51
|
Gurel Z, Luy MS, Luo Q, Arp NL, Erbe AK, Kesarwala AH, Fan J, Kimple RJ. Metabolic modulation of melanoma enhances the therapeutic potential of immune checkpoint inhibitors. Front Oncol 2024; 14:1428802. [PMID: 39435293 PMCID: PMC11491500 DOI: 10.3389/fonc.2024.1428802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Lactate is a pivotal molecule with diverse functions in the metabolic reprogramming of cancer cells. Beyond its role in metabolism, lactate exerts a modulatory effect within the tumor microenvironment; it is utilized by stromal cells and has been implicated in the suppression of the immune response against the tumor. Methods Using in vitro assays (including flow cytometry, live-cell imaging and metabolic analyses), the impact of lactate dehydrogenase inhibitors (LDHIs) on melanoma cells were assessed. The therapeutic potential of LDHIs with immune checkpoint inhibitors (ICIs) were tested in vivo in murine models of melanoma tumors. Results A potent anti-proliferative effect (via both cell cycle alterations and enhanced apoptosis) of LDHIs, Oxamate (Oxa) and methyl 1-hydroxy-6-phenyl-4-(trifluoromethyl)-1H-indole-2-carboxylate (NHI-2), was found upon treatment of melanoma cell lines. Using a combination of Oxa and NHI-2, a synergistic effect to inhibit proliferation, glycolysis, and ATP production was observed. Metabolic analysis revealed significant alteration in glycolysis and oxidative phosphorylation, while metabolite profiling emphasized consequential effects on lactate metabolism and induced energy depletion by LDHIs. Detection of increased RANTES and MCP-1, with Oxa and NHI-2 treatment, prompted the consideration of combining LDHIs with ICIs. In vivo studies using a murine B78 melanoma tumor model revealed a significant improvement in treatment efficacy when LDHIs were combined with ICIs. Conclusions These findings propose the potential of targeting lactate metabolism to enhance the efficacy of ICI treatments in patients with melanoma.
Collapse
Affiliation(s)
- Zafer Gurel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Michael S. Luy
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Qianyun Luo
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Nicholas L. Arp
- Morgridge Institute for Research, Madison, WI, United States
| | - Amy K. Erbe
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Aparna H. Kesarwala
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI, United States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Randall J. Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin (UW) Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
52
|
Mani NL, Weinberg SE, Chaudhuri S, Montauti E, Tang A, Iyer R, Fang D. Acidity induces durable enhancement of T reg cell suppressive functions for tumor immune evasion. Mol Immunol 2024; 174:57-68. [PMID: 39213947 PMCID: PMC11681611 DOI: 10.1016/j.molimm.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The microenvironment within solid tumors often becomes acidic due to various factors associated with abnormal metabolism and cellular activities, including increased lactate production as a result of dysregulated tumor glycolysis. Recently, we have identified multiple tumor microenvironment (TME) factors that potentiate regulatory T (Treg) cell function in evading anti-tumor immunosurveillance. Despite the strong correlation between lactate and acidity, the potential roles of acidity in intratumoral Treg cell adaptation and underlying molecular mechanisms have gone largely unstudied. In this study, we demonstrate that acidity significantly enhances immunosuppressive functions of nTreg cells, but not iTreg cells, without altering the expression of either FoxP3 or the cell surface receptors CD25, CTLA4, or GITR in these cells. Surprisingly, the addition of lactate, often considered a major contributor to increased acidity of the TME, completely abolished the acidity-induced enhancement of nTreg suppressive functions. Consistently, metabolic flux analyses showed elevated basal mitochondrial respiratory capacity and ATP-coupled respiration in acidity-treated nTreg cells without altering glycolytic capacity. Genome-wide transcriptome and metabolomics analyses revealed alterations in multiple metabolic pathways, particularly the one-carbon folate metabolism pathway, with reduced SAM, folate, and glutathione, in nTreg cells exposed to low pH conditions. Addition of a one-carbon metabolic contributor, formate, diminished the acidity-induced enhancement in nTreg cell suppressive functions, but neither SAM nor glutathione could reverse the phenotype. Remarkably, in vitro transient treatment of nTreg cells resulted in sustained enhancement of their functions, as evidenced by more vigorous tumor growth observed in mice adoptively receiving acidity-treated nTreg cells. Further analysis of intratumoral infiltrated T cells confirmed a significant reduction in CD8+ T cell frequency and their granzyme B production. In summary, our study elucidates how acidity-mediated metabolic reprogramming leads to sustained Treg-mediated tumor immune evasion.
Collapse
Affiliation(s)
- Nikita L Mani
- Department of Pathology, Northwestern University, USA; Center for Human Immunobiology, Northwestern University, USA
| | - Samuel E Weinberg
- Department of Pathology, Northwestern University, USA; Center for Human Immunobiology, Northwestern University, USA.
| | | | - Elena Montauti
- Department of Pathology, Northwestern University, USA; Department of Medicine Hematology and Oncology, University of California San Francisco, USA
| | - Amy Tang
- Department of Pathology, Northwestern University, USA; Center for Human Immunobiology, Northwestern University, USA
| | - Radhika Iyer
- Department of Pathology, Northwestern University, USA; Center for Human Immunobiology, Northwestern University, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University, USA; Center for Human Immunobiology, Northwestern University, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern Medicine, USA.
| |
Collapse
|
53
|
Yao Z, Zeng Y, Liu C, Jin H, Wang H, Zhang Y, Ding C, Chen G, Wu D. Focusing on CD8 + T-cell phenotypes: improving solid tumor therapy. J Exp Clin Cancer Res 2024; 43:266. [PMID: 39342365 PMCID: PMC11437975 DOI: 10.1186/s13046-024-03195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Vigorous CD8+ T cells play a crucial role in recognizing tumor cells and combating solid tumors. How T cells efficiently recognize and target tumor antigens, and how they maintain the activity in the "rejection" of solid tumor microenvironment, are major concerns. Recent advances in understanding of the immunological trajectory and lifespan of CD8+ T cells have provided guidance for the design of more optimal anti-tumor immunotherapy regimens. Here, we review the newly discovered methods to enhance the function of CD8+ T cells against solid tumors, focusing on optimizing T cell receptor (TCR) expression, improving antigen recognition by engineered T cells, enhancing signal transduction of the TCR-CD3 complex, inducing the homing of polyclonal functional T cells to tumors, reversing T cell exhaustion under chronic antigen stimulation, and reprogramming the energy and metabolic pathways of T cells. We also discuss how to participate in the epigenetic changes of CD8+ T cells to regulate two key indicators of anti-tumor responses, namely effectiveness and persistence.
Collapse
Affiliation(s)
- Zhouchi Yao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yayun Zeng
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cheng Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huimin Jin
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Wang
- Department of Scientific Research, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yue Zhang
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Chengming Ding
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Daichao Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
54
|
de Kivit S, Mensink M, Kostidis S, Derks RJE, Zaal EA, Heijink M, Verleng LJ, de Vries E, Schrama E, Blomberg N, Berkers CR, Giera M, Borst J. Immune suppression by human thymus-derived effector Tregs relies on glucose/lactate-fueled fatty acid synthesis. Cell Rep 2024; 43:114681. [PMID: 39180751 DOI: 10.1016/j.celrep.2024.114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/10/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
Regulatory T cells (Tregs) suppress pro-inflammatory conventional T cell (Tconv) responses. As lipids impact cell signaling and function, we compare the lipid composition of CD4+ thymus-derived (t)Tregs and Tconvs. Lipidomics reveal constitutive enrichment of neutral lipids in Tconvs and phospholipids in tTregs. TNFR2-co-stimulated effector tTregs and Tconvs are both glycolytic, but only in tTregs are glycolysis and the tricarboxylic acid (TCA) cycle linked to a boost in fatty acid (FA) synthesis (FAS), supported by relevant gene expression. FA chains in tTregs are longer and more unsaturated than in Tconvs. In contrast to Tconvs, tTregs effectively use either lactate or glucose for FAS and rely on this process for proliferation. FASN and SCD1, enzymes responsible for FAS and FA desaturation, prove essential for the ability of tTregs to suppress Tconvs. These data illuminate how effector tTregs can thrive in inflamed or cancerous tissues with limiting glucose but abundant lactate levels.
Collapse
Affiliation(s)
- Sander de Kivit
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| | - Mark Mensink
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Rico J E Derks
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Esther A Zaal
- Division of Cell Biology, Metabolism, and Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Marieke Heijink
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Lotte J Verleng
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Evert de Vries
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Ellen Schrama
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Celia R Berkers
- Division of Cell Biology, Metabolism, and Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Jannie Borst
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| |
Collapse
|
55
|
Zhang T, Chen L, Kueth G, Shao E, Wang X, Ha T, Williams DL, Li C, Fan M, Yang K. Lactate's impact on immune cells in sepsis: unraveling the complex interplay. Front Immunol 2024; 15:1483400. [PMID: 39372401 PMCID: PMC11449721 DOI: 10.3389/fimmu.2024.1483400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Lactate significantly impacts immune cell function in sepsis and septic shock, transcending its traditional view as just a metabolic byproduct. This review summarizes the role of lactate as a biomarker and its influence on immune cell dynamics, emphasizing its critical role in modulating immune responses during sepsis. Mechanistically, key lactate transporters like MCT1, MCT4, and the receptor GPR81 are crucial in mediating these effects. HIF-1α also plays a significant role in lactate-driven immune modulation. Additionally, lactate affects immune cell function through post-translational modifications such as lactylation, acetylation, and phosphorylation, which alter enzyme activities and protein functions. These interactions between lactate and immune cells are central to understanding sepsis-associated immune dysregulation, offering insights that can guide future research and improve therapeutic strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Linjian Chen
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Gatkek Kueth
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Emily Shao
- Program in Neuroscience, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tuanzhu Ha
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - David L. Williams
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Chuanfu Li
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Min Fan
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Kun Yang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
56
|
Xia RJ, Du XY, Shen LW, Ma JG, Xu SM, Fan RF, Qin JW, Yan L. Roles of the tumor microenvironment in the resistance to programmed cell death protein 1 inhibitors in patients with gastric cancer. World J Gastrointest Oncol 2024; 16:3820-3831. [PMID: 39350980 PMCID: PMC11438768 DOI: 10.4251/wjgo.v16.i9.3820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024] Open
Abstract
Despite the continuous developments and advancements in the treatment of gastric cancer (GC), which is one of the most prevalent types of cancer in China, the overall survival is still poor for most patients with advanced GC. In recent years, with the progress in tumor immunology research, attention has shifted toward immunotherapy as a therapeutic approach for GC. Programmed cell death protein 1 (PD-1) inhibitors, as novel immunosuppressive medications, have been widely utilized in the treatment of GC. However, many patients are still resistant to PD-1 inhibitors and experience recurrence in the advanced stages of PD-1 immunotherapy. To reduce the occurrence of drug resistance and recurrence in GC patients receiving PD-1 immunotherapy, to maximize the clinical activity of immunosuppressive drugs, and to elicit a lasting immune response, it is essential to research the tumor microenvironment mechanisms leading to PD-1 inhibitor resistance in GC patients. This article reviews the progress in studying the factors influencing the resistance to PD-1 inhibitors in the GC tumor microenvironment, aiming to provide insights and a basis for reducing resistance to PD-1 inhibitors for GC patients in the future.
