51
|
Mendelian randomization while jointly modeling cis genetics identifies causal relationships between gene expression and lipids. Nat Commun 2020; 11:4930. [PMID: 33004804 PMCID: PMC7530717 DOI: 10.1038/s41467-020-18716-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Inference of causality between gene expression and complex traits using Mendelian randomization (MR) is confounded by pleiotropy and linkage disequilibrium (LD) of gene-expression quantitative trait loci (eQTL). Here, we propose an MR method, MR-link, that accounts for unobserved pleiotropy and LD by leveraging information from individual-level data, even when only one eQTL variant is present. In simulations, MR-link shows false-positive rates close to expectation (median 0.05) and high power (up to 0.89), outperforming all other tested MR methods and coloc. Application of MR-link to low-density lipoprotein cholesterol (LDL-C) measurements in 12,449 individuals with expression and protein QTL summary statistics from blood and liver identifies 25 genes causally linked to LDL-C. These include the known SORT1 and ApoE genes as well as PVRL2, located in the APOE locus, for which a causal role in liver was not known. Our results showcase the strength of MR-link for transcriptome-wide causal inferences. Mendelian randomization is a useful tool to infer causal relationships between traits, but can be confounded by the presence of pleiotropy. Here, the authors have developed MR-link, a Mendelian randomization method which accounts for unobserved pleiotropy and linkage disequilibrium between instrumental variables.
Collapse
|
52
|
Biscetti F, Nardella E, Rando MM, Cecchini AL, Bonadia N, Bruno P, Angelini F, Di Stasi C, Contegiacomo A, Santoliquido A, Pitocco D, Landolfi R, Flex A. Sortilin levels correlate with major cardiovascular events of diabetic patients with peripheral artery disease following revascularization: a prospective study. Cardiovasc Diabetol 2020; 19:147. [PMID: 32977814 PMCID: PMC7519536 DOI: 10.1186/s12933-020-01123-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/12/2020] [Indexed: 12/24/2022] Open
Abstract
Background Peripheral artery disease (PAD) represents one of the most relevant vascular complications of type 2 diabetes mellitus (T2DM). Moreover, T2DM patients suffering from PAD have an increased risk of major adverse cardiovascular events (MACE) and major adverse limb events (MALE). Sortilin, a protein involved in apolipoproteins trafficking, is associated with lower limb PAD in T2DM patients. Objective To evaluate the relationship between baseline serum levels of sortilin, MACE and MALE occurrence after revascularization of T2DM patients with PAD and chronic limb-threatening ischemia (CLTI). Research design and methods We performed a prospective non-randomized study including 230 statin-free T2DM patients with PAD and CLTI. Sortilin levels were measured before the endovascular intervention and incident outcomes were assessed during a 12 month follow-up. Results Sortilin levels were significantly increased in individuals with more aggressive PAD (2.25 ± 0.51 ng/mL vs 1.44 ± 0.47 ng/mL, p < 0.001). During follow-up, 83 MACE and 116 MALE occurred. In patients, who then developed MACE and MALE, sortilin was higher. In particular, 2.46 ± 0.53 ng/mL vs 1.55 ± 0.42 ng/mL, p < 0.001 for MACE and 2.10 ± 0.54 ng/mL vs 1.65 ± 0.65 ng/mL, p < 0.001 for MALE. After adjusting for traditional atherosclerosis risk factors, the association between sortilin and vascular outcomes remained significant in a multivariate analysis. In our receiver operating characteristics (ROC) curve analysis using sortilin levels the prediction of MACE incidence improved (area under the curve [AUC] = 0.94) and MALE (AUC = 0.72). Conclusions This study demonstrates that sortilin correlates with incidence of MACE and MALE after endovascular revascularization in a diabetic population with PAD and CLTI.
Collapse
Affiliation(s)
- Federico Biscetti
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italia. .,Internal Medicine and Vascular Diseases Unit, Roma, Italia. .,Laboratory of Vascular Biology and Genetics, Department of Translational Medicine and Surgery, Roma, Italia.
| | | | | | | | - Nicola Bonadia
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italia.,Emergency Medicine, Roma, Italia
| | - Piergiorgio Bruno
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italia.,Cardiac Surgery Unit, Roma, Italia
| | - Flavia Angelini
- Laboratory of Vascular Biology and Genetics, Department of Translational Medicine and Surgery, Roma, Italia
| | | | | | - Angelo Santoliquido
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italia.,Università Cattolica del Sacro Cuore, Roma, Italia.,Angiology Unit, Roma, Italia
| | - Dario Pitocco
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italia.,Università Cattolica del Sacro Cuore, Roma, Italia.,Diabetology Unit, Roma, Italia
| | - Raffaele Landolfi
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italia.,Internal Medicine and Vascular Diseases Unit, Roma, Italia.,Università Cattolica del Sacro Cuore, Roma, Italia
| | - Andrea Flex
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italia.,Internal Medicine and Vascular Diseases Unit, Roma, Italia.,Laboratory of Vascular Biology and Genetics, Department of Translational Medicine and Surgery, Roma, Italia.,Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
53
|
Gao F, Griffin N, Faulkner S, Li X, King SJ, Jobling P, Denham JW, Jiang CC, Hondermarck H. The Membrane Protein Sortilin Can Be Targeted to Inhibit Pancreatic Cancer Cell Invasion. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1931-1942. [PMID: 32526166 DOI: 10.1016/j.ajpath.2020.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/03/2020] [Accepted: 05/26/2020] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer has a dismal prognosis, and there is no targeted therapy against this malignancy. The neuronal membrane protein sortilin is emerging as a regulator of cancer cell development, but its expression and impact in pancreatic cancer are unknown. This study found that sortilin expression was higher in pancreatic cell lines versus normal pancreatic ductal epithelial cells, as shown by Western blot analysis and mass spectrometry. The increased sortilin level in pancreatic cancer cells was confirmed by immunohistochemistry in a series of 99 human pancreatic adenocarcinomas versus 48 normal pancreatic tissues (P = 0.0014). Sortilin inhibition by siRNA and the pharmacologic inhibitor AF38469 strongly reduced the adhesion and invasion of pancreatic cancer cells without affecting cell survival and viability. Sortilin inhibition also decreased the phosphorylation of the focal adhesion kinase in Tyr925. Together, these data show that sortilin contributes to pancreatic cancer invasion and could eventually be targeted in therapy.
Collapse
Affiliation(s)
- Fangfang Gao
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Nathan Griffin
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Xiang Li
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Simon J King
- Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Phillip Jobling
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Jim W Denham
- Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Chen Chen Jiang
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia.
| |
Collapse
|
54
|
Duffy Á, Verbanck M, Dobbyn A, Won HH, Rein JL, Forrest IS, Nadkarni G, Rocheleau G, Do R. Tissue-specific genetic features inform prediction of drug side effects in clinical trials. SCIENCE ADVANCES 2020; 6:eabb6242. [PMID: 32917698 PMCID: PMC11206454 DOI: 10.1126/sciadv.abb6242] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Adverse side effects often account for the failure of drug clinical trials. We evaluated whether a phenome-wide association study (PheWAS) of 1167 phenotypes in >360,000 U.K. Biobank individuals, in combination with gene expression and expression quantitative trait loci (eQTL) in 48 tissues, can inform prediction of drug side effects in clinical trials. We determined that drug target genes with five genetic features-tissue specificity of gene expression, Mendelian associations, phenotype- and tissue-level effects of genome-wide association (GWA) loci driven by eQTL, and genetic constraint-confer a 2.6-fold greater risk of side effects, compared to genes without such features. The presence of eQTL in multiple tissues resulted in more unique phenotypes driven by GWA loci, suggesting that drugs delivered to multiple tissues can induce several side effects. We demonstrate the utility of PheWAS and eQTL data from multiple tissues for informing drug side effect prediction and highlight the need for tissue-specific drug delivery.
Collapse
Affiliation(s)
- Áine Duffy
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marie Verbanck
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Université de Paris, UR 7537 BioSTM, Paris, France
| | - Amanda Dobbyn
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Joshua L Rein
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Iain S Forrest
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Girish Nadkarni
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ghislain Rocheleau
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ron Do
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
55
|
Gurung R, Choong AM, Woo CC, Foo R, Sorokin V. Genetic and Epigenetic Mechanisms Underlying Vascular Smooth Muscle Cell Phenotypic Modulation in Abdominal Aortic Aneurysm. Int J Mol Sci 2020; 21:ijms21176334. [PMID: 32878347 PMCID: PMC7504666 DOI: 10.3390/ijms21176334] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) refers to the localized dilatation of the infra-renal aorta, in which the diameter exceeds 3.0 cm. Loss of vascular smooth muscle cells, degradation of the extracellular matrix (ECM), vascular inflammation, and oxidative stress are hallmarks of AAA pathogenesis and contribute to the progressive thinning of the media and adventitia of the aortic wall. With increasing AAA diameter, and left untreated, aortic rupture ensues with high mortality. Collective evidence of recent genetic and epigenetic studies has shown that phenotypic modulation of smooth muscle cells (SMCs) towards dedifferentiation and proliferative state, which associate with the ECM remodeling of the vascular wall and accompanied with increased cell senescence and inflammation, is seen in in vitro and in vivo models of the disease. This review critically analyses existing publications on the genetic and epigenetic mechanisms implicated in the complex role of SMCs within the aortic wall in AAA formation and reflects the importance of SMCs plasticity in AAA formation. Although evidence from the wide variety of mouse models is convincing, how this knowledge is applied to human biology needs to be addressed urgently leveraging modern in vitro and in vivo experimental technology.
Collapse
Affiliation(s)
- Rijan Gurung
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore; (R.G.); (R.F.)
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Andrew Mark Choong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore
| | - Chin Cheng Woo
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
| | - Roger Foo
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore; (R.G.); (R.F.)
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Vitaly Sorokin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore
- Correspondence: ; Tel.: +65-6779-5555
| |
Collapse
|
56
|
Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M, Polacco BJ, Melnyk JE, Ulferts S, Kaake RM, Batra J, Richards AL, Stevenson E, Gordon DE, Rojc A, Obernier K, Fabius JM, Soucheray M, Miorin L, Moreno E, Koh C, Tran QD, Hardy A, Robinot R, Vallet T, Nilsson-Payant BE, Hernandez-Armenta C, Dunham A, Weigang S, Knerr J, Modak M, Quintero D, Zhou Y, Dugourd A, Valdeolivas A, Patil T, Li Q, Hüttenhain R, Cakir M, Muralidharan M, Kim M, Jang G, Tutuncuoglu B, Hiatt J, Guo JZ, Xu J, Bouhaddou S, Mathy CJP, Gaulton A, Manners EJ, Félix E, Shi Y, Goff M, Lim JK, McBride T, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, De Wit E, Leach AR, Kortemme T, Shoichet B, Ott M, Saez-Rodriguez J, tenOever BR, Mullins RD, Fischer ER, Kochs G, Grosse R, García-Sastre A, Vignuzzi M, Johnson JR, Shokat KM, Swaney DL, Beltrao P, Krogan NJ. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 2020; 182:685-712.e19. [PMID: 32645325 PMCID: PMC7321036 DOI: 10.1016/j.cell.2020.06.034] [Citation(s) in RCA: 730] [Impact Index Per Article: 182.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.
