patients.
Collapse
Affiliation(s)
- Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy.
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Davide Ferrazzoli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Roberto Romanello
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Paola Ortelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Alessia D'Acunto
- Non-Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Francesco Porrazzini
- Non-Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Valentina Ajello
- Department of Cardiac Anesthesia, Tor Vergata University Hospital, Rome, Italy
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, Spain
| | - Markus Kofler
- Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Italy
| |
Collapse
|
57
|
Udupa K. Transcranial magnetic stimulation in exploring neurophysiology of cortical circuits and potential clinical implications. INDIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY 2021; 64:244-257. [DOI: 10.25259/ijpp_90_2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive, painless technique to stimulate the human brain. Although it has been used in clinical research both as an investigative tool and treatment modality for the past three decades, its use has been restricted to tertiary health centres or higher-end academic research institutions. The aim of this review is to popularise the concepts of this effective non-invasive brain stimulation technique, further facilitating its use both in research and clinical practice among clinical physiologists. In the first part of this article, a brief physiologic overview of TMS will be provided with basic as well as the basic technical details. This is followed by a discussion of TMS parameters that can be studied using single and paired pulses of TMS which could be used to investigate the altered excitability of cortical circuits. Finally, how rTMS and patterned TMS could be used to induce plasticity which, in turn, could be potentially used as therapeutic interventions in various neurological and psychiatric disorders will be illustrated. In each section of this article, diagnostic as well as therapeutic utilities of TMS in Neurology and Psychiatric disorders will be discussed. These discussions could not only facilitate the understanding of pathophysiology of mood and movement disorders but also to manage various neurological and psychiatric disorders with novel therapeutic options. In the end, few future directions, limitations of this technique and comparison with other techniques will be provided. I hopefully, this review would elicit some interest in physiologists to take up this exciting area of brain stimulation as a research subject and work further on understanding the functions of brain and use it effectively in the management of various brain-related disorders.
Collapse
|
58
|
Kaňovský P, Rosales R, Otruba P, Nevrlý M, Hvizdošová L, Opavský R, Kaiserová M, Hok P, Menšíková K, Hluštík P, Bareš M. Contemporary clinical neurophysiology applications in dystonia. J Neural Transm (Vienna) 2021; 128:509-519. [PMID: 33591454 DOI: 10.1007/s00702-021-02310-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/18/2021] [Indexed: 12/25/2022]
Abstract
The complex phenomenological understanding of dystonia has transcended from the clinics to genetics, imaging and neurophysiology. One way in which electrophysiology will impact into the clinics are cases wherein a dystonic clinical presentation may not be typical or a "forme fruste" of the disorder. Indeed, the physiological imprints of dystonia are present regardless of its clinical manifestation. Underpinnings in the understanding of dystonia span from the peripheral, segmental and suprasegmental levels to the cortex, and various electrophysiological tests have been applied in the course of time to elucidate the origin of dystonia pathophysiology. While loss of inhibition remains to be the key finding in this regard, intricacies and variabilities exist, thus leading to a notion that perhaps dystonia should best be gleaned as network disorder. Interestingly, the complex process has now spanned towards the understanding in terms of networks related to the cerebellar circuitry and the neuroplasticity. What is evolving towards a better and cohesive view will be neurophysiology attributes combined with structural dynamic imaging. Such a sound approach will significantly lead to better therapeutic modalities in the future.
Collapse
Affiliation(s)
- Petr Kaňovský
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic.
| | - Raymond Rosales
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic.,Department of Neurology and Psychiatry, The Neuroscience Institute, University of Santo Tomás Hospital, Manila, Philippines
| | - Pavel Otruba
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Martin Nevrlý
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Lenka Hvizdošová
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Robert Opavský
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Michaela Kaiserová
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Pavel Hok
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Kateřina Menšíková
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Petr Hluštík
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Martin Bareš
- 1st Department of Neurology, Masaryk University Medical School and St. Anne University Hospital, Brno, Czech Republic
| |
Collapse
|
59
|
Škarabot J, Brownstein CG, Casolo A, Del Vecchio A, Ansdell P. The knowns and unknowns of neural adaptations to resistance training. Eur J Appl Physiol 2020; 121:675-685. [PMID: 33355714 PMCID: PMC7892509 DOI: 10.1007/s00421-020-04567-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022]
Abstract
The initial increases in force production with resistance training are thought to be primarily underpinned by neural adaptations. This notion is firmly supported by evidence displaying motor unit adaptations following resistance training; however, the precise locus of neural adaptation remains elusive. The purpose of this review is to clarify and critically discuss the literature concerning the site(s) of putative neural adaptations to short-term resistance training. The proliferation of studies employing non-invasive stimulation techniques to investigate evoked responses have yielded variable results, but generally support the notion that resistance training alters intracortical inhibition. Nevertheless, methodological inconsistencies and the limitations of techniques, e.g. limited relation to behavioural outcomes and the inability to measure volitional muscle activity, preclude firm conclusions. Much of the literature has focused on the corticospinal tract; however, preliminary research in non-human primates suggests reticulospinal tract is a potential substrate for neural adaptations to resistance training, though human data is lacking due to methodological constraints. Recent advances in technology have provided substantial evidence of adaptations within a large motor unit population following resistance training. However, their activity represents the transformation of afferent and efferent inputs, making it challenging to establish the source of adaptation. Whilst much has been learned about the nature of neural adaptations to resistance training, the puzzle remains to be solved. Additional analyses of motoneuron firing during different training regimes or coupling with other methodologies (e.g., electroencephalography) may facilitate the estimation of the site(s) of neural adaptations to resistance training in the future.
Collapse
Affiliation(s)
- Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Callum G Brownstein
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint-Etienne, Université Lyon, Saint-Étienne, France
| | - Andrea Casolo
- Department of Bioengineering, Imperial College London, London, UK.,Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence and Biomedical Engineering, Faculty of Engineering, Friedrich-Alexander University, Erlangen-Nurnberg, 91052, Erlangen, Germany
| | - Paul Ansdell
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
60
|
Wilson MT, Moezzi B, Rogasch NC. Modeling motor-evoked potentials from neural field simulations of transcranial magnetic stimulation. Clin Neurophysiol 2020; 132:412-428. [PMID: 33450564 DOI: 10.1016/j.clinph.2020.10.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To develop a population-based biophysical model of motor-evoked potentials (MEPs) following transcranial magnetic stimulation (TMS). METHODS We combined an existing MEP model with population-based cortical modeling. Layer 2/3 excitatory and inhibitory neural populations, modeled with neural-field theory, are stimulated with TMS and feed layer 5 corticospinal neurons, which also couple directly but weakly to the TMS pulse. The layer 5 output controls mean motoneuron responses, which generate a series of single motor-unit action potentials that are summed to estimate a MEP. RESULTS A MEP waveform was generated comparable to those observed experimentally. The model captured TMS phenomena including a sigmoidal input-output curve, common paired pulse effects (short interval intracortical inhibition, intracortical facilitation, long interval intracortical inhibition) including responses to pharmacological interventions, and a cortical silent period. Changes in MEP amplitude following theta burst paradigms were observed including variability in outcome direction. CONCLUSIONS The model reproduces effects seen in common TMS paradigms. SIGNIFICANCE The model allows population-based modeling of changes in cortical dynamics due to TMS protocols to be assessed in terms of changes in MEPs, thus allowing a clear comparison between population-based modeling predictions and typical experimental outcome measures.
Collapse
Affiliation(s)
- Marcus T Wilson
- Te Aka Mātuatua-School of Science, University of Waikato, Hamilton, New Zealand.
| | - Bahar Moezzi
- Cognitive Ageing and Impairment Neurosciences Laboratory, School of Psychology, Social Work and Social Policy, The University of South Australia, Australia
| | - Nigel C Rogasch
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Australia; South Australian Health and Medical Research Institute, Australia; Brain, Mind and Society Research Hub, The School of Psychologcial Sciences, The Turner Institute for Brain and Mental Health and Monash Biomedical Imaging, Monash University, Australia
| |
Collapse
|
61
|
Opie GM, Semmler JG. Preferential Activation of Unique Motor Cortical Networks With Transcranial Magnetic Stimulation: A Review of the Physiological, Functional, and Clinical Evidence. Neuromodulation 2020; 24:813-828. [PMID: 33295685 DOI: 10.1111/ner.13314] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The corticospinal volley produced by application of transcranial magnetic stimulation (TMS) over primary motor cortex consists of a number of waves generated by trans-synaptic input from interneuronal circuits. These indirect (I)-waves mediate the sensitivity of TMS to cortical plasticity and intracortical excitability and can be assessed by altering the direction of cortical current induced by TMS. While this methodological approach has been conventionally viewed as preferentially recruiting early or late I-wave inputs from a given populations of neurons, growing evidence suggests recruitment of different neuronal populations, and this would strongly influence interpretation and application of these measures. The aim of this review is therefore to consider the physiological, functional, and clinical evidence for the independence of the neuronal circuits activated by different current directions. MATERIALS AND METHODS To provide the relevant context, we begin with an overview of TMS methodology, focusing on the different techniques used to quantify I-waves. We then comprehensively review the literature that has used variations in coil orientation to investigate the I-wave circuits, grouping studies based on the neurophysiological, functional, and clinical relevance of their outcomes. RESULTS Review of the existing literature reveals significant evidence supporting the idea that varying current direction can recruit different neuronal populations having unique functionally and clinically relevant characteristics. CONCLUSIONS Further research providing greater characterization of the I-wave circuits activated with different current directions is required. This will facilitate the development of interventions that are able to modulate specific intracortical circuits, which will be an important application of TMS.