Collapse
Affiliation(s)
- Ren-Jie Xia
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Medicine, Northwest Minzu University, Lanzhou 730050, Gansu Province, China
| | - Xiao-Yu Du
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Medicine, Northwest Minzu University, Lanzhou 730050, Gansu Province, China
| | - Li-Wen Shen
- Department of Medical Support Center, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Jian-Guo Ma
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Shu-Mei Xu
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Rui-Fang Fan
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Jian-Wei Qin
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Long Yan
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| |
Collapse
|
57
|
Khambholja K, Gehani M, Kothari R, Marulkar S. Prognostic value of tumour-associated regulatory T-cells as a biomarker in non-small cell lung cancer: a systematic review and meta-analysis. Syst Rev 2024; 13:233. [PMID: 39272135 PMCID: PMC11401299 DOI: 10.1186/s13643-024-02642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Tumour, nodes, and metastases (TNM) staging has been deficient in prognosticating in patients suffering from non-small cell lung cancer (NSCLC). To supplement TNM staging, this systematic review and meta-analysis aimed to evaluate the prognostic value of the regulatory T cells (Treg). METHODS A keyword search was conducted in MEDLINE and EMBASE for full-text original human studies from any region published in English during the last 12 years. Eligible for inclusion were studies evaluating the prognostic value of the number of Treg cells in NSCLC except case studies, case series, systematic reviews, and meta-analyses. Two reviewers (one reviewer used an automation tool) independently screened the studies and assessed risk-of-bias using the Quality in Prognosis Studies (QUIPS) tool. Meta-analysis was done for studies reporting significant multivariate hazard ratio (HR). RESULTS Out of 809 retrievals, 24 studies were included in the final review. The low number of Treg cells was found significantly associated with improved overall survival (pooled log OR, 1.646; 95% CI, 1.349, 1.944; p (2-tailed) < .001; SE, 0.1217), improved recurrence-free survival (HR, 1.99; 95% CI, 1.15, 3.46; p = .01), improved progression-free survival (pooled log OR, 2.231; 95% CI, 0.424, 4.038; p (2-tailed) .034; SE, 0.4200), and worse disease-free survival (pooled log OR, 0.992; 95% CI, 0.820, 1.163; p (2-tailed) .009; SE, 0.0135), especially when identified by forkhead box P3 (FOXP3), in any stage or non-metastatic NSCLC. CONCLUSION A low number of Treg cells indicated better survival, suggesting its potential use as a prognostic biomarker in NSCLC. SYSTEMATIC REVIEW REGISTRATION The protocol of this review was prospectively registered on PROSPERO on August 28, 2021, and was assigned the registration number CRD42021270598. The protocol can be accessed from PROSPERO website.
Collapse
Affiliation(s)
- Kapil Khambholja
- Department of Medical Writing, Catalyst Clinical Research, 2528 Independence Blvd, Suite 100, Wilmington, NC, 28412, USA
| | - Manish Gehani
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, Telangana, 500078, India.
| | - Rushabh Kothari
- Medical Oncology Department, Narayana Multispecialty Hospital, Opposite Police Station, Near Chakudiya Mahadev, Rakhial, Ahmedabad, Gujarat, 380023, India
| | - Sachin Marulkar
- Catalyst Clinical Research, 2528 Independence Blvd, Suite 100, Wilmington, NC, 28412, USA
| |
Collapse
|
58
|
He J, Li W, Wang J, Wu X, Zhang W, Lin J, Xiao B, Yu L, Liao L, Wang S, Wang W, Lin Y, Hong X, Xing Y, Pan Z, Peng J. MCT4 is an independent prognostic factor and affects immune cell infiltration in patients with colorectal liver oligometastases. Clin Transl Oncol 2024:10.1007/s12094-024-03720-0. [PMID: 39266876 DOI: 10.1007/s12094-024-03720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Monocarboxylate transporter 4 (MCT4) is a novel biomarker related to the level of immune cell infiltration, but its impact on tumor immune microenvironment (TIME) of colorectal liver oligometastases (CLO) remains unclear. The aim of this study was to assess MCT4 expression in primary tumor and liver oligometastases, investigate its impact on immune cell infiltration and its prognostic value for CLO patients undergoing liver resection. METHODS We retrospectively selected 135 CLO patients who underwent curative liver resection between June 1999 and December 2016, and samples included 74 primary tumor tissues and 122 liver metastases. Immunohistochemistry (IHC) was performed to detect MCT4 expression in paraffin-embedded specimens and tyramine signal amplification (TSA) was used to detect the density of tumor-infiltrating lymphocytes, including CD3 + , CD8 + and Foxp3 + . Recurrence-free survival (RFS) and overall survival (OS) were analyzed using the Kaplan-Meier method and log-rank test, and independent prognostic factors were identified with Cox regression modeling. RESULTS Survival analysis indicated that CLO patients with low MCT4 expression had better 3-year RFS and 3-year OS rates than those with high MCT4 expression. Multivariate analysis indicated that high MCT4 expression was independently associated with poor RFS and OS. High MCT4 expression was associated with a lower number of intratumoral CD3 + /CD8 + T cells and was associated with higher Foxp3 + T cells infiltration. Patients with low MCT4 expression and high levels of differential immune infiltration had longer survival. CONCLUSIONS MCT4 overexpression was associated with an unfavorable prognosis in patients with CLO and MCT4 expression level had an impact on intratumoral immune infiltration degree. A novel parameter that combined MCT4 expression level and differential immune infiltration level was constructed to stratify patients with CLO into different risk groups.
Collapse
Affiliation(s)
- Jiahua He
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Weihao Li
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Jiayu Wang
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Xiaojun Wu
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Weili Zhang
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Junzhong Lin
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Binyi Xiao
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Long Yu
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Leen Liao
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Song Wang
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Weifeng Wang
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Yuguang Lin
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Xuanlin Hong
- Medical College, Shaoguan University, Shaoguan, Guangdong, People's Republic of China
| | - Yue Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Zhizhong Pan
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China.
| | - Jianhong Peng
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
59
|
Zhou J, Gu J, Qian Q, Zhang Y, Huang T, Li X, Liu Z, Shao Q, Liang Y, Qiao L, Xu X, Chen Q, Xu Z, Li Y, Gao J, Pan Y, Wang Y, O’Connor R, Hippen KL, Lu L, Blazar BR. Lactate supports Treg function and immune balance via MGAT1 effects on N-glycosylation in the mitochondria. J Clin Invest 2024; 134:e175897. [PMID: 39264847 PMCID: PMC11473165 DOI: 10.1172/jci175897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
Current research reports that lactate affects Treg metabolism, although the precise mechanism has only been partially elucidated. In this study, we presented evidence demonstrating that elevated lactate levels enhanced cell proliferation, suppressive capabilities, and oxidative phosphorylation (OXPHOS) in human Tregs. The expression levels of Monocarboxylate Transporters 1/2/4 (MCT1/2/4) regulate intracellular lactate concentration, thereby influencing the varying responses observed in naive Tregs and memory Tregs. Through mitochondrial isolation, sequencing, and analysis of human Tregs, we determined that α-1,3-Mannosyl-Glycoprotein 2-β-N-Acetylglucosaminyltransferase (MGAT1) served as the pivotal driver initiating downstream N-glycosylation events involving progranulin (GRN) and hypoxia-upregulated 1 (HYOU1), consequently enhancing Treg OXPHOS. The mechanism by which MGAT1 was upregulated in mitochondria depended on elevated intracellular lactate that promoted the activation of XBP1s. This, in turn, supported MGAT1 transcription as well as the interaction of lactate with the translocase of the mitochondrial outer membrane 70 (TOM70) import receptor, facilitating MGAT1 translocation into mitochondria. Pretreatment of Tregs with lactate reduced mortality in a xenogeneic graft-versus-host disease (GvHD) model. Together, these findings underscored the active regulatory role of lactate in human Treg metabolism through the upregulation of MGAT1 transcription and its facilitated translocation into the mitochondria.
Collapse
Affiliation(s)
- Jinren Zhou
- Jiangsu Key Laboratory of Organ transplantation and transplant immunology; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences; Hepatobiliary Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jian Gu
- Jiangsu Key Laboratory of Organ transplantation and transplant immunology; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences; Hepatobiliary Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qufei Qian
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yigang Zhang
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tianning Huang
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xiangyu Li
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhuoqun Liu
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qing Shao
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yuan Liang
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Lei Qiao
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaozhang Xu
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qiuyang Chen
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zibo Xu
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yu Li
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ji Gao
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yufeng Pan
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yiming Wang
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Roderick O’Connor
- Center for Cellular Immunotherapies and Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Keli L. Hippen
- University of Minnesota, Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, Minnesota, USA
| | - Ling Lu
- Jiangsu Key Laboratory of Organ transplantation and transplant immunology; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences; Hepatobiliary Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Bruce R. Blazar
- University of Minnesota, Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, Minnesota, USA
| |
Collapse
|
60
|
Zhang H, Felthaus O, Eigenberger A, Klein S, Prantl L. Treg Cell Therapeutic Strategies for Breast Cancer: Holistic to Local Aspects. Cells 2024; 13:1526. [PMID: 39329710 PMCID: PMC11429654 DOI: 10.3390/cells13181526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Regulatory T cells (Tregs) play a key role in maintaining immune homeostasis and preventing autoimmunity through their immunosuppressive function. There have been numerous reports confirming that high levels of Tregs in the tumor microenvironment (TME) are associated with a poor prognosis, highlighting their role in promoting an immunosuppressive environment. In breast cancer (BC), Tregs interact with cancer cells, ultimately leading to the suppression of immune surveillance and promoting tumor progression. This review discusses the dual role of Tregs in breast cancer, and explores the controversies and therapeutic potential associated with targeting these cells. Researchers are investigating various strategies to deplete or inhibit Tregs, such as immune checkpoint inhibitors, cytokine antagonists, and metabolic inhibition. However, the heterogeneity of Tregs and the variable precision of treatments pose significant challenges. Understanding the functional diversity of Tregs and the latest advances in targeted therapies is critical for the development of effective therapies. This review highlights the latest approaches to Tregs for BC treatment that both attenuate Treg-mediated immunosuppression in tumors and maintain immune tolerance, and advocates precise combination therapy strategies to optimize breast cancer outcomes.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany (L.P.)
| | | | | | | | | |
Collapse
|
61
|
Zhang W, Li L, Wu Y, Li C, Xu Z, Zhang N, Wang X, Zhao Y, Zu T, He Q, Jiao J, Zheng R. Biomimetic Iron-Based Nanoparticles Remodel Immunosuppressive Tumor Microenvironment for Metabolic Immunotherapy. Int J Nanomedicine 2024; 19:9333-9349. [PMID: 39286354 PMCID: PMC11403131 DOI: 10.2147/ijn.s473463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Immunotherapy has led to a paradigm shift in reinvigorating treatment of cancer. Nevertheless, tumor associated macrophages (TAMs) experience functional polarization on account of the generation of suppressive metabolites, contributing to impaired antitumor immune responses. Methods Hence, metabolic reprogramming of tumor microenvironment (TME) can synergistically improve the efficacy of anti-tumor immunotherapy. Herein, we engineered an iron-based nanoplatform termed ERFe3O4 NPs. This platform features hollow Fe3O4 nanoparticles loaded with the natural product emodin, the outer layer is coated with red blood cell membrane (mRBCs) inserted with DSPE-PEG2000-galactose. This effectively modulates lactate production, thereby reversing the tumor immune suppressive microenvironment (TIME). Results The ERFe3O4 NPs actively targeted TAMs on account of their ability to bind to M2-like TAMs with high expression of galectin (Mgl). ERFe3O4 NPs achieved efficient ability to reverse TIME via the production of reducing lactate and prompting enrichment iron of high concentrations. Furthermore, ERFe3O4 NPs resulted in heightened expression of CD16/32 and enhanced TNF-α release, indicating promotion of M1 TAMs polarization. In vitro and in vivo experiments revealed that ERFe3O4 NPs induced significant apoptosis of tumor cells and antitumor immune response. Discussion This study combines Traditional Chinese Medicine (TCM) with nanomaterials to synergistically reprogram TAMs and reverse TIME, opening up new ideas for improving anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Wenyu Zhang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| | - Linquan Li
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| | - Yaguang Wu
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| | - Chengzhilin Li
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| | - Zi'ang Xu
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| | - Nianlei Zhang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| | - Xinyu Wang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| | - Yingchun Zhao
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| | - Tingjian Zu
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| | - Qingbin He
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Runxiao Zheng
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| |
Collapse
|
62
|
Zhang H, Li S, Wang D, Liu S, Xiao T, Gu W, Yang H, Wang H, Yang M, Chen P. Metabolic reprogramming and immune evasion: the interplay in the tumor microenvironment. Biomark Res 2024; 12:96. [PMID: 39227970 PMCID: PMC11373140 DOI: 10.1186/s40364-024-00646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024] Open
Abstract
Tumor cells possess complex immune evasion mechanisms to evade immune system attacks, primarily through metabolic reprogramming, which significantly alters the tumor microenvironment (TME) to modulate immune cell functions. When a tumor is sufficiently immunogenic, it can activate cytotoxic T-cells to target and destroy it. However, tumors adapt by manipulating their metabolic pathways, particularly glucose, amino acid, and lipid metabolism, to create an immunosuppressive TME that promotes immune escape. These metabolic alterations impact the function and differentiation of non-tumor cells within the TME, such as inhibiting effector T-cell activity while expanding regulatory T-cells and myeloid-derived suppressor cells. Additionally, these changes lead to an imbalance in cytokine and chemokine secretion, further enhancing the immunosuppressive landscape. Emerging research is increasingly focusing on the regulatory roles of non-tumor cells within the TME, evaluating how their reprogrammed glucose, amino acid, and lipid metabolism influence their functional changes and ultimately aid in tumor immune evasion. Despite our incomplete understanding of the intricate metabolic interactions between tumor and non-tumor cells, the connection between these elements presents significant challenges for cancer immunotherapy. This review highlights the impact of altered glucose, amino acid, and lipid metabolism in the TME on the metabolism and function of non-tumor cells, providing new insights that could facilitate the development of novel cancer immunotherapies.