Collapse
Affiliation(s)
- Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bjoern Meyer
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Veronica V Rezelj
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Miguel Correa Marrero
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James E Melnyk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Svenja Ulferts
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Robyn M Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jyoti Batra
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alicia L Richards
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erica Stevenson
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Gordon
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ajda Rojc
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kirsten Obernier
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cassandra Koh
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Quang Dinh Tran
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Alexandra Hardy
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Rémy Robinot
- Virus & Immunity Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France; Vaccine Research Institute, 94000 Creteil, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | | | - Claudia Hernandez-Armenta
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alistair Dunham
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sebastian Weigang
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany
| | - Julian Knerr
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Maya Modak
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Diego Quintero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuan Zhou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aurelien Dugourd
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Alberto Valdeolivas
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Trupti Patil
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiongyu Li
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Merve Cakir
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Monita Muralidharan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Minkyu Kim
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn Jang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beril Tutuncuoglu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph Hiatt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey Z Guo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiewei Xu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sophia Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
| | - Christopher J P Mathy
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna Gaulton
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Emma J Manners
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Eloy Félix
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ying Shi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Marisa Goff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | | | | | | | | - Emmie De Wit
- NIH/NIAID/Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Andrew R Leach
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tanja Kortemme
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian Shoichet
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - R Dyche Mullins
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | | | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany
| | - Robert Grosse
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg 79104, Germany.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France.
| | - Jeffery R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kevan M Shokat
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute.
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Pedro Beltrao
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
57
|
Dongiovanni P, Meroni M, Petta S, Longo M, Alisi A, Soardo G, Valenti L, Miele L, Grimaudo S, Pennisi G, Antonio G, Consonni D, Fargion S, Fracanzani AL. Neurotensin up-regulation is associated with advanced fibrosis and hepatocellular carcinoma in patients with MAFLD. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158765. [PMID: 32663609 DOI: 10.1016/j.bbalip.2020.158765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Neurotensin (NTS), a 13-aminoacid peptide localized in central nervous system and gastrointestinal tract, is involved in lipid metabolism and promotes various cancers onset mainly by binding to neurotensin receptor 1 (NTSR1). Increased plasma levels of pro-NTS, the stable NTS precursor, have been associated with type 2 diabetes (T2D), cardiovascular diseases and metabolic associated fatty liver disease (MAFLD). We aimed to evaluate 1) the impact of NTS rs1800832 and NTSR1 rs6090453 genetic variants on liver damage in 1166 MAFLD European individuals, 2) the relation between NTS variant and circulating pro-NTS and 3) the hepatic NTS expression by RNAseq transcriptomic analysis in 125 bariatric patients. RESULTS The NTS rs1800832 G allele was associated with hepatic fibrosis (OR 1.27, 95% confidence interval (CI). 1.02-1.58; p = 0.03), even more in carriers of both NTS and NTSR1 G risk alleles (OR 1.17, 95% CI. 1.03-1.34; p = 0.01), with cirrhosis (OR 1.58, 95% CI. 1.07-2.34; p = 0.02) and HCC (OR 1.98, 95% CI. 1.24-3.2; p = 0.004). Pro-NTS circulating levels were correlated with T2D (p = 0.005), BMI, (p = 0.04), age (p = 0.0016), lobular inflammation (p = 0.0025), fibrosis>2 (p < 0.0001), cirrhosis (p = 0.0009) and HCC (p < 0.0001) and more so after stratification for the NTS G allele. Transcriptomic data showed that hepatic NTS expression correlated with that of fibrogenic genes (p < 0.05). CONCLUSIONS NTS rs1800832 variant is associated with advanced fibrosis and HCC in MAFLD patients likely affecting NTS protein activity. The rs6090453 NTSR1 gene variant synergizes with NTS rs1800832 mutation to promote liver damage. Prospective studies are necessary to confirm NTS role in liver disease progression.
Collapse
Affiliation(s)
- Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Departments of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Salvatore Petta
- Sezione di Gastroenterologia e Epatologia, PROMISE, University of Palermo, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy
| | - Giorgio Soardo
- Department of Medical Area (DAME), University of Udine and Italian Liver Foundation, Bldg Q AREA Science Park - Basovizza Campus, Trieste, Italy
| | - Luca Valenti
- Translational Medicine, University of Milan, Fondazione IRCCS Cà Granda Pad Marangoni, Milan, Italy
| | - Luca Miele
- Area Medicina Interna, Gastroenterologia e Oncologia Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Stefania Grimaudo
- Sezione di Gastroenterologia e Epatologia, PROMISE, University of Palermo, Italy
| | - Grazia Pennisi
- Sezione di Gastroenterologia e Epatologia, PROMISE, University of Palermo, Italy
| | - Grieco Antonio
- Area Medicina Interna, Gastroenterologia e Oncologia Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Dario Consonni
- Epidemiology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Fargion
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Ludovica Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Departments of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
58
|
Keller M, Gebhardt C, Huth S, Schleinitz D, Heyne H, Scholz M, Stumvoll M, Böttcher Y, Tönjes A, Kovacs P. Genetically programmed changes in transcription of the novel progranulin regulator. J Mol Med (Berl) 2020; 98:1139-1148. [PMID: 32620998 PMCID: PMC7399677 DOI: 10.1007/s00109-020-01942-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 01/02/2023]
Abstract
Abstract Progranulin is a glycoprotein marking chronic inflammation in obesity and type 2 diabetes. Previous studies suggested PSRC1 (proline and serine rich coiled-coil 1) to be a target of genetic variants associated with serum progranulin levels. We aimed to identify potentially functional variants and characterize their role in regulation of PSRC1. Phylogenetic module complexity analysis (PMCA) prioritized four polymorphisms (rs12740374, rs629301, rs660240, rs7528419) altering transcription factor binding sites with an overall score for potential regulatory function of Sall > 7.0. The effects of these variants on transcriptional activity and binding of transcription factors were tested by luciferase reporter and electrophoretic mobility shift assays (EMSA). In parallel, blood DNA promoter methylation of two regions was tested in subjects with a very high (N = 100) or a very low (N = 100) serum progranulin. Luciferase assays revealed lower activities in vectors carrying the rs629301-A compared with the C allele. Moreover, EMSA indicated a different binding pattern for the two rs629301 alleles, with an additional prominent band for the A allele, which was finally confirmed with the supershift for the Yin Yang 1 transcription factor (YY1). Subjects with high progranulin levels manifested a significantly higher mean DNA methylation (P < 1 × 10−7) in one promoter region, which was in line with a significantly lower PSRC1 mRNA expression levels in blood (P = 1 × 10−3). Consistently, rs629301-A allele was associated with lower PSRC1 mRNA expression (P < 1 × 10−7). Our data suggest that the progranulin-associated variant rs629301 modifies the transcription of PSRC1 through alteration of YY1 binding capacity. DNA methylation studies further support the role of PSRC1 in regulation of progranulin serum levels. Key messages PSRC1 (proline and serine rich coiled-coil 1) SNPs are associated with serum progranulin levels. rs629301 regulates PSRC1 expression by affecting Yin Yang 1 transcription factor (YY1) binding. PSRC1 is also epigenetically regulated in subjects with high progranulin levels.
Electronic supplementary material The online version of this article (10.1007/s00109-020-01942-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Keller
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, University Hospital Leipzig, University of Leipzig, 04103, Leipzig, Germany.,Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, 20502, Malmö, Sweden.,Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Claudia Gebhardt
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, University Hospital Leipzig, University of Leipzig, 04103, Leipzig, Germany
| | - Sandra Huth
- Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103, Leipzig, Germany
| | - Dorit Schleinitz
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Henrike Heyne
- Institute of Human Genetics, University of Leipzig, 04103, Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107, Leipzig, Germany
| | - Michael Stumvoll
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, University Hospital Leipzig, University of Leipzig, 04103, Leipzig, Germany.,Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Yvonne Böttcher
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Clinical Molecular Biology, Akershus Universitetssykehus, Lørenskog, Norway
| | - Anke Tönjes
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103, Leipzig, Germany.
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103, Leipzig, Germany.
| |
Collapse
|
59
|
Association Study of Coronary Artery Disease-Associated Genome-Wide Significant SNPs with Coronary Stenosis in Pakistani Population. DISEASE MARKERS 2020; 2020:9738567. [PMID: 32685059 PMCID: PMC7336215 DOI: 10.1155/2020/9738567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 11/19/2022]
Abstract
Genome-wide association studies (GWAS) of coronary artery disease (CAD) have revealed multiple genetic risk loci. We assessed the association of 47 genome-wide significant single-nucleotide polymorphisms (SNPs) at 43 CAD loci with coronary stenosis in a Pakistani sample comprising 663 clinically ascertained and angiographically confirmed cases. Genotypes were determined using the iPLEX Gold technology. All statistical analyses were performed using R software. Linkage disequilibrium (LD) between significant SNPs was determined using SNAP web portal, and functional annotation of SNPs was performed using the RegulomeDB and Genotype-Tissue Expression (GTEx) databases. Genotyping comparison was made between cases with severe stenosis (≥70%) and mild/minimal stenosis (<30%). Five SNPs demonstrated significant associations: three with additive genetic models PLG/rs4252120 (p = 0.0078), KIAA1462/rs2505083 (p = 0.005), and SLC22A3/rs2048327 (p = 0.045) and two with recessive models SORT1/rs602633 (p = 0.005) and UBE2Z/rs46522 (p = 0.03). PLG/rs4252120 was in LD with two functional PLG variants (rs4252126 and rs4252135), each with a RegulomeDB score of 1f. Likewise, KIAA1462/rs2505083 was in LD with a functional SNP, KIAA1462/rs3739998, having a RegulomeDB score of 2b. In the GTEx database, KIAA1462/rs2505083, SLC22A3/rs2048327, SORT1/rs602633, and UBE2Z/rs46522 SNPs were found to be expression quantitative trait loci (eQTLs) in CAD-associated tissues. In conclusion, five genome-wide significant SNPs previously reported in European GWAS were replicated in the Pakistani sample. Further association studies on larger non-European populations are needed to understand the worldwide genetic architecture of CAD.
Collapse
|
60
|
Camilli M, Iannaccone G, Del Buono MG, Crea F, Aspromonte N. Genetic background of coronary artery disease: clinical implications and perspectives. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1746640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Massimiliano Camilli
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Giulia Iannaccone
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Marco G. Del Buono
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Nadia Aspromonte
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
61
|
Huang S, Yu X, Wang H, Zheng J. Elevated serum sortilin is related to carotid plaque concomitant with calcification. Biomark Med 2020; 14:381-389. [PMID: 32077308 DOI: 10.2217/bmm-2019-0472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To explore whether elevated serum sortilin was associated with calcified carotid plaque and ischemic stroke. Methods: A total of 171 patients with cardiovascular risk factors were enrolled. Ultrasonography was performed to evaluate calcified plaques and noncalcified plaques. Serum sortilin concentration was measured by ELISA. Results: Serum sortilin level was higher in patients with calcified carotid plaque and positively related to carotid plaque burden, but not with ischemic stroke during the follow-up. Multivariable logistic regression analysis revealed serum sortilin level was an independent determinant for calcified carotid plaque (p = 0.001). Receiving operating characteristic analysis showed an area under the curve of sortilin for carotid calcification was 0.759. Conclusion: Higher serum sortilin level was associated with carotid calcification and severe carotid plaque score.
Collapse
Affiliation(s)
- Shanshan Huang
- Department of Ultrasound, Shenzhen Second People’s Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, Guangdong, PR China
| | - Xingxing Yu
- Department of Internal Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| | - Haiqing Wang
- Department of Cardiology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| | - Jianlei Zheng
- Department of Cardiology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| |
Collapse
|
62
|
Larsen LE, Smith MA, Abbey D, Korn A, Reeskamp LF, Hand NJ, Holleboom AG. Hepatocyte-like cells derived from induced pluripotent stem cells: A versatile tool to understand lipid disorders. Atherosclerosis 2020; 303:8-14. [PMID: 32460140 DOI: 10.1016/j.atherosclerosis.2020.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/19/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
Abstract
Dyslipidemias are strongly linked to the development of atherosclerotic cardiovascular disease. Most dyslipidemias find their origin in the liver. In recent years, the differentiation of induced pluripotent stem cells (iPSCs) into hepatocyte-like cells has provided a versatile platform for the functional study of various dyslipidemias, both rare genetic dyslipidemia as well as common lipid disorders associated with insulin resistance or non-alcoholic fatty liver disease. In addition, iPSC-derived hepatocytes can serve as a cell model for developing novel lipid lowering therapies and have the potential of regenerative medicine. This review provides an overview of these developments.