Collapse
Affiliation(s)
- George M Opie
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - John G Semmler
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
62
|
Evaluation and Treatment of Vascular Cognitive Impairment by Transcranial Magnetic Stimulation. Neural Plast 2020. [PMID: 33193753 DOI: 10.1155/2020/8820881.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The exact relationship between cognitive functioning, cortical excitability, and synaptic plasticity in dementia is not completely understood. Vascular cognitive impairment (VCI) is deemed to be the most common cognitive disorder in the elderly since it encompasses any degree of vascular-based cognitive decline. In different cognitive disorders, including VCI, transcranial magnetic stimulation (TMS) can be exploited as a noninvasive tool able to evaluate in vivo the cortical excitability, the propension to undergo neural plastic phenomena, and the underlying transmission pathways. Overall, TMS in VCI revealed enhanced cortical excitability and synaptic plasticity that seem to correlate with the disease process and progression. In some patients, such plasticity may be considered as an adaptive response to disease progression, thus allowing the preservation of motor programming and execution. Recent findings also point out the possibility to employ TMS to predict cognitive deterioration in the so-called "brains at risk" for dementia, which may be those patients who benefit more of disease-modifying drugs and rehabilitative or neuromodulatory approaches, such as those based on repetitive TMS (rTMS). Finally, TMS can be exploited to select the responders to specific drugs in the attempt to maximize the response and to restore maladaptive plasticity. While no single TMS index owns enough specificity, a panel of TMS-derived measures can support VCI diagnosis and identify early markers of progression into dementia. This work reviews all TMS and rTMS studies on VCI. The aim is to evaluate how cortical excitability, plasticity, and connectivity interact in the pathophysiology of the impairment and to provide a translational perspective towards novel treatments of these patients. Current pitfalls and limitations of both studies and techniques are also discussed, together with possible solutions and future research agenda.
Collapse
|
63
|
Tankisi H, Cengiz B, Howells J, Samusyte G, Koltzenburg M, Bostock H. Short-interval intracortical inhibition as a function of inter-stimulus interval: Three methods compared. Brain Stimul 2020; 14:22-32. [PMID: 33166726 DOI: 10.1016/j.brs.2020.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Short-interval intracortical inhibition (SICI), as measured by threshold-tracking as a function of inter-stimulus interval (ISI), has been proposed as a useful biomarker for amyotrophic lateral sclerosis (ALS), but its relationship to conventional amplitude measurements has not been established. METHODS Serial tracking of SICI at increasing ISIs from 1 to 7 ms (T-SICIs) was compared in 50 healthy control subjects with the same ISIs tracked in parallel (T-SICIp), and with conventional amplitude measurements (A-SICI). For T-SICIp and A-SICI, pairs of conditioning and test stimuli with different ISIs were pseudo-randomised and interspersed with test-alone stimuli given at regular intervals. Thresholds were estimated by regression of log peak-to-peak amplitude on stimulus. RESULTS T-SICIp and A-SICI were closely related: a ten-fold reduction in amplitude corresponding to an approximately 18% increase in threshold. Threshold increases were greater for T-SICIs than for T-SICIp at 3.5-5 ms (P < 0.001). This divergence depended on the initial settings and whether ISIs were progressively increased or decreased, and was attributed to the limitations of the serial tracking protocol. SICI variability between subjects was greatest for T-SICIs estimates and least for A-SICI, and only A-SICI estimates revealed a significant decline in inhibition with age. CONCLUSIONS The serial tracking protocol did not accurately show the dependence of inhibition on ISI. Randomising ISIs gives corresponding SICI measures, whether tracking thresholds or measuring amplitude measurements. SICI variability suggested that A-SICI measurements may be the most sensitive to loss of inhibition.
Collapse
Affiliation(s)
- Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Bülent Cengiz
- Department of Neurology, Gazi University Faculty of Medicine, Beşevler, 06500, Ankara, Turkey
| | - James Howells
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Gintaute Samusyte
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Martin Koltzenburg
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG, London, United Kingdom; Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, Queen Square, WC1N 3BG, London, United Kingdom
| | - Hugh Bostock
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG, London, United Kingdom.
| |
Collapse
|
64
|
Turco CV, Arsalan SO, Nelson AJ. The Influence of Recreational Substance Use in TMS Research. Brain Sci 2020; 10:E751. [PMID: 33080965 PMCID: PMC7603156 DOI: 10.3390/brainsci10100751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Transcranial magnetic stimulation (TMS) approaches are widely used to study cortical and corticospinal function. However, responses to TMS are subject to significant intra-and inter-individual variability. Acute and chronic exposure to recreational substances alters the excitability of the sensorimotor system and may contribute to the variability in TMS outcome measures. The increasing prevalence of recreational substance use poses a significant challenge for executing TMS studies, but there is a lack of clarity regarding the influence of these substances on sensorimotor function. (2) Methods: The literature investigating the influence of alcohol, nicotine, caffeine and cannabis on TMS outcome measures of corticospinal, intracortical and interhemispheric excitability was reviewed. (3) Results: Both acute and chronic use of recreational substances modulates TMS measures of excitability. Despite the abundance of research in this field, we identify knowledge gaps that should be addressed in future studies to better understand the influence of these substances on TMS outcomes. (4) Conclusions: This review highlights the need for TMS studies to take into consideration the history of participant substance use and to control for acute substance use prior to testing.
Collapse
Affiliation(s)
| | | | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada; (C.V.T.); (S.O.A.)
| |
Collapse
|
65
|
McCambridge AB, Bradnam LV. Cortical neurophysiology of primary isolated dystonia and non-dystonic adults: A meta-analysis. Eur J Neurosci 2020; 53:1300-1323. [PMID: 32991762 DOI: 10.1111/ejn.14987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/30/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive method to assess neurophysiology of the primary motor cortex in humans. Dystonia is a poorly understood neurological movement disorder, often presenting in an idiopathic, isolated form across different parts of the body. The neurophysiological profile of isolated dystonia compared to healthy adults remains unclear. We conducted a systematic review with meta-analysis of neurophysiologic TMS measures in people with isolated dystonia to provide a synthesized understanding of cortical neurophysiology associated with isolated dystonia. We performed a systematic database search and data were extracted independently by the two authors. Separate meta-analyses were performed for TMS measures of: motor threshold, corticomotor excitability, short interval intracortical inhibition, cortical silent period, intracortical facilitation and afferent-induced inhibition. Standardized mean differences were calculated using a random effects model to determine overall effect sizes and confidence intervals. Heterogeneity was explored using dystonia type subgroup analysis. The search resulted in 78 studies meeting inclusion criteria, of these 57 studies reported data in participants with focal hand dystonia, cervical dystonia, blepharospasm or spasmodic dysphonia, and were included in at least one meta-analysis. The cortical silent period, short-interval intracortical inhibition and afferent-induced inhibition was found to be reduced in isolated dystonia compared to controls. Reduced GABAergic-mediated inhibition in the primary motor cortex in idiopathic isolated dystonia's suggest interventions targeted to aberrant cortical disinhibition could provide a novel treatment. Future meta-analyses require neurophysiology studies to use homogeneous cohorts of isolated dystonia participants, publish raw data values, and record electromyographic responses from dystonic musculature where possible.
Collapse
Affiliation(s)
- Alana B McCambridge
- Graduate School of Health, Discipline of Physiotherapy, University of Technology Sydney, Sydney, NSW, Australia
| | - Lynley V Bradnam
- Department of Exercise Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
66
|
Benussi A, Ashton NJ, Karikari TK, Gazzina S, Premi E, Benussi L, Ghidoni R, Rodriguez JL, Emeršič A, Binetti G, Fostinelli S, Giunta M, Gasparotti R, Zetterberg H, Blennow K, Borroni B. Serum Glial Fibrillary Acidic Protein (GFAP) Is a Marker of Disease Severity in Frontotemporal Lobar Degeneration. J Alzheimers Dis 2020; 77:1129-1141. [DOI: 10.3233/jad-200608] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: It is still unknown if serum glial fibrillary acidic protein (GFAP) is a useful marker in frontotemporal lobar degeneration (FTLD). Objective: To assess the diagnostic and prognostic value of serum GFAP in a large cohort of patients with FTLD. Methods: In this retrospective study, performed on 406 participants, we measured serum GFAP concentration with an ultrasensitive Single molecule array (Simoa) method in patients with FTLD, Alzheimer’s disease (AD), and in cognitively unimpaired elderly controls. We assessed the role of GFAP as marker of disease severity by analyzing the correlation with clinical variables, neurophysiological data, and cross-sectional brain imaging. Moreover, we evaluated the role of serum GFAP as a prognostic marker of disease survival. Results: We observed significantly higher levels of serum GFAP in patients with FTLD syndromes, except progressive supranuclear palsy, compared with healthy controls, but not compared with AD patients. In FTLD, serum GFAP levels correlated with measures of cognitive dysfunction and disease severity, and were associated with indirect measures of GABAergic deficit. Serum GFAP concentration was not a significant predictor of survival. Conclusion: Serum GFAP is increased in FTLD, correlates with cognition and GABAergic deficits, and thus shows promise as a biomarker of disease severity in FTLD.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Nicholas J. Ashton
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Mölndal, Sweden
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Thomas K. Karikari
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | | | - Enrico Premi
- Stroke Unit, ASST Spedali Civili, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Juan Lantero Rodriguez
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Andreja Emeršič
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurology, University Medical Centre Ljubljana, Slovenia
| | - Giuliano Binetti
- MAC Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Fostinelli
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Marcello Giunta
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurology, University Medical Centre Ljubljana, Slovenia
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurology, University Medical Centre Ljubljana, Slovenia
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
67
|
Khedr EM, Elserogy Y, Fawzy M, Abdelrahman AA, Galal AM, Noaman MM. Effect of psychotropic drugs on cortical excitability of patients with major depressive disorders: A transcranial magnetic stimulation study. Psychiatry Res 2020; 291:113287. [PMID: 32763548 DOI: 10.1016/j.psychres.2020.113287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 11/24/2022]
Abstract
Transcranial magnetic stimulation (TMS) can be used to evaluate the effects of pharmacological interventions. The aim of this study was to assess the impact of the selective serotonin reuptake inhibitor, sertraline, and the atypical antipsychotic drugs quetiapine and olanzapine, on cortical excitability in unmedicated patients with major depressive disorder (MDD). The study included 45 medication-free MDD patients diagnosed according to DSM V. They were divided randomly into three groups who received a single oral dose of one of the three drugs sertraline (50 mg), quetiapine (100 mg) and olanzapine (10 mg). Psychological evaluation was conducted using the Mini-Mental State Examination (MMSE) and Beck Depression Inventory Scale (BDI). Resting and active motor thresholds (rMT and aMT) together with contralateral and ipsilateral cortical silent periods (cSP, and iSP) were measured for each participant before and at the time of maximum concentration of drug intake. There was significant increase in excitability of motor cortex after sertraline without changes in GABAB neurotransmission. Quetiapine and olanzapine potentiated inhibitory GABAB neurotransmission (prolongation of cSP); olanzapine additionally prolonged the iSP. Thus TMS can differentiate between the impact of different psychotropic drugs on excitatory and inhibitory transmission in motor cortex.