Collapse
Affiliation(s)
- Haixia Zhang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shizhen Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Dan Wang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Siyang Liu
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Tengfei Xiao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Wangning Gu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Hongmin Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China.
| | - Minghua Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Pan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China.
| |
Collapse
|
63
|
De Martino M, Rathmell JC, Galluzzi L, Vanpouille-Box C. Cancer cell metabolism and antitumour immunity. Nat Rev Immunol 2024; 24:654-669. [PMID: 38649722 PMCID: PMC11365797 DOI: 10.1038/s41577-024-01026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Accumulating evidence suggests that metabolic rewiring in malignant cells supports tumour progression not only by providing cancer cells with increased proliferative potential and an improved ability to adapt to adverse microenvironmental conditions but also by favouring the evasion of natural and therapy-driven antitumour immune responses. Here, we review cancer cell-intrinsic and cancer cell-extrinsic mechanisms through which alterations of metabolism in malignant cells interfere with innate and adaptive immune functions in support of accelerated disease progression. Further, we discuss the potential of targeting such alterations to enhance anticancer immunity for therapeutic purposes.
Collapse
Affiliation(s)
- Mara De Martino
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
| |
Collapse
|
64
|
Zhou J, Ma X, Liu X, Liu Y, Fu J, Qi Y, Liu H. The impact of histone lactylation on the tumor microenvironment and metabolic pathways and its potential in cancer therapy. Genes Genomics 2024; 46:991-1011. [PMID: 39127851 DOI: 10.1007/s13258-024-01554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND The complexity of cancer is intricately linked to its multifaceted biological processes, including the roles of the tumor microenvironment (TME) as well as genetic and metabolic regulation. Histone lactylation has recently emerged as a novel epigenetic modification mechanism that plays a pivotal role in regulating cancer initiation, proliferation, invasion, and metastasis. OBJECTIVE This review aims to elucidate the role of histone lactylation in modulating various aspects of tumor biology, including DNA repair mechanisms, glycolytic metabolic abnormalities, functions of non-tumor cells in the TME, and the promotion of tumor inflammatory responses and immune escape. Additionally, the review explores potential therapeutic strategies targeting histone lactylation. METHODS A comprehensive literature review was performed, analyzing recent findings on histone lactylation and its impact on cancer biology. This involved a systematic examination of studies focusing on biochemical pathways, cellular interactions, and clinical implications related to histone lactylation. RESULTS Histone lactylation was identified as a critical regulator of tumor cell DNA repair mechanisms and glycolytic metabolic abnormalities. It also significantly influences the functions of non-tumor cells within the TME, promoting tumor inflammatory responses and immune escape. Moreover, histone lactylation acts as a multifunctional biological signaling molecule impacting immune responses within the TME. Various cell types within the TME, including T cells and macrophages, were found to regulate tumor growth and immune escape mechanisms through lactylation. CONCLUSION Histone lactylation offers a novel perspective on tumor metabolism and its role in cancer development. It presents promising opportunities for the development of innovative cancer therapies. This review underscores the potential of histone lactylation as a therapeutic target, paving the way for new strategies in cancer treatment.
Collapse
Affiliation(s)
- Juanhong Zhou
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Xinyun Ma
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Xiaofeng Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Yang Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Jiaojiao Fu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Yaling Qi
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Huiling Liu
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
65
|
Wu W, Li H, Chen W, Hu Y, Wang Z, She W, Huang L, Liu Y, Jiang P. CAR T Cell Membrane Camouflaged Nanocatalyst Augments CAR T Cell Therapy Efficacy Against Solid Tumor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401299. [PMID: 38746996 DOI: 10.1002/smll.202401299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/28/2024] [Indexed: 10/01/2024]
Abstract
The immunosuppressive tumor microenvironment (TME) reduces the chimeric antigen receptor (CAR) T-cell therapy against solid tumors. Here, a CAR T cell membrane-camouflaged nanocatalyst (ACSP@TCM) is prepared to augment CAR T cell therapy efficacy against solid tumors. ACSP@TCM is prepared by encapsulating core/shell Au/Cu2- xSe and 3-bromopyruvate with a CAR T cell membrane. It is demonstrated that the CAR T cell membrane camouflaging has much better-targeting effect than the homologous tumors cell membrane camouflaging. ACSP@TCM has an appealing synergistic chemodynamic/photothermal therapy (CDT/PTT) effect that can induce the immunogenic cell death (ICD) of NALM 6 cells. Moreover, 3-bromopyruvate can inhibit the efflux of lactic acid by inhibiting the glycolysis process, regulating the acidity of TME, and providing a more favorable environment for the survival of CAR T cells. In addition, the photoacoustic (PA) imaging and computed tomography (CT) imaging performance can guide the ACSP@TCM-mediated tumor therapy. The results demonstrated that the ACSP@TCM significantly enhanced the CAR T cell therapy efficacy against NALM 6 solid tumor mass, and completely eliminated tumors. This work provides an effective tumor strategy for CAR T cell therapy in solid tumors.
Collapse
Affiliation(s)
- Wenjing Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Haimei Li
- Department of Orthopedics Trauma and Microsurgery, School of Pharmaceutical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, P. R. China
| | - Wenqi Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yulin Hu
- Department of Orthopedics Trauma and Microsurgery, School of Pharmaceutical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, P. R. China
| | - Zichen Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Wenyan She
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Liang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, P. R. China
- Tianjin Institutes of Health Science, Tianjin, 301600, P. R. China
| | - Yi Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Peng Jiang
- Department of Orthopedics Trauma and Microsurgery, School of Pharmaceutical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, P. R. China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan, 430071, P. R. China
| |
Collapse
|
66
|
Capatina AL, Malcolm JR, Stenning J, Moore RL, Bridge KS, Brackenbury WJ, Holding AN. Hypoxia-induced epigenetic regulation of breast cancer progression and the tumour microenvironment. Front Cell Dev Biol 2024; 12:1421629. [PMID: 39282472 PMCID: PMC11392762 DOI: 10.3389/fcell.2024.1421629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
The events that control breast cancer progression and metastasis are complex and intertwined. Hypoxia plays a key role both in oncogenic transformation and in fueling the metastatic potential of breast cancer cells. Here we review the impact of hypoxia on epigenetic regulation of breast cancer, by interfering with multiple aspects of the tumour microenvironment. The co-dependent relationship between oxygen depletion and metabolic shift to aerobic glycolysis impacts on a range of enzymes and metabolites available in the cell, promoting posttranslational modifications of histones and chromatin, and changing the gene expression landscape to facilitate tumour development. Hormone signalling, particularly through ERα, is also tightly regulated by hypoxic exposure, with HIF-1α expression being a prognostic marker for therapeutic resistance in ER+ breast cancers. This highlights the strong need to understand the hypoxia-endocrine signalling axis and exploit it as a therapeutic target. Furthermore, hypoxia has been shown to enhance metastasis in TNBC cells, as well as promoting resistance to taxanes, radiotherapy and even immunotherapy through microRNA regulation and changes in histone packaging. Finally, several other mediators of the hypoxic response are discussed. We highlight a link between ionic dysregulation and hypoxia signalling, indicating a potential connection between HIF-1α and tumoural Na+ accumulation which would be worth further exploration; we present the role of Ca2+ in mediating hypoxic adaptation via chromatin remodelling, transcription factor recruitment and changes in signalling pathways; and we briefly summarise some of the findings regarding vesicle secretion and paracrine induced epigenetic reprogramming upon hypoxic exposure in breast cancer. By summarising these observations, this article highlights the heterogeneity of breast cancers, presenting a series of pathways with potential for therapeutic applications.
Collapse
Affiliation(s)
| | - Jodie R Malcolm
- Department of Biology, University of York, York, United Kingdom
| | - Jack Stenning
- Department of Biology, University of York, York, United Kingdom
| | - Rachael L Moore
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Katherine S Bridge
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - William J Brackenbury
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Andrew N Holding
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
67
|
Chang S, Wang Z, An T. T-Cell Metabolic Reprogramming in Atherosclerosis. Biomedicines 2024; 12:1844. [PMID: 39200308 PMCID: PMC11352190 DOI: 10.3390/biomedicines12081844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Atherosclerosis is a key pathological basis for cardiovascular diseases, significantly influenced by T-cell-mediated immune responses. T-cells differentiate into various subtypes, such as pro-inflammatory Th1/Th17 and anti-inflammatory Th2/Treg cells. The imbalance between these subtypes is critical for the progression of atherosclerosis (AS). Recent studies indicate that metabolic reprogramming within various microenvironments can shift T-cell differentiation towards pro-inflammatory or anti-inflammatory phenotypes, thus influencing AS progression. This review examines the roles of pro-inflammatory and anti-inflammatory T-cells in atherosclerosis, focusing on how their metabolic reprogramming regulates AS progression and the associated molecular mechanisms of mTOR and AMPK signaling pathways.
Collapse
Affiliation(s)
| | | | - Tianhui An
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.C.); (Z.W.)
| |
Collapse
|
68
|
You S, Li S, Zeng L, Song J, Li Z, Li W, Ni H, Xiao X, Deng W, Li H, Lin W, Liang C, Zheng Y, Cheng SC, Xiao N, Tong M, Yu R, Huang J, Huang H, Xu H, Han J, Ren J, Mao K. Lymphatic-localized Treg-mregDC crosstalk limits antigen trafficking and restrains anti-tumor immunity. Cancer Cell 2024; 42:1415-1433.e12. [PMID: 39029466 DOI: 10.1016/j.ccell.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/29/2024] [Accepted: 06/23/2024] [Indexed: 07/21/2024]
Abstract
The tumor microenvironment (TME) has a significant impact on tumor growth and immunotherapy efficacies. However, the precise cellular interactions and spatial organizations within the TME that drive these effects remain elusive. Using advanced multiplex imaging techniques, we have discovered that regulatory T cells (Tregs) accumulate around lymphatic vessels in the peripheral tumor stroma. This localized accumulation is facilitated by mature dendritic cells enriched in immunoregulatory molecules (mregDCs), which promote chemotaxis of Tregs, establishing a peri-lymphatic Treg-mregDC niche. Within this niche, mregDCs facilitate Treg activation, which in turn restrains the trafficking of tumor antigens to the draining mesenteric lymph nodes, thereby impeding the initiation of anti-tumor adaptive immune responses. Disrupting Treg recruitment to mregDCs inhibits tumor progression. Our study provides valuable insights into the organization of TME and how local crosstalk between lymphoid and myeloid cells suppresses anti-tumor immune responses.