Collapse
Affiliation(s)
- Lars E Larsen
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Mikhaila A Smith
- Departments of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Deepti Abbey
- Departments of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Amber Korn
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands; Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Laurens F Reeskamp
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands; Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Nicholas J Hand
- Departments of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA.
| | - Adriaan G Holleboom
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands; Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
63
|
Zhang T, Shi H, Liu N, Tian J, Zhao X, Steer CJ, Han Q, Song G. Activation of microRNA-378a-3p biogenesis promotes hepatic secretion of VLDL and hyperlipidemia by modulating ApoB100-Sortilin1 axis. Am J Cancer Res 2020; 10:3952-3966. [PMID: 32226531 PMCID: PMC7086368 DOI: 10.7150/thno.39578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Rationale: Hyperlipidemia is a major risk factor of atherosclerosis and cardiovascular diseases (CVD). As a standard-of-care approach for hyperlipidemia, statins only reduce the risk of coronary artery disease by 20-40%, underscoring the importance of identifying molecular pathways for the design of drugs against this disorder. Alterations in microRNA (miRNA) expression have been reported in patients with hyperlipidemia and CVD. This study was designed to determine the mechanism of dysregulated miR-378a-3p under the status of hyperlipidemia and evaluate how miR-378a-3p regulates hepatic secretion of VLDL. Methods: Wild-type mice kept on a high fat diet were injected with miR-378a-3p inhibitor or a mini-circle expression system containing miR-378a precursor to study loss and gain-of functions of miR-378a-3p. Mice were treated with Triton WR1339 and 35S-methionine/cysteine to determine the effect of miR-378a-3p on hepatic secretion of VLDL. Database mining, luciferase assay, and ChIP (chromatin immunoprecipitation) were used to study the mechanism of dysregulated miR-378a-3p biogenesis. Results: miR-378a-3p expression is significantly increased in livers of hyperlipidemic mice. Sort1 (sortilin 1) was identified as a direct target of miR-378a-3p. By inhibiting the function of sortilin 1 as a transmembrane trafficking receptor, miR-378a-3p stabilized ApoB100 and promoted ApoB100 secretion in vitro. Liver-specific expression of miR-378a-3p stabilized ApoB100 and facilitated hepatic secretion of VLDL, which subsequently increased levels of VLDL/LDL cholesterol as well as triglycerides. In contrast, antagonizing miR-378a-3p using its inhibitor increased hepatic expression of Sort1 and reduced hepatic export of VLDL with its consequent effects of serum lipid levels. Additional knockdown of up-regulated Sort1 in livers of mice offset the effects of miR-378a-3p inhibitor, suggesting that Sort1 was indispensable for miR-378a-3p to promote secretion of VLDL and thereby high levels of circulating VLDL/LDL cholesterol and triglycerides. Furthermore, oncogenic E2F1 (E2F transcription factor 1) was identified as a transcriptional activator of miR-378a-3p. E2f1 knockdown, through reducing miR-378a-3p, impaired secretion of VLDL and reduced levels of VLDL/LDL cholesterol and triglycerides. Conclusions: This study defines a novel pathway of E2F1-miR-378a-3p-SORT1-ApoB100 that controls levels of circulating VLDL/LDL cholesterol and triglycerides by modulating degradation and secretion of ApoB100, and suggests the use of miR-378a-3p as a potential therapeutic target for dyslipidemia.
Collapse
|
64
|
Han W, Wei Z, Zhang H, Geng C, Dang R, Yang M, Zhang J, Wang C, Jiang P. The Association Between Sortilin and Inflammation in Patients with Coronary Heart Disease. J Inflamm Res 2020; 13:71-79. [PMID: 32104044 PMCID: PMC7020934 DOI: 10.2147/jir.s240421] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/21/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose Inflammation is a key contributor to coronary heart disease (CHD). Sortilin is a sorting receptor and has been identified as a critical regulator of inflammatory response. Therefore, our study aimed to determine the link between circulating sortilin levels, proinflammatory cytokine levels, and the occurrence of CHD. Patients and Methods Our study included 227 CHD patients and 101 matched healthy individuals. Circulating serum levels of sortilin and proinflammatory cytokines, including IL-1β, IL-6 and TNF-α, were assessed by a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Linear regression and correlation analyses were used to estimate the associations between sortilin and proinflammatory cytokines. Moreover, six single-nucleotide polymorphisms (SNPs) spanning the sortilin and SORL1 genes were genotyped. Results Elevated levels of sortilin (P=0.027) and proinflammatory cytokines IL-1β (P=0.013), IL-6 (P=0.000) and TNF-α (P=0.010) were observed in CHD patients compared to those in healthy controls. Furthermore, sortilin levels were significantly positively correlated with IL-1β (r=0.252, P=0.0001), IL-6 (r=0.250, P=0.0001) and TNF-α (r=0.180, P=0.0064) levels. Notably, sortilin polymorphisms were revealed to be associated with the occurrence of CHD and varying sortilin levels. Subjects with the rs599839 AA risk genotype for CHD had significantly higher sortilin levels than those with the GG and GA genotypes (P=0.000); the same tendency was also observed in the levels of the proinflammatory cytokines IL-1β (P=0.003) and TNF-α (P=0.000). Similarly, GG carriers of rs464218 with increased sortilin levels were found to be at increased risk for CHD (P=0.014). The levels of IL-1β (P=0.025) and IL-6 (P=0.015) were also increased in these patients. Conclusion Our findings reveal that high sortilin levels may interact with inflammatory response to contribute to the occurrence of CHD. Considering that our clinical evidence suggests for the first time that sortilin involves in inflammatory response in CHD, the mechanistic role of sortilin in the progression of CHD deserves detailed investigation.
Collapse
Affiliation(s)
- Wenxiu Han
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272011, People's Republic of China
| | - Zhijie Wei
- Department of Medical Administration, Jining First People's Hospital, Jining Medical University, Jining 272011, People's Republic of China
| | - Hailiang Zhang
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272011, People's Republic of China
| | - Chunmei Geng
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272011, People's Republic of China
| | - Ruili Dang
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272011, People's Republic of China
| | - Mengqi Yang
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272011, People's Republic of China
| | - Jun Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Changshui Wang
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272011, People's Republic of China
| | - Pei Jiang
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272011, People's Republic of China
| |
Collapse
|
65
|
Su X, Peng D. New insight into sortilin in controlling lipid metabolism and the risk of atherogenesis. Biol Rev Camb Philos Soc 2020; 95:232-243. [PMID: 31625271 DOI: 10.1111/brv.12561] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Xin Su
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
66
|
Gladding PA, Legget M, Fatkin D, Larsen P, Doughty R. Polygenic Risk Scores in Coronary Artery Disease and Atrial Fibrillation. Heart Lung Circ 2019; 29:634-640. [PMID: 31974023 DOI: 10.1016/j.hlc.2019.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022]
Abstract
Coronary artery disease (CAD) and atrial fibrillation (AF) are two highly prevalent cardiovascular disorders that are associated with substantial morbidity and mortality. Conventional clinical risk factors for these disorders may not be identified prior to mid-adult life when pathophysiological processes are already established. A better understanding of the genetic underpinnings of disease should facilitate early detection of individuals at risk and preventative intervention. Single rare variants of large effect size that are causative for CAD, AF, or predisposing factors such as hypertension or hyperlipidaemia, may give rise to familial forms of disease. However, in most individuals, CAD and AF are complex traits in which combinations of genetic and acquired factors play a role. Common genetic variants that affect disease susceptibility have been identified by genome-wide association studies, but the predictive value of any single variant is limited. To address this issue, polygenic risk scores (PRS), comprised of suites of disease-associated common variants have been devised. In CAD and AF, incorporation of PRS into risk stratification algorithms has provided incremental prognostic information to clinical factors alone. The long-term health and economic benefits of PRS-guided clinical management remain to be determined however, and further evidence-based data are required.
Collapse
Affiliation(s)
- Patrick A Gladding
- North Shore Hospital, Waitemata District Health Board, Auckland, New Zealand; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Theranostics Laboratory, North Shore Hospital, Waitemata District Health Board, Auckland, New Zealand.
| | - Malcolm Legget
- Auckland City hospital, Auckland District Health Board, Auckland, New Zealand; Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Diane Fatkin
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, Australia; Cardiology Department, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Peter Larsen
- University of Otago, Wellington hospital, Wellington, New Zealand
| | - Robert Doughty
- Auckland City hospital, Auckland District Health Board, Auckland, New Zealand; Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
67
|
Abstract
Dissections or ruptures of aortic aneurysms remain a leading cause of death in the developed world, with the majority of deaths being preventable if individuals at risk are identified and properly managed. Genetic variants predispose individuals to these aortic diseases. In the case of thoracic aortic aneurysm and dissections (thoracic aortic disease), genetic data can be used to identify some at-risk individuals and dictate management of the associated vascular disease. For abdominal aortic aneurysms, genetic associations have been identified, which provide insight on the molecular pathogenesis but cannot be used clinically yet to identify individuals at risk for abdominal aortic aneurysms. This compendium will discuss our current understanding of the genetic basis of thoracic aortic disease and abdominal aortic aneurysm disease. Although both diseases share several pathogenic similarities, including proteolytic elastic tissue degeneration and smooth muscle dysfunction, they also have several distinct differences, including population prevalence and modes of inheritance.
Collapse
Affiliation(s)
- Amélie Pinard
- From the Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School; University of Texas Health Science Center at Houston (A.P., D.M.M.)
| | - Gregory T Jones
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand (G.T.J.)
| | - Dianna M Milewicz
- From the Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School; University of Texas Health Science Center at Houston (A.P., D.M.M.)
| |
Collapse
|
68
|
Demir İ, Yildirim Akan O, Guler A, Bozkaya G, Aslanipour B, Calan M. Relation of Decreased Circulating Sortilin Levels With Unfavorable Metabolic Profiles in Subjects With Newly Diagnosed Type 2 Diabetes Mellitus. Am J Med Sci 2019; 359:8-16. [PMID: 31902442 DOI: 10.1016/j.amjms.2019.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/01/2019] [Accepted: 10/15/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Sortilin, a pluripotent peptide hormone, plays a role in glucose and lipid metabolism. A link between sortilin and insulin sensitivity has been implicated. However, the clinical implications of this link remain elusive. Our aims were to investigate whether sortilin levels were altered in subjects with newly diagnosed type 2 diabetes mellitus (nT2DM) compared with subjects with normal glucose tolerance (NGT) and to determine whether a link exist between sortilin levels and metabolic parameters. MATERIALS AND METHODS A total of 150 subjects including 75 nT2DM patients and 75 subjects with NGT who were matched in age, body mass index, and sex were enrolled into this case-control study. The circulating levels of sortilin were measured using enzyme-linked immunosorbent assay. A 2-hour 75-g oral glucose tolerance test was used for diagnosis of T2DM. Metabolic parameters of enrolled subjects were also determined. RESULTS The circulating levels of sortilin were found to be significantly lower in subjects with nT2DM than in controls (138.44 ± 38.39 vs. 184.93 ± 49.67 pg/mL, P < 0.001). Sortilin levels showed a negative correlation with insulin resistance and unfavorable lipid profiles, while they were positively correlated with high-density lipoprotein cholesterol in subjects with nT2DM. Linear regression analysis showed an independent and inverse link between sortilin and insulin resistance and unfavorable lipid profiles. Moreover, logistic regression analysis revealed that the subjects with the lowest sortilin levels had an increased risk of nT2DM compared with those subjects with the highest sortilin levels. CONCLUSIONS Decreased circulating levels of sortilin were associated with unfavorable metabolic profiles in subjects with nT2DM.