Collapse
Affiliation(s)
- Eman M Khedr
- Neuropsychiatry Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Yasser Elserogy
- Neuropsychiatry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed Fawzy
- Neuropsychiatry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed A Abdelrahman
- Neuropsychiatry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amr M Galal
- Neuropsychiatry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mostafa M Noaman
- Neuropsychiatry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
68
|
Romanella SM, Roe D, Paciorek R, Cappon D, Ruffini G, Menardi A, Rossi A, Rossi S, Santarnecchi E. Sleep, Noninvasive Brain Stimulation, and the Aging Brain: Challenges and Opportunities. Ageing Res Rev 2020; 61:101067. [PMID: 32380212 PMCID: PMC8363192 DOI: 10.1016/j.arr.2020.101067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/26/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
As we age, sleep patterns undergo severe modifications of their micro and macrostructure, with an overall lighter and more fragmented sleep structure. In general, interventions targeting sleep represent an excellent opportunity not only to maintain life quality in the healthy aging population, but also to enhance cognitive performance and, when pathology arises, to potentially prevent/slow down conversion from e.g. Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD). Sleep abnormalities are, in fact, one of the earliest recognizable biomarkers of dementia, being also partially responsible for a cascade of cortical events that worsen dementia pathophysiology, including impaired clearance systems leading to build-up of extracellular amyloid-β (Aβ) peptide and intracellular hyperphosphorylated tau proteins. In this context, Noninvasive Brain Stimulation (NiBS) techniques, such as transcranial electrical stimulation (tES) and transcranial magnetic stimulation (TMS), may help investigate the neural substrates of sleep, identify sleep-related pathology biomarkers, and ultimately help patients and healthy elderly individuals to restore sleep quality and cognitive performance. However, brain stimulation applications during sleep have so far not been fully investigated in healthy elderly cohorts, nor tested in AD patients or other related dementias. The manuscript discusses the role of sleep in normal and pathological aging, reviewing available evidence of NiBS applications during both wakefulness and sleep in healthy elderly individuals as well as in MCI/AD patients. Rationale and details for potential future brain stimulation studies targeting sleep alterations in the aging brain are discussed, including enhancement of cognitive performance, overall quality of life as well as protein clearance.
Collapse
Affiliation(s)
- Sara M Romanella
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - Daniel Roe
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rachel Paciorek
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Davide Cappon
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Arianna Menardi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Padova Neuroscience Center, Department of Neuroscience, University of Padova, Padova, Italy
| | - Alessandro Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; Siena Robotics and Systems Lab (SIRS-Lab), Engineering and Mathematics Department, University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
69
|
Raffin E, Harquel S, Passera B, Chauvin A, Bougerol T, David O. Probing regional cortical excitability via input-output properties using transcranial magnetic stimulation and electroencephalography coupling. Hum Brain Mapp 2020; 41:2741-2761. [PMID: 32379389 PMCID: PMC7294059 DOI: 10.1002/hbm.24975] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 02/04/2020] [Accepted: 02/23/2020] [Indexed: 01/28/2023] Open
Abstract
The modular organization of the cortex refers to subsets of highly interconnected nodes, sharing specific cytoarchitectural and dynamical properties. These properties condition the level of excitability of local pools of neurons. In this study, we described TMS evoked potentials (TEP) input-output properties to provide new insights into regional cortical excitability. We combined robotized TMS with EEG to disentangle region-specific TEP from threshold to saturation and describe their oscillatory contents. Twenty-two young healthy participants received robotized TMS pulses over the right primary motor cortex (M1), the right dorsolateral prefrontal cortex (DLPFC) and the right superior occipital lobe (SOL) at five stimulation intensities (40, 60, 80, 100, and 120% resting motor threshold) and one short-interval intracortical inhibition condition during EEG recordings. Ten additional subjects underwent the same experiment with a realistic sham TMS procedure. The results revealed interregional differences in the TEPs input-output functions as well as in the responses to paired-pulse conditioning protocols, when considering early local components (<80 ms). Each intensity in the three regions was associated with complex patterns of oscillatory activities. The quality of the regression of TEPs over stimulation intensity was used to derive a new readout for cortical excitability and dynamical properties, revealing lower excitability in the DLPFC, followed by SOL and M1. The realistic sham experiment confirmed that these early local components were not contaminated by multisensory stimulations. This study provides an entirely new analytic framework to characterize input-output relations throughout the cortex, paving the way to a more accurate definition of local cortical excitability.
Collapse
Affiliation(s)
- Estelle Raffin
- University of Grenoble Alpes, Inserm, U1216, Grenoble Institut NeurosciencesGrenobleFrance
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL)GenevaSwitzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de RéadaptationSionSwitzerland
| | - Sylvain Harquel
- CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNCUniversity of Grenoble AlpesGrenobleFrance
- University of Grenoble‐Alpes, CNRS, CHU Grenoble Alpes, INSERM, CNRS, IRMaGeGrenobleFrance
| | - Brice Passera
- University of Grenoble Alpes, Inserm, U1216, Grenoble Institut NeurosciencesGrenobleFrance
- CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNCUniversity of Grenoble AlpesGrenobleFrance
| | - Alan Chauvin
- CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNCUniversity of Grenoble AlpesGrenobleFrance
- University of Grenoble‐Alpes, CNRS, CHU Grenoble Alpes, INSERM, CNRS, IRMaGeGrenobleFrance
| | - Thierry Bougerol
- University of Grenoble Alpes, Inserm, U1216, Grenoble Institut NeurosciencesGrenobleFrance
- CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNCUniversity of Grenoble AlpesGrenobleFrance
| | - Olivier David
- University of Grenoble Alpes, Inserm, U1216, Grenoble Institut NeurosciencesGrenobleFrance
| |
Collapse
|
70
|
Carment L, Dupin L, Guedj L, Térémetz M, Cuenca M, Krebs MO, Amado I, Maier MA, Lindberg PG. Neural noise and cortical inhibition in schizophrenia. Brain Stimul 2020; 13:1298-1304. [PMID: 32585356 DOI: 10.1016/j.brs.2020.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/25/2020] [Accepted: 06/14/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Neural information processing is subject to noise and this leads to variability in neural firing and behavior. Schizophrenia has been associated with both more variable motor control and impaired cortical inhibition, which is crucial for excitatory/inhibitory balance in neural commands. HYPOTHESIS In this study, we hypothesized that impaired intracortical inhibition in motor cortex would contribute to task-related motor noise in schizophrenia. METHODS We measured variability of force and of electromyographic (EMG) activity in upper limb and hand muscles during a visuomotor grip force-tracking paradigm in patients with schizophrenia (N = 25), in unaffected siblings (N = 17) and in healthy control participants (N = 25). Task-dependent primary motor cortex (M1) excitability and inhibition were assessed using transcranial magnetic stimulation (TMS). RESULTS During force maintenance patients with schizophrenia showed increased variability in force and EMG, despite similar mean force and EMG magnitudes. Compared to healthy controls, patients with schizophrenia also showed increased M1 excitability and reduced cortical inhibition during grip-force tracking. EMG variability and force variability correlated negatively to cortical inhibition in patients with schizophrenia. EMG variability also correlated positively to negative symptoms. Siblings had similar variability and cortical inhibition compared to controls. Increased EMG and force variability indicate enhanced motor noise in schizophrenia, which relates to reduced motor cortex inhibition. CONCLUSION The findings suggest that excessive motor noise in schizophrenia may arise from an imbalance of M1 excitation/inhibition of GABAergic origin. Thus, higher motor noise may provide a useful marker of impaired cortical inhibition in schizophrenia.
Collapse
Affiliation(s)
- Loïc Carment
- Institute of Psychiatry and Neuroscience of Paris, INSERM U894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Institut de Psychiatrie, CNRS, GDR3557, Paris, France.
| | - Lucile Dupin
- Institute of Psychiatry and Neuroscience of Paris, INSERM U894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Institut de Psychiatrie, CNRS, GDR3557, Paris, France
| | - Laura Guedj
- Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, C3RP, Université de Paris, GHU Psychiatrie et Neurosciences Sainte-Anne, Paris, France
| | - Maxime Térémetz
- Institute of Psychiatry and Neuroscience of Paris, INSERM U894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Institut de Psychiatrie, CNRS, GDR3557, Paris, France
| | - Macarena Cuenca
- Institut de Psychiatrie, CNRS, GDR3557, Paris, France; Centre de Recherche Clinique, Hôpital Sainte-Anne, Paris, France
| | - Marie-Odile Krebs
- Institute of Psychiatry and Neuroscience of Paris, INSERM U894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Institut de Psychiatrie, CNRS, GDR3557, Paris, France; Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, C3RP, Université de Paris, GHU Psychiatrie et Neurosciences Sainte-Anne, Paris, France
| | - Isabelle Amado
- Institute of Psychiatry and Neuroscience of Paris, INSERM U894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Institut de Psychiatrie, CNRS, GDR3557, Paris, France; Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, C3RP, Université de Paris, GHU Psychiatrie et Neurosciences Sainte-Anne, Paris, France
| | - Marc A Maier
- Institut de Psychiatrie, CNRS, GDR3557, Paris, France; Université de Paris, CNRS UMR, 8002, Paris, France
| | - Påvel G Lindberg
- Institute of Psychiatry and Neuroscience of Paris, INSERM U894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Institut de Psychiatrie, CNRS, GDR3557, Paris, France
| |
Collapse
|
71
|
Neurotransmitter imbalance dysregulates brain dynamic fluidity in frontotemporal degeneration. Neurobiol Aging 2020; 94:176-184. [PMID: 32629312 DOI: 10.1016/j.neurobiolaging.2020.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
Frontotemporal degeneration (FTD) is characterized by reduced global brain flexibility along with GABAergic/glutamatergic neurotransmitter deficits. We aimed to assess the relationship between dynamical properties of time-varying whole-brain network connectivity as well as static large-scale networks and neurotransmitter imbalance using resting-state functional MRI and transcranial magnetic stimulation (TMS) in sixty-six patients with FTD. We assessed GABAergic and glutamatergic neurotransmission by TMS, considering short- and long-interval intracortical inhibition and intracortical facilitation, and large-scale networks connectivity as well as four indexes of meta-state dynamic fluidity: (1) number of distinct meta-states, (2) number of switches from one meta-state to another, (3) span of the realized meta-states, and (4) total distance traveled in the state space. No significant correlations between TMS parameters and large-scale networks connectivity were observed. However, we observed a significant correlation between short-interval intracortical inhibition-intracortical facilitation and four meta-states (all indexes p < 0.02, false discovery rate-corrected). This study suggests that neurotransmitter imbalance dysregulates brain dynamic fluidity, linking microscopic and macroscopic changes in FTD.