Collapse
Affiliation(s)
- Siyuan You
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Shuqin Li
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Lingsu Zeng
- Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China; Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Xiamen, Fujian 361004, China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Jinsheng Song
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Zifeng Li
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Weiyun Li
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Hengxiao Ni
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Xu Xiao
- School of Informatics, Xiamen University, Xiamen, Fujian 361005, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Wenbo Deng
- Key Laboratory of Reproductive Health Research, Fujian Province University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Hongye Li
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Wenbo Lin
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Chenyu Liang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Yanfei Zheng
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Shih-Chin Cheng
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China; Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China; Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Mengsha Tong
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Rongshan Yu
- School of Informatics, Xiamen University, Xiamen, Fujian 361005, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Jialiang Huang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Hongling Huang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Hongzhi Xu
- Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China; Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Xiamen, Fujian 361004, China; Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Jianlin Ren
- Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China; Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Xiamen, Fujian 361004, China; Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Kairui Mao
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China; Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China; Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
69
|
Wang G, Shen X, Jin W, Song C, Dong M, Zhou Z, Wang X. Elucidating the role of S100A10 in CD8 + T cell exhaustion and HCC immune escape via the cPLA2 and 5-LOX axis. Cell Death Dis 2024; 15:573. [PMID: 39117605 PMCID: PMC11310305 DOI: 10.1038/s41419-024-06895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with a complex immune evasion mechanism posing a challenge to treatment. The role of the S100A10 gene in various cancers has garnered significant attention. This study aims to elucidate the impact of S100A10 on CD8+ T cell exhaustion via the cPLA2 and 5-LOX axis, thereby elucidating its role in immune evasion in HCC. By analyzing the HCC-related data from the GEO and TCGA databases, we identified differentially expressed genes associated with lipid metabolism and developed a prognostic risk model. Subsequently, through RNA-seq and PPI analyses, we determined vital lipid metabolism genes and downstream factors S100A10, ACOT7, and SMS, which were significantly correlated with CD8+ T cell infiltration. Given the most significant expression differences, we selected S100A10 for further investigation. Both in vitro and in vivo experiments were conducted, including co-culture experiments of CD8+ T cells with MHCC97-L cells, Co-IP experiments, and validation in an HCC mouse model. S100A10 was significantly overexpressed in HCC tissues and potentially regulates CD8+ T cell exhaustion and lipid metabolism reprogramming through the cPLA2 and 5-LOX axis. Silencing S100A10 could inhibit CD8+ T cell exhaustion, further suppressing immune evasion in HCC. S100A10 may activate the cPLA2 and 5-LOX axis, initiating lipid metabolism reprogramming and upregulating LTB4 levels, thus promoting CD8+ T cell exhaustion in HCC tissues, facilitating immune evasion by HCC cells, ultimately impacting the growth and migration of HCC cells. This research highlights the critical role of S100A10 via the cPLA2 and 5-LOX axis in immune evasion in HCC, providing new theoretical foundations and potential targets for diagnosing and treating HCC.
Collapse
Affiliation(s)
- Ganggang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Xiaowei Shen
- Department of General Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, QingPu District Central Hospital Shanghai, No. 1158, Gong Yuan Dong Road, Shanghai, 201700, China
| | - Wenzhi Jin
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Chao Song
- Department of General Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, QingPu District Central Hospital Shanghai, No. 1158, Gong Yuan Dong Road, Shanghai, 201700, China
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhijie Zhou
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Xiaoliang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China.
| |
Collapse
|
70
|
Nie Q, Cao H, Yang J, Liu T, Wang B. Integration RNA bulk and single cell RNA sequencing to explore the change of glycolysis-related immune microenvironment and construct prognostic signature in head and neck squamous cell carcinoma. Transl Oncol 2024; 46:102021. [PMID: 38850799 PMCID: PMC11220558 DOI: 10.1016/j.tranon.2024.102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/26/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Glycolysis is an indispensable process for tumor cell,but the effect of glycolysis on the prognosis and immune cell infiltration of head and neck squamous cell carcinoma is not clear. METHODS Based on RNA bulk and single cell RNA sequencing data of head and neck squamous cell carcinoma from The Cancer Genome Atlas(TCGA) and GSE195832, the effect of glycolysis level on immune cell infiltration was analyzed. Then, we obtained the prognostic genes related to glycolysis through survival analysis to construct prognostic risk signature. Our sample and GSE65858 datasets are used as external verification datasets to verify the validity of the signature. Finally, we used Western blot and cell function assays to determine the relationship between risk genes and glycolysis and the function of prognostic genes. RESULT The level of glycolysis was related to the prognosis of head and neck tumors (P = 0.0044). The results of immune infiltration analysis of TCGA database showed that high level glycolysis subgroup had less infiltration of macrophages, T cells and monocytes. Results of single cell sequencing analysis validates the above results. Additionally, Five risk genes(MUCL1,TRIML2,RAB3B,SPINK6,IGSF11) were selected to construct signature.Risk score was an independent prognostic factor(P < 0.01). The external validation set also shows the same result. In vitro functional and Western blot assays confirmed that the above five genes affect tumor function and related to the process of glycolysis. CONCLUSION Glycolysis-related risk signatures can be used to predict the prognosis and immune infiltration of head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Qian Nie
- Department of Otorhinolaryngology, The second Hospital of Hebei Medical University, Hebei 050000, China
| | - Huan Cao
- Department of Otorhinolaryngology, The second Hospital of Hebei Medical University, Hebei 050000, China
| | - Jianwang Yang
- Department of Otorhinolaryngology, The second Hospital of Hebei Medical University, Hebei 050000, China
| | - Tao Liu
- Department of Otorhinolaryngology, The second Hospital of Hebei Medical University, Hebei 050000, China
| | - Baoshan Wang
- Department of Otorhinolaryngology, The second Hospital of Hebei Medical University, Hebei 050000, China.
| |
Collapse
|
71
|
Liu W, Zhou H, Lai W, Hu C, Xu R, Gu P, Luo M, Zhang R, Li G. The immunosuppressive landscape in tumor microenvironment. Immunol Res 2024; 72:566-582. [PMID: 38691319 DOI: 10.1007/s12026-024-09483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Recent advances in cancer immunotherapy, especially immune checkpoint inhibitors (ICIs), have revolutionized the clinical outcome of many cancer patients. Despite the fact that impressive progress has been made in recent decades, the response rate remains unsatisfactory, and many patients do not benefit from ICIs. Herein, we summarized advanced studies and the latest insights on immune inhibitory factors in the tumor microenvironment. Our in-depth discussion and updated landscape of tumor immunosuppressive microenvironment may provide new strategies for reversing tumor immune evasion, enhancing the efficacy of ICIs therapy, and ultimately achieving a better clinical outcome.
Collapse
Affiliation(s)
- Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Rufu Xu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Peng Gu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Menglin Luo
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China.
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China.
| |
Collapse
|
72
|
Thomas P, Paris P, Pecqueur C. Arming Vδ2 T Cells with Chimeric Antigen Receptors to Combat Cancer. Clin Cancer Res 2024; 30:3105-3116. [PMID: 38747974 PMCID: PMC11292201 DOI: 10.1158/1078-0432.ccr-23-3495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/19/2024] [Accepted: 04/18/2024] [Indexed: 08/02/2024]
Abstract
Immunotherapy has emerged as a promising approach in the field of cancer treatment, with chimeric antigen receptor (CAR) T-cell therapy demonstrating remarkable success. However, challenges such as tumor antigen heterogeneity, immune evasion, and the limited persistence of CAR-T cells have prompted the exploration of alternative cell types for CAR-based strategies. Gamma delta T cells, a unique subset of lymphocytes with inherent tumor recognition capabilities and versatile immune functions, have garnered increasing attention in recent years. In this review, we present how arming Vδ2-T cells might be the basis for next-generation immunotherapies against solid tumors. Following a comprehensive overview of γδ T-cell biology and innovative CAR engineering strategies, we discuss the clinical potential of Vδ2 CAR-T cells in overcoming the current limitations of immunotherapy in solid tumors. Although the applications of Vδ2 CAR-T cells in cancer research are relatively in their infancy and many challenges are yet to be identified, Vδ2 CAR-T cells represent a promising breakthrough in cancer immunotherapy.
Collapse
Affiliation(s)
- Pauline Thomas
- Nantes Université, CRCI2NA, INSERM, CNRS, Nantes, France
| | - Pierre Paris
- Nantes Université, CRCI2NA, INSERM, CNRS, Nantes, France
| | | |
Collapse
|
73
|
Du G, Dou C, Sun P, Wang S, Liu J, Ma L. Regulatory T cells and immune escape in HCC: understanding the tumor microenvironment and advancing CAR-T cell therapy. Front Immunol 2024; 15:1431211. [PMID: 39136031 PMCID: PMC11317284 DOI: 10.3389/fimmu.2024.1431211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Liver cancer, which most commonly manifests as hepatocellular carcinoma (HCC), is the sixth most common cancer in the world. In HCC, the immune system plays a crucial role in the growth and proliferation of tumor cells. HCC achieve immune escape through the tumor microenvironment, which significantly promotes the development of this cancer. Here, this article introduces and summarizes the functions and effects of regulatory T cells (Tregs) in the tumor microenvironment, highlighting how Tregs inhibit and regulate the functions of immune and tumor cells, cytokines, ligands and receptors, etc, thereby promoting tumor immune escape. In addition, it discusses the mechanism of CAR-T therapy for HCC and elaborate on the relationship between CAR-T and Tregs.
Collapse
Affiliation(s)
- Guangtan Du
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Cunmiao Dou
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Peng Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jia Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Leina Ma
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| |
Collapse
|
74
|
Nicolini A, Ferrari P. Involvement of tumor immune microenvironment metabolic reprogramming in colorectal cancer progression, immune escape, and response to immunotherapy. Front Immunol 2024; 15:1353787. [PMID: 39119332 PMCID: PMC11306065 DOI: 10.3389/fimmu.2024.1353787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 08/10/2024] Open
Abstract
Metabolic reprogramming is a k`ey hallmark of tumors, developed in response to hypoxia and nutrient deficiency during tumor progression. In both cancer and immune cells, there is a metabolic shift from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, also known as the Warburg effect, which then leads to lactate acidification, increased lipid synthesis, and glutaminolysis. This reprogramming facilitates tumor immune evasion and, within the tumor microenvironment (TME), cancer and immune cells collaborate to create a suppressive tumor immune microenvironment (TIME). The growing interest in the metabolic reprogramming of the TME, particularly its significance in colorectal cancer (CRC)-one of the most prevalent cancers-has prompted us to explore this topic. CRC exhibits abnormal glycolysis, glutaminolysis, and increased lipid synthesis. Acidosis in CRC cells hampers the activity of anti-tumor immune cells and inhibits the phagocytosis of tumor-associated macrophages (TAMs), while nutrient deficiency promotes the development of regulatory T cells (Tregs) and M2-like macrophages. In CRC cells, activation of G-protein coupled receptor 81 (GPR81) signaling leads to overexpression of programmed death-ligand 1 (PD-L1) and reduces the antigen presentation capability of dendritic cells. Moreover, the genetic and epigenetic cell phenotype, along with the microbiota, significantly influence CRC metabolic reprogramming. Activating RAS mutations and overexpression of epidermal growth factor receptor (EGFR) occur in approximately 50% and 80% of patients, respectively, stimulating glycolysis and increasing levels of hypoxia-inducible factor 1 alpha (HIF-1α) and MYC proteins. Certain bacteria produce short-chain fatty acids (SCFAs), which activate CD8+ cells and genes involved in antigen processing and presentation, while other mechanisms support pro-tumor activities. The use of immune checkpoint inhibitors (ICIs) in selected CRC patients has shown promise, and the combination of these with drugs that inhibit aerobic glycolysis is currently being intensively researched to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Paola Ferrari
- Unit of Oncology, Department of Medical and Oncological Area, Azienda Ospedaliera-Universitaria Pisana, Pisa, Italy
| |
Collapse
|
75
|
Han X, Zhu Y, Ke J, Zhai Y, Huang M, Zhang X, He H, Zhang X, Zhao X, Guo K, Li X, Han Z, Zhang Y. Progression of m 6A in the tumor microenvironment: hypoxia, immune and metabolic reprogramming. Cell Death Discov 2024; 10:331. [PMID: 39033180 PMCID: PMC11271487 DOI: 10.1038/s41420-024-02092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
Recently, N6-methyladenosine (m6A) has aroused widespread discussion in the scientific community as a mode of RNA modification. m6A comprises writers, erasers, and readers, which regulates RNA production, nuclear export, and translation and is very important for human health. A large number of studies have found that the regulation of m6A is closely related to the occurrence and invasion of tumors, while the homeostasis and function of the tumor microenvironment (TME) determine the occurrence and development of tumors to some extent. TME is composed of a variety of immune cells (T cells, B cells, etc.) and nonimmune cells (tumor-associated mesenchymal stem cells (TA-MSCs), cancer-associated fibroblasts (CAFs), etc.). Current studies suggest that m6A is involved in regulating the function of various cells in the TME, thereby affecting tumor progression. In this manuscript, we present the composition of m6A and TME, the relationship between m6A methylation and characteristic changes in TME, the role of m6A methylation in TME, and potential therapeutic strategies to provide new perspectives for better treatment of tumors in clinical work.