Collapse
Affiliation(s)
- İsmail Demir
- Division of Endocrinology and Metabolism, Department of Internal Medicine
| | | | | | - Giray Bozkaya
- Department of Clinical Biochemistry, Izmir Bozyaka Training and Research Hospital, Izmir, Turkey
| | - Behnaz Aslanipour
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Tukey
| | - Mehmet Calan
- Division of Endocrinology and Metabolism, Department of Internal Medicine.
| |
Collapse
|
69
|
Sun S, Yang J, Xie W, Peng T, Lv Y. Complicated trafficking behaviors involved in paradoxical regulation of sortilin in lipid metabolism. J Cell Physiol 2019; 235:3258-3269. [PMID: 31608989 DOI: 10.1002/jcp.29292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/30/2019] [Indexed: 11/06/2022]
Abstract
This review aims to summarize and discuss the most recent advances in our understanding of the underlying mechanisms of the paradoxical effects of sortilin on lipid metabolism. The vacuolar protein sorting 10 protein (Vps10p) domain in the sortilin protein is responsible for substrate binding. Its cytoplasmic tail interacts with adaptor molecules, and modifications can determine whether sortilin trafficking occurs via the anterograde or retrograde pathway. The complicated trafficking behaviors likely contribute to the paradoxical roles of sortilin in lipid metabolism. The anterograde pathway of sortilin trafficking in hepatocytes, enterocytes, and peripheral cells likely causes an increase in plasma lipid levels, while the retrograde pathway leads to the opposite effect. Hepatocyte sortilin functions via the anterograde or retrograde pathway in a complicated and paradoxical manner to regulate apoB-containing lipoprotein metabolism. Clarifying the regulatory mechanisms underlying the trafficking behaviors of sortilin is necessary and may lead to artificial sortilin intervention as a potential therapeutic strategy for lipid disorder diseases. Conclusively, the paradoxical regulation of sortilin in lipid metabolism is likely due to its complicated trafficking behaviors.
Collapse
Affiliation(s)
- Sha Sun
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang City, China
| | - Jing Yang
- Clinical Medical Research Institute of the First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang City, China
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang City, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang City, China
| | - Yuncheng Lv
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang City, China
| |
Collapse
|
70
|
Strong A. Revisiting Old Friends: Sortilin-1, Low-Density Lipoprotein Receptor, and Prorenin Receptor as Modulators of Lipoprotein and Energy Metabolism. Circ Res 2019; 122:652-654. [PMID: 29496794 DOI: 10.1161/circresaha.118.312656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Alanna Strong
- From the Division of Human Genetics, Children's Hospital of Philadelphia, PA.
| |
Collapse
|
71
|
Abstract
PURPOSE OF REVIEW Sortilin, encoded SORT1 gene at chromosome 1p13.3, is a multiligand receptor that traffics protein from the Golgi to the endosomes, secretory vesicles, and the cell surface. Genome-wide association studies (GWAS) revealed an association between sortilin and reduced plasma LDL-cholesterol (LDL-C) as well as reduced coronary artery disease (CAD). This review explores the various lipid metabolism pathways that are affected by alterations in sortilin expression. RECENT FINDINGS The effects of increased hepatic sortilin on plasma LDL-C levels are mediated by increased clearance of LDL-C and decreased very LDL (VLDL) secretion because of increased autophagy-mediated lysosomal degradation of apolipoproteinB100. Sort1 knockout models have shown opposite VLDL secretion phenotypes as well as whole body lipid metabolism in response to diet challenges, leading to confusion about the true role of sortilin in the liver and other tissues. SUMMARY The regulation of VLDL secretion by hepatic sortilin is complex and remains incompletely understood. Further investigation to determine the specific conditions under which both hepatic sortilin and total body sortilin cause changes in lipid metabolism pathways is needed.
Collapse
Affiliation(s)
- Donna M Conlon
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
72
|
Lv Y, Yang J, Gao A, Sun S, Zheng X, Chen X, Wan W, Tang C, Xie W, Li S, Guo D, Peng T, Zhao G, Zhong L. Sortilin promotes macrophage cholesterol accumulation and aortic atherosclerosis through lysosomal degradation of ATP-binding cassette transporter A1 protein. Acta Biochim Biophys Sin (Shanghai) 2019; 51:471-483. [PMID: 30950489 DOI: 10.1093/abbs/gmz029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Indexed: 11/13/2022] Open
Abstract
Sortilin is closely associated with hyperlipidemia and the risk of atherosclerosis (AS). The role of sortilin and the underlying mechanism in peripheral macrophage are not fully understood. In this study, we investigated the effect of macrophage sortilin on ATP-binding cassette transporter A1 (ABCA1) expression, ABCA1-mediated cholesterol efflux, and aortic AS. Macrophage sortilin expression was upregulated by oxidized low-density lipoproteins (ox-LDLs) in both concentration- and time-dependent manners. Its expression reached the peak level when cells were incubated with 50 μg/ml ox-LDL for 24 h. Overexpression of sortilin in macrophage reduced cholesterol efflux, leading to an increase in intracellular total cholesterol, free cholesterol, and cholesterol ester. Sortilin was found to bind with ABCA1 protein and suppress macrophage ABCA1 expression, resulting in a decrease in cholesterol efflux from macrophages. The inhibitory effect of sortilin in cholesterol efflux was partially reversed by treatment with chloroquine, a lysosomal inhibitor. On the contrary, the ABCA1 protein level and ABCA1-mediated cholesterol efflux is increased by sortilin short hairpin RNA transfection. The fecal and biliary cholesterol 3H-sterol from cholesterol-laden mouse peritoneal macrophage was reduced by sortilin overexpression through lentivirus vector (LV)-sortilin in low-density lipoprotein receptor knockout mice, which was prevented by co-treatment with chloroquine. Treatment with LV-sortilin reduced plasma high-density lipoprotein and increased plasma ox-LDL levels. Accordingly, aortic lipid deposition and plaque area were exacerbated, and ABCA1 expression was reduced in mice in response to infection with LV-sortilin alone. These effects of LV-sortilin were partially reversed by chloroquine. Sortilin enhances lysosomal degradation of ABCA1 protein and suppresses ABCA1-mediated cholesterol efflux from macrophages, leading to foam cell formation and AS development.
Collapse
Affiliation(s)
- Yuncheng Lv
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Jing Yang
- Clinical Medical Research Institute of the First Affiliated Hospital, University of South China, Hengyang, China
| | - Anbo Gao
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Sha Sun
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Xilong Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, Calgary, Canada
| | - Xi Chen
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Wei Wan
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Chaoke Tang
- Institute of Cardiovascular Research, Medical Research Center, University of South China, Hengyang, China
| | - Wei Xie
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Suyun Li
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Dongming Guo
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Tianhong Peng
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Guojun Zhao
- Department of Histology and Embryology, Guilin Medical University, Guilin, China
| | - Liyuan Zhong
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| |
Collapse
|
73
|
Sun Z, Wang Z, Li L, Yan J, Shao C, Bao Z, Jing L, Pang Q, Geng Y, Zhang L. RAGE/galectin-3 yields intraplaque calcification transformation via sortilin. Acta Diabetol 2019; 56:457-472. [PMID: 30603868 DOI: 10.1007/s00592-018-1273-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 12/23/2022]
Abstract
AIMS Macrocalcification and microcalcification present different clinical risks, but the regulatory of their formation was unclear. Therefore, this study explored the underlying mechanisms of macrocalcification and microcalcification in diabetes mellitus. METHODS Anterior tibial arteries of amputated diabetic feet were collected. According to the calcium content, patients were divided into less-calcification group and more-calcification group. And calcification morphology in plaques was observed. For further study, an in vivo mouse diabetic atherosclerosis model and an in vitro primary mouse aortic smooth muscle cell model were established. After the receptors for AGEs (RAGE) or galectin-3 were silenced, calcified nodule sizes and sortilin expression were determined. Scanning electron microscopy (SEM) was performed to detect the aggregation of matrix vesicles with the inhibition or promotion of sortilin. RESULTS Both macro- and microcalcification were found in human anterior tibial artery plaques. Macrocalcification formed after the silencing of RAGE, and microcalcification formed after the silencing of galectin-3. In the process of RAGE- or galcetin-3-induced calcification, sortilin played an important role downstream. SEM showed that sortilin promoted the aggregation of MVs in the early stage of calcification and formed larger calcified nodules. CONCLUSION RAGE downregulated sortilin and then transmitted microcalcification signals, whereas galectin-3 upregulated sortilin, which accelerated the aggregation of MVs in the early stage of calcification and mediated the formation of macrocalcifications, These data illustrate the progression of two calcification types and suggest sortilin as a potential target for early intervention of calcification and as an effective biomarker for the assessment of long-term clinical risk and prognosis.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/metabolism
- Amputation, Surgical
- Animals
- Aorta/metabolism
- Aorta/pathology
- Blood Proteins
- Cells, Cultured
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/surgery
- Diabetic Foot/pathology
- Diabetic Foot/surgery
- Galectin 3/physiology
- Galectins
- Gene Expression Regulation/drug effects
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/metabolism
- RNA Interference
- RNA, Small Interfering/pharmacology
- Receptor for Advanced Glycation End Products/physiology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Streptozocin
- Tibial Arteries/metabolism
- Tibial Arteries/pathology
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China.
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China
| | - Zhengyang Bao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China
| | - Lele Jing
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China
| | - Qiwen Pang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China
| | - Yue Geng
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China
| |
Collapse
|
74
|
Wang Y, Wang JG. Genome-Wide Association Studies of Hypertension and Several Other Cardiovascular Diseases. Pulse (Basel) 2019; 6:169-186. [PMID: 31049317 PMCID: PMC6489084 DOI: 10.1159/000496150] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/07/2018] [Indexed: 12/30/2022] Open
Abstract
Genome-wide association studies (GWAS) have greatly expanded our understanding of the genetic architecture of cardiovascular diseases in the past decade. They have revealed hundreds of suggestive genetic loci that replicate known biological candidate genes and indicate the existence of a previously unsuspected new biology relevant to cardiovascular disorders. These data have been used successfully to create genetic risk scores that may improve risk prediction and the identification of susceptive individuals. Furthermore, these GWAS-identified novel pathways may herald a new era of novel drug development and stratification of patients. In this review, we will briefly summarize the literature on the candidate genes and signals discovered by GWAS on hypertension and coronary artery disease and discuss their implications on clinical medicine.
Collapse
Affiliation(s)
| | - Ji-Guang Wang
- Shanghai Key Laboratory of Hypertension, The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
75
|
Genetics of Common, Complex Coronary Artery Disease. Cell 2019; 177:132-145. [DOI: 10.1016/j.cell.2019.02.015] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 01/08/2023]
|
76
|
Li J, Woolbright BL, Zhao W, Wang Y, Matye D, Hagenbuch B, Jaeschke H, Li T. Sortilin 1 Loss-of-Function Protects Against Cholestatic Liver Injury by Attenuating Hepatic Bile Acid Accumulation in Bile Duct Ligated Mice. Toxicol Sci 2019; 161:34-47. [PMID: 28453831 DOI: 10.1093/toxsci/kfx078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sortilin 1 (Sort1) is an intracellular trafficking receptor that mediates protein sorting in the endocytic or secretory pathways. Recent studies revealed a role of Sort1 in the regulation of cholesterol and bile acid (BA) metabolism. This study further investigated the role of Sort1 in modulating BA detoxification and cholestatic liver injury in bile duct ligated mice. We found that Sort1 knockout (KO) mice had attenuated liver injury 24 h after bile duct ligation (BDL), which was mainly attributed to less bile infarct formation. Sham-operated Sort1 KO mice had about 20% larger BA pool size than sham-operated wildtype (WT) mice, but 24 h after BDL Sort1 KO mice had significantly attenuated hepatic BA accumulation and smaller BA pool size. After 14 days BDL, Sort1 KO mice showed significantly lower hepatic BA concentration and reduced expression of inflammatory and fibrotic marker genes, but similar degree of liver fibrosis compared with WT mice. Unbiased quantitative proteomics revealed that Sort1 KO mice had increased hepatic BA sulfotransferase 2A1, but unaltered phase-I BA metabolizing cytochrome P450s or phase-III BA efflux transporters. Consistently, Sort1 KO mice showed elevated plasma sulfated taurocholate after BDL. Finally, we found that liver Sort1 was repressed after BDL, which may be due to BA activation of farnesoid x receptor. In conclusion, we report a role of Sort1 in the regulation of hepatic BA detoxification and cholestatic liver injury in mice. The mechanisms underlying increased hepatic BA elimination in Sort1 KO mice after BDL require further investigation.