Collapse
|
72
|
Guerra A, Asci F, D'Onofrio V, Sveva V, Bologna M, Fabbrini G, Berardelli A, Suppa A. Enhancing Gamma Oscillations Restores Primary Motor Cortex Plasticity in Parkinson's Disease. J Neurosci 2020; 40:4788-4796. [PMID: 32430296 PMCID: PMC7294804 DOI: 10.1523/jneurosci.0357-20.2020] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/26/2020] [Accepted: 04/26/2020] [Indexed: 11/21/2022] Open
Abstract
In humans, γ oscillations in cortical motor areas reflect asynchronous synaptic activity and contribute to plasticity processes. In Parkinson's disease (PD), γ oscillatory activity in the basal ganglia-thalamo-cortical network is altered and the LTP-like plasticity elicited by intermittent theta burst stimulation (iTBS) is reduced in the primary motor cortex (M1). In this study, we tested whether transcranial alternating current stimulation (tACS) delivered at γ frequency promotes iTBS-induced LTP-like plasticity in M1 in PD patients. Sixteen patients (OFF condition) and 16 healthy subjects (HSs) underwent iTBS during γ-tACS (iTBS-γ tACS) and during sham-tACS (iTBS-sham tACS) in two sessions. Motor-evoked potentials (MEPs) evoked by single-pulse transcranial magnetic stimulation and short-interval intracortical inhibition (SICI) were recorded before and after the costimulation. A subgroup of patients also underwent iTBS during β tACS. iTBS-sham tACS facilitated single-pulse MEPs in HSs, but not in patients. iTBS-γ tACS induced a larger MEP facilitation than iTBS-sham tACS in both groups, with similar values in patients and HSs. In patients, SICI improved after iTBS-γ tACS. The effect produced by iTBS-γ tACS on single-pulse MEPs correlated with disease duration, while changes in SICI correlated with Unified Parkinson's Disease Rating Scale Part III scores. The effect of iTBS-β tACS on both single-pulse MEPs and SICI was similar to that obtained in the iTBS-sham tACS session. Our data suggest that γ oscillations have a role in the pathophysiology of the abnormal LTP-like plasticity in PD. Entraining M1 neurons at the γ rhythm through tACS may be an effective method to restore impaired plasticity.SIGNIFICANCE STATEMENT In Parkinson's disease, the LTP-like plasticity of the primary motor cortex is impaired, and γ oscillations are altered in the basal ganglia-thalamo-cortical network. Using a combined transcranial magnetic stimulation-transcranial alternating current stimulation approach (iTBS-γ tACS costimulation), we demonstrate that driving γ oscillations restores the LTP-like plasticity in patients with Parkinson's disease. The effects correlate with clinical characteristics of patients, being more evident in less affected patients and weaker in patients with longer disease duration. These findings suggest that cortical γ oscillations play a beneficial role in modulating the LTP-like plasticity of M1 in Parkinson's disease. The iTBS-γ tACS approach may be potentially useful in rehabilitative settings in patients.
Collapse
Affiliation(s)
| | - Francesco Asci
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Valentina D'Onofrio
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Valerio Sveva
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Giovanni Fabbrini
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Antonio Suppa
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| |
Collapse
|
73
|
de Goede AA, Cumplido-Mayoral I, van Putten MJAM. Spatiotemporal Dynamics of Single and Paired Pulse TMS-EEG Responses. Brain Topogr 2020; 33:425-437. [PMID: 32367427 PMCID: PMC7293671 DOI: 10.1007/s10548-020-00773-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/21/2020] [Indexed: 12/28/2022]
Abstract
For physiological brain function a particular balance between excitation and inhibition is essential. Paired pulse transcranial magnetic stimulation (TMS) can estimate cortical excitability and the relative contribution of inhibitory and excitatory networks. Combining TMS with electroencephalography (EEG) enables additional assessment of the spatiotemporal dynamics of neuronal responses in the stimulated brain. This study aims to evaluate the spatiotemporal dynamics and stability of single and paired pulse TMS-EEG responses, and assess long intracortical inhibition (LICI) at the cortical level. Twenty-five healthy subjects were studied twice, approximately one week apart. Manual coil positioning was applied in sixteen subjects and robot-guided positioning in nine. Both motor cortices were stimulated with 50 single pulses and 50 paired pulses at each of the five interstimulus intervals (ISIs): 100, 150, 200, 250 and 300 ms. To assess stability and LICI, the intraclass correlation coefficient and cluster-based permutation analysis were used. We found great resemblance in the topographical distribution of the characteristic TMS-EEG components for single and paired pulse TMS. Stimulation of the dominant and non-dominant hemisphere resulted in a mirrored spatiotemporal dynamics. No significant effect on the TMS-EEG responses was found for either stimulated hemisphere, time or coil positioning method, indicating the stability of both single and paired pulse TMS-EEG responses. For all ISIs, LICI was characterized by significant suppression of the late N100 and P180 components in the central areas, without affecting the early P30, N45 and P60 components. These observations in healthy subjects can serve as reference values for future neuropsychiatric and pharmacological studies.
Collapse
Affiliation(s)
- Annika A de Goede
- Department of Clinical Neurophysiology, Technical Medical Centre, University of Twente, P.O. Box 217, Technohal 3385, 7500 AE, Enschede, The Netherlands.
| | - Irene Cumplido-Mayoral
- Department of Clinical Neurophysiology, Technical Medical Centre, University of Twente, P.O. Box 217, Technohal 3385, 7500 AE, Enschede, The Netherlands.,Biomedical Engineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, Technical Medical Centre, University of Twente, P.O. Box 217, Technohal 3385, 7500 AE, Enschede, The Netherlands.,Department of Neurology and Clinical Neurophysiology, Medisch Spectrum Twente, Enschede, The Netherlands
| |
Collapse
|
74
|
Coppola G, Di Lenola D, Abagnale C, Ferrandes F, Sebastianelli G, Casillo F, Di Lorenzo C, Serrao M, Evangelista M, Schoenen J, Pierelli F. Short-latency afferent inhibition and somato-sensory evoked potentials during the migraine cycle: surrogate markers of a cycling cholinergic thalamo-cortical drive? J Headache Pain 2020; 21:34. [PMID: 32299338 PMCID: PMC7164277 DOI: 10.1186/s10194-020-01104-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Background Short-latency afferent inhibition (SAI) consists of motor cortex inhibition induced by sensory afferents and depends on the excitatory effect of cholinergic thalamocortical projections on inhibitory GABAergic cortical networks. Given the electrophysiological evidence for thalamo-cortical dysrhythmia in migraine, we studied SAI in migraineurs during and between attacks and searched for correlations with somatosensory habituation, thalamocortical activation, and clinical features. Methods SAI was obtained by conditioning the transcranial magnetic stimulation-induced motor evoked potential (MEP) with an electric stimulus on the median nerve at the wrist with random stimulus intervals corresponding to the latency of individual somatosensory evoked potentials (SSEP) N20 plus 2, 4, 6, or 8 ms. We recruited 30 migraine without aura patients, 16 between (MO), 14 during an attack (MI), and 16 healthy volunteers (HV). We calculated the slope of the linear regression between the unconditioned MEP amplitude and the 4-conditioned MEPs as a measure of SAI. We also measured SSEP amplitude habituation, and high-frequency oscillations (HFO) as an index of thalamo-cortical activation. Results Compared to HV, SAI, SSEP habituation and early SSEP HFOs were significantly reduced in MO patients between attacks, but enhanced during an attack. There was a positive correlation between degree of SAI and amplitude of early HFOs in HV, but not in MO or MI. Conclusions The migraine cycle-dependent variations of SAI and SSEP HFOs are further evidence that facilitatory thalamocortical activation (of GABAergic networks in the motor cortex for SAI), likely to be cholinergic, is reduced in migraine between attacks, but increased ictally.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy.