Collapse
Affiliation(s)
- Xuan Han
- First Clinical College of Changzhi Medical College, Changzhi, China
| | - Yu Zhu
- Linfen Central Hospital, Linfen, China
| | - Juan Ke
- Linfen Central Hospital, Linfen, China
| | | | - Min Huang
- Linfen Central Hospital, Linfen, China
| | - Xin Zhang
- Linfen Central Hospital, Linfen, China
| | | | | | | | | | | | - Zhongyu Han
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | |
Collapse
|
76
|
Wang W, Zheng Y, Wu Z, Wu M, Chen Y, Zhang Y, Fu S, Wu J. Antibody targeting of anaerobic bacteria warms cold tumors and improves the abscopal effect of radiotherapy. J Transl Med 2024; 22:657. [PMID: 39010088 PMCID: PMC11247849 DOI: 10.1186/s12967-024-05469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND The combination of immune checkpoint inhibitors with radiotherapy can enhance the immunomodulation by RT and reduce the growth of distant unirradiated tumors (abscopal effect); however, the results are still not very satisfactory. Therefore, new treatment options are needed to enhance this effect. Our previous study showed that the combination of Bifidobacterium (Bi) and its specific monoclonal antibody (mAb) could target and alleviate hypoxia at the tumor site and act as a radiosensitizer. In this study, we explored the anti-tumor efficacy of quadruple therapy (Bi + mAb and RT + αPD-1). The current study also aimed to probe into the complex immune mechanisms underlying this phenomenon. METHODS Constructed 4T1 breast and CT26 colon cancer tumor models. A comprehensive picture of the impact of constructed quadruple therapy was provided by tumor volume measurements, survival analysis, PET/CT imaging, immune cell infiltration analysis and cytokine expression levels. RESULTS The abscopal effect was further amplified in the "cold" tumor model and prolonged survival in tumor-bearing mice. Bi can colonized in primary and secondary tumors and direct the mAb to reach the tumor site, activate complement, enhance the ADCC effect and initiate the innate immune response. Then combined with αPD-1 and radiotherapy to stimulate adaptive immune response and synergize with cytokines to expand the immune efficacy and generate effective anti-tumor immune response. CONCLUSIONS Bi was used as an artificially implanted anaerobic target to cause a transient "infection" at the tumor, causing the tumor to become locally inflamed and "hot", and at the same time, mAb was used to target Bi to enhance the local immune effect of the tumor, and then combined with radiotherapy and αPD-1 to amplify the abscopal effect in multiple dimensions. Therefore, the present study provided a new idea for the multipotent immune-activating function of antibody-targeted anaerobic bacteria for the RT treatment of extensively metastasized cancer patients.
Collapse
Affiliation(s)
- WeiZhou Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - YunXue Zheng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - ZhouXue Wu
- Department of Oncology and Hematology, Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, China
| | - Min Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yue Chen
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yan Zhang
- Department of Oncology and Hematology, Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, China.
| | - ShaoZhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China.
| | - JingBo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China.
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
77
|
Wang S, Yang N, Zhang H. Metabolic dysregulation of lymphocytes in autoimmune diseases. Trends Endocrinol Metab 2024; 35:624-637. [PMID: 38355391 DOI: 10.1016/j.tem.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Lymphocytes are crucial for protective immunity against infection and cancers; however, immune dysregulation can lead to autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Metabolic adaptation controls lymphocyte fate; thus, metabolic reprogramming can contribute to the pathogenesis of autoimmune diseases. Here, we summarize recent advances on how metabolic reprogramming determines the autoreactive and proinflammatory nature of lymphocytes in SLE and RA, unraveling molecular mechanisms and providing therapeutic targets for human autoimmune diseases.
Collapse
Affiliation(s)
- Shuyi Wang
- Department of Rheumatology and Clinical Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Niansheng Yang
- Department of Rheumatology and Clinical Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Zhang
- Department of Rheumatology and Clinical Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
78
|
Moraly J, Kondo T, Benzaoui M, DuSold J, Talluri S, Pouzolles MC, Chien C, Dardalhon V, Taylor N. Metabolic dialogues: regulators of chimeric antigen receptor T cell function in the tumor microenvironment. Mol Oncol 2024; 18:1695-1718. [PMID: 38922759 PMCID: PMC11223614 DOI: 10.1002/1878-0261.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/23/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T cells have demonstrated remarkable success in the treatment of relapsed/refractory melanoma and hematological malignancies, respectively. These treatments have marked a pivotal shift in cancer management. However, as "living drugs," their effectiveness is dependent on their ability to proliferate and persist in patients. Recent studies indicate that the mechanisms regulating these crucial functions, as well as the T cell's differentiation state, are conditioned by metabolic shifts and the distinct utilization of metabolic pathways. These metabolic shifts, conditioned by nutrient availability as well as cell surface expression of metabolite transporters, are coupled to signaling pathways and the epigenetic landscape of the cell, modulating transcriptional, translational, and post-translational profiles. In this review, we discuss the processes underlying the metabolic remodeling of activated T cells, the impact of a tumor metabolic environment on T cell function, and potential metabolic-based strategies to enhance T cell immunotherapy.
Collapse
Affiliation(s)
- Josquin Moraly
- Pediatric Oncology Branch, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
- Université Sorbonne Paris CitéParisFrance
| | - Taisuke Kondo
- Pediatric Oncology Branch, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Mehdi Benzaoui
- Pediatric Oncology Branch, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
- Université de Montpellier, Institut de Génétique Moléculaire de Montpellier, CNRSMontpellierFrance
| | - Justyn DuSold
- Pediatric Oncology Branch, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Sohan Talluri
- Pediatric Oncology Branch, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Marie C. Pouzolles
- Pediatric Oncology Branch, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Christopher Chien
- Pediatric Oncology Branch, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Valérie Dardalhon
- Université de Montpellier, Institut de Génétique Moléculaire de Montpellier, CNRSMontpellierFrance
| | - Naomi Taylor
- Pediatric Oncology Branch, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
- Université de Montpellier, Institut de Génétique Moléculaire de Montpellier, CNRSMontpellierFrance
| |
Collapse
|
79
|
Bouzari B, Chugaeva UY, Karampoor S, Mirzaei R. Immunometabolites in viral infections: Action mechanism and function. J Med Virol 2024; 96:e29807. [PMID: 39037069 DOI: 10.1002/jmv.29807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
The interplay between viral pathogens and host metabolism plays a pivotal role in determining the outcome of viral infections. Upon viral detection, the metabolic landscape of the host cell undergoes significant changes, shifting from oxidative respiration via the tricarboxylic acid (TCA) cycle to increased aerobic glycolysis. This metabolic shift is accompanied by elevated nutrient accessibility, which is vital for cell function, development, and proliferation. Furthermore, depositing metabolites derived from fatty acids, TCA intermediates, and amino acid catabolism accelerates the immunometabolic transition, facilitating pro-inflammatory and antimicrobial responses. Immunometabolites refer to small molecules involved in cellular metabolism regulating the immune response. These molecules include nutrients, such as glucose and amino acids, along with metabolic intermediates and signaling molecules adenosine, lactate, itaconate, succinate, kynurenine, and prostaglandins. Emerging evidence suggests that immunometabolites released by immune cells establish a complex interaction network within local niches, orchestrating and fine-tuning immune responses during viral diseases. However, our current understanding of the immense capacity of metabolites to convey essential cell signals from one cell to another or within cellular compartments remains incomplete. Unraveling these complexities would be crucial for harnessing the potential of immunometabolites in therapeutic interventions. In this review, we discuss specific immunometabolites and their mechanisms of action in viral infections, emphasizing recent findings and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
80
|
Godfrey WH, Cho K, Deng X, Ambati CSR, Putluri V, Mostafa Kamal AH, Putluri N, Kornberg MD. Phosphoglycerate mutase regulates Treg differentiation through control of serine synthesis and one-carbon metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.23.600101. [PMID: 38979375 PMCID: PMC11230282 DOI: 10.1101/2024.06.23.600101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The differentiation and suppressive functions of regulatory CD4 T cells (Tregs) are supported by a broad array of metabolic changes, providing potential therapeutic targets for immune modulation. In this study, we focused on the regulatory role of glycolytic enzymes in Tregs and identified phosphoglycerate mutase (PGAM) as being differentially overexpressed in Tregs and associated with a highly suppressive phenotype. Pharmacologic or genetic inhibition of PGAM reduced Treg differentiation and suppressive function while reciprocally inducing markers of a pro-inflammatory, T helper 17 (Th17)-like state. The regulatory role of PGAM was dependent on the contribution of 3-phosphoglycerate (3PG), the PGAM substrate, to de novo serine synthesis. Blocking de novo serine synthesis from 3PG reversed the effect of PGAM inhibition on Treg polarization, while exogenous serine directly inhibited Treg polarization. Additionally, altering serine levels in vivo with a serine/glycine-free diet increased peripheral Tregs and attenuated autoimmunity in a murine model of multiple sclerosis. Mechanistically, we found that serine limits Treg polarization by contributing to one-carbon metabolism and methylation of Treg-associated genes. Inhibiting one-carbon metabolism increased Treg polarization and suppressive function both in vitro and in vivo in a murine model of autoimmune colitis. Our study identifies a novel physiologic role for PGAM and highlights the metabolic interconnectivity between glycolysis, serine synthesis, one-carbon metabolism, and epigenetic regulation of Treg differentiation and suppressive function.
Collapse
|
81
|
Kemp F, Braverman EL, Byersdorfer CA. Fatty acid oxidation in immune function. Front Immunol 2024; 15:1420336. [PMID: 39007133 PMCID: PMC11240245 DOI: 10.3389/fimmu.2024.1420336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024] Open
Abstract
Cellular metabolism is a crucial determinant of immune cell fate and function. Extensive studies have demonstrated that metabolic decisions influence immune cell activation, differentiation, and cellular capacity, in the process impacting an organism's ability to stave off infection or recover from injury. Conversely, metabolic dysregulation can contribute to the severity of multiple disease conditions including autoimmunity, alloimmunity, and cancer. Emerging data also demonstrate that metabolic cues and profiles can influence the success or failure of adoptive cellular therapies. Importantly, immunometabolism is not one size fits all; and different immune cell types, and even subdivisions within distinct cell populations utilize different metabolic pathways to optimize function. Metabolic preference can also change depending on the microenvironment in which cells are activated. For this reason, understanding the metabolic requirements of different subsets of immune cells is critical to therapeutically modulating different disease states or maximizing cellular function for downstream applications. Fatty acid oxidation (FAO), in particular, plays multiple roles in immune cells, providing both pro- and anti-inflammatory effects. Herein, we review the major metabolic pathways available to immune cells, then focus more closely on the role of FAO in different immune cell subsets. Understanding how and why FAO is utilized by different immune cells will allow for the design of optimal therapeutic interventions targeting this pathway.