Collapse
Affiliation(s)
- Jibiao Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Benjamin L Woolbright
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Wen Zhao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Yifeng Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - David Matye
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
77
|
Chen C, Li J, Matye DJ, Wang Y, Li T. Hepatocyte sortilin 1 knockout and treatment with a sortilin 1 inhibitor reduced plasma cholesterol in Western diet-fed mice. J Lipid Res 2019; 60:539-549. [PMID: 30670473 DOI: 10.1194/jlr.m089789] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/21/2019] [Indexed: 01/10/2023] Open
Abstract
Sortilin 1 (Sort1) is a member of the Vps10p domain intracellular trafficking receptor family. Genetic variations of the SORT1 gene are strongly associated with plasma cholesterol levels in humans. Recent studies have linked Sort1 to regulation of cholesterol metabolism in hepatocytes and pro-inflammatory response in macrophages, but the tissue-specific roles of Sort1 in lipid metabolism have not been well defined. We developed Sort1 floxed mice and investigated the development of Western diet (WD)-induced steatosis, hepatic inflammatory response, and hyperlipidemia in hepatocyte Sort1 KO mice and myeloid cell Sort1 KO mice. Our findings suggest that hepatocyte Sort1 deficiency attenuated diet-induced hepatic steatosis and hypercholesterolemia in mice. In contrast, myeloid Sort1 deficiency did not reduce hepatic cytokine expression or plasma cholesterol levels, but exacerbated hepatic triglyceride accumulation in WD-fed mice. Finally, we showed that treating WD-fed mice with an orally bioavailable Sort1 inhibitor, AF38469, decreased plasma cholesterol and hepatic cytokine expression. AF38469 treatment did not affect diet-induced obesity or insulin resistance, but was associated with reduced hepatic VLDL secretion and higher hepatic cholesterol 7α-hydrolase expression in WD-fed mice. In conclusion, findings from this study suggest that Sort1 loss-of-function in hepatocytes contributes to lower plasma cholesterol, and pharmacological inhibition of Sort1 attenuates diet-induced hypercholesterolemia in mice.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Jibiao Li
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - David J Matye
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Yifeng Wang
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Tiangang Li
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
78
|
Biscetti F, Bonadia N, Santini F, Angelini F, Nardella E, Pitocco D, Santoliquido A, Filipponi M, Landolfi R, Flex A. Sortilin levels are associated with peripheral arterial disease in type 2 diabetic subjects. Cardiovasc Diabetol 2019; 18:5. [PMID: 30634965 PMCID: PMC6329108 DOI: 10.1186/s12933-019-0805-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/03/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sortilin is a 95-kDa protein which has recently been linked to circulating cholesterol concentration and lifetime risk of developing significant atherosclerotic disease. Sortilin is found inside different cell types and circulating in blood. Higher circulating sortilin concentration has been found in patients with coronary atherosclerosis compared to control subjects. Sortilin concentration is influenced by statin therapy. METHODS We enrolled statin-naïve subjects with type 2 diabetes mellitus and we performed a cross-sectional study to evaluate the association between sortilin levels and the presence of clinically significant lower limb peripheral artery disease (PAD) in a population of statin-free diabetic subjects. RESULTS Out of the 154 patients enrolled in our study, 80 patients were free from PAD, while 74 had clinically significant PAD. Sortilin concentration was significantly higher in the latter group compared to the former (1.61 ± 0.54 ng/mL versus 0.67 ± 0.30 ng/mL, P < 0.01) and there was a trend toward increased sortilin levels as disease severity increased. The association of sortilin levels with PAD remained after adjusting for major risk factors in a multivariate analysis. CONCLUSIONS We showed that sortilin is significantly and independently associated with the presence of lower limb PAD in a statin-free diabetic population and it may be a promising marker for clinically significant atherosclerosis of the lower limbs. Further studies are needed to confirm this finding and to evaluate its clinical usefulness.
Collapse
Affiliation(s)
- Federico Biscetti
- U.O.C. Clinica Medica e Malattie Vascolari, Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nicola Bonadia
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, Rome, Italy
- U.O.C. Medicina d’Urgenza e Pronto Soccorso, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco Santini
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Flavia Angelini
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elisabetta Nardella
- U.O.C. Clinica Medica e Malattie Vascolari, Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Dario Pitocco
- U.O.S.A. di Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Angelo Santoliquido
- Università Cattolica del Sacro Cuore, Rome, Italy
- U.O.S. Angiologia Columbus, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Raffaele Landolfi
- U.O.C. Clinica Medica e Malattie Vascolari, Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Flex
- U.O.C. Clinica Medica e Malattie Vascolari, Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
79
|
Talbot H, Saada S, Naves T, Gallet PF, Fauchais AL, Jauberteau MO. Regulatory Roles of Sortilin and SorLA in Immune-Related Processes. Front Pharmacol 2019; 9:1507. [PMID: 30666202 PMCID: PMC6330335 DOI: 10.3389/fphar.2018.01507] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/10/2018] [Indexed: 12/25/2022] Open
Abstract
Sortilin, also known as Neurotensin Receptor-3, and the sorting-related receptor with type-A repeats (SorLA) are both members of the Vps10p domain receptor family. Initially identified in CNS cells, they are expressed in various other cell types where they exert multiple functions. Although mostly studied for its involvement in Alzheimer’s disease, SorLA has recently been shown to be implicated in immune response by regulating IL-6-mediated signaling, as well as driving monocyte migration. Sortilin has been shown to act as a receptor, as a co-receptor and as an intra- and extracellular trafficking regulator. In the last two decades, deregulation of sortilin has been demonstrated to be involved in many human pathophysiologies, including neurodegenerative disorders (Alzheimer and Parkinson diseases), type 2 diabetes and obesity, cancer, and cardiovascular pathologies such as atherosclerosis. Several studies highlighted different functions of sortilin in the immune system, notably in microglia, pro-inflammatory cytokine regulation, phagosome fusion and pathogen clearance. In this review, we will analyze the multiple roles of sortilin and SorLA in the human immune system and how their deregulation may be involved in disease development.
Collapse
Affiliation(s)
- Hugo Talbot
- Faculty of Medicine, University of Limoges, Limoges, France
| | - Sofiane Saada
- Faculty of Medicine, University of Limoges, Limoges, France
| | - Thomas Naves
- Faculty of Medicine, University of Limoges, Limoges, France
| | | | - Anne-Laure Fauchais
- Faculty of Medicine, University of Limoges, Limoges, France.,Department of Internal Medicine, University Hospital Limoges Dupuytren Hospital, Limoges, France
| | - Marie-Odile Jauberteau
- Faculty of Medicine, University of Limoges, Limoges, France.,Department of Immunology, University Hospital Limoges Dupuytren Hospital, Limoges, France
| |
Collapse
|
80
|
Sung HY, Lee JY, Park AK, Moon YJ, Jo I, Park EM, Wang KC, Phi JH, Ahn JH, Kim SK. Aberrant Promoter Hypomethylation of Sortilin 1: A Moyamoya Disease Biomarker. J Stroke 2018; 20:350-361. [PMID: 30309230 PMCID: PMC6186926 DOI: 10.5853/jos.2018.00962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/18/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE The pathogenesis of moyamoya disease (MMD) remains poorly understood, and no reliable molecular biomarkers for MMD have been identified to date. The present study aimed to identify epigenetic biomarkers for use in the diagnosis of MMD. METHODS We performed integrated analyses of gene expression profiles and DNA methylation profiles in endothelial colony forming cells (ECFCs) from three patients with MMD and two healthy individuals. Candidate gene mRNA expression and DNA methylation status were further validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and pyrosequencing analysis of an expanded ECFC sample set from nine patients with MMD and ten controls. We evaluated the diagnostic accuracy of the potential biomarkers identified here using receiver operating characteristic curve analyses and further measured major angiogenic factor expression levels using a tube formation assay and RT-qPCR. RESULTS Five candidate genes were selected via integrated analysis; all five were upregulated by hypomethylation of specific promoter CpG sites. After further validation in an expanded sample set, we identified a candidate biomarker gene, sortilin 1 (SORT1). DNA methylation status at a specific SORT1 promoter CpG site in ECFCs readily distinguished patients with MMD from the normal controls with high accuracy (area under the curve 0.98, sensitivity 83.33%, specificity 100%). Furthermore, SORT1 overexpression suppressed endothelial cell tube formation and modulated major angiogenic factor and matrix metalloproteinase-9 expression, implying SORT1 involvement in MMD pathogenesis. CONCLUSION s Our findings suggest that DNA methylation status at the SORT1 promoter CpG site may be a potential biomarker for MMD.
Collapse
Affiliation(s)
- Hye Youn Sung
- Department of Biochemistry, Ewha Womans University College of Medicine, Seoul, Korea
| | - Ji Yeoun Lee
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea.,Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ae Kyung Park
- Suncheon National University College of Pharmacy, Suncheon, Korea
| | - Youn Joo Moon
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Inho Jo
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Eun-Mi Park
- Department of Pharmacology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Kyu-Chang Wang
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Hyuck Ahn
- Department of Biochemistry, Ewha Womans University College of Medicine, Seoul, Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
81
|
Emmer BT, Hesketh GG, Kotnik E, Tang VT, Lascuna PJ, Xiang J, Gingras AC, Chen XW, Ginsburg D. The cargo receptor SURF4 promotes the efficient cellular secretion of PCSK9. eLife 2018; 7:e38839. [PMID: 30251625 PMCID: PMC6156083 DOI: 10.7554/elife.38839] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022] Open
Abstract
PCSK9 is a secreted protein that regulates plasma cholesterol levels and cardiovascular disease risk. Prior studies suggested the presence of an ER cargo receptor that recruits PCSK9 into the secretory pathway, but its identity has remained elusive. Here, we apply a novel approach that combines proximity-dependent biotinylation and proteomics together with genome-scale CRISPR screening to identify SURF4, a homologue of the yeast cargo receptor Erv29p, as a primary mediator of PCSK9 secretion in HEK293T cells. The functional contribution of SURF4 to PCSK9 secretion was confirmed with multiple independent SURF4-targeting sgRNAs, clonal SURF4-deficient cell lines, and functional rescue with SURF4 cDNA. SURF4 was found to localize to the early secretory pathway where it physically interacts with PCSK9. Deletion of SURF4 resulted in ER accumulation and decreased extracellular secretion of PCSK9. These findings support a model in which SURF4 functions as an ER cargo receptor mediating the efficient cellular secretion of PCSK9.