| | - Davide Di Lenola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Chiara Abagnale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Fabio Ferrandes
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Francesco Casillo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Maurizio Evangelista
- Università Cattolica del Sacro Cuore/CIC, Istituto di Anestesiologia, Rianimazione e Terapia del Dolore, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Jean Schoenen
- Headache Research Unit, University Department of Neurology CHR, Citadelle Hospital. University of Liège, Boulevard du Douzième de Ligne 1, 4000, Liège, Belgium
| | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy.,IRCCS - Neuromed, via Atinense, 18, 86077, Pozzilli, IS, Italy
| |
Collapse
|
75
|
Lanza G, Aricò D, Lanuzza B, Cosentino FII, Tripodi M, Giardina F, Bella R, Puligheddu M, Pennisi G, Ferri R, Pennisi M. Facilitatory/inhibitory intracortical imbalance in REM sleep behavior disorder: early electrophysiological marker of neurodegeneration? Sleep 2020; 43:5584903. [PMID: 31599326 DOI: 10.1093/sleep/zsz242] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/27/2019] [Indexed: 02/07/2023] Open
Abstract
STUDY OBJECTIVES Previous studies found an early impairment of the short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) to transcranial magnetic stimulation (TMS) in Parkinson's disease. However, very little is known on the TMS correlates of rapid eye movement (REM) sleep behavior disorder (RBD), which can precede the onset of a α-synucleinopathy. METHODS The following TMS measures were obtained from 14 de novo patients with isolated RBD and 14 age-matched healthy controls: resting motor threshold, cortical silent period, latency and amplitude of the motor evoked potentials, SICI, and ICF. A cognitive screening and a quantification of subjective sleepiness (Epworth Sleepiness Scale [ESS]) and depressive symptoms were also performed. RESULTS Neurological examination, global cognitive functioning, and mood status were normal in all participants. ESS score was higher in patients, although not suggestive of diurnal sleepiness. Compared to controls, patients exhibited a significant decrease of ICF (median 0.8, range 0.5-1.4 vs. 1.9, range 1.4-2.3; p < 0.01) and a clear trend, though not significant, towards a reduction of SICI (median 0.55, range 0.1-1.4 vs. 0.25, range 0.1-0.3), with a large effect size (Cohen's d: -0.848). REM Sleep Atonia Index significantly correlated with SICI. CONCLUSIONS In still asymptomatic patients for a parkinsonian syndrome or neurodegenerative disorder, changes of ICF and, to a lesser extent, SICI (which are largely mediated by glutamatergic and GABAergic transmission, respectively) might precede the onset of a future neurodegeneration. SICI was correlated with the muscle tone alteration, possibly supporting the proposed RBD model of retrograde influence on the cortex from the brainstem.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
| | - Debora Aricò
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
| | - Bartolo Lanuzza
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
| | | | - Mariangela Tripodi
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
| | - Floriana Giardina
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
| | - Rita Bella
- Department of Medical and Surgical Science and Advanced Technologies, University of Catania, Catania, Italy
| | - Monica Puligheddu
- Sleep Disorder Research Center, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Raffaele Ferri
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
76
|
Pilurzi G, Ginatempo F, Mercante B, Cattaneo L, Pavesi G, Rothwell JC, Deriu F. Role of cutaneous and proprioceptive inputs in sensorimotor integration and plasticity occurring in the facial primary motor cortex. J Physiol 2020; 598:839-851. [PMID: 31876950 DOI: 10.1113/jp278877] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Previous studies investigating the effects of somatosensory afferent inputs on cortical excitability and neural plasticity often used transcranial magnetic stimulation (TMS) of hand motor cortex (M1) as a model, but in this model it is difficult to separate out the relative contribution of cutaneous and muscle afferent input to each effect. In the face, cutaneous and muscle afferents are segregated in the trigeminal and facial nerves, respectively. We studied their relative contribution to corticobulbar excitability and neural plasticity in the depressor anguli oris M1. Stimulation of trigeminal afferents induced short-latency (SAI) but not long-latency (LAI) afferent inhibition of face M1, while facial nerve stimulation evoked LAI but not SAI. Plasticity induction was observed only after a paired associative stimulation protocol using the facial nerve. Physiological differences in effects of cutaneous and muscle afferent inputs on face M1 excitability suggest they play separate functional roles in behaviour. ABSTRACT The lack of conventional muscle spindles in face muscles raises the question of how sensory input from the face is used to control muscle activation. In 16 healthy volunteers, we probed sensorimotor interactions in face motor cortex (fM1) using short-afferent inhibition (SAI), long-afferent inhibition (LAI) and LTP-like plasticity following paired associative stimulation (PAS) in the depressor anguli oris muscle (DAO). Stimulation of low threshold afferents in the trigeminal nerve produced a clear SAI (P < 0.05) when the interval between trigeminal stimulation and transcranial magnetic stimulation (TMS) of fM1 was 15-30 ms. However, there was no evidence for LAI at longer intervals of 100-200 ms, nor was there any effect of PAS. In contrast, facial nerve stimulation produced significant LAI (P < 0.05) as well as significant facilitation 10-30 minutes after PAS (P < 0.05). Given that the facial nerve is a pure motor nerve, we presume that the afferent fibres responsible were those activated by the evoked muscle twitch. The F-wave in DAO was unaffected during both LAI and SAI, consistent with their presumed cortical origin. We hypothesize that, in fM1, SAI is evoked by activity in low threshold, presumably cutaneous afferents, whereas LAI and PAS require activity in (higher threshold) afferents activated by the muscle twitch evoked by electrical stimulation of the facial nerve. Cutaneous inputs may exert a paucisynaptic inhibitory effect on fM1, while proprioceptive information is likely to target inhibitory and excitatory polysynaptic circuits involved in LAI and PAS. Such information may be relevant to the physiopathology of several disorders involving the cranio-facial system.
Collapse
Affiliation(s)
- Giovanna Pilurzi
- Operative Unit of Neurology, Fidenza Hospital, AUSL Parma, Parma, Italy
| | | | - Beniamina Mercante
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Luigi Cattaneo
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Giovanni Pavesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
77
|
Kim E, Meinhold W, Shinohara M, Ueda J. Statistical Inter-stimulus Interval Window Estimation for Transient Neuromodulation via Paired Mechanical and Brain Stimulation. Front Neurorobot 2020; 14:1. [PMID: 32116633 PMCID: PMC7010981 DOI: 10.3389/fnbot.2020.00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/13/2020] [Indexed: 11/13/2022] Open
Abstract
For achieving motor recovery in individuals with sensorimotor deficits, augmented activation of the appropriate sensorimotor system, and facilitated induction of neural plasticity are essential. An emerging procedure that combines peripheral nerve stimulation and its associative stimulation with central brain stimulation is known to enhance the excitability of the motor cortex. In order to effectively apply this paired stimulation technique, timing between central and peripheral stimuli must be individually adjusted. There is a small range of effective timings between two stimuli, or the inter-stimulus interval window (ISI-W). Properties of ISI-W from neuromodulation in response to mechanical stimulation (Mstim) of muscles have been understudied because of the absence of a versatile and reliable mechanical stimulator. This paper adopted a combination of transcranial magnetic stimulation (TMS) and Mstim by using a high-precision robotic mechanical stimulator. A pneumatically operated robotic tendon tapping device was applied. A low-friction linear cylinder achieved high stimulation precision in time and low electromagnetic artifacts in physiological measurements. This paper describes a procedure to effectively estimate an individual ISI-W from the transiently enhanced motor evoked potential (MEP) with a reduced number of paired Mstim and sub-threshold TMS trials by applying statistical sampling and regression technique. This paper applied a total of four parametric and non-parametric statistical regression methods for ISI-W estimation. The developed procedure helps to reduce time for individually adjusting effective ISI, reducing physical burden on the subject.
Collapse
Affiliation(s)
- Euisun Kim
- Bio-Robotics and Human Modeling Laboratory, G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Waiman Meinhold
- Bio-Robotics and Human Modeling Laboratory, G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Minoru Shinohara
- Human Neuromuscular Physiology Laboratory, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jun Ueda
- Bio-Robotics and Human Modeling Laboratory, G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
78
|
Cantone M, Lanza G, Fisicaro F, Pennisi M, Bella R, Di Lazzaro V, Di Pino G. Evaluation and Treatment of Vascular Cognitive Impairment by Transcranial Magnetic Stimulation. Neural Plast 2020; 2020:8820881. [PMID: 33193753 PMCID: PMC7641667 DOI: 10.1155/2020/8820881] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
The exact relationship between cognitive functioning, cortical excitability, and synaptic plasticity in dementia is not completely understood. Vascular cognitive impairment (VCI) is deemed to be the most common cognitive disorder in the elderly since it encompasses any degree of vascular-based cognitive decline. In different cognitive disorders, including VCI, transcranial magnetic stimulation (TMS) can be exploited as a noninvasive tool able to evaluate in vivo the cortical excitability, the propension to undergo neural plastic phenomena, and the underlying transmission pathways. Overall, TMS in VCI revealed enhanced cortical excitability and synaptic plasticity that seem to correlate with the disease process and progression. In some patients, such plasticity may be considered as an adaptive response to disease progression, thus allowing the preservation of motor programming and execution. Recent findings also point out the possibility to employ TMS to predict cognitive deterioration in the so-called "brains at risk" for dementia, which may be those patients who benefit more of disease-modifying drugs and rehabilitative or neuromodulatory approaches, such as those based on repetitive TMS (rTMS). Finally, TMS can be exploited to select the responders to specific drugs in the attempt to maximize the response and to restore maladaptive plasticity. While no single TMS index owns enough specificity, a panel of TMS-derived measures can support VCI diagnosis and identify early markers of progression into dementia. This work reviews all TMS and rTMS studies on VCI. The aim is to evaluate how cortical excitability, plasticity, and connectivity interact in the pathophysiology of the impairment and to provide a translational perspective towards novel treatments of these patients. Current pitfalls and limitations of both studies and techniques are also discussed, together with possible solutions and future research agenda.