Collapse
Affiliation(s)
| | | | - Craig A. Byersdorfer
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
82
|
Bezu L, Akçal Öksüz D, Bell M, Buggy D, Diaz-Cambronero O, Enlund M, Forget P, Gupta A, Hollmann MW, Ionescu D, Kirac I, Ma D, Mokini Z, Piegeler T, Pranzitelli G, Smith L, The EuroPeriscope Group. Perioperative Immunosuppressive Factors during Cancer Surgery: An Updated Review. Cancers (Basel) 2024; 16:2304. [PMID: 39001366 PMCID: PMC11240822 DOI: 10.3390/cancers16132304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Surgical excision of the primary tumor represents the most frequent and curative procedure for solid malignancies. Compelling evidence suggests that, despite its beneficial effects, surgery may impair immunosurveillance by triggering an immunosuppressive inflammatory stress response and favor recurrence by stimulating minimal residual disease. In addition, many factors interfere with the immune effectors before and after cancer procedures, such as malnutrition, anemia, or subsequent transfusion. Thus, the perioperative period plays a key role in determining oncological outcomes and represents a short phase to circumvent anesthetic and surgical deleterious factors by supporting the immune system through the use of synergistic pharmacological and non-pharmacological approaches. In line with this, accumulating studies indicate that anesthetic agents could drive both protumor or antitumor signaling pathways during or after cancer surgery. While preclinical investigations focusing on anesthetics' impact on the behavior of cancer cells are quite convincing, limited clinical trials studying the consequences on survival and recurrences remain inconclusive. Herein, we highlight the main factors occurring during the perioperative period of cancer surgery and their potential impact on immunomodulation and cancer progression. We also discuss patient management prior to and during surgery, taking into consideration the latest advances in the literature.
Collapse
Affiliation(s)
- Lucillia Bezu
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Département d'Anesthésie, Chirurgie et Interventionnel, Gustave Roussy, 94805 Villejuif, France
- U1138 Metabolism, Cancer and Immunity, Gustave Roussy, 94805 Villejuif, France
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Dilara Akçal Öksüz
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Clinic for Anesthesiology, Intensive Care, Emergency Medicine, Pain Therapy and Palliative Medicine, Marienhaus Klinikum Hetzelstift, 67434 Neustadt an der Weinstrasse, Germany
- ESAIC Mentorship Program, BE-1000 Brussels, Belgium
| | - Max Bell
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Perioperative Medicine and Intensive Care (PMI), Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17176 Stockholm, Sweden
| | - Donal Buggy
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Division of Anaesthesiology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland
- School of Medicine, University College, D04 V1W8 Dublin, Ireland
| | - Oscar Diaz-Cambronero
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesiology, Hospital Universitario y Politécnico la Fe, 46026 Valencia, Spain
- Perioperative Medicine Research, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
- Faculty of Medicine, Department of Surgery, University of Valencia, 46010 Valencia, Spain
| | - Mats Enlund
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Center for Clinical Research, Uppsala University, SE-72189 Västerås, Sweden
- Department of Anesthesia & Intensive Care, Västmanland Hospital, SE-72189 Västerås, Sweden
| | - Patrice Forget
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Aberdeen Centre for Arthritis and Musculoskeletal Health (Epidemiology Group), Institute of Applied Health Sciences, Epidemiology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZN, UK
- Department of Anaesthesia, NHS Grampian, University of Aberdeen, Aberdeen AB25 2ZN, UK
- Pain and Opioids after Surgery (PANDOS) ESAIC Research Group, European Society of Anaesthesiology and Intensive Care, 1000 Brussels, Belgium
- IMAGINE UR UM 103, Anesthesia Critical Care, Emergency and Pain Medicine Division, Nîmes University Hospital, Montpellier University, 30900 Nîmes, France
| | - Anil Gupta
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Physiology and Pharmacology, Karolinska Institute, 17176 Stockholm, Sweden
| | - Markus W Hollmann
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesiology, Amsterdam UMC, 1100 DD Amsterdam, The Netherlands
| | - Daniela Ionescu
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesia and Intensive Care, University of Medicine and Pharmacy "Iuliu Hatieganu", 400012 Cluj-Napoca, Romania
- Outcome Research Consortium, Cleveland, OH 44195, USA
| | - Iva Kirac
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Genetic Counselling Unit, University Hospital for Tumors, Sestre Milosrdnice University Hospital Centre, 10000 Zagreb, Croatia
| | - Daqing Ma
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW10 9NH, UK
- Department of Anesthesiology, Perioperative and Systems Medicine Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Zhirajr Mokini
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- ESAIC Mentorship Program, BE-1000 Brussels, Belgium
- Clinique du Pays de Seine, 77590 Bois le Roi, France
| | - Tobias Piegeler
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesiology and Intensive Care, University of Leipzig Medical Center, 04275 Leipzig, Germany
| | - Giuseppe Pranzitelli
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesiology and Intensive Care, San Timoteo Hospital, 86039 Termoli, Italy
| | - Laura Smith
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anaesthesia, NHS Grampian, University of Aberdeen, Aberdeen AB25 2ZN, UK
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZN, UK
| | | |
Collapse
|
83
|
Amanya SB, Oyewole-Said D, Ernste KJ, Bisht N, Murthy A, Vazquez-Perez J, Konduri V, Decker WK. The mARS complex: a critical mediator of immune regulation and homeostasis. Front Immunol 2024; 15:1423510. [PMID: 38975338 PMCID: PMC11224427 DOI: 10.3389/fimmu.2024.1423510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Over the course of evolution, many proteins have undergone adaptive structural changes to meet the increasing homeostatic regulatory demands of multicellularity. Aminoacyl tRNA synthetases (aaRS), enzymes that catalyze the attachment of each amino acid to its cognate tRNA, are such proteins that have acquired new domains and motifs that enable non-canonical functions. Through these new domains and motifs, aaRS can assemble into large, multi-subunit complexes that enhance the efficiency of many biological functions. Moreover, because the complexity of multi-aminoacyl tRNA synthetase (mARS) complexes increases with the corresponding complexity of higher eukaryotes, a contribution to regulation of homeostatic functions in multicellular organisms is hypothesized. While mARS complexes in lower eukaryotes may enhance efficiency of aminoacylation, little evidence exists to support a similar role in chordates or other higher eukaryotes. Rather, mARS complexes are reported to regulate multiple and variegated cellular processes that include angiogenesis, apoptosis, inflammation, anaphylaxis, and metabolism. Because all such processes are critical components of immune homeostasis, it is important to understand the role of mARS complexes in immune regulation. Here we provide a conceptual analysis of the current understanding of mARS complex dynamics and emerging mARS complex roles in immune regulation, the increased understanding of which should reveal therapeutic targets in immunity and immune-mediated disease.
Collapse
Affiliation(s)
- Sharon Bright Amanya
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Damilola Oyewole-Said
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Keenan J. Ernste
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Nalini Bisht
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Arnav Murthy
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Natural Sciences, Rice University, Houston, TX, United States
| | - Jonathan Vazquez-Perez
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Vanaja Konduri
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - William K. Decker
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
84
|
Sasaki T, Fujiwara-Tani R, Luo Y, Ogata R, Sasaki R, Ikemoto A, Nishiguchi Y, Nakashima C, Kishi S, Fujii K, Ohmori H, Oue N, Kuniyasu H. Effects of High-Mobility Group Box-1 on Mucosal Immunity and Epithelial Differentiation in Colitic Carcinoma. Int J Mol Sci 2024; 25:6846. [PMID: 38999957 PMCID: PMC11241214 DOI: 10.3390/ijms25136846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Abnormalities in mucosal immunity are involved in the onset and progression of ulcerative colitis (UC), resulting in a high incidence of colorectal cancer (CRC). While high-mobility group box-1 (HMGB1) is overexpressed during colorectal carcinogenesis, its role in UC-related carcinogenesis remains unclear. In the present study, we investigated the role of HMGB1 in UC-related carcinogenesis and sporadic CRC. Both the azoxymethane colon carcinogenesis and dextran sulfate sodium colitis carcinogenesis models demonstrated temporal increases in mucosal HMGB1 levels. Activated CD8+ cells initially increased and then decreased, whereas exhausted CD8+ cells increased. Additionally, we observed increased regulatory CD8+ cells, decreased naïve CD8+ cells, and decreased mucosal epithelial differentiation. In the in vitro study, HMGB1 induced energy reprogramming from oxidative phosphorylation to glycolysis in CD8+ cells and intestinal epithelial cells. Furthermore, in UC dysplasia, UC-related CRC, and hyperplastic mucosa surrounding human sporadic CRC, we found increased mucosal HMGB1, decreased activated CD8+ cells, and suppressed mucosal epithelial differentiation. However, we observed increased activated CD8+ cells in active UC mucosa. These findings indicate that HMGB1 plays an important role in modulating mucosal immunity and epithelial dedifferentiation in both UC-related carcinogenesis and sporadic CRC.
Collapse
Grants
- 22K11396 Ministry of Education, Culture, Sports, Science and Technology
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
- 21K06926 Ministry of Education, Culture, Sports, Science and Technology
- 23K19900 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-Cho, Kashihara 634-8521, Nara, Japan; (T.S.); (Y.L.); (R.O.); (R.S.); (A.I.); (Y.N.); (C.N.); (K.F.); (H.O.)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-Cho, Kashihara 634-8521, Nara, Japan; (T.S.); (Y.L.); (R.O.); (R.S.); (A.I.); (Y.N.); (C.N.); (K.F.); (H.O.)
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-Cho, Kashihara 634-8521, Nara, Japan; (T.S.); (Y.L.); (R.O.); (R.S.); (A.I.); (Y.N.); (C.N.); (K.F.); (H.O.)
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-Cho, Kashihara 634-8521, Nara, Japan; (T.S.); (Y.L.); (R.O.); (R.S.); (A.I.); (Y.N.); (C.N.); (K.F.); (H.O.)
| | - Rika Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-Cho, Kashihara 634-8521, Nara, Japan; (T.S.); (Y.L.); (R.O.); (R.S.); (A.I.); (Y.N.); (C.N.); (K.F.); (H.O.)
| | - Ayaka Ikemoto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-Cho, Kashihara 634-8521, Nara, Japan; (T.S.); (Y.L.); (R.O.); (R.S.); (A.I.); (Y.N.); (C.N.); (K.F.); (H.O.)
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-Cho, Kashihara 634-8521, Nara, Japan; (T.S.); (Y.L.); (R.O.); (R.S.); (A.I.); (Y.N.); (C.N.); (K.F.); (H.O.)
| | - Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-Cho, Kashihara 634-8521, Nara, Japan; (T.S.); (Y.L.); (R.O.); (R.S.); (A.I.); (Y.N.); (C.N.); (K.F.); (H.O.)
| | - Shingo Kishi
- Pathology Laboratory, Research Institute, Tokushukai Nozaki Hospital, 2-10-50 Tanigawa, Daito 574-0074, Osaka, Japan;
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-Cho, Kashihara 634-8521, Nara, Japan; (T.S.); (Y.L.); (R.O.); (R.S.); (A.I.); (Y.N.); (C.N.); (K.F.); (H.O.)
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-Cho, Kashihara 634-8521, Nara, Japan; (T.S.); (Y.L.); (R.O.); (R.S.); (A.I.); (Y.N.); (C.N.); (K.F.); (H.O.)
| | - Naohide Oue
- Pathology Laboratory, Miyoshi Central Hospital, 10531 Higashi-Sakaya, Miyoshi 728-8502, Hiroshima, Japan;
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-Cho, Kashihara 634-8521, Nara, Japan; (T.S.); (Y.L.); (R.O.); (R.S.); (A.I.); (Y.N.); (C.N.); (K.F.); (H.O.)
| |
Collapse
|
85
|
何 欣, 熊 斯, 朱 真, 孙 景, 曹 传, 王 惠. [Overexpression of ubiquitin-conjugating enzyme 2T induces radiotherapy resistance in hepatocellular carcinoma by enriching regulatory T cells in the tumor microenvironment]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1149-1158. [PMID: 38977345 PMCID: PMC11237294 DOI: 10.12122/j.issn.1673-4254.2024.06.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVE To investigate the effect of overexpression of ubiquitin-conjugating enzyme 2T (UBE2T) on radiosensitivity of hepatocellular carcinoma (HCC). METHODS Hepa1-6 cells were transfected with a UBE2T-overexpressing or a control lentiviral vector, and the changes in their radiotherapy sensitivity and concentrations of glucose and lactate in the supernatant were assessed using colony-forming assay and colorimetric assay. The transfected cells were inoculated subcutaneously in nude mice or C57BL/6 mice, and tumor growth following irradiation were recorded. The xenografts were collected for analyzing infiltration of CD4+ T cells and regulatory T cells (Tregs) using flow cytometry and detecting expressions of HK1 and LDHA using Western blotting. The correlations of UBE2T expression with immune cell infiltration, glycolysis and Tregs in HCC were analyzed using CIBERSORT algorithm and TCGA database, and the results were verified in a co-culture system of Hepa1-6 cells and Tregs. RESULTS UBE2T overexpression caused radiotherapy resistance in both cultured Hepa1-6 cells and xenografts in the tumor-bearing mouse models (especially in C57BL/6 mice). CIBERSORT analysis suggested that a high expression of UBE2T was associated with increased percentages of dendritic cells, T follicular helper cells, M2 macrophages, monocytes, lymphocytes and Tregs in HCC. The UBE2T-overexpressing xenografts showed an increased percentage of Tregs and enhanced expressions of HK1 and LDHA, and irradiation increased infiltration of CD4+ T cells and Tregs in the tumor microenvironment. Hepa1-6 cells overexpressing UBE2T showed a decreased glucose concentration and an increased lactate concentration. GSEA analysis suggested that a high UBE2T expression was positively correlated with increased glycolysis and Tregs infiltration in HCC. In the cell co-culture system, UBE2T overexpression significantly enhanced lactate production, proliferation and immunosuppressive functions of Tregs. CONCLUSION A high UBE2T expression results in radiotherapy resistance of HCC possibly by enhancing glycolysis and cause enrichment of Tregs in the tumor microenvironment.