Collapse
Affiliation(s)
- Brian T Emmer
- Department of Internal MedicineUniversity of MichiganAnn ArborMichigan
- Life Sciences InstituteUniversity of MichiganAnn ArborMichigan
| | - Geoffrey G Hesketh
- Centre for Systems BiologyLunenfeld-Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
| | - Emilee Kotnik
- Life Sciences InstituteUniversity of MichiganAnn ArborMichigan
| | - Vi T Tang
- Life Sciences InstituteUniversity of MichiganAnn ArborMichigan
| | - Paul J Lascuna
- Life Sciences InstituteUniversity of MichiganAnn ArborMichigan
| | - Jie Xiang
- Life Sciences InstituteUniversity of MichiganAnn ArborMichigan
| | - Anne-Claude Gingras
- Centre for Systems BiologyLunenfeld-Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
| | - Xiao-Wei Chen
- Life Sciences InstituteUniversity of MichiganAnn ArborMichigan
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Center for Life SciencesPeking UniversityBeijingChina
| | - David Ginsburg
- Department of Internal MedicineUniversity of MichiganAnn ArborMichigan
- Life Sciences InstituteUniversity of MichiganAnn ArborMichigan
- Department of Human GeneticsUniversity of MichiganAnn ArborMichigan
- Department of Pediatrics and Communicable DiseasesUniversity of MichiganAnn ArborMichigan
- Howard Hughes Medical InstituteUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
82
|
Pasquin S, Laplante V, Kouadri S, Milasan A, Mayer G, Tormo AJ, Savin V, Sharma M, Martel C, Gauchat JF. Cardiotrophin-like Cytokine Increases Macrophage–Foam Cell Transition. THE JOURNAL OF IMMUNOLOGY 2018; 201:2462-2471. [DOI: 10.4049/jimmunol.1800733] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/16/2018] [Indexed: 11/19/2022]
|
83
|
Moreno S, Devader CM, Pietri M, Borsotto M, Heurteaux C, Mazella J. Altered Trek-1 Function in Sortilin Deficient Mice Results in Decreased Depressive-Like Behavior. Front Pharmacol 2018; 9:863. [PMID: 30127743 PMCID: PMC6088259 DOI: 10.3389/fphar.2018.00863] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
The background potassium channel TREK-1 has been shown to be a potent target for depression treatment. Indeed, deletion of this channel in mice resulted in a depression resistant phenotype. The association of TREK-1 with the sorting protein sortilin prompted us to investigate the behavior of mice deleted from the gene encoding sortilin (Sort1−/−). To characterize the consequences of sortilin deletion on TREK-1 activity, we combined behavioral, electrophysiological and biochemical approaches performed in vivo and in vitro. Analyses of Sort1−/− mice revealed that they display: (1) a corticosterone-independent anxiety-like behavior, (2) a resistance to depression as demonstrated by several behavioral tests, and (3) an increased activity of dorsal raphe nucleus neurons. All these properties were associated with TREK-1 action deficiency consequently to a decrease of its cell surface expression and to the modification of its electrophysiological activity. An increase of BDNF expression through activation of the furin-dependent constitutive pathway as well as an increase of the activated BDNF receptor TrkB were in agreement with the decrease of depressive-like behavior of Sort1−/− mice. Our results demonstrate that the TREK-1 expression and function are altered in the absence of sortilin confirming the importance of this channel in the regulation on the mood as a crucial target to treat depression.
Collapse
Affiliation(s)
- Sébastien Moreno
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, Valbonne, France
| | - Christelle M Devader
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, Valbonne, France
| | - Mariel Pietri
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, Valbonne, France
| | - Marc Borsotto
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, Valbonne, France
| | - Catherine Heurteaux
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, Valbonne, France
| | - Jean Mazella
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, Valbonne, France
| |
Collapse
|
84
|
Angiotensin generation in the brain: a re-evaluation. Clin Sci (Lond) 2018; 132:839-850. [PMID: 29712882 DOI: 10.1042/cs20180236] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023]
Abstract
The existence of a so-called brain renin-angiotensin system (RAS) is controversial. Given the presence of the blood-brain barrier, angiotensin generation in the brain, if occurring, should depend on local synthesis of renin and angiotensinogen. Yet, although initially brain-selective expression of intracellular renin was reported, data in intracellular renin knockout animals argue against a role for this renin in angiotensin generation. Moreover, renin levels in brain tissue at most represented renin in trapped blood. Additionally, in neurogenic hypertension brain prorenin up-regulation has been claimed, which would generate angiotensin following its binding to the (pro)renin receptor. However, recent studies reported no evidence for prorenin expression in the brain, nor for its selective up-regulation in neurogenic hypertension, and the (pro)renin receptor rather displays RAS-unrelated functions. Finally, although angiotensinogen mRNA is detectable in the brain, brain angiotensinogen protein levels are low, and even these low levels might be an overestimation due to assay artefacts. Taken together, independent angiotensin generation in the brain is unlikely. Indeed, brain angiotensin levels are extremely low, with angiotensin (Ang) I levels corresponding to the small amounts of Ang I in trapped blood plasma, and Ang II levels at most representing Ang II bound to (vascular) brain Ang II type 1 receptors. This review concludes with a unifying concept proposing the blood origin of angiotensin in the brain, possibly resulting in increased levels following blood-brain barrier disruption (e.g. due to hypertension), and suggesting that interfering with either intracellular renin or the (pro)renin receptor has consequences in an RAS-independent manner.
Collapse
|
85
|
Abstract
PURPOSE OF REVIEW To summarize recent advances with respect to the use of human pluripotent stem cells to study the genetics of blood lipid traits. RECENT FINDINGS Human pluripotent stem cell models have been used to elucidate the mechanisms by which genes contribute to dyslipidemia, to discover new lipid-related DNA variants and genes, and to perform drug screens. SUMMARY In addition to enabling a better understanding of the genetic basis of lipid metabolism, human pluripotent stem cells are identifying potential therapeutic targets as well as potential therapies.
Collapse
|
86
|
Itoh S, Mizuno K, Aikawa M, Aikawa E. Dimerization of sortilin regulates its trafficking to extracellular vesicles. J Biol Chem 2018; 293:4532-4544. [PMID: 29382723 PMCID: PMC5868269 DOI: 10.1074/jbc.ra117.000732] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/16/2018] [Indexed: 01/02/2023] Open
Abstract
Extracellular vesicles (EVs) play a critical role in intercellular communication by transferring microRNAs, lipids, and proteins to neighboring cells. Sortilin, a sorting receptor that directs target proteins to the secretory or endocytic compartments of cells, is found in both EVs and cells. In many human diseases, including cancer and cardiovascular disorders, sortilin expression levels are atypically high. To elucidate the relationship between cardiovascular disease, particularly vascular calcification, and sortilin expression levels, we explored the trafficking of sortilin in both the intracellular and extracellular milieu. We previously demonstrated that sortilin promotes vascular calcification via its trafficking of tissue-nonspecific alkaline phosphatase to EVs. Although recent reports have noted that sortilin is regulated by multiple post-translational modifications, the precise mechanisms of sortilin trafficking still need to be determined. Here, we show that sortilin forms homodimers with an intermolecular disulfide bond at the cysteine 783 (Cys783) residue, and because Cys783 can be palmitoylated, it could be shared via palmitoylation and an intermolecular disulfide bond. Formation of this intermolecular disulfide bond leads to trafficking of sortilin to EVs by preventing palmitoylation, which further promotes sortilin trafficking to the Golgi apparatus. Moreover, we found that sortilin-derived propeptide decreased sortilin homodimers within EVs. In conclusion, sortilin is transported to EVs via the formation of homodimers with an intermolecular disulfide bond, which is endogenously regulated by its own propeptide. Therefore, we propose that inhibiting dimerization of sortilin acts as a new therapeutic strategy for the treatment of EV-associated diseases, including vascular calcification and cancer.
Collapse
Affiliation(s)
- Shinsuke Itoh
- From the Center for Interdisciplinary Cardiovascular Sciences and.,Tokyo New Drug Research Laboratories, Kowa Company, Ltd., Tokyo 189-0022, Japan
| | - Ken Mizuno
- From the Center for Interdisciplinary Cardiovascular Sciences and.,Tokyo New Drug Research Laboratories, Kowa Company, Ltd., Tokyo 189-0022, Japan
| | - Masanori Aikawa
- From the Center for Interdisciplinary Cardiovascular Sciences and.,Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Elena Aikawa
- From the Center for Interdisciplinary Cardiovascular Sciences and .,Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115 and
| |
Collapse
|
87
|
Amengual J, Guo L, Strong A, Madrigal-Matute J, Wang H, Kaushik S, Brodsky JL, Rader DJ, Cuervo AM, Fisher EA. Autophagy Is Required for Sortilin-Mediated Degradation of Apolipoprotein B100. Circ Res 2018; 122:568-582. [PMID: 29301854 DOI: 10.1161/circresaha.117.311240] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/30/2022]
Abstract
RATIONALE Genome-wide association studies identified single-nucleotide polymorphisms near the SORT1 locus strongly associated with decreased plasma LDL-C (low-density lipoprotein cholesterol) levels and protection from atherosclerotic cardiovascular disease and myocardial infarction. The minor allele of the causal SORT1 single-nucleotide polymorphism locus creates a putative C/EBPα (CCAAT/enhancer-binding protein α)-binding site in the SORT1 promoter, thereby increasing in homozygotes sortilin expression by 12-fold in liver, which is rich in this transcription factor. Our previous studies in mice have showed reductions in plasma LDL-C and its principal protein component, apoB (apolipoprotein B) with increased SORT1 expression, and in vitro studies suggested that sortilin promoted the presecretory lysosomal degradation of apoB associated with the LDL precursor, VLDL (very-low-density lipoprotein). OBJECTIVE To determine directly that SORT1 overexpression results in apoB degradation and to identify the mechanisms by which this reduces apoB and VLDL secretion by the liver, thereby contributing to understanding the clinical phenotype of lower LDL-C levels. METHODS AND RESULTS Pulse-chase studies directly established that SORT1 overexpression results in apoB degradation. As noted above, previous work implicated a role for lysosomes in this degradation. Through in vitro and in vivo studies, we now demonstrate that the sortilin-mediated route of apoB to lysosomes is unconventional and intersects with autophagy. Increased expression of sortilin diverts more apoB away from secretion, with both proteins trafficking to the endosomal compartment in vesicles that fuse with autophagosomes to form amphisomes. The amphisomes then merge with lysosomes. Furthermore, we show that sortilin itself is a regulator of autophagy and that its activity is scaled to the level of apoB synthesis. CONCLUSIONS These results strongly suggest that an unconventional lysosomal targeting process dependent on autophagy degrades apoB that was diverted from the secretory pathway by sortilin and provides a mechanism contributing to the reduced LDL-C found in individuals with SORT1 overexpression.
Collapse
Affiliation(s)
- Jaume Amengual
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Liang Guo
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Alanna Strong
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Julio Madrigal-Matute
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Haizhen Wang
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Susmita Kaushik
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Jeffrey L Brodsky
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Daniel J Rader
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Ana Maria Cuervo
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Edward A Fisher
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.).
| |
Collapse
|
88
|
Ren L, Sun Y, Lu H, Ye D, Han L, Wang N, Daugherty A, Li F, Wang M, Su F, Tao W, Sun J, Zelcer N, Mullick AE, Danser AHJ, Jiang Y, He Y, Ruan X, Lu X. (Pro)renin Receptor Inhibition Reprograms Hepatic Lipid Metabolism and Protects Mice From Diet-Induced Obesity and Hepatosteatosis. Circ Res 2018; 122:730-741. [PMID: 29301853 DOI: 10.1161/circresaha.117.312422] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 11/18/2017] [Accepted: 12/29/2017] [Indexed: 01/12/2023]
Abstract
RATIONALE An elevated level of plasma LDL (low-density lipoprotein) is an established risk factor for cardiovascular disease. Recently, we reported that the (pro)renin receptor ([P]RR) regulates LDL metabolism in vitro via the LDLR (LDL receptor) and SORT1 (sortilin-1), independently of the renin-angiotensin system. OBJECTIVES To investigate the physiological role of (P)RR in lipid metabolism in vivo. METHODS AND RESULTS We used N-acetylgalactosamine modified antisense oligonucleotides to specifically inhibit hepatic (P)RR expression in C57BL/6 mice and studied the consequences this has on lipid metabolism. In line with our earlier report, hepatic (P)RR silencing increased plasma LDL-C (LDL cholesterol). Unexpectedly, this also resulted in markedly reduced plasma triglycerides in a SORT1-independent manner in C57BL/6 mice fed a normal- or high-fat diet. In LDLR-deficient mice, hepatic (P)RR inhibition reduced both plasma cholesterol and triglycerides, in a diet-independent manner. Mechanistically, we found that (P)RR inhibition decreased protein abundance of ACC (acetyl-CoA carboxylase) and PDH (pyruvate dehydrogenase). This alteration reprograms hepatic metabolism, leading to reduced lipid synthesis and increased fatty acid oxidation. As a result, hepatic (P)RR inhibition attenuated diet-induced obesity and hepatosteatosis. CONCLUSIONS Collectively, our study suggests that (P)RR plays a key role in energy homeostasis and regulation of plasma lipids by integrating hepatic glucose and lipid metabolism.