Collapse
Affiliation(s)
- Mariagiovanna Cantone
- 1Department of Neurology, Sant'Elia Hospital, ASP Caltanissetta, Caltanissetta 93100, Italy
| | - Giuseppe Lanza
- 2Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
- 3Department of Neurology IC, Oasi Research Institute–IRCCS, Troina 94108, Italy
| | - Francesco Fisicaro
- 4Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Manuela Pennisi
- 4Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Rita Bella
- 5Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania 95123, Italy
| | - Vincenzo Di Lazzaro
- 6Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome 00128, Italy
| | - Giovanni Di Pino
- 7Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome 00128, Italy
| |
Collapse
|
79
|
Rogić Vidaković M, Šoda J, Jerković A, Benzon B, Bakrač K, Dužević S, Vujović I, Mihalj M, Pecotić R, Valić M, Mastelić A, Hagelien MV, Zmajević Schőnwald M, Đogaš Z. Obstructive Sleep Apnea Syndrome: A Preliminary Navigated Transcranial Magnetic Stimulation Study. Nat Sci Sleep 2020; 12:563-574. [PMID: 32821185 PMCID: PMC7418161 DOI: 10.2147/nss.s253281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/25/2020] [Indexed: 01/14/2023] Open
Abstract
PURPOSE An increase in resting motor threshold (RMT), prolonged cortical silent period duration (CSP), and reduced short-latency afferent inhibition (SAI), confirmed with previous transcranial magnetic stimulation (TMS), suggest decreased cortical excitability in obstructive sleep apnea syndrome (OSAS). The present study included MRI of OSAS patients for navigated TMS assessment of the RMT, as an index of the threshold for corticospinal activation at rest, and SAI as an index of cholinergic neurotransmission. We hypothesize to confirm findings on SAI and RMT with adding precision in the targeting of motor cortex in OSAS. SUBJECTS AND METHODS After acquiring head MRIs for 17 severe right-handed OSAS and 12 healthy subjects, the motor cortex was mapped with nTMS to assess the RMT and SAI, with motor evoked potentials (MEPs) recorded from the abductor-pollicis brevis (APB) muscle. The 120%RMT intensity was used for the SAI by a paired-pulse paradigm in which the electrical stimulation to the median nerve is followed by magnetic stimulation of the motor cortex at inter-stimulus intervals (ISIs) of 18-28 ms (ISIs18-28). The SAI control condition included a recording of MEPs without peripheral stimulation. Latency and amplitude of MEP at RMT at 120%RMT for eleven different at ISIs18-28 were analyzed. RESULTS The study showed a significantly lower percentage deviation of MEP amplitude at ISIs(18-28ms) from the control condition between OSAS and healthy subjects (U=44.0, p=0.01). The intensity of stimulation at RMT was significantly higher in OSAS subjects (U=55.0, p=0.04*). Correlation analysis showed that BMI significantly negatively correlated (ρ=-0.47) with MEP amplitude percentage deviation in OSAS patients. CONCLUSION The nTMS study results in increased RMT, and reduced cortical afferent inhibition in OSAS patients for SAI at ISIs18-28, confirming previous findings of impaired cortical afferent inhibition in OSAS. Future nTMS studies are desirable to elucidate the role of RMT and SAI in diagnostics and treatment of OSAS, and to elucidate the usefulness of nTMS in OSAS research.
Collapse
Affiliation(s)
- Maja Rogić Vidaković
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia
| | - Joško Šoda
- University of Split, Faculty of Maritime Studies, Signal Processing, Analysis and Advanced Diagnostics Research and Education Laboratory (SPAADREL), Split, Croatia
| | - Ana Jerković
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia
| | - Benjamin Benzon
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia
| | - Karla Bakrač
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia
| | - Silvia Dužević
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia
| | - Igor Vujović
- University of Split, Faculty of Maritime Studies, Signal Processing, Analysis and Advanced Diagnostics Research and Education Laboratory (SPAADREL), Split, Croatia
| | - Mario Mihalj
- University Hospital Split, Department of Neurology, Laboratory of Electromyoneurography, Split, Croatia
| | - Renata Pecotić
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia.,University of Split, Split Sleep Medical Center, Split 21000, Croatia
| | - Maja Valić
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia.,University of Split, Split Sleep Medical Center, Split 21000, Croatia
| | - Angela Mastelić
- University of Split, School of Medicine, Department of Medical Chemistry and Biochemistry, Split, Croatia
| | - Maximilian Vincent Hagelien
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia
| | - Marina Zmajević Schőnwald
- Clinical Medical Centre "Sisters Of Mercy", Department of Neurosurgery, Clinical Unit for Intraoperative Neurophysiologic Monitoring, Zagreb, Croatia
| | - Zoran Đogaš
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia.,University of Split, Split Sleep Medical Center, Split 21000, Croatia
| |
Collapse
|
80
|
Sato D, Yamashiro K, Yamazaki Y, Ikarashi K, Onishi H, Baba Y, Maruyama A. Priming Effects of Water Immersion on Paired Associative Stimulation-Induced Neural Plasticity in the Primary Motor Cortex. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:ijerph17010215. [PMID: 31892253 PMCID: PMC6982345 DOI: 10.3390/ijerph17010215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 11/16/2022]
Abstract
We aimed to verify whether indirect-wave (I-wave) recruitment and cortical inhibition can regulate or predict the plastic response to paired associative stimulation with an inter-stimulus interval of 25 ms (PAS25), and also whether water immersion (WI) can facilitate the subsequent PAS25-induced plasticity. To address the first question, we applied transcranial magnetic stimulation (TMS) to the M1 hand area, while alternating the direction of the induced current between posterior-to-anterior and anterior-to-posterior to activate two independent synaptic inputs to the corticospinal neurons. Moreover, we used a paired stimulation paradigm to evaluate the short-latency afferent inhibition (SAI) and short-interval intracortical inhibition (SICI). To address the second question, we examined the motor evoked potential (MEP) amplitudes before and after PAS25, with and without WI, and used the SAI, SICI, and MEP recruitment curves to determine the mechanism underlying priming by WI on PAS25. We demonstrated that SAI, with an inter-stimulus interval of 25 ms, might serve as a predictor of the response to PAS25, whereas I-wave recruitment evaluated by the MEP latency difference was not predictive of the PAS25 response, and found that 15 min WI prior to PAS25 facilitated long-term potentiation (LTP)-like plasticity due to a homeostatic increase in cholinergic activity.
Collapse
Affiliation(s)
- Daisuke Sato
- Department of Health and Sports, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (K.Y.); (Y.B.)
- Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (Y.Y.); (K.I.); (H.O.)
- Correspondence:
| | - Koya Yamashiro
- Department of Health and Sports, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (K.Y.); (Y.B.)
- Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (Y.Y.); (K.I.); (H.O.)
| | - Yudai Yamazaki
- Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (Y.Y.); (K.I.); (H.O.)
- Graduate School, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan
| | - Koyuki Ikarashi
- Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (Y.Y.); (K.I.); (H.O.)
- Graduate School, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (Y.Y.); (K.I.); (H.O.)
| | - Yasuhiro Baba
- Department of Health and Sports, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (K.Y.); (Y.B.)
| | - Atsuo Maruyama
- Department of Rehabilitation Medicine, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima City, Kagoshima 890-8520, Japan;
| |
Collapse
|
81
|
Cortical gamma-synchrony measured with magnetoencephalography is a marker of clinical status and predicts clinical outcome in stroke survivors. NEUROIMAGE-CLINICAL 2019; 24:102092. [PMID: 31795062 PMCID: PMC6978213 DOI: 10.1016/j.nicl.2019.102092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 11/21/2022]
Abstract
The outcome of stroke survivors is difficult to anticipate. Gamma synchrony is a reliable measure of brain function and reserve. Gamma synchrony is measured with MEG in stroke survivors undergoing rehab. Auditory-entrained gamma synchrony correlates with clinical status and outcome.
Background The outcome of stroke survivors is difficult to anticipate. While the extent of the anatomical brain lesion is only poorly correlated with the prognosis, functional measures of cortical synchrony, brain networks and cortical plasticity seem to be good predictors of clinical recovery. In this field, gamma (>30 Hz) cortical synchrony is an ideal marker of brain function, as it plays a crucial role for the integration of information, it is an indirect marker of Glutamate/GABA balance and it directly estimates the reserve of parvalbulin-positive neurons, key players in synaptic plasticity. In this study we measured gamma synchronization driven by external auditory stimulation with magnetoencephalography and tested whether it was predictive of the clinical outcome in stroke survivors undergoing intensive rehabilitation in a tertiary rehabilitation center. Material and methods Eleven stroke survivors undergoing intensive rehabilitation were prospectively recruited. Gamma synchrony was measured non-invasively within one month from stroke onset with magnetoencephalography, both at rest and during entrainment with external 40 Hz amplitude modulated binaural sounds. Lesion location and volume were quantitatively assessed through a high-resolution anatomical MRI. Barthel index (BI) and Functional Independence Measure (FIM) scales were measured at the beginning and at the end of the admission to the rehabilitation unit. Results The spatial distribution of cortical gamma synchrony was altered, and the physiological right hemispheric dominance observed in healthy controls was attenuated or lost. Entrained gamma synchronization (but not resting state gamma synchrony) showed a very high correlation with the clinical status at both admission and discharge (both BI and FIM). Neither clinical status nor gamma synchrony showed a correlation with lesion volume. Conclusions Cortical gamma synchrony related to auditory entrainment can be reliably measured in stroke patients. Gamma synchrony is strongly associated with the clinical outcome of stroke survivors undergoing rehabilitation.
Collapse
|
82
|
Toepp SL, Turco CV, Locke MB, Nicolini C, Ravi R, Nelson AJ. The Impact of Glucose on Corticospinal and Intracortical Excitability. Brain Sci 2019; 9:brainsci9120339. [PMID: 31775377 PMCID: PMC6955876 DOI: 10.3390/brainsci9120339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Abstract
Neurotransmission is highly dependent on the availability of glucose-derived energy, although it is unclear how glucose availability modulates corticospinal and intracortical excitability as assessed via transcranial magnetic stimulation (TMS). In this double-blinded placebo-controlled study, we tested the effect of acute glucose intake on motor-evoked potential (MEP) recruitment curves, short-interval intracortical inhibition (SICI), short-latency afferent inhibition (SAI) and long-latency afferent inhibition (LAI). Eighteen healthy males participated in four sessions. Session 1 involved acquisition of an individualized blood glucose response curve. This allowed measurements to be time-locked to an individualized glucose peak after consuming one of three drinks during the subsequent three sessions. Participants were administered a 300 mL concealed solution containing 75 g of glucose, sucralose, or water in separate sessions. Dependent measures were assessed at baseline and twice after drinking the solution. Secondary measures included blood glucose and mean arterial pressure. Corticospinal excitability and blood pressure increased following the drink across all treatments. No changes were observed in SICI, SAI or LAI. There was no rise in corticospinal excitability that was specific to the glucose drink, suggesting that acute changes in glucose levels do not necessarily alter TMS measures of corticospinal or intracortical excitability.