Collapse
|
86
|
Theune WC, Chen J, Theune EV, Ye X, Ménoret A, Vella AT, Wang K. Interleukin-17 directly stimulates tumor infiltrating Tregs to prevent cancer development. Front Immunol 2024; 15:1408710. [PMID: 38947320 PMCID: PMC11211274 DOI: 10.3389/fimmu.2024.1408710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Background Interleukin-17 (IL-17) family cytokines promote protective inflammation for pathogen resistance, but also facilitate autoimmunity and tumor development. A direct signal of IL-17 to regulatory T cells (Tregs) has not been reported and may help explain these dichotomous responses. Methods We generated a conditional knockout of Il17ra in Tregs by crossing Foxp3-YFP-Cre mice to Il17ra-flox mice (Il17ra ΔTreg mice). Subsequently, we adoptively transferred bone marrow cells from Il17ra ΔTreg mice to a mouse model of sporadic colorectal cancer (Cdx2-Cre +/Apc F/+), to selectively ablate IL-17 direct signaling on Tregs in colorectal cancer. Single cell RNA sequencing and bulk RNA sequencing were performed on purified Tregs from mouse colorectal tumors, and compared to those of human tumor infiltrating Treg cells. Results IL-17 Receptor A (IL-17RA) is expressed in Tregs that reside in mouse mesenteric lymph nodes and colon tumors. Ablation of IL-17RA, specifically in Tregs, resulted in increased Th17 cells, and exacerbated tumor development. Mechanistically, tumor-infiltrating Tregs exhibit a unique gene signature that is linked to their activation, maturation, and suppression function, and this signature is in part supported by the direct signaling of IL-17 to Tregs. To study pathways of Treg programming, we found that loss of IL-17RA in tumor Tregs resulted in reduced RNA splicing, and downregulation of several RNA binding proteins that are known to regulate alternative splicing and promote Treg function. Conclusion IL-17 directly signals to Tregs and promotes their maturation and function. This signaling pathway constitutes a negative feedback loop that controls cancer-promoting inflammation in CRC.
Collapse
Affiliation(s)
- William C. Theune
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Ju Chen
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Eileen Victoria Theune
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Xiaoyang Ye
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Antoine Ménoret
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Anthony T. Vella
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Kepeng Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
87
|
Zhao J, Jin D, Huang M, Ji J, Xu X, Wang F, Zhou L, Bao B, Jiang F, Xu W, Lu X, Xiao M. Glycolysis in the tumor microenvironment: a driver of cancer progression and a promising therapeutic target. Front Cell Dev Biol 2024; 12:1416472. [PMID: 38933335 PMCID: PMC11199735 DOI: 10.3389/fcell.2024.1416472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Even with sufficient oxygen, tumor cells use glycolysis to obtain the energy and macromolecules they require to multiply, once thought to be a characteristic of tumor cells known as the "Warburg effect". In fact, throughout the process of carcinogenesis, immune cells and stromal cells, two major cellular constituents of the tumor microenvironment (TME), also undergo thorough metabolic reprogramming, which is typified by increased glycolysis. In this review, we provide a full-scale review of the glycolytic remodeling of several types of TME cells and show how these TME cells behave in the acidic milieu created by glucose shortage and lactate accumulation as a result of increased tumor glycolysis. Notably, we provide an overview of putative targets and inhibitors of glycolysis along with the viability of using glycolysis inhibitors in combination with immunotherapy and chemotherapy. Understanding the glycolytic situations in diverse cells within the tumor immunological milieu will aid in the creation of subsequent treatment plans.
Collapse
Affiliation(s)
- Junpeng Zhao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Dandan Jin
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Mengxiang Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jie Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xuebing Xu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Fei Wang
- Department of Laboratory Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu, China
| | - Lirong Zhou
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Baijun Bao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Feng Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Weisong Xu
- Department of Gastroenterology, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaomin Lu
- Department of Oncology Affiliated Haian Hospital of Nantong University, Nantong, Jiangsu, China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
- Department of Laboratory Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
88
|
Wang W, Ding M, Wang Q, Song Y, Huo K, Chen X, Xiang Z, Liu L. Advances in Foxp3+ regulatory T cells (Foxp3+ Treg) and key factors in digestive malignancies. Front Immunol 2024; 15:1404974. [PMID: 38919615 PMCID: PMC11196412 DOI: 10.3389/fimmu.2024.1404974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Foxp3+ regulatory T cells (Foxp3+ Treg) play a role in regulating various types of tumors, but uncertainty still exists regarding the exact mechanism underlying Foxp3+ Treg activation in gastrointestinal malignancies. As of now, research has shown that Foxp3+ Treg expression, altered glucose metabolism, or a hypoxic tumor microenvironment all affect Foxp3+ Treg function in the bodies of tumor patients. Furthermore, it has been demonstrated that post-translational modifications are essential for mature Foxp3 to function properly. Additionally, a considerable number of non-coding RNAs (ncRNAs) have been implicated in the activation of the Foxp3 signaling pathway. These mechanisms regulating Foxp3 may one day serve as potential therapeutic targets for gastrointestinal malignancies. This review primarily focuses on the properties and capabilities of Foxp3 and Foxp3+Treg. It emphasizes the advancement of research on the regulatory mechanisms of Foxp3 in different malignant tumors of the digestive system, providing new insights for the exploration of anticancer treatments.
Collapse
Affiliation(s)
- Wanyao Wang
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Minglu Ding
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Qiuhong Wang
- Mudanjiang Hospital for Cardiovascular Diseases, Department of Anesthesiology, Mudanjiang, Heilongjiang, China
| | - Yidan Song
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Keyuan Huo
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xiaojie Chen
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Zihan Xiang
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Lantao Liu
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| |
Collapse
|
89
|
Zhong H, Zhou S, Yin S, Qiu Y, Liu B, Yu H. Tumor microenvironment as niche constructed by cancer stem cells: Breaking the ecosystem to combat cancer. J Adv Res 2024:S2090-1232(24)00251-0. [PMID: 38866179 DOI: 10.1016/j.jare.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/27/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are a distinct subpopulation of cancer cells with the capacity to constantly self-renew and differentiate, and they are the main driver in the progression of cancer resistance and relapse. The tumor microenvironment (TME) constructed by CSCs is the "soil" adapted to tumor growth, helping CSCs evade immune killing, enhance their chemical resistance, and promote cancer progression. AIM OF REVIEW We aim to elaborate the tight connection between CSCs and immunosuppressive components of the TME. We attempt to summarize and provide a therapeutic strategy to eradicate CSCs based on the destruction of the tumor ecological niche. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three main key concepts. First, we highlight that CSCs recruit and transform normal cells to construct the TME, which further provides ecological niche support for CSCs. Second, we describe the main characteristics of the immunosuppressive components of the TME, targeting strategies and summarize the progress of corresponding drugs in clinical trials. Third, we explore the multilevel insights of the TME to serve as an ecological niche for CSCs.
Collapse
Affiliation(s)
- Hao Zhong
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shiyue Zhou
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shuangshuang Yin
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Haiyang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, China.
| |
Collapse
|
90
|
Thorp EB, Karlstaedt A. Intersection of Immunology and Metabolism in Myocardial Disease. Circ Res 2024; 134:1824-1840. [PMID: 38843291 PMCID: PMC11569846 DOI: 10.1161/circresaha.124.323660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/15/2024] [Indexed: 06/12/2024]
Abstract
Immunometabolism is an emerging field at the intersection of immunology and metabolism. Immune cell activation plays a critical role in the pathogenesis of cardiovascular diseases and is integral for regeneration during cardiac injury. We currently possess a limited understanding of the processes governing metabolic interactions between immune cells and cardiomyocytes. The impact of this intercellular crosstalk can manifest as alterations to the steady state flux of metabolites and impact cardiac contractile function. Although much of our knowledge is derived from acute inflammatory response, recent work emphasizes heterogeneity and flexibility in metabolism between cardiomyocytes and immune cells during pathological states, including ischemic, cardiometabolic, and cancer-associated disease. Metabolic adaptation is crucial because it influences immune cell activation, cytokine release, and potential therapeutic vulnerabilities. This review describes current concepts about immunometabolic regulation in the heart, focusing on intercellular crosstalk and intrinsic factors driving cellular regulation. We discuss experimental approaches to measure the cardio-immunologic crosstalk, which are necessary to uncover unknown mechanisms underlying the immune and cardiac interface. Deeper insight into these axes holds promise for therapeutic strategies that optimize cardioimmunology crosstalk for cardiac health.
Collapse
Affiliation(s)
- Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
91
|
He Z, Lyu J, Lyu L, Long X, Xu B. Identification of a metabolism-linked genomic signature for prognosis and immunotherapeutic efficiency in metastatic skin cutaneous melanoma. Medicine (Baltimore) 2024; 103:e38347. [PMID: 38847706 PMCID: PMC11155616 DOI: 10.1097/md.0000000000038347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/03/2024] [Indexed: 06/10/2024] Open
Abstract
Metastatic skin cutaneous melanoma (MSCM) is the most rapidly progressing/invasive skin-based malignancy, with median survival rates of about 12 months. It appears that metabolic disorders accelerate disease progression. However, correlations between metabolism-linked genes (MRGs) and prognosis in MSCM are unclear, and potential mechanisms explaining the correlation are unknown. The Cancer Genome Atlas (TCGA) was utilized as a training set to develop a genomic signature based on the differentially expressed MRGs (DE-MRGs) between primary skin cutaneous melanoma (PSCM) and MSCM. The Gene Expression Omnibus (GEO) was utilized as a validation set to verify the effectiveness of genomic signature. In addition, a nomogram was established to predict overall survival based on genomic signature and other clinic-based characteristics. Moreover, this study investigated the correlations between genomic signature and tumor micro-environment (TME). This study established a genomic signature consisting of 3 genes (CD38, DHRS3, and TYRP1) and classified MSCM patients into low and high-risk cohorts based on the median risk scores of MSCM cases. It was discovered that cases in the high-risk cohort had significantly lower survival than cases in the low-risk cohort across all sets. Furthermore, a nomogram containing this genomic signature and clinic-based parameters was developed and demonstrated high efficiency in predicting MSCM case survival times. Interestingly, Gene Set Variation Analysis results indicated that the genomic signature was involved in immune-related physiological processes. In addition, this study discovered that risk scoring was negatively correlated with immune-based cellular infiltrations in the TME and critical immune-based checkpoint expression profiles, indicating that favorable prognosis may be influenced in part by immunologically protective micro-environments. A novel 3-genomic signature was found to be reliable for predicting MSCM outcomes and may facilitate personalized immunotherapy.