Collapse
Affiliation(s)
- Liwei Ren
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Yuan Sun
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Hong Lu
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Dien Ye
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Lijuan Han
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Na Wang
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Alan Daugherty
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Furong Li
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Miaomiao Wang
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Fengting Su
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Wenjun Tao
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Jie Sun
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Noam Zelcer
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Adam E Mullick
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - A H Jan Danser
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Yizhou Jiang
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Yongcheng He
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.)
| | - Xiongzhong Ruan
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.).
| | - Xifeng Lu
- From the AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, China (L.R., Y.S., D.Y., L.H., N.W., M.W., F.S., W.T., J.S., X.R., X.L.); Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China (L.R., Y.S., F.L., X.L.); Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam University, The Netherlands (L.R., Y.S., A.H.J.D.); Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.L., A.D.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (N.Z.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (A.E.M.); Institute for Advanced Study, Shenzhen University, China (Y.J.); The First Affiliated Hospital of Shenzhen University, China (Y.H.); and John Moorhead Laboratory, Center for Nephrology, University College London, United Kingdom (X.R.).
| |
Collapse
|
89
|
Zhang Z, Jiang W, Yang H, Lin Q, Qin X. The miR-182/SORT1 axis regulates vascular smooth muscle cell calcification in vitro and in vivo. Exp Cell Res 2018; 362:324-331. [DOI: 10.1016/j.yexcr.2017.11.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 01/20/2023]
|
90
|
Musunuru K, Sheikh F, Gupta RM, Houser SR, Maher KO, Milan DJ, Terzic A, Wu JC. Induced Pluripotent Stem Cells for Cardiovascular Disease Modeling and Precision Medicine: A Scientific Statement From the American Heart Association. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2018; 11:e000043. [PMID: 29874173 PMCID: PMC6708586 DOI: 10.1161/hcg.0000000000000043] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Induced pluripotent stem cells (iPSCs) offer an unprece-dented opportunity to study human physiology and disease at the cellular level. They also have the potential to be leveraged in the practice of precision medicine, for example, personalized drug testing. This statement comprehensively describes the provenance of iPSC lines, their use for cardiovascular disease modeling, their use for precision medicine, and strategies through which to promote their wider use for biomedical applications. Human iPSCs exhibit properties that render them uniquely qualified as model systems for studying human diseases: they are of human origin, which means they carry human genomes; they are pluripotent, which means that in principle, they can be differentiated into any of the human body's somatic cell types; and they are stem cells, which means they can be expanded from a single cell into millions or even billions of cell progeny. iPSCs offer the opportunity to study cells that are genetically matched to individual patients, and genome-editing tools allow introduction or correction of genetic variants. Initial progress has been made in using iPSCs to better understand cardiomyopathies, rhythm disorders, valvular and vascular disorders, and metabolic risk factors for ischemic heart disease. This promising work is still in its infancy. Similarly, iPSCs are only just starting to be used to identify the optimal medications to be used in patients from whom the cells were derived. This statement is intended to (1) summarize the state of the science with respect to the use of iPSCs for modeling of cardiovascular traits and disorders and for therapeutic screening; (2) identify opportunities and challenges in the use of iPSCs for disease modeling and precision medicine; and (3) outline strategies that will facilitate the use of iPSCs for biomedical applications. This statement is not intended to address the use of stem cells as regenerative therapy, such as transplantation into the body to treat ischemic heart disease or heart failure.
Collapse
|
91
|
Gao A, Cayabyab FS, Chen X, Yang J, Wang L, Peng T, Lv Y. Implications of Sortilin in Lipid Metabolism and Lipid Disorder Diseases. DNA Cell Biol 2017; 36:1050-1061. [DOI: 10.1089/dna.2017.3853] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Anbo Gao
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Francisco S. Cayabyab
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Jing Yang
- Department of Metabolism & Endocrinology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Li Wang
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Yuncheng Lv
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
92
|
Januliene D, Andersen JL, Nielsen JA, Quistgaard EM, Hansen M, Strandbygaard D, Moeller A, Petersen CM, Madsen P, Thirup SS. Acidic Environment Induces Dimerization and Ligand Binding Site Collapse in the Vps10p Domain of Sortilin. Structure 2017; 25:1809-1819.e3. [DOI: 10.1016/j.str.2017.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/21/2017] [Accepted: 09/25/2017] [Indexed: 12/30/2022]
|
93
|
Goettsch C, Kjolby M, Aikawa E. Sortilin and Its Multiple Roles in Cardiovascular and Metabolic Diseases. Arterioscler Thromb Vasc Biol 2017; 38:19-25. [PMID: 29191923 DOI: 10.1161/atvbaha.117.310292] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/16/2017] [Indexed: 12/24/2022]
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality in the Western world. Studies of sortilin's influence on cardiovascular and metabolic diseases goes far beyond the genome-wide association studies that have revealed an association between cardiovascular diseases and the 1p13 locus that encodes sortilin. Emerging evidence suggests a significant role of sortilin in the pathogenesis of vascular and metabolic diseases; this includes type II diabetes mellitus via regulation of insulin resistance, atherosclerosis through arterial wall inflammation and calcification, and dysregulated lipoprotein metabolism. Sortilin is also known for its functional role in neurological disorders. It serves as a key receptor for cytokines, lipids, and enzymes and participates in pathological cargo loading to and trafficking of extracellular vesicles. This article provides a comprehensive review of sortilin's contributions to cardiovascular and metabolic diseases but focuses particularly on atherosclerosis. We summarize recent clinical findings that suggest that sortilin may be a cardiovascular risk biomarker and also discuss sortilin as a potential drug target.
Collapse
Affiliation(s)
- Claudia Goettsch
- From the Department of Internal Medicine I-Cardiology, RWTH Aachen University, Germany (C.G.); The Danish Research Institute of Translational Neuroscience, Nordic European Molecular Biology Laboratory Partnership for Molecular Medicine, Danish Diabetes Academy, Denmark (M.K.); Department of Biomedicine (M.K.) and Department of Cardiology (M.K.), Aarhus University, Denmark; and Center for Interdisciplinary Cardiovascular Sciences (E.A.) and Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Mads Kjolby
- From the Department of Internal Medicine I-Cardiology, RWTH Aachen University, Germany (C.G.); The Danish Research Institute of Translational Neuroscience, Nordic European Molecular Biology Laboratory Partnership for Molecular Medicine, Danish Diabetes Academy, Denmark (M.K.); Department of Biomedicine (M.K.) and Department of Cardiology (M.K.), Aarhus University, Denmark; and Center for Interdisciplinary Cardiovascular Sciences (E.A.) and Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Elena Aikawa
- From the Department of Internal Medicine I-Cardiology, RWTH Aachen University, Germany (C.G.); The Danish Research Institute of Translational Neuroscience, Nordic European Molecular Biology Laboratory Partnership for Molecular Medicine, Danish Diabetes Academy, Denmark (M.K.); Department of Biomedicine (M.K.) and Department of Cardiology (M.K.), Aarhus University, Denmark; and Center for Interdisciplinary Cardiovascular Sciences (E.A.) and Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
94
|
Wang X, Raghavan A, Peters DT, Pashos EE, Rader DJ, Musunuru K. Interrogation of the Atherosclerosis-Associated SORT1 (Sortilin 1) Locus With Primary Human Hepatocytes, Induced Pluripotent Stem Cell-Hepatocytes, and Locus-Humanized Mice. Arterioscler Thromb Vasc Biol 2017; 38:76-82. [PMID: 29097363 DOI: 10.1161/atvbaha.117.310103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/19/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The noncoding single-nucleotide polymorphism rs12740374 has been hypothesized to be the causal variant responsible for liver-specific modulation of SORT1(sortilin 1) expression (ie, expression quantitative trait locus) and, by extension, the association of the SORT1 locus on human chromosome 1p13 with low-density lipoprotein cholesterol levels and coronary heart disease. The goals of this study were to compare 3 different hepatocyte models in demonstrating that the rs12740374 minor allele sequence is responsible for transcriptional activation of SORT1 expression. APPROACH AND RESULTS We found that although primary human hepatocytes of varied rs12740374 genotypes strongly replicated the SORT1 expression quantitative trait locus observed previously in whole-liver samples, a population cohort of induced pluripotent stem cell-derived hepatocyte-like cells poorly replicated the expression quantitative trait locus. In primary human hepatocytes from multiple individuals heterozygous at rs12740374, we used CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-associated 9) to specifically target the rs12740374 minor allele sequence ex vivo, resulting in a reproducible reduction in SORT1 expression. We generated a locus-humanized transgenic mouse with a bacterial artificial chromosome bearing the human SORT1 locus with the rs12740374 minor allele. In this mouse model, we used CRISPR-Cas9 to target the rs12740374 minor allele sequence in the liver in vivo, resulting in a substantial reduction of hepatic SORT1 expression. CONCLUSIONS The rs12740374 minor allele sequence enhances SORT1 expression in hepatocytes. CRISPR-Cas9 can be used in primary human hepatocytes ex vivo and locus-humanized mice in vivo to interrogate the function of noncoding regulatory regions. Induced pluripotent stem cell-derived hepatocyte-like cells experience limitations that prevent faithful modelling of some hepatocyte expression quantitative trait loci.
Collapse
Affiliation(s)
- Xiao Wang
- From the Cardiovascular Institute (X.W., E.E.P., D.J.R., K.M.), Department of Medicine (X.W., E.E.P., D.J.R., K.M.), and Department of Genetics (X.W., E.E.P., D.J.R., K.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Harvard Medical School, Boston, MA (A.R., D.T.P.)
| | - Avanthi Raghavan
- From the Cardiovascular Institute (X.W., E.E.P., D.J.R., K.M.), Department of Medicine (X.W., E.E.P., D.J.R., K.M.), and Department of Genetics (X.W., E.E.P., D.J.R., K.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Harvard Medical School, Boston, MA (A.R., D.T.P.)
| | - Derek T Peters
- From the Cardiovascular Institute (X.W., E.E.P., D.J.R., K.M.), Department of Medicine (X.W., E.E.P., D.J.R., K.M.), and Department of Genetics (X.W., E.E.P., D.J.R., K.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Harvard Medical School, Boston, MA (A.R., D.T.P.)
| | - Evanthia E Pashos
- From the Cardiovascular Institute (X.W., E.E.P., D.J.R., K.M.), Department of Medicine (X.W., E.E.P., D.J.R., K.M.), and Department of Genetics (X.W., E.E.P., D.J.R., K.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Harvard Medical School, Boston, MA (A.R., D.T.P.)
| | - Daniel J Rader
- From the Cardiovascular Institute (X.W., E.E.P., D.J.R., K.M.), Department of Medicine (X.W., E.E.P., D.J.R., K.M.), and Department of Genetics (X.W., E.E.P., D.J.R., K.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Harvard Medical School, Boston, MA (A.R., D.T.P.)
| | - Kiran Musunuru
- From the Cardiovascular Institute (X.W., E.E.P., D.J.R., K.M.), Department of Medicine (X.W., E.E.P., D.J.R., K.M.), and Department of Genetics (X.W., E.E.P., D.J.R., K.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Harvard Medical School, Boston, MA (A.R., D.T.P.).