Collapse
|
83
|
Yamazaki Y, Sato D, Yamashiro K, Nakano S, Onishi H, Maruyama A. Acute Low-Intensity Aerobic Exercise Modulates Intracortical Inhibitory and Excitatory Circuits in an Exercised and a Non-exercised Muscle in the Primary Motor Cortex. Front Physiol 2019; 10:1361. [PMID: 31787901 PMCID: PMC6853900 DOI: 10.3389/fphys.2019.01361] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022] Open
Abstract
Recent studies have reported that acute aerobic exercise modulates intracortical excitability in the primary motor cortex (M1). However, whether acute low-intensity aerobic exercise can also modulate M1 intracortical excitability, particularly intracortical excitatory circuits, remains unclear. In addition, no previous studies have investigated the effect of acute aerobic exercise on short-latency afferent inhibition (SAI). The aim of this study was to investigate whether acute low-intensity aerobic exercise modulates intracortical circuits in the M1 hand and leg areas. Intracortical excitability of M1 (Experiments 1, 2) and spinal excitability (Experiment 3) were measured before and after acute low-intensity aerobic exercise. In Experiment 3, skin temperature was also measured throughout the experiment. Transcranial magnetic stimulation was applied over the M1 non-exercised hand and exercised leg areas in Experiments 1, 2, respectively. Participants performed 30 min of low-intensity pedaling exercise or rested while sitting on the ergometer. Short- and long-interval intracortical inhibition (SICI and LICI), and SAI were measured to assess M1 inhibitory circuits. Intracortical facilitation (ICF) and short-interval intracortical facilitation (SICF) were measured to assess M1 excitatory circuits. We found that acute low-intensity aerobic exercise decreased SICI and SAI in the M1 hand and leg areas. After exercise, ICF in the M1 hand area was lower than in the control experiment, but was not significantly different to baseline. The single motor-evoked potential, resting motor threshold, LICI, SICF, and spinal excitability did not change following exercise. In conclusion, acute low-intensity pedaling modulates M1 intracortical circuits of both exercised and non-exercised areas, without affecting corticospinal and spinal excitability.
Collapse
Affiliation(s)
- Yudai Yamazaki
- Major in Health and Welfare, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Daisuke Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Koya Yamashiro
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Saki Nakano
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Field of Health and Sports, Major in Health and Science, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Atsuo Maruyama
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
84
|
Reliability of transcranial magnetic stimulation measures of afferent inhibition. Brain Res 2019; 1723:146394. [DOI: 10.1016/j.brainres.2019.146394] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/09/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
|
85
|
Cabibel V, Alexandre F, Oliver N, Varray A, Héraud N. Psychoactive medications in chronic obstructive pulmonary disease patients: From prevalence to effects on motor command and strength. Respir Med 2019; 159:105805. [PMID: 31704592 DOI: 10.1016/j.rmed.2019.105805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 01/06/2023]
Abstract
INTRODUCTION In chronic-obstructive pulmonary disease (COPD) patients, the peripheral muscle weakness is partly due to reduced motor command. The psychoactive medications, which are often prescribed in COPD, are mainly inhibitory and thus may contribute to motor command reduction. The aims were to characterize and quantify the use of these drugs and determine their effects on cortical excitability and inhibition and thus on motor command and muscle weakness in these patients. METHODS First, a prevalence study was conducted on 421 COPD patients. Second, cortical excitability, inhibition and voluntary activation were assessed in 40 patients (15 under psychoactive medications vs. 25 controls) by transcranial magnetic stimulation of the rectus femoris. Quadriceps maximal isometric strength was also assessed. RESULTS About 48% of the patients were taking psychoactive medication. Benzodiazepines (21%) and antidepressants (13.5%) were the most prescribed. Patients with medications tended to be younger and isolated (p < 0.05). They also showed impaired cortical inhibition and decreased cortical excitability (+36%, p = 0.02). Voluntary activation was reduced (-3.6%, p = 0.04) but quadriceps strength was comparable between groups. CONCLUSIONS Psychoactive medications are prevalent in COPD patients. Patients under these medications exhibited brain impairment and reduced motor command. Paradoxically, voluntary strength was unaltered.
Collapse
Affiliation(s)
- Vincent Cabibel
- EuroMov Laboratory, Univ. Montpellier, Montpellier, France; Les Cliniques du Souffle, Groupe 5 Santé, France.
| | | | | | - Alain Varray
- EuroMov Laboratory, Univ. Montpellier, Montpellier, France
| | - Nelly Héraud
- Les Cliniques du Souffle, Groupe 5 Santé, France
| |
Collapse
|
86
|
Rossini P, Di Iorio R, Bentivoglio M, Bertini G, Ferreri F, Gerloff C, Ilmoniemi R, Miraglia F, Nitsche M, Pestilli F, Rosanova M, Shirota Y, Tesoriero C, Ugawa Y, Vecchio F, Ziemann U, Hallett M. Methods for analysis of brain connectivity: An IFCN-sponsored review. Clin Neurophysiol 2019; 130:1833-1858. [DOI: 10.1016/j.clinph.2019.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 05/08/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023]
|
87
|
Brown MJ, Weissbach A, Pauly MG, Vesia M, Gunraj C, Baarbé J, Münchau A, Bäumer T, Chen R. Somatosensory-motor cortex interactions measured using dual-site transcranial magnetic stimulation. Brain Stimul 2019; 12:1229-1243. [DOI: 10.1016/j.brs.2019.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 01/02/2023] Open
|
88
|
Wadsley CG, Cirillo J, Byblow WD. Between-hand coupling during response inhibition. J Neurophysiol 2019; 122:1357-1366. [PMID: 31339791 DOI: 10.1152/jn.00310.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Response inhibition reflects the process of terminating inappropriate preplanned or ongoing movements. When one hand is cued to stop after preparing a bimanual response (Partial trial), there is a substantial delay on the responding side. This delay is termed the interference effect and identifies a constraint that limits selective response inhibition. γ-Aminobutyric acid (GABA)-mediated networks within primary motor cortex (M1) may have distinct roles during response inhibition. In this study we examined whether the interference effect is the consequence of between-hand "coupling" into a unitary response and whether this is reflected in GABAergic intracortical inhibition within M1. Eighteen healthy right-handed participants performed a bimanual synchronous and asynchronous anticipatory response inhibition task. Electromyographic recordings were obtained from the first dorsal interosseous muscle bilaterally. Motor evoked potentials were elicited by single- and paired-pulse transcranial magnetic stimulation over right M1. As expected, Go trial performance was better with the synchronous compared with the asynchronous version of the task. Paradoxically, response delays during Partial trials were longer with the synchronous compared with the asynchronous task. Although task difficulty did not modulate GABAergic intracortical inhibition, there was a trend for between-hand coupling on asynchronous trials to be associated with greater GABAB receptor-mediated inhibition and lesser recruitment of GABAA receptor-mediated inhibition. The novel findings indicate that the interference effect is in part a consequence of between-hand coupling into a unitary response during movement preparation. The ability to respond independently with the two hands may rely on modulation of distinct inhibitory processes.NEW & NOTEWORTHY The temporal dynamics of an anticipated response task were manipulated to effect the difficulty of behavioral stopping and the underlying effects on motor neurophysiology. There were large response delays during trials where a subcomponent of an upcoming bimanual response was cued to stop in conditions where the anticipated action of the hands were synchronous, but not when asynchronous. Response delays reflected the integration of actions of both hands into a unitary response.
Collapse
Affiliation(s)
- Corey G Wadsley
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - John Cirillo
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Winston D Byblow
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
89
|
Guerra A, Suppa A, Asci F, De Marco G, D'Onofrio V, Bologna M, Di Lazzaro V, Berardelli A. LTD-like plasticity of the human primary motor cortex can be reversed by γ-tACS. Brain Stimul 2019; 12:1490-1499. [PMID: 31289014 DOI: 10.1016/j.brs.2019.06.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cortical oscillatory activities play a role in regulating several brain functions in humans. However, whether motor resonant oscillations (i.e. β and γ) modulate long-term depression (LTD)-like plasticity of the primary motor cortex (M1) is still unclear. OBJECTIVE To address this issue, we combined transcranial alternating current stimulation (tACS), a technique able to entrain cortical oscillations, with continuous theta burst stimulation (cTBS), a transcranial magnetic stimulation (TMS) protocol commonly used to induce LTD-like plasticity in M1. METHODS Motor evoked potentials (MEPs) elicited by single-pulse TMS, short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) were evaluated before and 5, 15 and 30 min after cTBS alone or cTBS delivered during β-tACS (cTBS-β) or γ-tACS (cTBS-γ). Moreover, we tested the effects of β-tACS (alone) on short-latency afferent inhibition (SAI) and γ-tACS on SICI in order to verify whether tACS-related interneuronal modulation contributes to the effects of tACS-cTBS co-stimulation. RESULTS cTBS-γ turned the expected after-effects of cTBS from inhibition to facilitation. By contrast, responses to cTBS-β were similar to those induced by cTBS alone. β- and γ-tACS did not change MEPs evoked by single-pulse TMS. β-tACS reduced SAI and γ-tACS reduced SICI. However, the degree of γ-tACS-induced modulation of SICI did not correlate with the effects of cTBS-γ. CONCLUSION γ-tACS reverses cTBS-induced plasticity of the human M1. γ-oscillations may therefore regulate LTD-like plasticity mechanisms.