Collapse
Affiliation(s)
- Zhongshun He
- Department of Oral and Maxillofacial Surgery, Kunming Medical University School and Hospital of Stomatology, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Jing Lyu
- Department of Physiology, Kunming Medical University, Kunming, Yunnan, China
| | - Lechun Lyu
- Technology Transfer Center, Kunming Medical University, Kunming, Yunnan, China
| | - Xiaolin Long
- Yunnan Bestai Biotechnology Co., Ltd., Kunming, Yunnan, China
| | - Biao Xu
- Department of Oral and Maxillofacial Surgery, Kunming Medical University School and Hospital of Stomatology, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| |
Collapse
|
92
|
Chen J, Chen R, Huang J. A pan-cancer single-cell transcriptional analysis of antigen-presenting cancer-associated fibroblasts in the tumor microenvironment. Front Immunol 2024; 15:1372432. [PMID: 38903527 PMCID: PMC11187094 DOI: 10.3389/fimmu.2024.1372432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are the primary stromal cells found in tumor microenvironment, and display high plasticity and heterogeneity. By using single-cell RNA-seq technology, researchers have identified various subpopulations of CAFs, particularly highlighting a recently identified subpopulation termed antigen-presenting CAFs (apCAFs), which are largely unknown. Methods We collected datasets from public databases for 9 different solid tumor types to analyze the role of apCAFs in the tumor microenvironment. Results Our data revealed that apCAFs, likely originating mainly from normal fibroblast, are commonly found in different solid tumor types and generally are associated with anti-tumor effects. apCAFs may be associated with the activation of CD4+ effector T cells and potentially promote the survival of CD4+ effector T cells through the expression of C1Q molecules. Moreover, apCAFs exhibited highly enrichment of transcription factors RUNX3 and IKZF1, along with increased glycolytic metabolism. Conclusions Taken together, these findings offer novel insights into a deeper understanding of apCAFs and the potential therapeutic implications for apCAFs targeted immunotherapy in cancer.
Collapse
Affiliation(s)
- Juntao Chen
- Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, China
| | - Renhui Chen
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingang Huang
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
93
|
Burgos-Molina AM, Téllez Santana T, Redondo M, Bravo Romero MJ. The Crucial Role of Inflammation and the Immune System in Colorectal Cancer Carcinogenesis: A Comprehensive Perspective. Int J Mol Sci 2024; 25:6188. [PMID: 38892375 PMCID: PMC11172443 DOI: 10.3390/ijms25116188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic inflammation drives the growth of colorectal cancer through the dysregulation of molecular pathways within the immune system. Infiltration of immune cells, such as macrophages, into tumoral regions results in the release of proinflammatory cytokines (IL-6; IL-17; TNF-α), fostering tumor proliferation, survival, and invasion. Tumors employ various mechanisms to evade immune surveillance, effectively 'cloaking' themselves from detection and subsequent attack. A comprehensive understanding of these intricate molecular interactions is paramount for advancing novel strategies aimed at modulating the immune response against cancer.
Collapse
Affiliation(s)
- Antonio Manuel Burgos-Molina
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
| | - Teresa Téllez Santana
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
- Research Network on Chronic Diseases, Primary Care, and Health Promotion (RICAPPS), Carlos III Health Institute (Instituto de Salud Carlos III), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
- Málaga Biomedical Research Institute (Instituto de Investigación Biomédica de Málaga, IBIMA), Calle Doctor Miguel Díaz Recio, 28, 29010 Málaga, Spain
| | - Maximino Redondo
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
- Research Network on Chronic Diseases, Primary Care, and Health Promotion (RICAPPS), Carlos III Health Institute (Instituto de Salud Carlos III), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
- Málaga Biomedical Research Institute (Instituto de Investigación Biomédica de Málaga, IBIMA), Calle Doctor Miguel Díaz Recio, 28, 29010 Málaga, Spain
- Research Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain
| | - María José Bravo Romero
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
| |
Collapse
|
94
|
Lakhani A, Chen X, Chen LC, Hong M, Khericha M, Chen Y, Chen YY, Park JO. Extracellular domains of CARs reprogramme T cell metabolism without antigen stimulation. Nat Metab 2024; 6:1143-1160. [PMID: 38658805 DOI: 10.1038/s42255-024-01034-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Metabolism is an indispensable part of T cell proliferation, activation and exhaustion, yet the metabolism of chimeric antigen receptor (CAR)-T cells remains incompletely understood. CARs are composed of extracellular domains-often single-chain variable fragments (scFvs)-that determine ligand specificity and intracellular domains that trigger signalling following antigen binding. Here, we show that CARs differing only in the scFv variously reprogramme T cell metabolism. Even without exposure to antigens, some CARs increase proliferation and nutrient uptake in T cells. Using stable isotope tracers and mass spectrometry, we observed basal metabolic fluxes through glycolysis doubling and amino acid uptake overtaking anaplerosis in CAR-T cells harbouring a rituximab scFv, unlike other similar anti-CD20 scFvs. Disparate rituximab and 14G2a-based anti-GD2 CAR-T cells are similarly hypermetabolic and channel excess nutrients to nitrogen overflow metabolism. Modest overflow metabolism of CAR-T cells and metabolic compatibility between cancer cells and CAR-T cells are identified as features of efficacious CAR-T cell therapy.
Collapse
Affiliation(s)
- Aliya Lakhani
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ximin Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laurence C Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mihe Hong
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mobina Khericha
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy at UCLA, Los Angeles, CA, USA
| | - Junyoung O Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
95
|
Mortezaee K. FOXP3 (in)stability and cancer immunotherapy. Cytokine 2024; 178:156589. [PMID: 38547750 DOI: 10.1016/j.cyto.2024.156589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/16/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Dysregulation of regulatory T cells (Tregs) is described in the context of inflammatory and autoimmune diseases, and cancer. Forkhead box P3 (FOXP3) is a transcription factor that its activity is an indicator of Treg identity. FOXP3 induces metabolic versatility in intra-tumoral Tregs, so that its deficiency mediates Treg instability or even gives rise to the acquisition of effector T cell phenotype. FOXP3 dysregulation and defectiveness occurs upon ubiquitination, methylation and presumably acetylation. Stimulators of PTEN, mammalian target of rapamycin complex 2 (mTORC2), and nucleus accumbens-associated protein-1 (NAC1), and inhibitors of B lymphocyte-induced maturation protein-1 (Blimp-1), Deltex1 (DTX1) and ubiquitin-specific peptidase 22 (USP22) are suggested to hamper FOXP3 stability, and to promote its downregulation and further Treg depletion. A point is that Treg subsets reveal different reliance on FOXP3, which indicates that not all Tregs are strictly dependent on FOXP3, and presumably Tregs with different origin rely on diverse regulators of FOXP3 stability. The focus of this review is over the current understanding toward FOXP3, its activity in Tregs and influence from different regulators within tumor microenvironment (TME). Implication of FOXP3 targeting in cancer immunotherapy is another focus of this paper.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
96
|
Han J, Dong H, Zhu T, Wei Q, Wang Y, Wang Y, Lv Y, Mu H, Huang S, Zeng K, Xu J, Ding J. Biochemical hallmarks-targeting antineoplastic nanotherapeutics. Bioact Mater 2024; 36:427-454. [PMID: 39044728 PMCID: PMC11263727 DOI: 10.1016/j.bioactmat.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 07/25/2024] Open
Abstract
Tumor microenvironments (TMEs) have received increasing attention in recent years as they play pivotal roles in tumorigenesis, progression, metastases, and resistance to the traditional modalities of cancer therapy like chemotherapy. With the rapid development of nanotechnology, effective antineoplastic nanotherapeutics targeting the aberrant hallmarks of TMEs have been proposed. The appropriate design and fabrication endow nanomedicines with the abilities for active targeting, TMEs-responsiveness, and optimization of physicochemical properties of tumors, thereby overcoming transport barriers and significantly improving antineoplastic therapeutic benefits. This review begins with the origins and characteristics of TMEs and discusses the latest strategies for modulating the TMEs by focusing on the regulation of biochemical microenvironments, such as tumor acidosis, hypoxia, and dysregulated metabolism. Finally, this review summarizes the challenges in the development of smart anti-cancer nanotherapeutics for TME modulation and examines the promising strategies for combination therapies with traditional treatments for further clinical translation.
Collapse
Affiliation(s)
- Jing Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - He Dong
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Tianyi Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Qi Wei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Yongheng Wang
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Yun Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Yu Lv
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Shandeng Huang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Ke Zeng
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Jing Xu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
97
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
98
|
Chen S, Xu Y, Zhuo W, Zhang L. The emerging role of lactate in tumor microenvironment and its clinical relevance. Cancer Lett 2024; 590:216837. [PMID: 38548215 DOI: 10.1016/j.canlet.2024.216837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
In recent years, the significant impact of lactate in the tumor microenvironment has been greatly documented. Acting not only as an energy substance in tumor metabolism, lactate is also an imperative signaling molecule. It plays key roles in metabolic remodeling, protein lactylation, immunosuppression, drug resistance, epigenetics and tumor metastasis, which has a tight relation with cancer patients' poor prognosis. This review illustrates the roles lactate plays in different aspects of tumor progression and drug resistance. From the comprehensive effects that lactate has on tumor metabolism and tumor immunity, the therapeutic targets related to it are expected to bring new hope for cancer therapy.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yining Xu
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Wei Zhuo
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| | - Lu Zhang
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
99
|
Franzese O, Ancona P, Bianchi N, Aguiari G. Apoptosis, a Metabolic "Head-to-Head" between Tumor and T Cells: Implications for Immunotherapy. Cells 2024; 13:924. [PMID: 38891056 PMCID: PMC11171541 DOI: 10.3390/cells13110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Induction of apoptosis represents a promising therapeutic approach to drive tumor cells to death. However, this poses challenges due to the intricate nature of cancer biology and the mechanisms employed by cancer cells to survive and escape immune surveillance. Furthermore, molecules released from apoptotic cells and phagocytes in the tumor microenvironment (TME) can facilitate cancer progression and immune evasion. Apoptosis is also a pivotal mechanism in modulating the strength and duration of anti-tumor T-cell responses. Combined strategies including molecular targeting of apoptosis, promoting immunogenic cell death, modulating immunosuppressive cells, and affecting energy pathways can potentially overcome resistance and enhance therapeutic outcomes. Thus, an effective approach for targeting apoptosis within the TME should delicately balance the selective induction of apoptosis in tumor cells, while safeguarding survival, metabolic changes, and functionality of T cells targeting crucial molecular pathways involved in T-cell apoptosis regulation. Enhancing the persistence and effectiveness of T cells may bolster a more resilient and enduring anti-tumor immune response, ultimately advancing therapeutic outcomes in cancer treatment. This review delves into the pivotal topics of this multifaceted issue and suggests drugs and druggable targets for possible combined therapies.
Collapse
Affiliation(s)
- Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via F. Mortara 74, 44121 Ferrara, Italy;
| |
Collapse
|
100
|
Zwick D, Vo MT, Shim YJ, Reijonen H, Do JS. BACH2: The Future of Induced T-Regulatory Cell Therapies. Cells 2024; 13:891. [PMID: 38891024 PMCID: PMC11172166 DOI: 10.3390/cells13110891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
BACH2 (BTB Domain and CNC Homolog 2) is a transcription factor that serves as a central regulator of immune cell differentiation and function, particularly in T and B lymphocytes. A picture is emerging that BACH2 may function as a master regulator of cell fate that is exquisitely sensitive to cell activation status. In particular, BACH2 plays a key role in stabilizing the phenotype and suppressive function of transforming growth factor-beta (TGF-β)-derived human forkhead box protein P3 (FOXP3)+ inducible regulatory T cells (iTregs), a cell type that holds great clinical potential as a cell therapeutic for diverse inflammatory conditions. As such, BACH2 potentially could be targeted to overcome the instability of the iTreg phenotype and suppressive function that has hampered their clinical application. In this review, we focus on the role of BACH2 in T cell fate and iTreg function and stability. We suggest approaches to modulate BACH2 function that may lead to more stable and efficacious Treg cell therapies.
Collapse
Affiliation(s)
- Daniel Zwick
- Frederick National Laboratory, Frederick, MD 21701, USA
| | - Mai Tram Vo
- School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Young Jun Shim
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Helena Reijonen
- Department of Immunology and Theranostics, City of Hope, Duarte, CA 91010, USA;
| | - Jeong-su Do
- Department of Immunology and Theranostics, City of Hope, Duarte, CA 91010, USA;
| |
Collapse
|