| |
Collapse
|
95
|
Li J, Chen C, Li Y, Matye DJ, Wang Y, Ding WX, Li T. Inhibition of insulin/PI3K/AKT signaling decreases adipose Sortilin 1 in mice and 3T3-L1 adipocytes. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2924-2933. [PMID: 28844948 DOI: 10.1016/j.bbadis.2017.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/08/2017] [Accepted: 08/22/2017] [Indexed: 10/19/2022]
Abstract
Sortilin 1(Sort1) is a vesicle trafficking receptor that mediates protein sorting in the endocytic and exocytic pathways. Sort1 is a component of the GLUT4 storage vesicles in adipocytes and is also involved in the regulation of adipogenesis. Sort1 protein is reduced in adipose of obese mice and humans, but the underlying cause is not fully understood. Here we report that insulin/PI3K/AKT signaling cascade critically regulates adipose Sort1 protein abundance. Administration of a PI3K inhibitor rapidly decreased Sort1 protein but not mRNA in adipose of chow-fed mice. In 3T3-L1 adipocytes, serum-starvation or inhibition of the PI3K/AKT signaling also decreased Sort1 protein without affecting Sort1 mRNA expression. Sort1 protein downregulation upon PI3K inhibition was blocked by pretreatment of MG132 but not Bafilomycin A1, suggesting that PI3K inhibition caused Sort1 degradation via the proteasome pathway. Using a phospho-specific Sort1 antibody, we showed that endogenous Sort1 was phosphorylated at S825 adjacent to the DXXLL sorting motif on the cytoplasmic tail. We demonstrated that mutagenesis that abolished Sort1 S825 phosphorylation decreased insulin-stimulated Sort1 localization on the plasma membrane and Sort1 protein stability in 3T3-L1 adipocytes. However, endogenous Sort1 phosphorylation at S825 was not affected by insulin stimulation or by inhibition of PI3K. In conclusion, this study revealed an important role of insulin signaling in regulating adipose Sort1 protein stability, and further suggests that impaired insulin signaling may underlie reduced adipose Sort1 in obesity. The cellular events downstream of insulin/PI3K/AKT signaling that mediates insulin regulation of Sort1 stability requires further investigation.
Collapse
Affiliation(s)
- Jibiao Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Cheng Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Yuan Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - David J Matye
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Yifeng Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
96
|
Oh TJ, Ahn CH, Kim BR, Kim KM, Moon JH, Lim S, Park KS, Lim C, Jang H, Choi SH. Circulating sortilin level as a potential biomarker for coronary atherosclerosis and diabetes mellitus. Cardiovasc Diabetol 2017; 16:92. [PMID: 28728579 PMCID: PMC5520342 DOI: 10.1186/s12933-017-0568-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/22/2017] [Indexed: 01/17/2023] Open
Abstract
Context A previous genome-wide association study showed that a genetic variant of sortilin was associated with the risk of coronary artery disease (CAD). However, the role of circulating sortilin is still unknown. We investigated the potential role of plasma sortilin as a biomarker for CAD and diabetes mellitus. Methods We enrolled statin-naïve subjects with CAD (n = 31) who underwent coronary artery bypass surgery and control subjects (n = 116) who were free from CAD as evaluated by coronary CT angiography. The presence of diabetes mellitus was evaluated and plasma sortilin levels were measured with a commercial ELISA kit. Results Plasma sortilin levels were higher in subjects with CAD and subjects with diabetes mellitus than in those without CAD or diabetes mellitus. Subjects in the highest sortilin tertile group were older and had higher glucose and HbA1c levels, but lipid profiles in the three tertile groups were comparable. Multivariable logistic regression analysis revealed that sortilin levels were independently associated with CAD. In addition, the receiver operating characteristic curve analysis showed that plasma sortilin levels could identify the presence of CAD or diabetes mellitus. Conclusions Elevated circulating sortilin levels are associated with CAD and diabetes mellitus and can be used as a biomarker of both diseases in statin-naïve subjects.
Collapse
Affiliation(s)
- Tae Jung Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, 300, Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea
| | - Chang Ho Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Bo-Rahm Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, 300, Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea
| | - Kyoung Min Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, 300, Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea
| | - Jae Hoon Moon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, 300, Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, 300, Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Cheong Lim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, South Korea.,Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - HakChul Jang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, 300, Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea. .,Department of Internal Medicine, Seoul National University Bundang Hospital, 300, Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea.
| |
Collapse
|
97
|
Genetics: Implications for Prevention and Management of Coronary Artery Disease. J Am Coll Cardiol 2017; 68:2797-2818. [PMID: 28007143 DOI: 10.1016/j.jacc.2016.10.039] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/12/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022]
Abstract
An exciting new era has dawned for the prevention and management of coronary artery disease (CAD) utilizing genetic risk variants. The recent identification of over 60 susceptibility loci for CAD confirms not only the importance of established risk factors, but also the existence of many novel causal pathways that are expected to improve our understanding of the genetic basis of CAD and facilitate the development of new therapeutic agents over time. Concurrently, Mendelian randomization studies have provided intriguing insights on the causal relationship between CAD-related traits, and highlight the potential benefits of long-term modifications of risk factors. Last, genetic risk scores of CAD may serve not only as prognostic, but also as predictive markers, and carry the potential to considerably improve the delivery of established prevention strategies. This review will summarize the evolution and discovery of genetic risk variants for CAD and their current and future clinical applications.
Collapse
|
98
|
Cheng HS, Besla R, Li A, Chen Z, Shikatani EA, Nazari-Jahantigh M, Hammoutène A, Nguyen MA, Geoffrion M, Cai L, Khyzha N, Li T, MacParland SA, Husain M, Cybulsky MI, Boulanger CM, Temel RE, Schober A, Rayner KJ, Robbins CS, Fish JE. Paradoxical Suppression of Atherosclerosis in the Absence of microRNA-146a. Circ Res 2017. [PMID: 28637783 PMCID: PMC5542783 DOI: 10.1161/circresaha.116.310529] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Inflammation is a key contributor to atherosclerosis. MicroRNA-146a (miR-146a) has been identified as a critical brake on proinflammatory nuclear factor κ light chain enhancer of activated B cells signaling in several cell types, including endothelial cells and bone marrow (BM)-derived cells. Importantly, miR-146a expression is elevated in human atherosclerotic plaques, and polymorphisms in the miR-146a precursor have been associated with risk of coronary artery disease. OBJECTIVE To define the role of endogenous miR-146a during atherogenesis. METHODS AND RESULTS Paradoxically, Ldlr-/- (low-density lipoprotein receptor null) mice deficient in miR-146a develop less atherosclerosis, despite having highly elevated levels of circulating proinflammatory cytokines. In contrast, cytokine levels are normalized in Ldlr-/-;miR-146a-/- mice receiving wild-type BM transplantation, and these mice have enhanced endothelial cell activation and elevated atherosclerotic plaque burden compared with Ldlr-/- mice receiving wild-type BM, demonstrating the atheroprotective role of miR-146a in the endothelium. We find that deficiency of miR-146a in BM-derived cells precipitates defects in hematopoietic stem cell function, contributing to extramedullary hematopoiesis, splenomegaly, BM failure, and decreased levels of circulating proatherogenic cells in mice fed an atherogenic diet. These hematopoietic phenotypes seem to be driven by unrestrained inflammatory signaling that leads to the expansion and eventual exhaustion of hematopoietic cells, and this occurs in the face of lower levels of circulating low-density lipoprotein cholesterol in mice lacking miR-146a in BM-derived cells. Furthermore, we identify sortilin-1(Sort1), a known regulator of circulating low-density lipoprotein levels in humans, as a novel target of miR-146a. CONCLUSIONS Our study reveals that miR-146a regulates cholesterol metabolism and tempers chronic inflammatory responses to atherogenic diet by restraining proinflammatory signaling in endothelial cells and BM-derived cells.
Collapse
Affiliation(s)
- Henry S Cheng
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Rickvinder Besla
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Angela Li
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Zhiqi Chen
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Eric A Shikatani
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Maliheh Nazari-Jahantigh
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Adel Hammoutène
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - My-Anh Nguyen
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Michele Geoffrion
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Lei Cai
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Nadiya Khyzha
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Tong Li
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Sonya A MacParland
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Mansoor Husain
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Myron I Cybulsky
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Chantal M Boulanger
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Ryan E Temel
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Andreas Schober
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Katey J Rayner
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Clinton S Robbins
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Jason E Fish
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.).
| |
Collapse
|
99
|
Sun Y, Danser AHJ, Lu X. (Pro)renin receptor as a therapeutic target for the treatment of cardiovascular diseases? Pharmacol Res 2017; 125:48-56. [PMID: 28532817 DOI: 10.1016/j.phrs.2017.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 02/08/2023]
Abstract
The discovery of the (pro)renin receptor [(P)RR] 15years ago stimulated ideas on prorenin being more than renin's inactive precursor. Indeed, binding of prorenin to the (P)RR induces a conformational change in the prorenin molecule, allowing it to display angiotensin-generating activity, and additionally results in intracellular signaling in an angiotensin-independent manner. However, the prorenin levels required to observe these angiotensin-dependent and -independent effects of the (P)RR are many orders above its in vivo concentrations, both under normal and pathological conditions. Given this requirement, the idea that the (P)RR has a function within the renin-angiotensin system (RAS) is now being abandoned. Instead, research is now focused on the (P)RR as an accessory protein of vacuolar H+-ATPase (V-ATPase), potentially determining its integrity. Acting as an adaptor between Frizzled co-receptor LRP6 and V-ATPase, the (P)RR appears to be indispensable for Wnt/β-catenin signaling, thus explaining why (P)RR deletion (unlike renin deletion) is lethal even when restricted to specific cells, such as cardiomyocytes, podocytes and smooth muscle cells. Furthermore, recent studies suggest that the (P)RR may play important roles in lipoprotein metabolism and overall energy metabolism. In this review, we summarize the controversial RAS-related effects of the (P)RR, and critically review the novel non-RAS-related functions of the (P)RR, ending with a discussion on the potential of targeting the (P)RR to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Yuan Sun
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China; Erasmus Medical Center, Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Rotterdam, The Netherlands
| | - A H Jan Danser
- Erasmus Medical Center, Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Rotterdam, The Netherlands
| | - Xifeng Lu
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
100
|
Physiological and therapeutic regulation of PCSK9 activity in cardiovascular disease. Basic Res Cardiol 2017; 112:32. [PMID: 28439730 PMCID: PMC5403857 DOI: 10.1007/s00395-017-0619-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/07/2017] [Indexed: 12/14/2022]
Abstract
Ischemic heart disease is the main cause of death worldwide and is accelerated by increased levels of low-density lipoprotein cholesterol (LDL-C). Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a potent circulating regulator of LDL-C through its ability to induce degradation of the LDL receptor (LDLR) in the lysosome of hepatocytes. Only in the last few years, a number of breakthroughs in the understanding of PCSK9 biology have been reported illustrating how PCSK9 activity is tightly regulated at several levels by factors influencing its transcription, secretion, or by extracellular inactivation and clearance. Two humanized antibodies directed against the LDLR-binding site in PCSK9 received approval by the European and US authorities and additional PCSK9 directed therapeutics are climbing up the phases of clinical trials. The first outcome data of the PCSK9 inhibitor evolocumab reported a significant reduction in the composite endpoint (cardiovascular death, myocardial infarction, or stroke) and further outcome data are awaited. Meanwhile, it became evident that PCSK9 has (patho)physiological roles in several cardiovascular cells. In this review, we summarize and discuss the recent biological and clinical data on PCSK9, the regulation of PCSK9, its extra-hepatic activities focusing on cardiovascular cells, molecular concepts to target PCSK9, and finally briefly summarize the data of recent clinical studies.
Collapse
|