Collapse
Affiliation(s)
- Andrea Guerra
- IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli (IS), Italy
| | - Antonio Suppa
- IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli (IS), Italy; Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - Francesco Asci
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - Giovanna De Marco
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - Valentina D'Onofrio
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - Matteo Bologna
- IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli (IS), Italy; Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Via Álvaro Del Portillo 21, 00128, Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli (IS), Italy; Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy.
| |
Collapse
|
90
|
Alaydin HC, Vuralli D, Keceli Y, Can E, Cengiz B, Bolay H. Reduced Short‐Latency Afferent Inhibition Indicates Impaired Sensorimotor Integrity During Migraine Attacks. Headache 2019; 59:906-914. [DOI: 10.1111/head.13554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Halil Can Alaydin
- Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
| | - Doga Vuralli
- Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
- Division of Algology, Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
| | - Yeliz Keceli
- Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
| | - Ezgi Can
- Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
| | - Bulent Cengiz
- Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
- Division of Clinical Neurophysiology, Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
| | - Hayrunnisa Bolay
- Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
- Division of Algology, Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
| |
Collapse
|
91
|
Dubbioso R, Manganelli F, Siebner HR, Di Lazzaro V. Fast Intracortical Sensory-Motor Integration: A Window Into the Pathophysiology of Parkinson's Disease. Front Hum Neurosci 2019; 13:111. [PMID: 31024277 PMCID: PMC6463734 DOI: 10.3389/fnhum.2019.00111] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/13/2019] [Indexed: 01/09/2023] Open
Abstract
Parkinson's Disease (PD) is a prototypical basal ganglia disorder. Nigrostriatal dopaminergic denervation leads to progressive dysfunction of the cortico-basal ganglia-thalamo-cortical sensorimotor loops, causing the classical motor symptoms. Although the basal ganglia do not receive direct sensory input, they are important for sensorimotor integration. Therefore, the basal ganglia dysfunction in PD may profoundly affect sensory-motor interaction in the cortex. Cortical sensorimotor integration can be probed with transcranial magnetic stimulation (TMS) using a well-established conditioning-test paradigm, called short-latency afferent inhibition (SAI). SAI probes the fast-inhibitory effect of a conditioning peripheral electrical stimulus on the motor response evoked by a TMS test pulse given to the contralateral primary motor cortex (M1). Since SAI occurs at latencies that match the peaks of early cortical somatosensory potentials, the cortical circuitry generating SAI may play an important role in rapid online adjustments of cortical motor output to changes in somatosensory inputs. Here we review the existing studies that have used SAI to examine how PD affects fast cortical sensory-motor integration. Studies of SAI in PD have yielded variable results, showing reduced, normal or even enhanced levels of SAI. This variability may be attributed to the fact that the strength of SAI is influenced by several factors, such as differences in dopaminergic treatment or the clinical phenotype of PD. Inter-individual differences in the expression of SAI has been shown to scale with individual motor impairment as revealed by UPDRS motor score and thus, may reflect the magnitude of dopaminergic neurodegeneration. The magnitude of SAI has also been linked to cognitive dysfunction, and it has been suggested that SAI also reflects cholinergic denervation at the cortical level. Together, the results indicate that SAI is a useful marker of disease-related alterations in fast cortical sensory-motor integration driven by subcortical changes in the dopaminergic and cholinergic system. Since a multitude of neurobiological factors contribute to the magnitude of inhibition, any mechanistic interpretation of SAI changes in PD needs to consider the group characteristics in terms of phenotypical spectrum, disease stage, and medication.
Collapse
Affiliation(s)
- Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Napoli, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Napoli, Italy
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.,Institute for Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
92
|
Cengiz B, Fidanci H, Kiyak Keçeli Y, Baltaci H, KuruoĞlu R. Impaired short‐ and long‐latency afferent inhibition in amyotrophic lateral sclerosis. Muscle Nerve 2019; 59:699-704. [DOI: 10.1002/mus.26464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Bülent Cengiz
- Department of NeurologyGazi University Faculty of Medicine Beşevler, 06500, Ankara Turkey
- Clinical Neurophysiology Division of the Department of NeurologyGazi University Faculty of Medicine Ankara Turkey
| | - Halit Fidanci
- Clinical Neurophysiology Division of the Department of NeurologyGazi University Faculty of Medicine Ankara Turkey
| | - Yeliz Kiyak Keçeli
- Department of NeurologyGazi University Faculty of Medicine Beşevler, 06500, Ankara Turkey
| | - Hande Baltaci
- Department of NeurologyGazi University Faculty of Medicine Beşevler, 06500, Ankara Turkey
| | - Reha KuruoĞlu
- Department of NeurologyGazi University Faculty of Medicine Beşevler, 06500, Ankara Turkey
- Clinical Neurophysiology Division of the Department of NeurologyGazi University Faculty of Medicine Ankara Turkey
| |
Collapse
|
93
|
|
94
|
Onishi H. Cortical excitability following passive movement. Phys Ther Res 2018; 21:23-32. [PMID: 30697506 DOI: 10.1298/ptr.r0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022]
Abstract
In brain injury rehabilitation, passive movement exercises are frequently used to maintain or improve mobility and range of motion. They can also induce beneficial and sustained neuroplastic changes. Neuroimaging studies have revealed that passive movements without motor commands activate not only the primary somatosensory cortex but also the primary motor cortex, supplementary motor area, and posterior parietal cortex as well as the secondary somatosensory cortex (S2) in healthy subjects. Repetitive passive movement has also been reported to induce increases or decreases in cortical excitability. In this review, we focused on the following: cortical activity following passive movement; cortical excitability during passive movement; and changes in cortical excitability after repetitive passive movement.
Collapse
Affiliation(s)
- Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare.,Department of Physical Therapy, Niigata University of Health and Welfare
| |
Collapse
|
95
|
Turco CV, El-Sayes J, Locke MB, Chen R, Baker S, Nelson AJ. Effects of lorazepam and baclofen on short- and long-latency afferent inhibition. J Physiol 2018; 596:5267-5280. [PMID: 30192388 DOI: 10.1113/jp276710] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/06/2018] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Short-latency afferent inhibition (SAI) is modulated by GABAA receptor activity, whereas the pharmacological origin of long-latency afferent inhibition remains unknown. This is the first study to report that long-latency afferent inhibition (LAI) is reduced by the GABAA positive allosteric modulator lorazepam, and that both SAI and LAI are not modulated by the GABAB agonist baclofen. These findings advance our understanding of the neural mechanisms underlying afferent inhibition. ABSTRACT The afferent volley evoked by peripheral nerve stimulation has an inhibitory influence on transcranial magnetic stimulation induced motor evoked potentials. This phenomenon, known as afferent inhibition, occurs in two phases: short-latency afferent inhibition (SAI) and long-latency afferent inhibition (LAI). SAI exerts its inhibitory influence via cholinergic and GABAergic activity. The neurotransmitter receptors that mediate LAI remain unclear. The present study aimed to determine whether LAI is contributed by GABAA and/or GABAB receptor activity. In a double-blinded, placebo-controlled study, 2.5 mg of lorazepam (GABAA agonist), 20 mg of baclofen (GABAB agonist) and placebo were administered to 14 males (mean age 22.7 ± 1.9 years) in three separate sessions. SAI and LAI, evoked by stimulation of the median nerve and recorded from the first dorsal interosseous muscle, were quantified before and at the peak plasma concentration following drug ingestion. Results indicate that lorazepam reduced LAI by ∼40% and, in support of previous work, reduced SAI by ∼19%. However, neither SAI, nor LAI were altered by baclofen. In a follow-up double-blinded, placebo-controlled study, 10 returning participants received placebo or 40 mg of baclofen (double the dosage used in Experiment 1). The results obtained indicate that SAI and LAI were unchanged by baclofen. This is the first study to show that LAI is modulated by GABAA receptor activity, similar to SAI, and that afferent inhibition does not appear to be a GABAB mediated process.
Collapse
Affiliation(s)
- Claudia V Turco
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Jenin El-Sayes
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Mitchell B Locke
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Steven Baker
- Division of Physical Medicine and Rehabilitation, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
96
|
Yavari F, van Thriel C, Nitsche MA, Kuo MF. Effect of acute exposure to toluene on cortical excitability, neuroplasticity, and motor learning in healthy humans. Arch Toxicol 2018; 92:3149-3162. [DOI: 10.1007/s00204-018-2277-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 07/31/2018] [Indexed: 12/27/2022]
|
97
|
Temporal Profile and Limb-specificity of Phasic Pain-Evoked Changes in Motor Excitability. Neuroscience 2018; 386:240-255. [DOI: 10.1016/j.neuroscience.2018.06.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 12/17/2022]
|
98
|
Premoli I, Király J, Müller-Dahlhaus F, Zipser CM, Rossini P, Zrenner C, Ziemann U, Belardinelli P. Short-interval and long-interval intracortical inhibition of TMS-evoked EEG potentials. Brain Stimul 2018; 11:818-827. [DOI: 10.1016/j.brs.2018.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 12/29/2022] Open
|
99
|
Neurofeedback Control of the Human GABAergic System Using Non-invasive Brain Stimulation. Neuroscience 2018; 380:38-48. [DOI: 10.1016/j.neuroscience.2018.03.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/27/2018] [Accepted: 03/31/2018] [Indexed: 11/22/2022]
|
100
|
Exploring Behavioral Correlates of Afferent Inhibition. Brain Sci 2018; 8:brainsci8040064. [PMID: 29641439 PMCID: PMC5924400 DOI: 10.3390/brainsci8040064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Afferent inhibition is the attenuation of the muscle response evoked from transcranial magnetic stimulation (TMS) by a prior conditioning electrical stimulus to a peripheral nerve. It is unclear whether the magnitude of afferent inhibition relates to sensation and movement; (2) Methods: 24 healthy, young adults were tested. Short-latency afferent inhibition (SAI) and long-latency afferent inhibition (LAI) were obtained following median and digital nerve stimulation. Temporal tactile acuity was assessed with a temporal order judgement (TOJ) task, spatial tactile acuity was assessed using a grating orientation task (GOT), and fine manual dexterity was assessed with the Pegboard task; (3) Results: Correlation analyses revealed no association between the magnitude of SAI or LAI with performance on the TOJ, GOT, or Pegboard tasks; (4) Conclusion: The magnitude of SAI and LAI does not relate to performance on the sensory and motor tasks tested. Future studies are needed to better understand whether the afferent inhibition phenomenon relates to human behavior.
Collapse
|